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Effect of environment partitioning on the survival and coexistence of autocatalytic replicators

inan,cBiroI*
Department of Chemical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, lllinois 60208

Satish J. Parulekhand Fouad Teymofir
Department of Chemical and Environmental Engineering, Illinois Institute of Technology, 10 West 33rd Street, Room 127,

Chicago, lllinois 60616
(Received 14 March 2002; published 26 November 2002

The paradigm of cubic autocatalytic replicators with decay in coupled isothermal continuous stirred tank
reactors is selected as a model to study complex behavior in population dynamics of sexually reproducing
species in a heterogenous environment. It is shown that, even a setup with single species in two coupled
environments may have regions in parameter space that result in chaotic behavior, hence segregation in the
environment causes complexity in the system dynamics. Furthermore, partitioning is found to lead to emer-
gence phenomena exemplified by steady states not obtainable in the equivalent homogeneous system. These
phenomena are illustrated through case studies involving single or multiple species. Results show that the
coupled environments can host species, that would not survive should the coupling be removed.
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I. INTRODUCTION mathematical biology in the textbook by Murrgy6].
In a recent article, Birol and Teymo(it 7] studied com-
Observed in their natural environment, most living spe-petitive autocatalysis as a population biology paradigm.
cies are found to exist in organized social settings reflecting heir analysis focused on multiple species populating a con-
various degrees of intermingling with other species. Theinuous stirred tank reactdiCSTR while competing for a
prospects of survival and coexistence of these species iresourceR which is externally supplied to the reactor at a
these environments is strongly impacted by the nature of theonstant rate. In bacterial growth systems, experimental bi-
interactions between them and by the type of environmenturcation studies show that, feed limitation can cause popu-
they populate. For example, on the large scale of the biokation cycles18]. However, for sexually reproducing organ-
sphere, a variety of living organisms play a primary role inisms, population cycles are generally attributed to species
completing the natural cycles of carbon, nitrogen, oxygenijnteractions, and are most popularly modeled through
and numerous other elements, thus performing a functiopredator-prey dynamickcf. Ref. [16]]. In Ref. [17], Birol
that is critical to the sustenance of life itself. Even the small-and Teymour showed that, like bacterial growth systems,
est living species, microorganisms, while interacting in nu-feed limitation can be the cause of population cycles, rather
merous ways with human activities, play a most prominenthan species interactions. They furthermore showed that, as
role in the completion of these elemental cycles. Rarely isnany as (271—1) steady states can be found whenewer
any species found to live in total isolation, as mixed popula-species are considered in the system, some of which corre-
tions of organisms are obviously the rule rather than the exspond to multiple species configurations. However, they also
ception in natural systems. The basic types of interactionprovided proof that no steady state involving the coexistence
between species in these mixed populations are mainly def multiple species was stable. This result, apparently in con-
scribed as eithefi) competition, (i) mutualism,(iii) com-  trast with the observation of biodiversity, has been com-
mensalism(iv) neutralism,v) amensalism(vi) predation or  monly found in a multitude of other homogeneous, autono-
(vii) parasitism[1,2]. Whenever one or more of these types mous systems restricted to pure and simple competition as
of interactions are present in a communal environment, varithe single source of interaction among their inhabitants. This
ous facets of complex behavior are displayed by its inhabiteompetitive exclusiorprinciple [19], also known as the
ants. plankton paradox20], raises questions about the sustain-
The theoretical study of the behavior of systems involvingability of natural ecology in view of the human activities
the interaction of populations of multiple species is achievedaided by great mobility and an unsettling appetite for con-
through the use of mathematical models based on differerdumption that disturb the Earth’s ability to support biodiver-
paradigms of population biology3—14]. The interested sity [21]. However, it is not uncommon to observe multiple
reader may find a good elementary introduction to mathiiving species in apparent competitive coexistence in natural
ematical models of biology in the textbook by Edelstein-situations, in spite of the competitive exclusion principle.
Keshet{15], and a thorough accounting of diverse aspects offhree major reasons are normally believed to contribute to
this: (i) the fact that the environment could be spatially non-
uniform, (i) the possibility that the external influences are

*Electronic address: biroli@northwestern.edu not time invariant, andiii) the possibility that one or more
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1063-651X/2002/665)/05191619)/$20.00 66 051916-1 ©2002 The American Physical Society



BIROL, PARULEKAR, AND TEYMOUR PHYSICAL REVIEW E66, 051916 (2002

The main objective of the present article is to explore theing organismg[27]. Regardless of whether a living species
applicability of this hypothesis to the autocatalytic replicatoris unicellular or multicellular, its functioning and survival are
system of Birol and Teymourl7], but only in as much as dependent on processes occurring in each cell. The activity
the “spatial homogeneity” assumption is concerned. To acof each cell is a sum of thousands of molecular level chemi-
complish this task, we test the effect of internal partitioningcal reactions occurring inside the cell which lead to utiliza-
on the behavior of the CSTR system, as we consider tWion of resources to generate building blocks of cellular ma-
coupled interacting CSTRs of the type illustrated in Fig. 1.terjal and a host of other chemicals and are promoted by a
The analysis will still utilize the cubic autocatalator large number of enzymebiological catalysts The progress
[3-7,17,23,2% of each reaction is strongly dependent on key variables such

" as pressure, temperature and pH. The ecosystem at large and
R+2P_3P (1) any qf its subs_ectlone)f whatever size, e.g., lakes, ponds,
and rivers of different sizes, seas, and oc¢ans character-
with catalyst decay, ized by substantial spatial and temporal variations in these
key variables and other such variables. These spatial and
@) temporal variations are responsible in part for the preserva-
tion of biodiversity. Humans have tried to mimic the func-
to model the population dynamics of any specific speciedioning of living species in natural environments in “con-
living in this environment. Results will show that the stabletrolled” settings in research laboratories and industrial
coexistence of two distinct species is provided by this particomplexes. Even in these settings, spatial and temporal
tioned environment under a range of operating conditionsyariations in key variables influencing the functioning of liv-
thus supporting the conjecture that partial segregation of thing species are increasingly common as the scale of opera-
environment leads to a higher potential for biodiversity. tion is increased28—-30.

This system of two interacting coupled CSTRs can be As mentioned, the overwhelming majority of studies re-
viewed as an aggregation of two subsystems, each of whictolving around thecompetitive exclusioprinciple involve
is equivalent to the original homogeneous CSTR. In this rethe cellular population dynamics of microbial mixed cul-
gard, it provides an additional interesting facet, as it displaysures. The rate of reproduction of cells in these cultures is
the phenomenon @mergencéeatured by complexity theory often expressed according to kinetics of the Michaelis-
[25]. Emergence, in this sense, refers to any situation irMenten type (which are analogous to the Langmuir-
which a system displays a level of functionality that is notHinshelwood type rate expressions used for chemical cata-
possible for any of its subsystems when considered on thelytic reactions [31]. In these, the specific growth rate of the
own. The ability to support coexistent distinct species is obcellular populationu is governed by the Monod equation
viously lacking from the homogeneous single CSTR system|32], which approaches a linear dependence on the resource
but emerges as a generic capability of the coupled reactat low resource concentration and saturates to a maximum
system. Analysis will further show that emergence can alsgrowth rateu,. at higher levels. A plethora of variations on
be observed even when a single species is considered in thisis basic rate equation have been proposed in the literature
system. Results will illustrate operating conditions underfor rates of cell replicatiorjsee Refs[1,33] and [34] for
which the mere existence of this species in the homogeneowgveral examples of thelsén some of these variations, the
CSTR is impossible, yet that lead to thriving survival in the order of reaction with respect to resources is less than unity

kg
P—D

same environment, when partitioning is introduced. and with respect to end-products is nonpositimet surpris-
ing since synthesis of building blocks for cellular material
Il. COMPETITIVE EXCLUSION and synthesis of end products are competing processes as
A . concerns utilization of nutrient and energy sources within the
A. Biological and ecological aspects living species.
The validity and applicability of the so-callexlirvival of The apparent discrepancy between the common obser-

the fittespphenomenon and the associated competitive excluvance of biodiversity in nature and the findings of studies on
sion principle have been the subject of debate among ecoldhe dynamics of mixed cultures has long been believed to be
gists. Several experimental and theoretical stufiiés[26]  attributable to spatial inhomogeneities and/or temporal varia-
for referencel have shown that competition of two popula- tions in inputs. Both of these hypotheses have been con-
tions for a single rate-limiting nutrient leads to extinction of firmed in further studies. Using the well-known Monod ki-
one of the populations in a spatially uniform environmentnetics for describing growth of two competing microbial
that is not subject to temporal variations in external influ-populations, it has been established theoretically that the two
ences. This pure and simple competition is the most widelyyompeting populations can be sustained in a controlled labo-
studied type of interaction between species populations thattory environment by periodic variations in feed conditions
inhabit a common environment. Generally, these interaction® a continuous culture in a well mixed CSTR or by intro-
are broadly classified into two types, namely, indirect inter-ducing spatial inhomogeneity in the culture by considering
actions(exerted through the abiotic environmgior direct two or more CSTRs with two-way exchange of the culture
interactionginvolving direct physical contact of the interact- between thenj26,35-37.
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Another major source of deviation from competitive ex- (1) and(2). As noted by Birol and Teymout 7], this is best
clusion could be the type of interaction between the twoanalogous to sexual reproduction in higher macroorganisms.
populations living in the environment. The closest type toThey also note however that the closely related quadratic
pure and simple competition is commensalism, in which aautocatalysis is an alternative paradigm for asexual reproduc-
commensal population benefits from a host population via @on by cell division, since only 1 mole d® participates in
unidirectional interaction. Mixed cultures exhibiting com- the reaction instead of 2. It is worthy of note that their analy-
mensalism with/without competition play an instrumentalsis proves that competitive exclusion is also found in homo-
role in ecology, in many commercial biological production yenegus, autonomous autocatalytic competition, thus indicat-

processes, and in environmental cleanup and remediatiqfly hat this principle is not affected by the mode of
processes. Even in spatially uniform environments and unde plication in action. This proof was presented in Héf7]
time-invariant external influences, these populations exhibi or steady state coexistence and will be extended here to
rich behavioral patterng38,39. Genetic engineering tech- . .

. ' : rove the lack of long term dynamic coexistence.
niques have opened new avenues for enhanced production |%fOTheorem 1. Impogssibility )cln‘ indefinite coexistenbie.a

many valuable biochemicals, and discovery and synthesis o ) . . e .
ynamical system dfl cubic autocatalytic species in a single

new biochemicals. While the use of extrachromosomal DN <oth | ith f
vectors(such as plasmidsallows for overproduction of the nomogeneous isothermal CSTR with constant resource feed,

target vector-encoded metabolites, reversion of the recombflore than one species cannot have a stable coexistence.
nant cells(host populationto vector-free cell§commensal Proof 1. Let us start by writing the model equations for
population at cell division due to loss of all vectde.g., the system. A material balance on the resource concentration
plasmid copies and the significant growth advantage that thék and each of the species concentrati®pyields

commensal population has over the host populattmmpe- iR N
tition for common nutrientsplaces limitations on sustained
production of the target metabolites. Dominance of the un- V@: _izl VKRP{+F(Ro—R), )
productive vector-free cells can usually be obviated by ap-
plying a selection pressure, such as an antibiotic. Insertion of
the antibiotic marker gene in the DNA vector renders immu-
nity for recombinant cells from the antibiotic, while the an-
tibiotic leads to death of or repression of growth of vector-

free cells. Supplying appropriate amounts of antibioticyyheret’ represents the timés is the volumetric flow rate,
ensures retention of recombinant population in the mixech0 is the feed concentration of resourde,and ky; are the
culture. Theemergencghenomenon to be discussed later i”reproduction and death rates for spediesespectively. We
this work has been demonstrated for these mixed cultures by, modify the model equations, by defining R/Ry, p;
periodic need-based addition of antibiof#0]. Another ex-  _p. IRy, t=R2t', f= F/(VR(Z))' andd, = kg /R2, thus yield-
ample of mixed culturegpopulations$ is the healthy cells ing Ithe dimengionless model equatilons 1o

and cancerous cells in animal tissue and blood. The cancer- '
ous cellsicommensal populatigrare generated from healthy dr N

cells(host populationand have significant growth advantage —=— kirp2+f(1-r), (5)
over healthy cellsicompetition for common nutrients and dt i=1

energy resourcgsSurvival of healthy cells then depends on

application of appropriate selection press(gech as chemo- dp; )

therapy and radiation treatmend suppress as much as pos- ar _Kirpi— (di+f)pi. (6)
sible the growth(spreading of cancerous cells. One should

recognize that these last two examples of populations witlye can use the model equatiof and (6) and the time
commensalistic interaction involve both direct and indirectderivative ofr +=;p;,

interaction.

dP,
VW=VkiRP?—<dei+F>Pi, (4

It should also be noted that any given species would be d
protected from competitive exclusion whenever it is being at
continuously introduced into the system through its feed
stream, even if in trace amounts. Any such species woulg0
acquire robustness against extinction from the parameter
space of the system by virtue of the fact that it can alway§h
recover to healthy population levels when conditions are
suitable[41,42. This situation, for example, might be en-
countered in the dynamics of fish populations in a body o
water where periodic restocking is practiced by the Depart-
ment of Natural Resourcé®NR).

r+§i: pi)=f<1—r—§i: pi)—Ei dpi (@

deduce the following constraints on concentrations:
(i) r(t)>0 for all physically meaningful cases, and after
e transients vanish,<Or(t)<1.
(i) Again, after the transients,(t) +2,;p;(t)<1, which
IjmpliesVi, pi(t)<1.
(i) If pi(e0)#0, thenp;(t)>(d;+f)/k;.
From the last two constraints, we can write iK{d,
+f)/k;, thenp;(e)=0.
Note that, considering the dynamics of the reciprocal of
the species concentratiorss(t) = 1/p;(t), we obtain a set of
The present study utilizes a paradigm for population dydinear differential equations fos;(t), with r(t) being the
namics based on the cubic autocatalator described by Egfarcing function, given as

B. Applicability to autocatalytic replicators
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ds, the range d\+ f,d,+f). This implies that, if the orbit de-
gi = _kr+(di+fs;. (8)  fines an attractor, we can compute the Lyapunov exponents
along that, to find N—1) positive Lyapunov exponents,
Assume that we are investigating the system after the trarfince there are at leasN¢1) mutually orthogonal direc-
sients are settled, and a#(t), i=1,... N, are finite, tions along which close-by orbits diverge. Furthermore, if
which, following the above constraints, means our system is orbiting on an attractor, it cannot have more
than (N—1) positive Lyapunov exponents. The remaining
two should be composed of a zero and a negative Lyapunov
exponent with a magnitude greater than the sum of the posi-
tive exponents. Since the conditions thus set for an attractor
Since coexistence steady states of this system are alwayi$ and when it exists are valid for the whole parameter

1<s(t) Vi, 9

i
“d+f

unstable[17], the system is to have a limit set. space, this multiple species setup cannot have a stable limit
Next, let us write the Jacobian matrix of the system in thecycle, but only a chaotic attractga hyperchaotic one, for
(r,s1,S5, ... ,Sy) Space, N>2), if any. However, all established routes to chaos re-
- - guire a stable limit cycle to allow the transitidief. Ref.
-3k ISP~ 2kyrls? 2korlsd ... 2kyrlsd [43]]. Also note that the absence of stable periodic attractors
i in the multispecies system rules out the common signatures
kK ditf 0 0 of chaotic regimes of periodic windows and odd-period limit
1 1 ca : S . o~
J= cycles, as well as orbits of infinite perigtiomoclinic and
—k; 0 dy+f ... 0 heteroclinig.
: : : : We can visualize the dynamic behavior of the system as
follows. We have seen that, everywhere on the orbit, there
L —kn 0 0 SRR are at leastN|—1) directions along which a small perturba-

(10 tjon would grow locally exponentially in time. Such an ejec-
along the trajectory, and find its eigenvalues to determine thon from the orbit would never make it back along a con-

orbital stability of this limit set. traction direction, but eventually defy the bounds set by the
The characteristic polynomial of the system can be writ-inequality (9), and the multispecies setup will collapse into
ten in a compact form as either a single-species setup or into total extinction. Math-
ematically speaking, we can implicitly integrate E§) for
N 2 ki d| 2K’ species andj to get
|)\|—J|=2 W‘f‘)\ _Z_N —
=1 Si Si si(t)  si(b) :Si(o) oA+t s;(0) o(d -+t
Kt K; K;j k; Kj
—(di+ D) S+ ] [II v=dj=f) . @D ‘
Si J#I _f r(T)(e(diJrf)(t*‘r)_e(derf)(t*T))dT' (14)
0

Note that, for a single-species systeh= 1), the stabil-
ity of the orbit depends on the choice of the system paramNote that, wherd;#d;, andt—c, the right hand side of
eters, as well as the initial conditions. Indeed, the singlethis equation will be dominated by the expressions of the
species system does have stable and unstable steady stagpecies with larger death rate. For instance; i#d;, then
and limit cycles[17].

For an N-species system, withN>1, the characteristic "mSi(t) _ 50 l.mSi(t) 15
polynomial, Py, ;(\) defined in Eq.(11) is the sum ofN e Ki Ki . K
polynomials,Py . ;(\), i=1,... N, each with at leastN

—1) real-positive roots at;=d;+f with j#i. Withoutloss  The only possible way that this could happen isgy- o,
of generality, assume thdi’s are sorted in decreasing order. hence the specidsgoes extinct.

Investigating the sign ofPy,.1(\) at A;=d;+f and \, In the special case afi=d;, we can write
:d2+f,
e Silit) _ Sjlit) :<Si|((0) _ Sil((o))e(di+f)t (16)
Pnea(h)=—-11 (d;—d)>0, (12) L ! )
S1 i#1

which would diverge to plus or minus infinity when
si(0)/kj#sj(0)/k;. If we consider an initial condition
si(0)/k;=s;(0)/k; in this special case, then the motion will
be trapped to the;(t)/k; = s;(t)/k; manifold, which we have
shown above to be unstable. An example of the latter case
we conclude thatPy.;1(\) has a real-positive root in the was presented in Reff17].

range @,+f,d,;+f). Following the same line of thought, As a result, multiple species cannot have stable coexist-
we can deduce that, there afd{1) real-positive roots in ence in this system. |

2Kr
Pnr1(A2) = ——I] (d;—dp<0, (13)
32 1#2
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L_z'_1
of

FIG. 1. (a) A homogeneous CSTRb) Equal
partitioning of the CSTR in(a@ as two coupled
CSTRs.

(a) (b)

Ill. SINGLE SPECIES IN TWO CSTRs pi

d
——=krp?—(f+d)p;+g(p;:—pi). 20
Prior to our analysis of the two-species problem in Sec. dt i (Frd)pi+glpr—p) 20

IV, we will focus our study in this section on the behavior of
a single species, when allowed to populate the coupledlthough in this setup, we may further scale time to get rid
CSTR system. Variants of this problem have been studied b9f the reproduction raté in favor of reducing redundancy,
Kim and HlavaceK44], and Taylor and Kevrekidig45,46,  We will keep it, for the sake of notational consistency with
but were limited to the study of resonance phenomena, qua€ec. IV, where we investigate the two-species case.
siperiodicity and chaotic dynamics resulting from the cou- The coupling strength is characterized by the dimension-
pling of oscillators. In this article we will analyze this single- less interaction flow ratg. In the absence of coupling
Species system with the aim of exp|oring the base upon_—o, we naturally will have two isolated CSTRs equivalent
which the parameter space of the two-species problem it the original CSTR. At the other extreme@s: =, the fast
built, and of presenting another example of emergent phetate of interchange will tend to equalize the concentrations of
nomena in complex systems. The latter is illustrated by thék andP in both reactors, making them again indistinguish-
ability of the coupled system to sustain the species unde®ble from a single large homogeneous CSFR. 1(a)]. The
conditions that result in total washout in the equivalent hofeed ratef will be doubled for the latter, but so will be the
mogeneous CSTR. Although the focus of our analysis will bevolume. The effect of the external feed rdtes different. If
on the analysis of the steady state bifurcation structure, w&e do not feed the system sufficiently,—0,) the popula-
will present dynamic results that exhibit chaotic flows pro-tion will starve to death, as there will not be enough re-
duced via the quasiperiodicity route, thus in agreement witfpources to consume for reproduction. At the other extreme, if
the findings of Taylor and Kevrekidig}5,46,. we feed the system too mucH,¢,) the residence time in
The system of two isothermal CSTRs with constant feedhe system will tend to zero, and the species will not have
of resource of concentratioR,, and feed raté-, that host any foothold in the system. Therefore, there is a finite region
populations of concentratio®;, i=1,2, which reproduce in the f parameter space, that would host a population of
sexually and decay with reactions of E¢®). and(2), respec-  SpeciesP, subject to the conditiok/d>16[17].
tively, is illustrated in Fig. 1b). Let the concentration of
resource in reactdrbe shown byR;, and the interaction be A. Static complexity
characterized by the flow rate. If we operate the two reac- . . . .
. Being a nonlinear system, a cubic autocatalator enjoys
tors at a constant and equal volurie we can write the . - ; . . ;
mulnstabmty, and we will start this section by enumerating

model equations governing the resource and population bapossible steady states, using the four equilibrium equations

ance as
—krip{+f(1=ri)+g(ri—r)=0, (2D
dR
VE:_VkRPi2+F(RO_Ri)+G(Ri’_Ri)y 17 krip?—(f+d)p;i+9(pi —p) =0, (22
wherei=1,2 andi’ #i as before.
dpP. First of all, as in the single CSTR case, if no species is
V—,I =VKRP?—(F+Vky)P;+G(P;,—P;), (18  populating the environmenp; =0, the fed resources will not
dt be consumed, and=1. Thus the trivial steady state of this

system is
wheret’ represents time, and the otherreactor, i.e., ifi
=1, theni’=2 and vice versa. If we define the dimen-
sionless concentrations=R; /R, and p;=P;/R,, scale the
time t=t'R3, and define new paramete=ky/R2, f
=F/(VR3) and g=G/(VR3), then the model equations
become

SS0=(r;=1,p,=0). (23)

It can be readily shown that this steady state is always stable.
Next, let us consider the symmetric solutions for this

system of equations, whegg,=p, andr,=r,, which are

clearly equivalent to the equilibrium equations of a single

CSTR

dr;

d_tI:_kripi2+f(l_ri)+g(ri/_ri)v (19 —krip?+f(1-r1;)=0, (24)
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krip?—(f+d)p;=0. (25)
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f.==(k—8d=+kyk—16d), (29)

| =

In Ref.[17] the steady states of a single CSTR were found to

be given by
1+VA  f(1-A)
SSl=(ri= > Pi= 2(frd) | (26)
1-JA f(1+/A)
SS%(”: 2 P %Fa) ) @
where
L A(f+d)?
A—l—T. (29)

Note that SS1 and SS2 exist only wh&n-0, which corre-
sponds to a finite range ihe (f _,f,), where

—kpi-f-g  —2krp,
kp 2kryp;—f—d—g
A:
g 0
0 g
is in the form
A;—gl gl .
wherel is the 22 identity matrix, and
—kpi—f  —2krp,
= 33
' kp?  2krip—f—d 33

for the steady state values of and p; . If the two CSTRs
have identical steady statés,=A,, and the Jacobian matrix
A can be transformed to

.| A 0 3
|39l A;—2g! 39
using the similarity transformatio,= S~ *AS with
21 =1
=lZ0 (35

Therefore the characteristic equation can be written as
IN = A[=[M=Aqf[(A+29)1 = A =0, (36)

and will have right half plane eigenvalues, if and onlyAif

and such a range exists onlykfd>16. The analysis also
showed that SS1 is always unstable, and that SS2 is stable
for fe (fy,f.), where

2d

" (K/d) V2= 2+ (K/d— 4(KId) %) 12

fy (30)

is the feed rate at which the system experiences a Hopf bi-
furcation. In the rangé e (f_ ,fy), SS2 is unstable.

Theorem 2: Conservation of stability structure for single-
CSTR steady state§he stability structure of the steady
states of each of two identical uncoupled CSTRs, as defined
by Egs.(24) and(25) is conserved, when these are coupled
by an interaction flow rateg.

Proof 2. Note that the Jacobian matrix of the coupled
CSTRs hosting a single species

g 0

0 g

2 (31)
—kpy—f—g —2Kr,p;

kps

2kl’2p2—f—d—g

does. Note that, this property can easily be further general-
ized to multiple-species steady states in two identical
CSTRs. |

Up to here, we have shown that the single-CSTR steady
states and their stability structure are valid for the coupled
system. Now let us consider two decoupled CSTRs, each at
one of its three steady states, and couple them, by slowly
increasing the interaction flow rate. As we have shown, if
both start at the same steady state, nothing will change and
the single-CSTR steady states will prevail for amyHow-
ever, if they start from two different steady states, in accor-
dance with the implicit function theorem, the new steady
state of the coupled system will be a continuous deformation
of the decoupled steady states in the limit of small interac-
tion flow ratesg. As a result, additional steady states will be
observed. Eventually, ag exceeds a certain threshold, the
deformed steady states will disappear, sincddage enough
g, we will approach the single-CSTR limit. Hence, in the
coupled system, we will have at most nine steady states,
three of them being the single-CSTR steady states, and six of
them developing because of the coupling. The six new steady
states come from the roots of a sixth order polynomial. After
manipulating the steady state equations using Maple soft-
ware[47], we can express that polynomial jiy, with coef-
ficients
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FIG. 2. Steady states foy, in the coupled CSTRs with=0.0077, hosting a species wiki+ 25 andd=0.1. The bifurcation parameter
is the interaction flow ratey. (a) Nine steady states of the system system are matkgA.closeup of the bifurcation diagram showing SS20,

SS21, and SS22.
pS/+k3(f+2g+d)(f2+2fg+df+dg)?,
p3/ — 2fk3(f+2g)(f+2g+d)(f>+2fg+df+dg),
p1/+k3(f+2g)(f+2g+d)
(2f4+7f3g+ f3k+4f3d+ 2f2d?+ 6f%g?
+10f?dg+ 2f2kg+3fgd?+ 4g2d f+g2d?),

p3/— fk?(f+29)2(f+2g+d)(4fg+dg+2f2+2df), (37)
pal+kf(f+2g)?

(f4+5f3g+3f3d+ f?kg+ 11f?dg+ 3f2d?+ 9f2g?

+7fgd?+fd3+ 2fkg?+ 11g2d f+ 6fg3+ d3g+ 2g°d?),

pi/—f2kg(f+29)3(f+2g+d),
pd/ + f2g2(f+29)3(f+2g+d).
Note the alternating sign of the coefficientspéf, which is a
necessary condition foR{p,}>0 for all k, d, f, and g

eR™.
Let us label the new steady states byaBSwherea and

reproduction raté&=25 and death raté= 0.1, fed by a volu-
metric flow ratef =0.0077. The single CSTR steady states
for this system are

SS00=(r;=1,p;=0;r,=1,p,=0), (39

SS1%= (r,=0.9355p, = 0.00461 ,= 0.9355p,=0.0048,
(40)

SS22=(r,=0.0645p, = 0.0668[ ,=0.0645p, = 0.0668.
(41)

Now, let us plot the bifurcation diagram for this system, us-
ing the content softwargl8], and the interaction flow ratg

as the bifurcation parameter. If we start with these steady
states and increase the interaction flow gavee will observe

the horizontal lines in the bifurcation diagram of FigaR
However, e.g., initial conditions combining4(,p;) of SSO,
and (,,p,) of SS1, will yield the top curve emerging from
r1=1 in the first CSTR, and the curve that emerges from the
top ofr,=0.9355 in the second. Note that, as argued above,
the newly emerging steady states survive up to a certain
threshold value ofy, and disappear beyond that. There are
six new steady states due to coupling. The pair of steady
states below the line;=0.0645 are SS20 and SS21. The
thick (thin) curves correspond to stabl@nstable¢ steady

b denote the combination of decoupled steady states that legdiates. For the parameter set of this example, SS2 is stable as

to it. For instance

1+VA  f(1-VA)

2 P27 0 )

E;E;()];: r 1= ].,F)]_:: () T 2=
(38)

well as SSO, and the new steady states SS02 and SS20 pair-
ings have regions of stability. All the other pairings have at
least one of the CSTRs at an unstable steady state, and the
new steady states are unstable too, but this does not imply
that new steady states should inherit the stability structure
from their parent steady states. In FigbR we have shown

at the branching point of=0. Of course, when the system a closeup of the two steady states that emerge from SS22, to
is at a steady state &8 from the reference frame of one clarify their stability structure.

reactor, it should be at the symmetric steady stateaS&m

Note that, in this projection of the bifurcation diagram,

the reference frame of the other reactor since they are ider8S02, crosses over SS11, and the three steady states SS01,
tical. Thus, the stability structure of the steady states is symSS10 and SS11 meet for a specific interaction flow rate. Al-

metric in the indicesa andb for this parametrization.

Example 1: Development of new steady sta@snsider

the two CSTRs of Fig. 1 and a population of spedtewith

though the first phenomenon is an artifact of projection, the
latter is a result of the presence of a branching poing at
=0.0533.
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We may generalize the enumeration scheme for the nunsystem, and the amorphous isola is due to the coupling. If we
ber of possible steady stateskonutually interacting CSTRs label the steady states, &t 0.005 from top to bottom, they
with a single autocatalytic species. In each reaction, for thare SS00, SS01, SS10, SS11, SS02, SS12, SS22, SS21, and
g—0 limit, there are three possible steady states, tHus 35S20. Note that arount=0.0075, SS02, SS12, SS21, and
possible configurations. When we let a configuration ofSS20 disappear at the tips of the crescent, and do not appear
CSTRs interact, by increasing the interaction flow rate, agaimntil f=0.3.
according to the implicit function theorem, alk 3listinct An important fact in this bifurcation diagram of Fig. 4, in
steady states will survive for a range of interaction parameteagreement with Figs.(8) and 3b) is that, the domain of the
g, and then the bifurcation diagram will evolve into the threeamorphous isola on theaxis exceeds that of the circular
steady states of thg— o limit. isola. Thus, coupling makes it possible for the species to

In this section, so far we argued the mechanism that renave nontrivial steady states in the system, expanding the
sults in new steady states due to coupling. Namely, we&pace of possible
started with an asymmetric steady states configuration in de- In an ecological analogy, consider, say a group of pri-
coupled CSTRs, and brought them together to observe theates, living in an isolated environment with a scant flow of
new steady states. It should be noted however that, couple@sources such that the group cannot survive under given
autocatalytic reactors have steady states that cannot k@nditions. If the group, however divides into two and forms
reached through this scheme. That is, even if the decouple@rritorial tribes, allowing onlycontrolled interaction (in
CSTRs do not have steady states for the operating paranterms of population and resource interchantpey can sta-
eters, the coupled system may. We can find those new steadijlize the unstable emergence steady states and survive in
states by using two-parameter continuation studies on thghat environment. In fact, such a territorial grouping is not
limit points and branching points of the asymmetric steadyuncommon among many species, and the phenomenon is ex-
states. plained in two schools of thoughthe predation schochnd

Example 2: EmergenceéConsider the system of example the bully schoalThe predation school claims that group liv-

1, operating at a feed rate ¢0.000977. Note that SS1 ing serves as predator control, both in the sense of easier
and SS2 exist only fof € (0.00165,6.0483). Therefore, the detection of the predator, and lower probability of being the
decoupled system has the trivial steady state of extinctionwictim. In her study of black macaques on the Sulawesi is-
only. However, the coupled system can have up to four nontand of Indonesia, Kinnaird observes that, although the
trivial steady states, as shown in FigaB Figure 3 shows macaque population on the island does not have a profound
the evolution of the bifurcation diagram versusg/f, and  predator, they still live in social groups, and concludes that
how those emerging steady states are related to the “asynhe bully school of thought should be the correct reasoning
metric steady states” setup. The emerging steady states firg49]. As suggested by our analysis, grouping may as well be
materialize as two points in the {,g/f) plane and grow into  the result of the underlying population dynamics.

distinct isolag Fig. 3(@)]. Asf is increased, they first come in Also, note that, not only do SS02 and SS20 have a range
contact, then intertwin¢Fig. 3(b)] in this projection. Next of f, where they represent stable steady states, with SS2 un-
they elongate towardg=0, in anticipation of the limit of stable, but the system can sustain a higher concentratiBn of
sustainability in a single CSTR, the upper isola touching theas well in one of the CSTRs than it can have, if the CSTRs
trivial steady state at;=1, and the other one touchirrg  were decoupled. It may be possible to explain this emergence
=0.5[Fig. 3(c)] for f =0.001 65. At this value dof, the isolas  of stability by local fluctuations of the asymmetric system,
are about to break at their touching point, then move apart, athat temporarily changes the effective volume and the resi-
the steady states of the single-CSTR materialize in this setugence time of each CSTR, thus bringing spatial inhomoge-
[Fig. 3(d)]. By increasingf, the branching points of SS12, neity to the system.

SS22, SS21 triplet and SS02, SS22, SS20 triplet grow closer. Figure 5 illustrates how the bifurcation diagramrefver-
After they meet, SS02 pairs up with SS12, and SS20 witlsusf evolves for changing, further clarifying the conditions
SS21, and break from SS2Fig. 3(e)]. Thus, two distinct for the emergence phenomenon. In Figa)3he bifurcation
branching points evolve into two identical limit points. On diagram of the decoupled CSTRs is presented. It consists of
the other hand, SS01 and SS10 do not undergo any fundéie trivial solution liner;=1 (not shown, and an isola
mental changes throughout these transitions. Starting at Figvhich has a region of stable steady states, indicated by a
3(f), stability starts developing on SS02 and S&&town by  darker portion on the lower right-hand corner of the diagram.
darker lineg, where SS22 is also stable. As the gap betweern Figs. §b)—5(), we deliberately omitted the isola of the
SS11 and SS22 grows wider, SS02, SS12 pair gets more adécoupled case, in order not to obscure the asymmetric
more confined between SS00 and S#ifys. 3f) and 3g)]. steady states. As we increase the interaction flow gatee
When this gap starts shrinking again, by increasinghe  asymmetric steady states emanate in the vicinity of SS00,
asymmetric steady states survive higher and higher interacsS11, and SS22. We first observe an isola between SS00 and
tion flow rates[Fig. 3(h)], until SS11 meets with SS22 at SS11, and two nested isolas near the isola of SS11 and SS22
r,=0.5, forf=6.0483, where SS12 and SS21 become on€fFig. 5b)]. Note that, the new steady states SS02 and SS20

A cross section of this behavior is better illustrated by thehave a region of stability. Then, as the interaction flow rate is
bifurcation diagram of Fig. 4, where the bifurcation param-increased, the top isola formed by SS10 and SS02 grows
eter is the feed raté and g is fixed at 0.002. The circular bigger while the other two new isolas get distortdeg.
isola represents the nontrivial steady states of the decouplegc)], and after the top isola touches the inner isdlaig.
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FIG. 3. Evolution of the bifurcation diagram of versusg/f in the coupled CSTRs for changifi§Egs.(21) and(22)] hosting a species
with k=25 andd=0.1. Feed rate i¢a) 0.000 977,(b) 0.001 25,(c) 0.001 65,(d) 0.002,(e) 0.005,(f) 0.05,(g) 0.5, and(h) 5. The trivial
steady state whemg =1 is not shown. The horizontal lines stand for the steady states of the decoupled CSTRs which prevail in the coupled
case.

5(d)] the three merge to form a single closed cuff#ég. the lower tip of the crescent. As we further increase the in-
5(e)]. That is when SS02 and SS20 develop another region deraction flow rate the closed curve shrinks furtfeg. 5(1)],
stability located at the tips of the curve for lowkralues. then disappears. As we had argued earlier, beyond a certain
The stability regions on SS02 and SS20 enlarge the boundhreshold interaction flow rate, the bifurcation diagram of the
aries of survival for the species, thus, we again encounter acoupled CSTRs is the same as that of the decoupled CSTRs.
emergence phenomenon. This new region of stability shrinks The behavior of the limit points and the branching points
with increasingg [Fig. 5(f)] and disappeard=ig. 5(g)] as the  of Figs. 3 and 5 can be summarized in a two-parameter con-
closed curve evolves towards a crescentlike sh&jme 5h)  tinuation diagram(Fig. 6). The horizontal dark lines in the
and 5i)]. Yet, even in Fig. §), we have a twist in the curve, figure are the limit points of the single-CSTR system, show-
which eventually disappears in Figlk, at the cost of losing ing the boundaries of the species isola. The dark curve be-
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FIG. 5. Evolution of the bifurcation diagram versusf in the coupled CSTRs for changigd Egs.(21) and(22)] hosting a species with
k=25 andd=0.1. Coupling feed rate i) 0, (b) 0.0001,(c) 0.0002,(d) 0.0005,(e) 0.001,(f) 0.002,(g) 0.004,(h) 0.005,(i) 0.01,(j) 0.02,
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are shown in(a).
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FIG. 7. Limit cycles emanating from the Hopf bifurcation points inversusf plane. The species in the environment have reproduction
and death ratek=25 andd=0.1, respectively. Solid lines are steady states, while symbols represent the extrema of limit cycles.

neath the lower horizontal line shows the evolution of the Example 3.: Stable steady states, limit cycles, and chaos
limit points of the emergence isola of Figs(@aBand 3b). Let us investigate the system of Example 1, with an interac-
Therefore, above the upper horizontal litRRegion ), and tion flow rateg=0.002. Fig. 7 shows the limit cycles coming
below the lower horizontal line and the emergence limitout of the three Hopf bifurcations. The limit cycles of Fig.
points (Region 1), the system only has the trivial steady 7(2) correspond to those that develop from SS22, and the
state. Similarly, on the right-hand side of the right-mostones shown in Figs.(B) and 7c) develop from SS02 and
branching points curvéRegion Ill), the system has two SS20, respectively. I\_Iote that,_the f|rst_ bifurcation diagram
steady states on the single-CSTR isola, and the trivial stead§@Nnot have any period doubling, as it corresponds to au-
state. In other words, the static structure of the coupled sydonomous two-dimensional dynamics. Furthermore, numeri-
tem is equivalent to that of a single-CSTR system, if weCal studies showed that, the secdhdnce the thirbifurca-
operate the system in Regions I, II, or IlI. tion diagram d_oes npt_ have any period _doubllng either. Yet,
the system still exhibits chaotic behavior reached through
quasiperiodicity. For instance, if we couple two individually
oscillating CSTRs with a phase angle, the oscillations either
The system described by Eq4.9) and(20) can have up lock into a single oscillation or result in chaos. If we perturb
to three Hopf bifurcations in the states versus the feed flowthe system around the locked oscillation or its strange attrac-
rate space. One of the Hopf bifurcations occurs on the symtor, it may also converge to a stable steady state. In Fig. 8,
metric steady state SS22 at the flow rate given by(Bf), these three scenarios are shown on the;) and (,,r,)
since the bifurcation diagram of the symmetric steady stateprojections of the phase space. In the first one, after a long
of the coupled CSTRs is identical to that of the single CSTRtransient regime, the two CSTRs get locked on the single-
The other two possible Hopf bifurcations occur on the asym-CSTR limit cycle[Fig. 8@)]. The second one is a strange
metric steady states SS02 and SS20, as they are the ordytractor[Fig. 8b)], and the third one shows the stable and
possible new steady states that can develop from two stablenstable steady states of the system, \@ttand X, respec-

B. Dynamic Complexity

steady states. tively.
0.3 0.3 0.3
0.25 0.25 0.25
0.2 0.2 0.2
p 0.15 p 0.15 p 0.15
0.1 0.1 0.1
0.05 0.05 0.05 | X
0 0 0 %
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
n n gt
1 1 1 =
0.8 0.8 08|a
0.6 0.6 0.6
F. . F.
2 04 2 04 ? 04
0.2 0.2 0.2
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(a) (b) (c)

FIG. 8. Coupling two oscillating CSTRs with=0.006 74 andy=0.002 either(a) results in an identical limit cycle in two reactors, or
(b) results in a chaotic motion, dc) the system can go to one of its stable steady states showr@wiEror comparison we have also shown
the unstable steady states of the system with
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0.25 tion of p in the system, initially on a strange attractor for a
feed rate f=0.00665 and an interaction flow ratg
02} =0.002. After the interaction flow is removedtat 300, the
015 ] P concentrations in both CSTRs go to zero. This illustrates
p another type of emergence in the coupled system.
01t 1 Example 4: Multiple limit cyclesAnother dynamic rich-
ness of the system of a cubic autocatalytic species in two
0.05 t CSTRs is that, it can have a high order of limit cycle muilti-
0 , plicity. For example, consider the species witk 25 andd
0 100 200 300 400 500 =0.1, living in two CSTRs that are fed with a flow rate

¢ =0.006 729, and interaction flow rate g=0.0005. This
FIG. 9. Species of Example 3 in two CSTRs with a feed rateSyStem has five stable limit cycles, as shown in Fig. 10.
f=0.006 65. Initially the CSTRs are coupled by an interaction flow 1N Fig. 10@), (r1,p1) and (1,r,) projections of the limit
rateg=0.002, and the interaction is removedtat300. cycles are shown with the stabl®] and unstable X)
steady states of the system. The limit cycle shown by a line
Thus the system may have multiple stable steady states,ia (ry,r,) projection is the limit cycle that is inherited from
stable limit cycle, and multiple strange attractdtse one the single-CSTR dynamics. Figure(bis the closeup of the
that is shown in Fig. &) and its mirror symmetryfor the  limit cycle, centered arounid,=0.9356 and is seen as a line
same parameter set. Accordingly, it will be attracted to eithein Fig. 10@), which shows that it does indeed oscillate i
one, depending on its initial conditions. Furthermore, it canas well. The same is valid for the limit cycle centered around
be transfered from one regime to another by small perturba-;=0.9356, since we have a mirror symmetry between the
tions, due to the mingled nature of different basins of attractiwo CSTRs of the system. Also, note that the limit cycle
tion. shaped like a figure-eight irr{,r,) projection is indeed two
Furthermore, although this species cannot have any limilimit cycles with a phase difference af on top of each
cycle forf<0.006 728 6, ang=0.002, it does have strange other, again due to mirror symmetry. Another interesting
attractors untif =0.0066. Hence, the species survivasng property of this limit cycle is that, while it undergoes a single
on a strange attractor manifold, and would die out if thecycle in the ¢4,r,) projection, it makes two identical cycles
coupling were removed. Figure 9 shows the average populan the (r;,p;) projection.
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FIG. 10. Multiple stable limit cycles and steady states of the system of example 4.
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TABLE I. 49 steady states of a system of two CSTRs with two speRiaadQ of example 5 and their
stability. Steady states are grouped in four sets: total extingtignP only (2—-9), Q only (10-17%, and
coexistencg18—49.

CSTR 1 CSTR 2
SS r P1 o] ra P, az Stability

1 1.000<10°  0.000x10°  0.000<10°  1.000x10°  0.000<10° 0.000x10°  Stable
2 9.490<10° ' 4.636x10° % 0.000<10° 9.490x10 % 4.636<10°° 0.000x10° Unstable
3 5.100<10°2 8.627x10° 2 0.000<10° 5.100x10 2 8.627<10°2 0.000x10°  Stable

4 9.526<10° ' 4.661x10 % 0.000<10° 9.957x10 ' 4.239<10°° 0.000x10° Unstable
5 4.743<10°2 9.361x10°2 0.000<10° 9.110<10° ! 1.085<10°° 0.000x10°  Stable
6
7
8
9

4.754<107% 9.336x10°2 0.000x1C° 8.819<10°! 3.967x10°° 0.000<10° Unstable

9.957 1071 4.239<107° 0.000<10° 9.526x10°! 4.661x10°% 0.000<10° Unstable

8.819<10°1 3.967x10°°% 0.000<10° 4.754<10°2 9.336x10°2 0.000<10° Unstable

9.110x10° ! 1.085x10°° 0.000<10° 4.743x10°2 9.361x10° 2 0.000<10°  Stable
10 8.363x10° ' 0.000<10° 4.424<10°2? 8.363x10° ' 0.000<10° 4.424x10? Unstable
11  1.63%10* 0.000<10° 2.260<x10°' 1.637x10° ' 0.000x1° 2.260<x10 ' Stable
12 8.43%10°' 0.000<10° 4.503<10°2 9.856<10°! 0.000<10° 1.224x10°3 Unstable
13 156810 ' 0.000<10° 2.421x10°' 9.182<10°! 0.000<10° 7.868<10°%  Stable
14 157810°' 0.000<10° 2.398<10°! 8.089<10°! 0.000<10° 3.947x10°2 Unstable
15 9.856<10°' 0.000<10° 1.224<10°° 8.432<10°! 0.000<10° 4.503x10°2 Unstable
16 8.08%10° ' 0.000<10° 3.947x10°2 1.578<10° ! 0.000<10° 2.398<10°' Unstable
17  9.18%10° ' 0.000<10° 7.868<10°° 1.568<10 % 0.000x1(° 2.421x10 ' Stable
18  7.544<10° ' 5.833x10°% 4.905x10 2 7.544<10° ! 5.833x10°% 4.905x10°? Unstable
19 2.456<10°' 1.791x10°2 1.506x10° ' 2.456x10° ! 1.791x10°2 1.506x10 ' Unstable
20 9.37% 107! 4.736x10°% 1.230x10°°% 8.378<10°! 4.302<10°° 4.532<10°2 Unstable
21  9.78% 10! 5.259x107° 1.345x10°°% 7.695x10°! 5.769<10°° 4.935<10°2 Unstable
22 9314 107! 4.715x107% 1.352x10°° 7.646x10°! 5.764<10°° 4.967<10°2 Unstable
23  4.830x1072 9.192x1072 1.366x10°°% 7.330x10°! 9.898<10°“% 5.180<10°2 Unstable
24 4858102 9.135x10°2 1.498<10°° 6.683x10 ' 5.681x10 % 5.682<10°2 Unstable
25 5.061X10°2 8.759<10°2 3.802<10°% 2.642x10°' 1.598<10 2 1.438<10°! Unstable
26 8.810x10° ' 4.862<10° % 4.853x10°% 2.320x10°' 1.909<10° %2 1.637x10° ! Unstable
27  9.27% 10! 1.803x10°* 4.928<10°% 2.305x10 ' 1.926x10° 2 1.647<10° ! Unstable
28 5.126x107°% 8.661x107% 5.647x10°° 1.783x10°! 8.064<10° 4 2.130<10°! Stable
29 8.67X10°! 5120x10°% 7.671x10°% 157910 ! 4.620<10°° 2.405<10°! Unstable
30  7.965¢10°! 1.775<10°* 4.297x10°2 2.327x10°! 1.908<10°% 1.622<x10"! Unstable
31 8.28%10°! 5.306x10°° 4.452x10°%2 7.614x10° ! 5.831x10°% 4.871x10°? Unstable
32 7.286<10°' 6.094x10°° 4.490<10°2 1.593x10°' 5.501x10 ° 2.374<10°! Unstable
33  8.37% 10! 4.302x10°° 4532102 9.373x 10! 4.736x10 % 1.230<10 % Unstable
34 7.19%10°' 5993x10°° 4.815<10°2 2.349x10°' 1.885<10 % 1.605<10 ! Unstable
35 7.614<10°! 5.831x10°° 4.871x10°2 8.289x10° ! 5.306x10°° 4.452x10°? Unstable
36 7.695<10°! 5.769x10°° 49351072 9.789x10° ! 5.259x10°° 1.345<10°% Unstable
37  7.646<10°! 5.764x10°° 4.967x10°2 9.314x10° ! 4.715x10°% 1.352x10°% Unstable
38 7.330<10°! 9.898<10°* 5.180x10°2 4.830x10°2 9.192x10°2 1.366x10°% Unstable
39 6.68%10°! 5681x10 ° 5.682<10°2 4.858<10°2 9.135<10 2 1.498<10 % Unstable
40 2.64%10°' 1.598<10° 2 1.438<10° ' 5.061x10°2 8.759<10 2 3.802<10 % Unstable
41 2.43810°' 1.821x10°2 1.497x10° ! 1.655x10°! 1.651x10°* 2.256x10°! Unstable
42 2.34% 107! 1.885x10°% 1.605<10° ' 7.199x10°' 5.993x10 % 4.815<10 2 Unstable
43 23271071 1.908<10°2 1.622x10°%1 7.965x10°! 1.775x10°% 4.297x10°? Unstable
44  2.320<107! 1.909x10°2 1.637x10° ! 8.810x10° ! 4.862x10°% 4.853x10°% Unstable
45 2.305<10°! 1.926x10°2 1.647x10°' 9.279x10°! 1.803x10°* 4.928<10°% Unstable
46  1.783%10°! 8.064x10°* 2.130x10°! 5.126x10°2 8.661x10°% 5.647x10°%  Stable
47 1.655¢10°! 1.651x10°* 2.256x10°! 2.438<10°! 1.821x10°2 1.497x10"! Unstable
48 1.59% 10! 5501x10°° 2.374<10° ' 7.286x10°' 6.094<10 % 4.490<10 2 Unstable
49 157%10° ! 4.620<10°%° 2.405<10° ! 8.671x10°! 5.120x10°% 7.671x10°% Unstable
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in 2
W:quiqi_(f+dq)qi+g(qi’_qi)1 (44)

fori=1,2, withi#i’, and wherek, (k,) andd, (d,) are the
dimensionless reproduction and death rates of sp&c(€y),
respectively. Note that, for the two species system, the results
of the single species case, investigated so far, are all valid.
Namely, we still have the total extinction as a stable steady
state, and there are eight additional steady states for each
species. Also note that, in a single CSTR setup with two
specieg 17] we have seven possible steady stetmse for
total extinction, two for each species representing partial ex-
tinction, and two for their coexistenceAgain, from the im-
plicit function theorem, we can argue that, if we start each of
the two totally segregated CSTRs at one of those seven
steady states, then bring the two into interaction, by slowly
increasing the interaction flow rate, the steady states will
evolve continuously into new steady states. Thus, for some
range ofg € (0,9may), We may observe up to 49 steady states
for this system, as illustrated by the following example.

Example 5. The steady state structuteet us consider
speciesP with k,=25 andd,=0.1 as in the previous sec-
tions, and let the second speci@de defined byk,=1 and
dy=0.027. For a feed flow rate df=0.01, and an interac-
tion flow rate ofg=0.001, 49 distinct steady states are pos-
sible. These have been computed and their stability charac-
teristics determined as shown in Table |.

If we continue these 49 steady states using the feed flow
ratef as our bifurcation parameter, we obtain the bifurcation
diagram of Fig. 11. When compared with tReonly bifur-
cation diagram of Fig. 4, Fig. 148) reveals that the introduc-
tion of the second species increases the level of complexity
of the bifurcation diagram considerably, as the maximum
steady state multiplicity has increased from nine to 49. To
better show the details of this, we have plotted tiig()
and (f,q,) projections of the bifurcation diagram on a log-
log scale[Figs. 11b) and 1Xc), respectively. Notice that,
the trivial stable steady state of total extinction is not shown
in any of the projections. For added clarity, Fig. 12 presents
a breakup of this bifurcation diagram into three sets of solu-

FIG. 11. Bifurcation diagram of the two species case of examplgjgn curves, those supporting only, those supporting)

5 on(a) r, versusf, (b) p; versusf and(c) q, versusf planes. Note

only, and those where existence of b&tlandQ is observed.

that, the latter two are drawn on a log-log scale to show detail forNote that, the {,r,) plane projection of thé>-only steady

low level species concentrations.

IV. COEXISTENCE OF TWO SPECIES IN THE
PARTITIONED ENVIRONMENT

states are identical to those of Fig. 4, and that those of the
Q-only steady states are similar. We can clearly see from the
coexistence steady states shown in Figgbil212(e), and
12(h) that the two-CSTR system is capable of hosting two

Now, let us take a step further, and consider the coupledP€cies on multiple stable steady stafies example steady

CSTRs when two speciésandQ are allowed to populate it.
The dimensionless model equations for this case are given

dr,
dt

dpi_ 2
W—kpripi —(f+dy)pi+9(pir—pi),

——= = —kylip?—Kqriq?+ f(1—r)+g(ri,—r;), (42

states 28 and 46 of Table I, which are mirror images of each
hep. Another interesting point we observe in Fig. 12 is
at, while the coexistence steady states form a bundle in
(f,q1) projection[Fig. 12h)], they are grouped in three dis-
joint sets in §,p;) projection[Fig. 12e)].

Similar to the single species analysis, we can study the
effect of the interaction flow rate, on the bifurcation struc-
ture. If we fix the feed flow rate &t=0.01, we can use the
interaction flow rateg to plot the bifurcation diagram of Fig.

13. We can see that the system has a pair of stable coexist-
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FIG. 12. Breakup of the bifurcation diagram of the two species case of examfdg &), and(c) show anr, versusf projection,(d),
(e), and (f) show ap; versusf projection,(g), (h), and (i) show aq; versusf projection of P-only, P and Q, and Q-only steady states,
respectively.

ence steady states in the range (0,0.0045), and roughly Example 7: Two species chaodumerical studies per-
afterg=0.054 the coupled CSTRs have a steady state strudormed suggest that, two species can coexist in two identical
ture identical to that of a single CSTR. CSTRs either at a steady state, or on a quasiperiodic attrac-
Example 6: Two species oscillatioiNext, we consider tor. Although theoretically, it may still be possible to sustain
some numerical experiments that explore oscillatory cou€oexistence on a chaotic attractor in the two identical CSTRs
pling in this system. If we totally segregate the system of thesetup studied, our numerical analysis could not locate such
previous example and feed it with a flow réfte 0.007, un-  behavior in the range of parameters considered. To push the
der certain conditions, we can arrange a setup where the firguasiperiodic regime into a full-fledged chaos, we needed to
CSTR has an oscillating speciesand the second CSTR has either relax the identical CSTRs condition, or increase the
an oscillating specie® [Fig. 14a)]. Next, we can couple the level of partitioning by considering a three-CSTR setup.
two CSTRs with certain interaction flow rate and observe the To that end, let us first consider three CSTRs hosting two
effect of coupling. Depending on the timing and the strengtrspecies P with k,=24 andd,=0.1, andQ with k,=24.5
of coupling, the system can go to a two species quasiperiodiand d,=0.099. If we operate the system of totally segre-
oscillation[Fig. 14(b)]; to a setup where one of the CSTRs is gated CSTRs with a feed flow rate=0.007, both of the
dominated by an oscillatin@, and Q is gone extincfFig.  species will have stable limit cycle regimes. Now, we start
14(c)]; to a setup where one of the CSTRs is dominate®by the system with seeding the first CSTR wifh and the sec-
at steady state, an@ is gone extincfFig. 14d)]; to a setup ond and the third witHP. After they reach their stable limit
where both of the CSTRs are dominated by an oscillafing cycle, if we connect the three with an interaction flow rate
and Q is gone extincfFig. 14e)]; or to a total extinction g=0.0005, in the resulting system we will have the first
steady stat¢Fig. 14(f)]. Note that, the oscillations shown in CSTR dominated by, and other two dominated by, and
Fig. 14b) are actually quasiperiodic oscillations, which is the limit cycle of the species will evolve into a strange at-
evident from the concentration fluctuations pf and g, tractor. Figure 16 shows the concentration of the dominant
shown in Fig. 15. Also note that, the last two cases shown irspecies versus the resource concentration in each tank.
Figs. 14e) and 14f) have the same interaction flow rate, yet  Alternatively, let us relax the condition of identical
exhibit different type of final behavior, due to the timing of CSTRs, and consider a two-CSTR system with the second
the coupling. CSTR having a volume that is twice that of the first one, and
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1 = coupled case, conserve their stability structure after coupling.
§ For the case of a single species, we investigated the mecha-
08| 1 nism by which new steady states develop in the coupled
system. A continuation study on the new steady states re-
vealed that, the coupled system may have survival steady
04 | ] states, where the decoupled system cannot. Thus, we witness
emergence of newalbeit unstablesteady states due to the
02t 1 complexity offered by coupling. Another encounter with
emergence phenomena occurred in the parameter range,
where the decoupled system did not have any stable survival
steady states. The coupled system, this time, expanded the
@ range of stability for the survival of the species. In one of the
environments, we had high concentration of the species—in
1 v fact, higher than théunstablg steady states of the decoupled
\ system can reach—and in the other we had a lower concen-
08— ] tration. A third kind of emergence phenomenon occurred
next to the limit cycle regime of the decoupled system,
0.6 | 1 which is also valid for the coupled case. When the limit cycle
n of the decoupled system ceased to exist, the coupled system
041 ] enjoyed a strange attractor. Once more, the species survived
where it would not, should the coupling be removed.
Theoretical and experimental studies suggest that, coex-
. . istence of pure and simple competitors in a homogeneous
0.001 0.01 0.1 environment with uniform feed flow rate is not possible. We
8 have shown that the autocatalytic replicators setup is in
(b) agreement with this, so called, competitive exclusion prin-
ciple. One remedy of this is to partition the environment. In
this work we have shown the mathematical reasoning of why
0.8 and how partitioning brings the possibility of coexistence.
We also conjecture that the number of steady states of mul-
0.6 F tiple species living in a partitioned environment increases
" exponentially both with the number of species and the num-
0.4} ber of partitions. Results demonstrate that, stable coexistence
of two species is impossible in this environment, in a multi-
0.2 f) — tude of configurations. These include steady state, periodic
and quasiperiodic attractors as well as chaotic attractors.
The two-CSTR system considered here is an example of
two well-mixed subsystems interconnected via two-way ex-
change of living specie@utocatalystsP andQ and nutrient
resourceR. With resource introduced via feed devoid of au-
FIG. 13. Bifurcation diagram of the two species case of exampldocatalysts and loss of both autocatalysts and resource via the
5, onr, versusg plane.(a) P only, (b) Q only and(c) coexistence  effluent in each subsystem, the two-reactor system is repre-
steady states. sentative of the industrial scale biological production pro-
cesses and biological waste treatment processes. The rates of
is fed with a flow rate that is twice that of the first. If we seed exchange ofP, Q, and R between the two subsystems are
this system with the same speciBsand Q as above, and proportional to the differences in concentrations of the re-
operate the system with=0.007 andg=0.0005, in operat- spective species in the two subsystems and are therefore,
ing conditions of Fig. 17, the first CSTR will be dominated representative of diffusive transport between the subsystems.
by Q, and other one dominated W Thus, the two species Segregation of a system into two or more subsystems based

06}

n

0.001 0.01 0.1

02

0.001 0.01 0.1

©)

will again be able to coexist on a strange attractor. on spatial inhomogeneity, with exchange of one or more spe-
cies occurring between the subsystems by diffusion, has been
V. CONCLUSIONS shown to lead to coexistence of two competing living species

under conditions where such coexistence would not be
This article analyzes the effect of environmental partition-permissible if the system were spatially homogeneous
ing on the survival fate of multiple cubic autocatalytic repli- [16,26,35—37. It is well known that diffusive transport en-
cators that inhabit this environment, and compete for a comables coexistence of competing living species both in mecha-
mon resource. The partitioned environment was modeled asochemical system&uch as that considered hgsnd eco-
two coupled CSTRs. Analysis showed that the steady statdegical system$16].
of the decoupled system, which are also present in the Although the focus of this article is on a two-CSTR sys-
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FIG. 15. Concentrations ofa) P in the first
CSTR, andb) Q in the second CSTR versus the
resource concentration in the respective CSTR
for the two-species oscillation of Fig. ().

FIG. 16. Concentrations ofa) Q in the first CSTR,(b) P in the second CSTR, an@) P in the third CSTR, versus the resource
concentration in the respective tank for the three CSTRs of example 7.
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tem, the approach undertaken here can be readily extendeddbould account for loss of resource and populations via sub-
several interconnectedvia diffusive transpoit CSTRs, system effluent with distinct flow rates in different sub-
thereby allowing one to mimic ecological systems as comsystems.

posites of several discrete reaction-diffusion systems. The Also note that, in the mathematical description of the sys-
extension would of course involve modification of certaintem, death process, characterizeddpyor species, always
terms in Eqs(3)—(6) and Eqs.(42)—(44), which are reflec- appears in an additive form with the phys.ical loss of species,
tive of reactors operated by humans in industrial settings. Fogharacterized by. Thus, one can in principle lump the two
example, the source term f&; in general, will not be spa- Processes int®;=d;+f, and reformulate the model equa-
tially uniform, and may involve temporal variations. In the tiOns using parametefs, D;, andf, instead ok; , d;, andf.
case of ecological systems, each subsystem can be repl%I_though doing so would impose certain restrictions on the

sented by a well-mixed reactor accounting for reproductio@dnitudes of the individual parameters, the analyses pre-
and death of each living species, resource utilization, re_sented in this work will stay intact in this constrained param-

i el s eter space.
source generatiosupply and diffusive exchange of living As pa result, the cubic autocatalytic replicators in parti-

species and resource between subsystems. One can argie o enyironments scheme is apt for the investigation of
that, the terms reflecting the loss of resource and populations .+ ematical ecologies. Even a single species in two

via reactor effluent would be absent, with few exceptions, in.opled environments introduces the type of complex behav-
representation of ecolog_lcal systems. An e)gample eXCepliofyr we expect to see in the natural and artificial ecologies. It

is description of events in large lakes and rivers. These SySg fyrther demonstrated that, the most important effect of

tems can be subdivided into subsystems based on variation 8hyironment partitioning, as far as mathematical ecologies
flow rate with depth. The subsystem comprised of section ajre concerned, is that, it enables stable static and dynamic
the bottom would essentially be stagndtitus f,.o=0),  coexistence of multiple autocatalytic replicators. Moreover,

while the subsystem comprised of the top section near thi is possible to relax the assumption of identical CSTRs, and

air-water interface would have the highest flow rafg,( preliminary results suggest increasing complexity by, e.g.,

>0). The mathematical representation in this situationallowing different flow rates for different CSTRs.
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