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The impact of stochasticity and spatial heterogeneity on the quadratic autocatalytic system is studied. In a
nonspatial setting the reactive state of the system is found to be unstable in small volumes where internal
fluctuations drive the system to the unreactive state. This phenomena is of potential importance to the stability
of reactions in biological cells. A simple spatial model is constructed by linkingonspatial models via
migration of reactants controlled by a mixing rate Simulation of this stochastic process demonstrates the
importance of such mixing in controlling the impact of internal fluctuations on the stability of the autocatalytic
reaction. For high mixing rate the mean reactant levels in equilibrium correspond to the well-mixed determin-
istic system, although a significant degree of spatial heterogeneity remains. For intermediate mixing rates,
mean reactant levels vary continuously with where the interaction of internal fluctuations with limited
spatial mixing modifies the reactive states of the deterministic system. However, there is a threshold below
which mixing is unable to control internal fluctuations which drive the system into the unreactive state. Thus
a critical minimum level of communication between the cells is required to stabilize the reaction across the
entire system. Approximate analytic results, obtained using moment-closure techniques, support these findings
and demonstrate the relationship between the spatial stochastic and nonspatial deterministic models.
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I. INTRODUCTION important biochemical processes such as glycolyjsau-
tocatalytic systems of this type have been widely studied as
In the absence of macroscopic environmental fluctuationgprototypical feedback system,3,5,. Horsthemke and
classical reaction kinetics applies ordinary differential equalefever [7] study the effect of environmental noise on a
tions to describe the progress of reactions in large volumegange of one-dimensional dynamical systems, and find that
under conditions of perfect mixing. However, in many bio- stochasticity may radically alter the behavior of deterministic
chemical systems reactions occur in minute volumes andhodels, for example, by inducing transitions between steady
both stochasticity and spatial heterogeneity play importanstates of the deterministic system, altering the level of such
roles in living cells. For example, by reference to cell vol- states, or by inducing new states. Marietnal. [8] study the
ume, Gibson and BrucKl] show that the number of protein effect of both environmental and internal noise on the qua-
molecules involved in reactions controlling gene regulationdratic autocatalytic processes in the nonspatial setting of a
in the Lambda phage infection &scherichia coliis of the  continuous-flow stirred tank reactofCSTR), whilst the
order 10—100. Moreover, the outcome of this infection pro-present paper focuses on the role of internal fluctuations in a
cess is stochastic. Autocatalytic mechanisms play an impoispatially extended system. First, however, we review the be-
tant role in the organization and coordination of biological havior of the nonspatial process.
cells, and quadratic- or cubic-autocatalysis represents generic When quadratic autocatalysis is carried out in a CSTR,
models whose behavior in stochastic and spatially heterogdéhe system can be considered to be well mixed, of large
neous systems are important for understanding processes\inlume, and adequately described by the deterministic model
living cells. This paper addresses these issues by exploring

the impact of stochasticity and spatial heterogeneity in the da(t)/dt=[ ag— a(t)]v—ka(t) (1),
guadratic autocatalytic process
A+B—2B, B—C, dp(t)/dt=rka(t) B(t) — (Kp+v) B(1), @

where aB-patrticle catalyses the conversion of reactmto  wherea(t) andB(t) represent the concentrationsAandB
further B’s, and reactanB also decays to produd® [2,3].  particles, respectively. ReactaAtis supplied at rateva
Positive feedback is seen as a central mechanism in marfyom a reservoir of fixed concentratiar,: both A andB are
removed from the reaction vessel at raies and v3, re-
spectively. The decad— C occurs at rateK,3, and the

*Email address: glenn@bioss.ac.uk name of the process derives from the quadratic rates,
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FIG. 1. Schematic representation of a nonspatial model of the::_ =50 20 =50
autocatalytic process. 5] e
. . nd%gw%.s %o 0.5 1.0
for the autocatalytic step+B—2B. This system has two ,, 40
fixed points, thereactive state(a,,3;) and theunreactive 10 =20 20 €2=20
state(a,,,) given by 5 10—-‘
0.0 o’s 1.0 1.5 %o 0’5 1.0
a1=(Ky+v)lk, PBi=v(agx—Kp—v)/[k(Kp+v)]
o/ Blao

a=ag, P2=0. 2
) ) ) ) ) FIG. 2. The effect of volume in the nonspatial system. Histo-
Where chemical and biochemical reactions occur in smaljrams from simulations of the Markov procesggsand (4), with

volumes, or in poorly mixed conditions, deterministic de- a=n,/Q, B=ng/Q, and parameter values=1, ag=1, v=K,
scriptions such as Edl) prove inadequate, and this is par- =1/17. Samples of the processes are taken for
ticularly true at low densities where finite size effects are=(900000,1000000). The solid vertical lines represent the equi-
most significant. In such cases, discrete state-space Markditrium values obtained from the deterministic mod#).

models, or birth-dgath progesses, have _been extensiv«_aly U-S%e connection with the deterministic systéi is made b
in modeling chemical reactions and a wide range of biologi- y y

cal and physical systems. In the physicochemical Iiterature',ntrOdUCIng the system volu_mﬁ anql W”tmg the densities
models of this type are said to describe the state of the syt =Na/{} and5=ng/Q, which for finite volumes are ran-
tem at amesoscopiscale: that is, an intermediate scale be-d0mM variables. However, if the reaction rate scals
tween themicroscopicscale, where molecular dynamic or — #/{2. then in the large volume limif}—c it can be
even quantum mechanical descriptions should be used, affown thate and g obey the deterministic equationis)
the macroscopicscale wherdin deterministic environmenis (8,11,13.

deterministic descriptions such as Ef). are often employed _ Figure 2 shows the effect of system volume on the stabil-
[9]. In a general birth-death process, the probability ofity of the reactive state. The results shown are based on
change of state in a small time interval,tt+ 8t) can be simulated data collected for= (900 000,1 000 000) and thus

represent samples from the quasiequilibrium distribution of

written as ;
the birth-death processé¢3) and (4). The parameter values
P(n(t+ 8t)=n(t) + dn)=R(n—n+ én)st, ©) used arex=1, ag=1, v=K,=1/17[5]. For large volume
(2=200) internal fluctuations induce a distribution centered
where the vectordn=(46ny,dn,, ...)" represents the on the deterministic steady stateq(,3;); the reactive state
change in state@=(n;,n,, . ..)" which occurs at rat&®(n is stable with respect to internal fluctuations. However, for

—n+6n). The changedn; in populationi is an integer, and small volumes (2 =20), the system is driven toward an un-
often + 1. The fluctuations caused by the stochastic nature ofeactive state with fluctuations about the deterministic steady
the events are typically referred to as internal fluctuations irstate @,,8,). At intermediate volumes(}=50), the reac-
physical and chemical models, and as demographic fluctudive state remains stable with nonzero probability, but a pro-
tions in biological systems. Whilst the exact simulation isportion of realizations fall into the unreactive state. Thus, for
straightforward, since interevent times are exponentially dissmall volumes, where the reactive state is totally destabilized
tributed [10], an approximate alternative approach is to up-by internal fluctuations, there are qualitative differences be-
date time by a sufficiently small time stefi and then to tween deterministic and stochastic models. Zhengl. [13]
choose the event—n+ én with probability (3). study a related system in which the concentratior\gfar-

To model the nonspatigFig. 1) quadratic autocatalytic ticles is held fixed. The exact stationary distribution may
system described above at the mesoscopic level, we write then be calculated since the resulting system is one dimen-
=(na,ng)" with sn=(dn,,dng)" and the rateR(n—n  sional[10]. Zhenget al. show that as the system volume

+6n) as increases the relative heights of peaks in this distribution
invert; a similar effect to that shown in Fig. 2. However, in
Rate SNy dng contrast with the present case, where only one fixed point of
Knang -1 +1 Autocatalytic reaction the deterministic dynamics is attracting, these peaks are as-
KyNg 0 -1 Decay of reactan® sociated with two attracting steady states of the correspond-

ing deterministic system. For cellular systems it may seem

YNao +1 0 Influx of reactani unnatural to adjust the system volume. However, the above
vip -1 0 Outflow of reactan® g its hold for changes in the density of reactants, with low
vNg 0 -1 Outflow of reactanB  densities corresponding to an unstable reactive state; for
0 otherwise (4)  fixed cell volume changes in density correspond to changes
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FIG. 3. Schematic representation of the spatial autocatalytic pro-1.s
cess in whichN nonspatial Markov processé€3) and(4) are linked
together via random migration & particles. 1.0

in the number of reactant molecules per cell. Indeed, it has”®

been found that in living cells the number of molecules can,
be very low and enzymatic reactions occur in small volumes
[1,14]. tK
In the remainder of this paper we study the effect of spa- . . . .
tial heterogeneity on the stability of the reactive state in qua- _"C: 4- Simulation of spatial system: The top graph shows typi-
dratic autocatalysis. Section Il introduces a spatial autocatac-al re alizations Of.the average der_ms@tyA_(t)> from the.smchas“c _
lytic model in whichN nonspatial processé8) and(4), each spathl autocatalytE: process described |n_Sec. Il against dimension-
y. P p_ . . less timetK for A=1 (solid curve and A =0.01 (dashed curve
with volume Q) =1, are coupled via random migration Bf

. o 7 . The bottom graph depicts the same information for readsarih
particles, which is controlled by a mixing rake Stochastic each case, the dot-dashed lines show the corresponding reactant

simulation is used to explore the stability of the reactive stat§eyels obtained from deterministic equilibriut@). The parameter
for a range of values oh. Section Il applies moment- yajues arek=1, ay=1, K, = »=1/17, andN=500.

closure techniques to develop approximations describing the

system, they support the S|mylat|on res_u_lts_, reveal the rEIac'al realizations of the spatial process at two mixing rates.
tionship between the nonspatial deterministic model and th?he results show that for small mixing rate=0.01 the re-

spatial stochastic system, and yield analytic insights into th%wtive state is unstable just as in the nonspatial model. How-

system behavior in the limits of high and low mixing. Fi- o er "3 moderate mixing rate=1 stabilizes the reactive
nally, in Sec. IV we discuss the relevance of our results tostaté

living cells. Figure 5 shows equilibrium estimates of the expected av-
erage reactant levels for a range of mixing rates|0,2].
IIl. SPATIAL PROCESS These results show that a critical minimum level of mixing is
Figure 3 depicts the spatial autocatalytic process conféquired to stabilize the reactive state. For smalthe mix-

structed by linkingN nonspatial models via the migration of ing is insufficient to stabilize the reaction against stochastic
B particles. The numbers oA and B particles at sitei fluctuation. However, as the rate of mixing increases, at

o 50 100 150 200 250 300

=1,... N are denoteah”* andn?, respectively. The within-
site behavior is described by the nonspatial md@land 1.0 ‘ E[<n >] 1
(4), whilst the migration ofB particles is described by o8 A~
0.6 e
P(nP(t+8t) =nf(t)—1)=Anét, ]
0.2 et
AN oo L T T T T T
P(niB(t+ &)Zn?(t)—Fl):N 2 njBét, (5) ; oo._o 05 1.0 1.5 2.0
=1 0'8 i E[<7”LB>]
where the first equation is the probability of migration from o.e - :
sitei and the latter that of migration to siteThe resulting o4 F = ="~ C o g oo — g —memr =g b
model can therefore be described as quadratic autocatalysi.2 ﬁ ]
with random mixing ofB particles between cells. In what o.0 5 : ‘ ‘

o 0 0.5 1.0 1.5 2.0
follows the volume of each site is taken to 8e=1, where

the total system volume is thed, the reaction rat& = «, )‘/K
a.nd nAOZ ag.

Consider the evolution of the average reactant levels FIG. 5. Stability of reaction state: The symbols and solid curves

represent estimates off f,)] (diamond$ and H{ng)] (circles

1 N 1 N obtained from ten simulation runs, with samples collected, after a
— A _ B r : _ ; i
(np)= N E n® and (ng)= LR burn-in perloq,. fromt=500, . . .,1000, for a range of relatlve. val
i=1 =1 ues of the mixing rata./K. The standard errors in these estimates

are approximately equal to the size of the symbols. The dot-dashed
Since we have se2 =1, (n,) and(ng) are dimensionless |ines show the corresponding reactant levels obtained from deter-
quantities corresponding to the densitiesand 3, respec-  ministic equilibrium(2). The parameter values ake=1, ay=1,
tively. Figure 4 shows these average reactant levels for typiK,=»=1/17, andN=500.
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system. Communication allows the cells to act coherently.
Moreover, just above this threshold, the density of the reac-
tion productB is considerably lower than predicted by Eq. (

=| —kE

some critical point the reaction becomes stable across the [ N
E

(2), but this increases with the mixing rate to an asymptote at
the level of the well-mixed deterministic system. Thus one
can think of A as controlling the effective noise level: for
small noise(large)) the system is well mixed and the mean
reactant levels coincide with the deterministic nonspatial
model predictions; for intermediate levels of noise the reac-
tive state is shifted with respect to the well-mixed case; andror any random variable; associated with sitg write the
for large noise(small \) the reactive state is completely Spatial average
destabilized. Qualitatively similar results are obtained for N
small values of) # 1. 1

()= N E zZ.

+vag— vE

IIl. SPATIAL MOMENT-CLOSURE APPROXIMATION Then taking the limitst—0 yields

In order to understand better the phenomena described
above, we derive analytic approximations describing the spa- el —_ _
tial system. In so doing we demonstrate the relationship be- giEL(na)]= = kE[(nang) 1+ vao— vE[(ny)].  (6)
tween the deterministic nonspatial model and the stochastic
spatial process. In particular, we construct equations descrig-he equation describing the evolution of the average level of
ing the average reactant levels and apply the methodologigactant, namely,
developed by Keelingt al, in the context of spatial models q
in ecology[15,16]. This approach has two principal advan- el _ _
tages over dealing directly with the site-specific reactant lev- th[<nB>] = KEL(nang)] = (Ko + »)E(ng)] 0
els, n* andn?. First, it reduces the dimensionality of the S B _
problem to be solved from R to 5 (see below. Second, IS obtained in a similar manner. The difficulty with Ed6)
even for moderate sized systems the variability of the averdnd (7) is that they depend on the second-order term
age reactant levels will be much less than that of individuaFl(Nang)]. In order to close this system of equations one
sites, and therefore the task of calculating associated stati§?ay choose to approximate this term as a function of the
tics becomes more straightforward. first-order terms Kn,)] and E(ng)]. This problem is char-

Writing the change in the level of reactaftat sitei as ~ acteristic of nonlinear stochastic processes, and a number of
niA(tJr St) = niA+ 5niA’ the change in the average reactantdosu_r_e approximations exist. Broadly speaking, they may be
level is classified into three types, namely, moment closure, cumu-

lant truncation, and spatial moment closure. In each case,
N N N higher-order terms such ag{®ang)] are replaced by func-

1 A 1 A1 A tions of lower-order termsi.e. H(n,)] and E{ng)]). Mo-

N ;l ni(t+ o) =5 ;1 NN ;1 on;. ment closurd 17,18 achieves this by making some ansatz
which determines the functional dependence; for example
that the process is GaussiglB|. An alternative approach is

Using the transition probabilities for siteas defined in Egs. cumulant truncationi20,21 whereby the moment equations
(3-5), conditional on the state of the system at titrteeing  are reexpressed in terms of cumulafgse, e.g., Ref.22))
n={(ny,....n)".(n%, ... nE)T} the expected change and higher-order cumulants are assumed to be zero. For ex-
during a small time intervalt(t+ 6t) is then given by ample, second-order cumulant truncation sets third- and
higher-order cumulants to zero and thus corresponds to mo-
ment closure by the normal approximation. The complexities
involved in such methods are highlighted by the fact that
higher-order truncation does not necessarily improve the ac-
curacy of the approximatiof23]. In spatial systems, isot-

1 N
E{N > nf(t+68t)|n(t)=n
i=1

1 EN: A 1 S nfne ropy is often invoked and boundaffinite-size effects are
TN TR ignored. Attention then focuses entirely on spatial moments,
and to eliminate higher-order terms one either makes a dis-
1 A tributional assumptiofil5,16 or appeals to the spatial con-
+rvag— YN 21 ni | ot. nectedness of the systeid4—26. We note that closely re-

lated cluster approximations have been applied in chemical
physics[27] and the study of nonideal gasgz8|.

Whence evaluating expectationg-E at timet, and rearrang- For the model considered here, the simplest moment-
ing, leads to closure scheme is themean-fieldapproximation, which as-
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sumes that there is no correlation between the mean number?°
of A and B particles, that is, Enang)]=E[{na)]E[{ng)]. 1.5
This recovers the deterministic systéfr) on substitutingx
=E[(n,)] and B=E[(ng)]. However, to understand the ef-
fect of spatial heterogeneity, second-order terms must be®* WW
considered. The following equations describing the evolutione.o o - - \ s -

of E[(nang)], E[(ni)], and E(n3)] can be developed 2°

E[<na(t)>]]

along similar lines to Eq(6): 1.5 E[<nB(t)>]
d 2 2 vl ]
GiEL(nANg)] = (EL(nZNns)]— EL(nand)]) os | _ ]
_(K+ Kb+2V+)\)E[<nAnB>] o'oo 5‘() 160 150 260 250 300

tK

FIG. 6. Stochastic linearization: Large mixing rate=1. The

+NE[(na)(ng)]+vaoE[(ng)], (8)

d 2 2 top graph shows a typical realizatigalso shown in Fig. #of the
aEKnA)] = —2kE[(nang) ]+ (2ap+ 1) vE[(np)] average densityn(t)) against rescaled timeX from the stochas-
tic spatial autocatalytic proceggmgged ling. The confidence inter-
—2vE[<ni>]+ kE[{(nang)]+ vag, val H(na)]=1.960, (solid curves is obtained by numerical solu-

tion of Egs. (6)—(8) under the stochastic linearization
d approximation(9). The bottom graph depicts the same information
d—E[(né>]=2KE[<nAnZB)]—2(Kb+ v+ \)E[(n3)] for reactantB. In each case the parameter values lrel, aq
t =1, Ky=»=1/17, andN=500.

+2NE[(ng)?]+ kE[{(nn
()" + «EL(Nane)] Under this approximation the covarian€g=E[(nang)]

+(Kp+v+2N)E[(ng)]. —E[{na)]E[{ng)] obeys the equation
Equations(6)—(8) contain two kinds of higher-order terms d
which must be removed to close the system. First, grCaB() =~ (A +k+Kp+22)Cag(l)
E[(na){ng)] and H(ng)?] are second-order moments of
(n,) and{ng) with respect to the distribution of state vari- — kE[{(na())]E[(ng(1))], (10

ables at timet. In the following, we ignore fluctuations in

these quantitietalso in E(nang)], E[(n)], and E(n3)]),  which may be solved by Fourier transformation and applica-
so  H{na{ng)]=E[(na)]E[(ng)], and H(ng)?] tion of the convolution theorem to give

=E[(ng)]?. It is anticipated that this approximation will be
valid for large system sizeN. Second, Ening)] and
E[(n,inB>] are third-order terms with respect to the spatial
distribution. These terms will be approximated by functions
of the first- and second-order quantitie(&)], E[(ng)], X~ (2T T, 1y
E[(nang)], E[(n3)], and E(n3)]. Two forms of closure _ _ o _

(functional formg, stochastic linearization and the log- Keeling et al. [15] obtain a similar result in the context of

normal approximation are now considered. predator-prey models, suggesting that it reveals the form of
delay equation which would account for spatial heterogene-

ity in the system. Expressiofil) also shows tha€,g<0,
so the reaction rate in the spatial mod®&E[(nang)]

In this method any terms that are nonlinearstochastic  =KE[(n,)]E[(ng)]+KCag, is typically lower than that of
variables are removed by replacing carefully selected expreshe mean-fielddeterministi¢ modelKE[ (n,)1E[(ng)]. The
sions with their expectationg9]. Equations describing the degree of negative correlation quantifies the local depletion
evolution of the moments of the resulting linear model areof reactants in the spatial system. Further insight comes from
closed, and thus can be used to approximate the originalxamining the steady state solution of the stochastic linear-
nonlinear process. In the present case, modifying the sitgzation (6), (7), and (10) for the large mixing limit,\— o,
specific autocatalytic reaction rate in Ed) to KE[(nang)],  where the covarianc€,g becomes zero and[fn,)] and
that is, the expectation of the average reaction rate over afif(ng)] correspond to the reactive state of the deterministic
sites, leads to a closed system of equations, which can bg;stem(2). Thus a large degree of mixing reduces the corre-

Cas(t)=—« f;E[mA(t—T>>]E[<nB(t—T>>]

A. Stochastic linearization

obtained from Eqs(6)—(8) by substituting lations between reactants, reflecting the associated break-
down of spatial structure.
2 —
E[(nane) ]=E[{na)JE[(naNg)] and Figure 6 shows the results of numerical solution of the
) stochastic linearization approximation together with a typical
E[(nang)]=E[(nang) ]E[(ng)]. (9 realization of the full stochastic process, shown in Fig. 4, for
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2.0 T T T T T 2.0 T
el E[<n4(t)>] el E[<ns(t)>]
1.0 1.0 _
::g o_ — ;0_ _____ 1 _é_o _____ 1_5; _____ 2 _t:; _____ 2_5; _____ 3 _oo ::g o 5:0 1 éo 1 :50 2t:Jo 2.%»:« 300
E[<np(t)>] s E[<np(t)>]
B 1.0 4
.o 05 - % — I =
130 1 50 260 250 300 0.0 o] 5‘() 1 (I)O 1 50 260 250 300

tK tK

FIG. 7. Stochastic linearization: As in Fig. 6 but for small mix- FIG. 8. Log-normal approximation: Large mixing rake=1.
ing rateA=0.01. The reactive staten,B;) of the deterministic  The top graph shows a typical realization of the average density
system(1) is also showr(dot-dashed lings (na(t)) against re-scaled timiX (jagged ling as shown in Fig. 6.

The confidence interval[En,)]= 1.960, (solid curvegis obtained

moderate mixing rata =1. The confidence intervals shown by numerical solution of Eqs(6)—(8) under the log-normal ap-
are based on the standard errors proximation (12). The bottom graph depicts the same information
for reactantB. In each case the parameter values lirel, «g
=1, Kp=v=1/17, andN=500.

oa= VEL(nZ)]- EL[(Na) IE[(na) I/ VN,
Although the resulting moment evolution equations are more
os=VE[(n2)1-E[(ng)1E[(ng) 1/ N, complex than for those associated with stochastic lineariza-
tion, they nonetheless afford analytic insight. In the large
and the results show good agreement between simulation arimiﬂggrrmlt’ A=, these equations admit to a steady state
approximation. Moreover, the reactant levels are close to
those of the reactive stater{,3;) of the deterministic sys- ET(n.)7=EN(n2)1— EN{(n) 1= (Ko + )/ K
tem (1). In contrast, the situation shown in Fig. 7 with [ 1= ELM) ] = EL () 1= (Ko +2) /K,
=0.01 demonstrates that the stochastic linearization approxi- v(agK—Kp— )
mation breaks down for low mixing rates. In this regime,  E[(ng)]=E[(n2)]—E[(ng)]?=———0 "
Fig. 4 shows the reactive state of spatial stochastic process to [x(Kp+v)]
be unstable, with the system settling down to the unreactive
state after a short transient phase. However, stochastic linear-
Iczc?rtrgogr%e?/\ll(i:tﬁ :ﬁstctgesé?agfzgt?nir;ﬁ(:tagltjtletletstr\:\g ”rggg\flvhich corresponds to a Poisson-like distribution about the
b P 9 deterministic reactive stat@). To first order as\—, the

tive state will remain stable. Such failings motivate the aP-oyolution equation for the correlatiabs « becomes
plication of an alternative approximation. q AB

Cas=0, (13

B. Log-normal approximation aCAB(t) =—NCpg(1).

An alternative to stochastic linearization is to make some . o . .
assumption concerning the distribution of reactant leveld hus, in this limit the correlation tends to zero exponentially,

over sites. A possible choice is the Gaussian distribution, bi®S Mixing breaks down spatial heterogeneity. Furthermore,
in the low mixing regime, the average level of reactant thiS equation suggests that for- o the steady statél3) is
tends to zero, suggesting that this or any other symmetri@" attracting state: this conjecture is supported by the nu-
distribution would be a poor approximation. A nonsymmetric M€rical solution of the log-normal approximation to the mo-
alternative is to assume a log-normal distribution of reactanfn€nt evolution equations for=1, and these results, shown
levels over sites. As shown in the Appendix, this enables thi Fig- 8, also demonstrate the accuracy of the log-normal

third-order terms in Eq96)—(8) to be approximated by approximation. L
A second steady state of the log-normal approximation,

ET(n2)TEN (Nane) 12 valid for all A, is

el (ringy = ELTELna T 2 2
E[(na)]°E[(ng)] E[(na)]=ao, E[(n3)]—E[(na)]"=ayq,
[ (n2)1E 2 E[(ne)]=0, E(ng)]—E[(ng)]*=0,

E[(n,mé}]: [(ng)] £<nAnB>] . (12)
E[<nB>] E[<”A>] CABZO, (14)

051915-6



SPATIAL HETEROGENEITY AND THE STABILITY OF . .. PHYSICAL REVIEW E 66, 051915 (2002

e ' ' ' var(na) 1
0.5 ]

0.0 0.5 1.0 1.5 2.0

o r " var(ng) |

" 0.0 0.5 1.0 1.5 2.0
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tK MK

FIG. 9. Log-normal approximation: As in Fig. 8 but for small
mixing rateA =0.01. The reactive statev{,3;) of the determinis-
tic system(1) is also showndot-dashed lines

FIG. 11. Stability of reaction state: The solid lines show the
asymptotic values of Var(y)=E[(n3)]—E[(n,)]% var(ng)
=E[(n3)]-E[(ng)]?, and the normalized correlation

L. . . . corr(na ,ng) =Cag/+/Vvar(na)var(ng) (as indicateyl obtained from
which is a Poisson-like distribution whose mean CorreSpondﬁ]e solution of the log-normal approximation for a range of values

to the unreactive state of the deterministic system. AlthougRt ine relative mixing rata/K. The symbols represent estimates of
we have been unable to determine the relative stability of thegyarn,)] (diamonds, E[var(ng)] (circles, and Ecorr(ns,ng)]
reactive[Eq. (13)] and unreactivdEq. (14)] states of the (squaresobtained from ten simulation runs, with samples collected
log-normal approximation analytically, Fig. 9 demonstratesaster a burn-in period froni=500, . . .,1000. The standard errors
that for A=0.01 the unreactive statd4) is asymptotically in these estimates are approximately equal to the size of the sym-
stable in accord with results obtained by the simulation othols. The parameter values ake=1, ay=1, K,=r=1/17, and
the full stochastic model shown in Fig. 4. Thus, in contrast toN=500.
stochastic linearization, the log-normal approximation is able
to predict the transition to the unreactive state seen at lowave seen in the limih—«, the spatial system becomes
levels of mixing. well mixed, and therefore corresponds to the nonspatial sys-
Figure 10 compares the log-normal approximation withtem with volume(Q)=N. The results of Figs. 2 and 10 imply
the simulation results of Fig. 5. The log-normal approxima-that for small systemsN<50) the reactive state will be
tion is quantitatively correct at the extremes of mixing andunstable for allx, and the log-normal approximation will
no mixing, and although it is less accurate, it still capturesbreak down, as is confirmed by direct simulation. This is
the qualitative behavior at intermediate levelshofAs we  related to the fact, noted below Ed8), that the moment-
closure schemes are expected to be most accurate for large
- § N. This is because we only consider the evolution of the
E[<nA>] ] expected values of quantities describing the spatial distribu-
tion (i.e., B(nx)], E[{(ng)], etc), neglecting any fluctua-
tions between realizations of the process.
. o o Figure 11 shows the corresponding asymptotic behavior
''''''''''''''''''''''''''''''''''''''' of the covariance and variances in reactant levels across the
; system for a range of mixing rates. The data shown are from
E[<nB>] 1 the simulations and solutions to the log-normal approxima-
1 tion used in Fig. 10. The reactants are maximally separated,
and thus spatial heterogeneity is at its greatest, at the critical

10 |

08

0.6 - ~

[+ 2. B e ARSI i o e —— &= .. .
oo s o ° YT mixing rate where the reaction state becomes stélie
A . ‘ ‘ stablg. For larger mixing rates, the correlation increases
°'°o.o 0.5 1.0 1.5 2.0 with \.

A K

IV. DISCUSSION
FIG. 10. Stability of reaction state: The solid lines show the . . ) .
asymptotic values of [En,)] and E(ng)] (as indicated obtained _A I|V|n.g cell is an open systgm, wh|ch can _commumcate
from the solution of the log-normal approximation for a range of With environments by transferring chemical signals and en-
relative mixing rates\/K. The symbols represent estimates of €rgy. Enzymatic reactions in living cells are confined to very
E[(n,)] (diamonds and E(ng)] (circles obtained from ten simu- SMall spatial volumes. Moreover, these reactions are subject
lation runs, with samples collected, after a burn-in period, ftom to strong thermal fluctuations inside the cells due to a flow of
=500, ...,1000. The standard errors in these estimates are agenergy[14], and these conditions can lead to qualitative
proximately equal to the size of the symbols. The parameter valueghanges in the kinetics of enzymatic reactions in comparison
areK=1, ag=1, K,=v=1/17, andN=>500. with high-density well-mixed conditions. For example, co-
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herent dynamics can form between substrates and enzymeffective volume is much greater than any individual cell. In
when the reaction takes place in small volurh&4,30—32. conclusion, our results suggest that autocatalytic reaction ki-
Furthermore, our results suggest that without sufficient comnetics may only be stable in cellular systems in which a
munication between cells, certain biochemical reactionswumber of cells are able to exchange reactants via some
might be unstable with respect to thermal fluctuations. lttransport process. Perhaps such phenomena influenced evo-
would also be interesting to study the effects of within-celllution by favoring the persistence of aggregations of multiple
spatial heterogeneity. In living cells, a large number of enzy-cells over those of solitary individuals.

matic reactions are networked in complicated ways, and are

coupled to thousands of substrates. Pathways can be unidi- ACKNOWLEDGMENTS
rectional, reversible, branched, or cyclic, and there are many .
different types of inhibition and activatior83]. In the post- The authors would like to thank the BBSRC and EPSRC

genome era, these complex networks can be reconstructél-K.) for their financial support under Grant No. 78/
based on genomic data. Unsurprisingly, the purposes afdMI09712. In addition, G.M._and J.L. gratefully acknowl-
functions of complex biochemical networks, in particular, €d9€ the support of the Scottish Executive Environment and
spatiotemporal self-organization behavior, have attracteffural Affairs Department.

much attention[34,35. For enzymatic reactions, various

mechanisms may lead to spatiotemporal behaj6é}. Au- APPENDIX: LOG-NORMAL APPROXIMATION

tocatalysis represents a class of reactions of great importance ¢ v« reactant levels, andng are log-normally distrib-

to living cells and has been much studied in nonspatial con- : _ _ .

X .~ uted over sites, they, =Inn, andy,=In ng are joint normal
texts[2,.3,5,q. Togqshl and KangkﬁB?] show that stochastic with the moment generating functig@?]
fluctuations and discreteness in molecular numbers lead to

transitions between states in a nonspatial autocatalytic sys- M(61,6,)=E[{exp{61y1+ 6,y,})]
tem. The stochastic spatiotemporal autocatalytic process )
studied in this work can be considered a generic model for =exp{ k1061 + Ko102 T K2001/2

studying spatiotemporal behavior in biochemical reactions.
We note that Velikanov and Kapr@B8] study the propaga-
tion of traveling wave fronts in a sp_at|ally epr|C|t_d|scr_ete where E(-)] denotes the expectation over distributions in
time (Markov chain model of quadratic autocatalysis. Using ;

. . X . space and time, and
a perturbation technique, which systematically accounts for

+ K110102+ K020§/2},

spatial correlations, they show that the wave front velocity of Kk10=2 IN(E[(np)]) = In(E[(n2)])/2,

the stochastic system is lower than that predicted by a mean-

field analysis which ignores such correlations. Moreover, as Ko1=2 IN(E[(ng)]) — IN(E[(n3)])/2

the diffusion coefficient increases, spatial correlations are

minimized and the discrepancy reduced. The phenomenon is K20=IN(E[(nZ)])— 2 In(E[(np)]),
analogous to the effect of finite mixing on the stability of the

reactive state explored in the current paper. The model stud- Kkoo=IN(E[(n3)])—2 In(E[(ng)]),

ied here was amenable to a spatial moment-closure approxi-

mation which compared favorably with simulations of the rk11=IN(E[{nang)]) — (Koot Ko2) 12— K10~ Ko1.-

full stochastic process; these results demonstrate the utility
of order parameters, such as the spatial averages consideredr an appropriate choice @f; and 6, expressions for the
here, in studying system behavior. Our investigations clearljigher-order terms, [Enang)] and H(n,n3)] are obtained
show how internal fluctuations, small volumes, and heterofrom
geneity affect the kinetics of the quadratic catalytic system. oo

In the nonspatial system at low volumes, the reactive state ~ E[(n,'"ng?) I=([exp{ 611+ 62y} 1) =M(61,6,).
of the autocatalytic process is unstable to internal stochastic ) )
fluctuations. The spatial model shows that such unstablEOr example, setting;=2 andf,=1 yields
components can be linked together, via random exchange of E[<n2n =M(2,)
reactants, to form a system in which the reaction is stable. ATB ’
For large mixing rate X—x), the spatial system withN =exp{2k10F ko1t 2K0 211+ Ko 2},
components behaves like a nonspatial system with voNme
but for finite mixing rate this effective volume is less tHgn ~ which simplifies to
Thus, finite mixing generates spatial heterogen&ityrrela- 5 5
tion) which destabilizes the system with respect to a per- » o EL(NRIE(nang)]
fectly mixed system of the same volume, and there is a criti- E[{nans)]= 2 '

- . > E[(na)]°E[(ng)]

cal level of exchangémixing) below which the reaction is
unstable. Conversely, at the level of the cell, finite mixing The resulting expression42) can then be used to close the
stabilizes the reaction kinetics by forming a system whoseystem of moment evolution equatio(@®—(8).
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