PHYSICAL REVIEW E 66, 051907 (2002
Unsteady two-dimensional theory of a flapping wing
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An analytical evaluation of the hydrodynamic force on a single flapping wing is presented, based on the
two-dimensional inviscid theory, with the addition of an attached leading-edge vortex. The explicit expression
of the force is given and compared with some of the measurements by Dicketsdr{ Science284, 1954
(1999] and Sane and Dickinsdd. Expl. Biol. 204, 2607 (2001)] for a fruit fly model wing.
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[. INTRODUCTION vortex was also found in strictly two-dimensional simula-
tions of flapping wingg11], in which the wing changes di-
The fluid mechanics of insect flight has a rich and mostection rapidly, before the vortex separates. The absence of
interesting history[1]. Among other things, its study has Stall can also be indirectly seen in the experiment reported in
helped to discover sophisticated mechanisms for lift generaX€f- [6], where the lift and drag coefficients of the model
tion as that of Weis-FogFe,3] and the pairing of downward- wing at fixed angles of attack are plotted as functions of time

. e . . o . [Figs. 2a), 2(b) in Ref. [6]]. After the initial transient the
moving two-dimensional vor_t|ce[<_4]. Apart frqm Its .b'0|09' . coefficients take on practically constant values with no oscil-
cal interest, the understanding of the details of insect fligh

N . ations that would reflect the shedding of vorticity at stall.
has also technological interest, for instance, for the develop- Rotational circulation(ii) is well known and can be cal-

ment of flying microvehiclegS]. In particular, of consider- ¢ jateq with thin airfoil theorj12] (see also Ref13)). It is

able importance are the mechanisms associated to hoverigscyssed in detail in Ref14], where it is related to the fact

at a fixed position. For some insects such as small waspgat the lift coefficient of a wing increases when the angle of
hovering seems to depend strongly on the interaction of twayttack increases with timé&kramer's effect{15]). The pre-
wings, as in the Weis-Fogh mechani$]. For many other  dictions of the theory have been confirmed by the experi-
insects, however, single wing effects are the most importaninents[6,7].

the ones to be considered in what follows. In the past few Wake capturdiii) acts shortly after the end of each half
years detailed experiments with scaled insect model wingstroke, when the wing reverts velocity and moves into the
were performed, in which a careful determination was madevake previously generated. With an appropriately oriented
of forces resulting from imposed complex movemd®t§].  wing, the moving fluid of the wake effectively adds to the
As the relation of wing span to chord length is generallylift. Finally, added mass effect$v) being dependent on the
large, and the Reynolds numbers involved in the flight ofacceleration, are specially important near stroke reversal
most insects are of the order of a few hundreds, tW()When the quasisteady lift associated with the velocity is very
dimensional thin airfoil theory could be used, in principle, toSmall, and also in the stages when rotational velocity
calculate those forces. However, if steady two-dimensionafhanges rapidly. All these mechanisms work together and to
aerodynamics is applied, the results are shown to underesfl€scribe their interplay a general theory that accounts for all
mate the measurements. The difference is attributed basicallf)M IS required. The purpose of this work is to show, com-

to four mechanismgi) enhancement of reachable steady lift arir;g wgh repqrtedl ex?eri[m;a:\rfﬁ,?], th.‘::‘rt] E[Re npnsltation(—j |
by the absence of stal(ii) additional circulation generated ary, two-dimensional potential theory wi € simple mode

by rotation of the wing, called rotational circulatiofiji) of a stationary(with respect to the wingtwo-dimensional
reuse, at the end of each half stroke of the wing, of previ—y ortex near th? Iead]ng edge reproduces well the forqgs act-
ously shed vorticity, an effect known as “wake capture,” and'n9 on a flapping wing. UsuaI.Kutta-Joulfowskl c_:ondltl_ons
(iv) the effect of added mass. The absence of §talsome- applied at both edges of the wing de.term|r!e thg Intensity of
times called “delayed stall,” is associated to the stabilizationthe mentioned vortex and of bound circulation, including ro-

of the vorticity shed at the leading edge, thus preventing théational circulation. Ad(_:led mass .eﬁeCtS are qutomatically in-
formation of a two-dimensional von Klaum street. which cluded. As a result, a final analytical expression for the force

ultimately destabilizes and leads to stall. As a result, a quast® (t)bta|_n(ta_d, Wh'fCh canl be usc;d, for w:jsiﬁnce, to Sut‘dy ddm‘er-
stationary, spanwise elongated vortex structure is forme Mt variations ol complex motions and e parameter depen-

near the leading edd@]. This vortex was shown, using po- ence of quantities of interest. At this. stage Wake capture
tential two-dimensional theory, to also produce enhanced lif ffe(;':]s _hat\;]e nC(:)t belen_lnclud@ﬂ;;ymarte tﬂlscusset(ri] W:cth sorlne
with respect to the case with no vortgX|. The stabilization iength In the Lonclusions sectiprbut the way the tormal-

of the leading-edge vortex is attributed to the spanwise flowSM 1S 'U”Oduced facilitates the |nclu5|on of this mechanism
that removes leading-edge excess vorticity from its ¢8te as well improvements over the simple model used here.
Recent experiments indicate that at the Reynolds numbers
characteristic of insect flight a downward flow induced by tip
vortices and wake vorticity can also explain the vortex sta- To simulate the insect wing the usual model of a thin,
bility [10]. The existence of a relatively stationary leadingrigid, uncambered plate is employg@l. The flow produced

II. TWO-DIMENSIONAL THEORY
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y Since the plate is rigid and at rest in the chosen frame, its
contour must coincide with a streamline, that is, the real flow
in the plate’s frame satisfies the boundary conditign
=const over the platey(=0), which, from Eq.(3), corre-
p— L sponds then ta=const at that boundary. That is, the plate
o x corresponds to a solid boundary for the fictitious flow too.
Besides, the real flow at large distances is given by

v u,— — U, (1) +Q(t)y,

FIG. 1. Sketch showing the plate, comoving frame and conven-
tions used. uy— —Uy(t) = Q(t)x.

by arbitrary two-dimensional movements of such a plate inffrom Eqgs.(2) and(3) it is then seen that the fictitious flow
an inviscid fluid(at rest far awayis known since many years described byv(z) must behave at large distances as
[16]. It is presented here in a way that allows to include

additional features easily, such as free or bound vortices, and Uy— — U, (1) — Q(b)y,
also to simply evaluate the resulting hydrodynamic forces.
The plate is considered to translate with arbitrarily im- ﬁyﬂ_uy(t)_g(t)xl

posed two-dimensional velocity(t) and at the same time to

rotate about a fixed point contained in the plate itself withwhich corresponds to a complex potential given at large dis-
arbitrarily imposed angular velocit§)(t), normal to the tances by

plane where the movement takes place. The goal is to evalu-

ate the hydrodynamic force acting on the plate, taking advan- . Q)
tage of the fact that this force is frame independent and so w(z)——-U*(t)z+ ——27 )

can be conveniently evaluated in a noninertial frame where

the plate is permanently at rest. The inviscid flow in theywhereU(t) =U,(t) +i U,(t), and the asterisk denotes com-
frame where the distant fluid is at rest is irrotatiof@cept  plex conjugation. In this wayw(z) can be calculated ana-
for possible regions of concentrated vorticity, modeled asytically using conformal mapping methods by means of an
Singularities of a potential ﬂO)NWh”e the flow in the plate appropriate Kutta-Joukowski transformation app“ed to a
frame,u(x,t), has a uniform vorticity given by-2Q(t). A static circular cylinder in a flow given at large distances by
Cartesian X,y) coordinate system is taken, with tixeaxis  the transformed version of E¢p). In particular, isolated sin-
along the plate’s chord and the origin in the rotation @& gularities such as point vortices can be easily incorporated.
Fig. 1). The incompressibility condition allows us to intro- Most importantly, it yields that the real hydrodynamic force

duce a stream functiort as on the plate coincides with that calculated froviz) using
the Blasius formuld17]. This can be seen from the Euler
:(9_"// - ‘9_‘// 1 equation foru(x,t) in the noninertial frame,
uX &y ’ uy (‘7X . ( )

) ) _ o Du Vp du dQ
At the same time, the flow with uniform vorticity can be = =;=——+f —-2QXUu— — - QX OQOXX———=XX,
e . . - Dt p dt dt
decomposed into irrotational flow, of potentig| plus a rigid 6)

body rotation:

p p wheref, denotes conservative real forces per unit mpss,
ux=—(p+Q(t)y, uy:—¢—Q(t)x. (2)  the pressurep the constant fluid density, arid/Dt repre-
X ay sents the material derivative. Using expressi@@sfor u,
. , i and the first of Eqs(3), a direct replacement in E¢6) and a
Now, the modified potential and stream function are devjye aigebra leads to a Bernoulli first integral of the Euler

fined as equation that givesleaving out an integration constant
P=e=Q(xy, P=¢—Qt)y> (3 b odp 1 - g
. . . — == —+5|Vo|*+ pp+ 20y —, @)
which according to Eqg.l) and (2) satisfy p gt 2 X
Je ap  de v where¢,, is a modified potential that includes that of the real

forcese, , plus that corresponding to the conservative part of
the inertial forces, and all othep-independent terms with

that is, a complex potential function can be defined with explicit spatial dependence,
the complex variable=x+iy (i is the imaginary unjt

W ay

du 1 dQ
m= X —— —=Q%(x°+y?) + FTRO A 20%y2,

W(Z)=p+iy. (4) dt 2
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The hydrodynamic forcéper unit length over the plate is from which the velocity field is
then calculated as the integral, extended along the perimeter

of the plate, o dw dw(dz ! do §?
ST 9z T ds \ds) T ds 2—a?’
F=- %pndl, 8 . I .
If the Kutta-Joukowski condition is imposed at the trailing

wheren is the normal to the plate angis given by Eq.(7). edge(conventionally taken as that correspondingstea),

In particular, the term withp,,, gives the Archimedes force, dow
which is zero in the case of an infinitesimally thin plate.
Besides, when evaluated over the plate=Q), the last term

in Eq. (7) is zero, at least for finite values at( at the plate. the resulting circulatiod” is
This last condition is assured if care is taken to regularize the
velocity atboth edges of the plate. The remaining terms are
precisely those considered in the derivation of the Blasius
theorem(see the Appendix for a short derivatipnvhich is
applicable because the plate is at rest in the frame in which @ Well known resulf12] that was experimentally verified in
is defined. In this way, thécompley force per unit length ~Refs.[6,7]. _ _y _ _
can be calculated from the Blasius expression for the poten- The model considered for an arbitrarily moving plate in-

E|q=a_01

3 d
:WLzﬂ(t)<—— )

I'=4ma?Q(t) 140 -
’T a 4 L

tial (4) as cludes bound circulatiod” and also a stationargwith re-
spect to the plajeleading-edge vortex with circulatioR; .
] ip dw\? 0 * Taking asb the fixed position of this vortex in the plane,
Fx=IFy=7 4; az dz+'P§[ § wdz )  the transformed potential can be written as
a® Q)
Ill. APPLICATION w(s)=—U*(t);—U(t)?+ > (s+Xg)?
An uncambered, infinitesimally thin plate with chord i0(t) (a2 2 T

lengthL is considered. Th& axis runs along the chord, with — | — x| + —'.In(g— b)
its origin in the rotation axis which is located on the plate 2 2
itself at a distancel from the leading edgésee Fig. 1. The )
plate boundary in the complexplane corresponds to a cir- _ Lln( . a " r+T, In(s) (12)
cular cylinder of radius=L/4 centered in the origin of the 2i b* 2i '

s plane through the Kutta-Joukowski transformatjas]
To regularize the velocity at both edges, the Kutta-Joukowski

a2 condition must be imposed gt=a and (= —a:
z(s)=Xg+ts+ ?, (10
dw 0
wherex,=L/2—d is (minus the position of the rotation axis ds [s==2a=0,

as measured from the midpoint of the plate. From &, _ _ _ _
the Comp|ex potentia| in thg p|ane, w(§)=W[Z(§)], is which determines botl andF| . The I’esu|t|ng expressions

given at large distances by are, settingo=a(Bx+1ip8y),
iQ(t 4ma(l+ i+ B2)(U,+Qxo)
w(s)——U*(t)s+ 2( )(g+xo)2, (11) r= ( sz ﬁyz( Y0 fama?0, (13
ﬁx(ﬂx+:8y_1)
where thex, in the second term must be retained, foritgives  _ _5_55-1521 52_ 1)1y 4+ x 44 032032
rise to a term of the same order as the first one. Applying the ' maf (Bt By 1) Uy ollAx+ 2B By
Milne-Thomson circle theorerfil8] to Eq. (11), the trans- —1)+(B+1)2]. (14

formed potential is obtained, eventually with the addition of
bound circulation. Moreover, if localized singularities are  Using Eq.(9) the force is also readily evaluated using
needed, they can be directly incorporated in 84) prior to

the application of the Milne-Thomson theorem. The force is 4; (d_W ? - é do)? d_Z)ld (159
then simply calculated by usual techniques using (B4.As dz B ds) \ds s
an example, the case of a purely rotating plate with bound
circulationT" is considered. The corresponding transformed dz
potential is % w(z)dz= § w(G)EdG, (15b
Q(t) , 10 [a 2T and considering as internal singularities those located at
©(8)= 5= (s x0) "= 5| T+ %] +577In(s), =0, s=—a (if this is taken to correspond to the leading
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edge; the resulting force is independent of this choiaed 35 (] C
s=a’/b*. The integral in Eq(153 is easily performed by C 30 D
residues, as the terms in E@.5b) with no logarithmic de-
pendence, while the rest of the terms can be evaluatec 25
readily taking care of the logarithm branch cut. As a result of 20
the regularization of the velocity at both edges, the force is
normal to the plateK,=0). They component of the force is 15
given by the sum of the two following expressions, again 1.0
with b=a(Bx+i8y):

05 C,
F{¥=4mapB 2B+ BY) (Br+ By— 1) *{UBu B % m o %
+B2)(B2+ B2—1)2[Uy (1 B2+ B2)+ Q(xo— 8By o
_ 2 3 2 2 2 FIG. 2. Coefficients of lift C.) and drag Cp) for the model
XoBstaBytXoBo+a +(U,+Qx L D
0Byt Bt XoBytapBy) 1+ (Uy 2 wing, as obtained from the theory witiia= —1.25+i 0.48, solid
X[ — B8 23)6((3)2/_ 1)+13§(,3)2/+ 1)2+ 235[33(35 line, and experimental values from R8], dots and squares.

b)pp2_ 9
+3)+Bx(68y—1)]+aQ(Uy+Q Xo) Byl Bx nite. This result applies, of course, also to the change in

+4,3)7((,g§_ 1)+ Bx(ﬁé_ 1)%+ 253(333_4354. 3) circulation from a constant, finite value, when the velocity of
the wing changes a0, and shows that taking into account
+ABY(By— By+ B 1)1}, (16)  the dynamics of the shed vorticity results in much smaller
values ofdI'/dt than those corresponding to assuming the
) dI dr, By S instantaneous adjustment of the circulation to the changing
Fy'=—2ap) v Tqr | 11 2o 2 (L= VA BY) conditions of the flow(this is reminiscent of the Wagner
Bxt+ By effect for impulsively started wing20]). A simple possible

way of including the effect considered is to takid'/dt
, a7 =dI',/dt=0 in the evaluation of the last term in E(L7),
while still assuming the instantaneous adjustment ofor
the rest of the terms, which could be termed a quasistationary
approach.

A complementary justification of this choice comes from
the following. For a body with time dependent bound circu-
lation I', the force term proportional tdI'/dt, by itself, is
not physically correct, in general. For instance, in the case of
a stationary cylinder of radius and circulationl”, a change

whereF{? comes from the integralL5a, andF{ from Eq.
(15b).

At this point an important issue needs to be discussed. |
the potential proposed, E(L2), no representation exists of
the vorticity shed by the plate to adjust the circulatiorso
as to fulfill the Kutta-Joukowski condition wheld and Q)

change. In principle, a trailing vortex sheet should be present, r would give rise to a finite force H,=0,F,=
to account for this shed vorticity, which is ultimately swep — padr'/dt) violating isotropy in the .) pIane.XSin;ilérly,
away. Analogously, a vortex sheet should also exist at thg,. 5 in airfoil the corresponding term is easily seen to

leading edge, to feed vorticity to t_he leading vortex. _Theviolate reflection symmetry. The only value that gives ac-
force generated by these sheets is not considered in tr]:

model, for the vorticity content in them is not expected to be eeptable forces at this level of approximatioruii/dt=0.

) . . AR With these considerations the conditidi’/dt=dI"|/dt
important at any given time, and that vorticity is either swept:0 will be used in Eq(17); however, since this approxima-

away or !ncluded n th_e Ie_adlng vortex. However, they_ play Gtion yields the full time derivatives, it will also be presented
key role in the determination of the precise way in which thefor comparison purposes

circulatior) adjusts to changes in the veIoci_tie; of the wing There exists still an explicit dependence on the parameter
[19]. In this way, the vortex sheets have an mdwect effect Orb, which reflects the three-dimensional nature of the prob-
the force through the value_s ar'/dt _anddl“| /dtin Eq.(17) em, as the stabilization of the leading-edge vortex is a genu-
that they determine. To estimate this effect we use the resuliS i, ce_dimensional effecsee Refs[8,10)). In the present

in Ref. [19] where the shedding of vorticity and generation model b is determined so as to adjus’t thé experimental lift

of circulation on unsteady airfoils is studied in detail for .y :
. i o ) ; and drag coefficients reported in R¢6] for all angles of
starting flows. In particular, it is determined in that Ref9] attack. In Fig. 2 the results obtained with=a(—1.25

. ; . Ty oy
E:?i[ug tisgﬁrg?/grffxvamo\?llm?ﬁ g ctus thYe ttrailgiJr?neergtzstr?at +i0.48) are presented, together with the experimental val-
P g edg ues. The following definitions for the lift and drag coeffi-

behaves to leading order trasT" ~t#, with u=(3y+1)/2 ; -

or u=(4vy+1)/3, depending on whether the convection ofCIents’ respectively, were used
the vortex sheet is dominated by or U, , respectively. For

a velocity field with finite time derivative at=0, that is,
y=1, the circulation then grows very slowly, as~t? or
I'~t%3 in particular,dT'/dt=0 att=0, whendU/dt is fi-

_2Fy cosa _2Fysina

CL_—, D_ 1
p|UIPL p|UPL
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FIG. 3. Schematic position of the leading vortex, represented by 05
the dot, according to the different orientations of velocity, together Q/O
with the corresponding coordinates in theplane. \ 'max
3 4 5 6 7

1

with « the angle of attack. The experiments were performed

under stationary conditions, so in Ed.6) one must take) 05 t (S)
=0 and U=const, with U,=—|U|cosa and Uy= ’
—|U|sine.

Of course, the theory does not reproduce the small vis- -1

cous drag that gives a nonzero drag coefficient for zero angle o . o
of attack, but the overall agreement is rather good, consider- FIG. 4. Upper panel: theoretical lift foraghick solid ling dur-
ing that a single value df was used. ing a flapping cycle and its different contributions—translational lift
For complex movements of the wing the same position(thi” solid ling), rotational lift (short dashgsand added mas$ong
for the vortex, relative to the leading edge, is assumed whicHashes Lower panel: translational and rotational velocities during
il il il . _ 1 _ 1
is only an approximation, expecting that the adjustment of"® flapping cycleUa=14.5 cm §°, Opp=1.96 5

only the circulationl’; may compensate for possible changes . . )
in b. root of the nondimensional second moment of the wing area.

A related final consideration is that care must be taken td his is the correct result of the blade element theory for a
choose the leading edge as that for which the angle with thEotating wing at constant angular velocity and fixed angle of
velocity vector is acute. In this way, the valuefust be  attack, and seems to be a reasonable good approximation for
changed to keep the relative position fixed. This is required® more complex cases considered. _
when the angle of attack crosses 90° or when the velocity The experimental results are simulated using a chord
reverts, and reduces simply to changing appropriately théngthL=6.5 cm, wing length.,y=25 cm, and distance be-
sign of the real and/or imaginary part bfas shown in Fig. tween leading edge and rotation axis=0.25., deduced

3, which can be simply expressed as from data in Refs[6,7]; the density of the oil used in the
experiment isp=0.88 gcm 3. In the lower panel of Fig. 4
{p=|Re(b)|sgr(Uy) —i|Im(b)|sgr(Uy,). (18)  are represented the profiles of translational and rotational ve-

locities emulating the wing movement of the fruit fly model
This is in fact a very simple modelization of the detachmen{6], whereU,,,,=14.5 cm s, andQ,,=1.96 s 1. The ve-
of the leading vortex and its replacement by a newly generlocity was taken to be always horizontal, which is well sat-
ated one at a different position. isfied in the experiment, and represented by the expression

IV. RESULTS (1+cy)sin(wt)

In the experiments to be analyzed, the motion of the U(t)=—UmaX1+ c,Sint(wt) |
model wing is genuinely three-dimensional as the velocity

changes along the wing lengtlthe wing tip describes a . L
spherical motion so that the application of a two- Where the flapping angular frequency iso=2w

dimensional theory requires some elaboration. The usual aps 14> MHz, andc, =1.5 reproduces well the experimental
proach is the blade element methe Ref[14]) that re- profile. The value otJ,,,, corresponds to an averaged value

sults in expressions for the hydrodynamic force dependingver the wing length, given byumaxzuo\/F—z, where?%

on different averages over the wing length. In this work a=0.4 is the nondimensional second moment of the wing
simpler approach will be adopted: the velocity used to evaluarea, andU,=23 cm s! is the maximum velocity of the
ate the force is taken as the wing tip velocity times the squarging tip.
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FIG. 5. Theoretical(thick solid line and experimentalthin . . o . .
solid line) force during a flapping cycle with the time derivative of ~ FIG. 6. Theoretical(thick solid ling and experimentalthin
circulations equal to zero. Upper panel: lift force. Lower panel: dragsolid line) force during a flapping cycle with the time derivative of

force. circulations included. Upper panel: lift force. Lower panel: drag
force.
The angle of attack was represented by a similar expres-
sion reproduced both in phase and magnitude. The peaks occur-
ring in both forces near=0.2 s and=3.6 s, which are not
14c.)sin(wt— 0 1+c.)sin 0 reproduced by the model, are probably due to wake capture
a(t)=ap+a; ( 2). "o )+( 2)_ o) , effects, as both take place0.2 s s after stroke reversal,
L+cosim(wt—6)  1+c,sinf(6) which occurs at=0 and at=3.4 s. The same kind of effect

is probably responsible too for the valleys following both
with c;=1, andf=0.8125r. The values ofx, anda; were  peaks, also not reproduced by the theoretical results.
chosen to satisfy the experimental conditians 40° in the The two dips near the peaks of theoretical drag coincide
middle of the downstroket(0.57/w), anda=180°-20°  wjth the angle of attack crossing 90°, and are the result of
at the middle of the upstroket€ 1.57/w), resulting inag  the corresponding change in position of the leading vortex
=49° anda;=60°. The angular velocity is then given by  from one edge of the plate to the otHeee Fig. 3 since at

that moment the angular velocity is nonzdibis almost at

Qt)=— o Ua da its peak there is a small discontinuity in the drag force re-
180 dt”’ vealed by the digfor =0, by reflection symmetry, at an
angle of attack of 90° the force does not depend on which
resulting in the above reported value ©Of;,. edge the leading vortex is attached to, and no discontinuity
In the upper panel of Fig. 4 the different contributions to shows up.
theoretical total lift(thick solid line are shown. They corre- The effect of considering the time derivativeslofindI’,

spond to purely translational lift, which is calculated as thein Eq. (17) is shown in Fig. 6, where the corresponding the-
force given by Eq(16) with 1 =0; the rotational lift calcu- oretical lift and drag forces are shown, together with the
lated as the difference between Efj6) and the translational experimental values. The comparison with Fig. 5 indicates
contribution; and the added mass contribution &) with  that the main features of the force are also reasonably well
dI'/dt=dI',/dt=0. As can be seen, rotational and addedreproduced. In particular, the peaks missing in Fig. 5 show
mass contributions are of similar importance and both add upp here, generated by the new terms, which are also respon-
to produce the strong peaks that increase the lift over thsible for the increased values of the other peaks. Although it
purely translational component. is tempting to consider the new terms genuinely responsible
In Fig. 5 the theoretical lift and drag forces are shown,for the observed peaks netr0.2 s andt=3.6 s, for the
together with the reported experimental values for the choicarguments given above it is more probable that they are due
dI'/dt=dI',/dt=0. The main features are reasonably wellto wake capture effects, and that the new terms spuriously
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overestimate nonstationary effects. while C andD to the figure of eight pattern, differing in each
Finally, a comparison was made with some of the resultgase in the direction of vertical motion at the beginning of
reported in Ref[7]. There, a wide variety of flapping pat- downstroke.
terns are presented, among which those with the most com- As indicated in Ref[7] the upstroke of casé (second
plex structure were chosen for comparison purposes. Thelyalf period and the downstroke of ca®& (first half period
correspond to the “oval” and “figure of eight” patterns de- are characterized by substantial wake effects at the start of
termined by the superposition of the horizontal and verticathe stroke, which can explain the differences between experi-
(or meridiona) motion of the wing. mental and theoretical results in those parts of the strokes.
Again, a more correct application of a two-dimensional The systematic underestimation of the theoretical force dur-
theory to a genuine three-dimensional motion would result irng most of the upstroke in cas® not seen in cas8, is
very involved expressions, specially for the complex patternparticularly interesting. This may be an indication of a more
considered. To obtain a simpler approximation, corrections tgersistent wake capture due to the downward motion of the
the radius of horizontal rotation and other vector projectionsving. The forces in the figure of eight patterns with their
due to stroke deviation from the mean stroke plane will beexpected more complex wing-wake interaction are less well
neglectedthey represent factors in the rarige0.9,1] inthe  represented by the theory. Some of the differences can be
patterns analyzed Similarly, the anglea will be taken to  attributed to the approximate representation of the velocity
correspond to the angle between wing chord and mean strola@nd angle as functions of time used in the theoretical descrip-
plane. All these approximations become exact in the limit oftion. Since the force depends on second-order time deriva-
horizontal motion and are expected to give good results fotives of angle(and first order of velocityit is very sensitive
the small angles<£25°) of stroke deviation in the patterns to the details of the motion. In fact, slight changes in the
shown. parameters of the motion, such as flip duration and flip time,
In this way, to simulate the tip velocities in the experimentlead to marked changes in the forces. In order for this to be
the following expressions are used for the horizontal andappreciated and to facilitate the use of the formalism for

vertical motion, respectively: other cases, an annotated and easy tav4geAB script was
written to simulate all possible pattertwith the approxima-
tanH c;sin(wyt)] tions mentioned aboyen the experimeni21].
U =Upo— (1939
tanh(cy)

V. CONCLUSIONS
Uy(y)=Uygcog wt), (19b _ ) ) )

The nonstationary two-dimensional potential theory to
wherewy, = 27X 170 mHz,c,=4.762, wy= wy, for the oval Model the forces on a flapping wing was developed. The
pattern andoy = 2wy, for the figure of eight patterr®(t) is  theory allows analytical computations and the modelization
the angle between the axis of the wing and the horizonta®f different mechanisms of importance. In particular, the
plane® (t) = O ysin(mt), with O, being the vertical angular rather crude model of a stationary vortex, which ensures
amplitude. The velocity amplitudes até,,=L®o0y /7  'egularization of the velocity at the leading edge, reproduces
andU,o=Ly®wy, with L, being the wing length an®,  With reasonable accuracy the measured forces, and has the
the peak-to-peak-amplitude of horizontal angular motion2dvantage of leading to an explicit general expression for the
The angle between wing chord and the horizontal plane i€orce. There remains the point of whether different values of

given by the positio_n of the mentioned vortex, repre;ented by the
value ofb in Eq. (16), are needed to model different wing
. | tankc,sin oy (t+1t) 1} shapes. In principle, since the mechanisms _that stabilize_ the
a(t)= > +| ap— 5 fanic,) , leading vortex seem to be of a three-dimensional nature, it is
2

reasonable to suppose that there should be a dependence on
the wing shape. On the other hand, the two-dimensional di-
rect numerical simulations performed in REf1] give val-

ues for the lift coefficient similar to those in Fig. 2 when the
thickness of the simulated wing tends to zero. This could be
an indication of a more general validity of the value used for

where o= 457/180, c,=4.762, and=0.2941. The angu-
lar velocity is given by()(t)= —da/dt. In the patterns pre-
sented ®y=7 and O@y=*+257/180, where the positive
(negative value corresponds to upwatdownward motion
at the beginning of downstroke. The values @f and c,
were chosen so that the flip duration of bathy and« lasts A particularly important point is the consideration of the
0.1T, with T=2m/wy . The value oft, corresponds 1@ zerq time derivative for the circulations in E€L7). It was
starting a flip at time 0.1 befor'e strokg reversal. The values argued that if vortex sheets conveying the shed vorticity
of wing parameters and ambient fluid were taken to be thgyere included, the circulations would have smaller time de-
same in both experiments and the velocities in@§) were  rjyatives than those resulting from an approximation that
multiplied by \/r—2 again withr3=0.4, to be used as aver- does not include those sheets, and that the simplest, physi-
aged values in Eq¢16) and(17). Lift and drag are defined cally acceptable model corresponds to zero time derivatives.
following the convention used in Ref7]. The results for The simple comparison of the results with zero and nonzero
dI'/dt=dI',/dt=0 are shown in Fig. 7 together with the time derivatives does not decisively favor either of them, and
experimental valuesA andB correspond to the oval pattern, in this respect it would be of much interest to perform ex-
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FIG. 7. Theoreticalthick solid line and experimentalthin solid ling lift and drag forces for different flapping patterns, with zero time
derivative of circulations(a) Oval pattern with upward motion at beginning of downstrof®. Oval pattern with downward motion at
beginning of downstroke(c) Figure of eight pattern with upward motion at beginning of downstr@le.Figure of eight pattern with
downward motion at beginning of downstroke.
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periments in which a more decisive comparison can be ndl=dIxk=dyi—dxj, (A2)

made; for instance, an experiment in which wake capture

effects were minimized, such as a flapping with simultaneougyhere x represents the vector produdi,=dxi-+dyj is the

fast translation. vector differential displacement along the curvé;)( are
Fina”y, a few considerations can be made about the e'ﬁeqﬁnit vectors a|ong thex(’y) coordinates, andk is the unit

of wake capture. At the end of a half stroke, whén-0 and  vector normal to thex,y) plane. It is at this point useful to

Q1 has a value(),, the magnitude of the leading vortex is introduce the complex representation of two-dimensional

given by expressioiil4) to be (for the value ofo used I't  vectors:A,i+A j—A,+iA,, which allows us to write, from

29.8)(0619021.2_290. This vortex is the one that during Eq (AZ), nd|_>_|(dx+|dy): —idz, and represent Eq

the time it stays close to the plate produces the additionala1) as

force. A more complete theory should take into consideration

its subsequent movement and interaction with the wing. At ip 9%

this point we can only make a rough estimation of the force FxtiFy=—~+ i; |VZD|2dz—ip 35 —dz (A3)

(per unit wing spandue to this vortexusing the standard 2 Je cot

potential theory as F,~pI'?/L~pL3QZ, which can be _

compared, for instance, to the maximum translational com- Using

ponent, estimated aB,~pLUZ2_,. In this way, we could

anticipate strong wake capture effects if the squared rota- |V<~p|2=|ﬂ|2=(

tional velocity at stroke reversal)?, is not small compared

to (Umax/L)? In the results shown in Figs. 4 and 5 one has

(Q0L/U ma0?=0.1, so that the formalism can be applied with the complex conjugate of EgA3) can be written as

some confidence. This is not the case for the hoverfly model,

dw)* dw

dz/ dz’

also considered in Refl6], in which it is precisely(), __dp fdw/dw\* - J ~  \*

= max aNd Qmark/Una)?=1.85, so that wake capture ef- Fx=iFy=7 wdz | dz dz*+ip—- C‘sz

fects are very notorious. (A4)
ACKNOWLEDGMENTS The time derivative was taken out of the second integral

ecause the solid is at rest. For the same reason, the solid
oundary corresponds to a streamline and so, along the
boundary,js=const ordy=0; that is,dw=dp+id ¥ is real
along the boundary, which allows us to write
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APPENDIX
A simple derivation of the Blasius formul®) is included dw\* ) . w
here to make the mathematical approach employed more dz dZ*[e=dw*[c=dw ¢=Ed2 , (AS5)
¢

self-contained. For this, consider the evaluation of Bj.
with only these terms of E(7) that contribute to the force

- § 1 Ve
=p p 2 ¢
where€ is a curve representing the static solid boundary in

the (x,y) plane,d| represents a differential length along the Replacement of Eq$A5) and(A6) in Eq. (A4) leads then to
curve, andn is the (external normal. One can then write expression9).

and, sincef,dz=0,

i
2, %%

ot ndl, (A1)

£<~de= ﬁ(w— ig)dz= J)@Wdz (A6)

[1] T. Maxworthy, Annu. Rev. Fluid Mechl3, 329(1981. [10] J.M. Birch and M.H. Dickinson, Natur¢London 412 729

[2] T. Weis-Fogh, J. Exp. Biol59, 169 (1973. (2001.

[3] M.J. Lighthill, J. Fluid Mech.60, 1 (1973. [11] Z.J. Wang, J. Fluid Mech10, 323 (2000.

[4] Z.J. Wang, Phys. Rev. Let85, 2216(2000. [12] Y.C. Fung, An Introduction to the Theory of Aeroelastigity

[5] C.P. Ellington, J. Exp. Biol202 3439(1999. (Wiley, New York, 1955.

[6] M.H. Dickinson, F.-O. Lehmann, and S.P. Sane, Sciet®#% [13] C.P. Ellington, Philos. Trans. R. Soc. London, Sel3®, 79
1954 (1999. (1984).

[7] S.P. Sane and M.H. Dickinson, J. Exp. Bia04, 2607(2001). [14] S.P. Sane and M.H. Dickinson, J. Exp. Bid05 1087(2002.

[8] T. Maxworthy, J. Fluid Mech93, 47 (1979. [15] M. Kramer, Z. Flugtech. u. Motorluftschi23, 185(1932.

[9] S. Savage, B.G. Newman and D.T.-M. Wong, J. Exp. B38. [16] We were able to trace it back to 1917 in V. Valcovici, Acad.
59 (1979. Sci. Il 165 147 (1917, as cited in C. Jacokntroduction

051907-9



F. O. MINOTTI PHYSICAL REVIEW E 66, 051907 (2002

Mathematique ‘ala Mécanique des Fluideg¢Gauthier-Villars,  [19] J.M.R. Graham, J. Fluid Mech.33 413(1983.

Paris, 1959 p. 458. [20] H. Wagner, Z. Angew. Math. Mecth, 17 (1921).
[17] C. Jacob]ntroduction Mathenatique ala Mecanique des Flu-  [21] This script called “fly.m” can be downloaded from http:/
ides (Gauthier-Villars, Paris, 1959 www/Ifp.uba.ar and used as it stands or modified for other
[18] G.K. Batchelor,An Introduction to Fluid Dynamic§Cam- applications.

bridge University Press, 20D0

051907-10



