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Unsteady two-dimensional theory of a flapping wing

F. O. Minotti
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An analytical evaluation of the hydrodynamic force on a single flapping wing is presented, based on the
two-dimensional inviscid theory, with the addition of an attached leading-edge vortex. The explicit expression
of the force is given and compared with some of the measurements by Dickinsonet al. @Science284, 1954
~1999!# and Sane and Dickinson@J. Expl. Biol.204, 2607~2001!# for a fruit fly model wing.
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I. INTRODUCTION

The fluid mechanics of insect flight has a rich and m
interesting history@1#. Among other things, its study ha
helped to discover sophisticated mechanisms for lift gen
tion as that of Weis-Fogh@2,3# and the pairing of downward
moving two-dimensional vortices@4#. Apart from its biologi-
cal interest, the understanding of the details of insect fli
has also technological interest, for instance, for the deve
ment of flying microvehicles@5#. In particular, of consider-
able importance are the mechanisms associated to hov
at a fixed position. For some insects such as small wa
hovering seems to depend strongly on the interaction of
wings, as in the Weis-Fogh mechanism@2#. For many other
insects, however, single wing effects are the most import
the ones to be considered in what follows. In the past f
years detailed experiments with scaled insect model wi
were performed, in which a careful determination was ma
of forces resulting from imposed complex movements@6,7#.
As the relation of wing span to chord length is genera
large, and the Reynolds numbers involved in the flight
most insects are of the order of a few hundreds, tw
dimensional thin airfoil theory could be used, in principle,
calculate those forces. However, if steady two-dimensio
aerodynamics is applied, the results are shown to under
mate the measurements. The difference is attributed basi
to four mechanisms:~i! enhancement of reachable steady
by the absence of stall,~ii ! additional circulation generate
by rotation of the wing, called rotational circulation,~iii !
reuse, at the end of each half stroke of the wing, of pre
ously shed vorticity, an effect known as ‘‘wake capture,’’ a
~iv! the effect of added mass. The absence of stall~i!, some-
times called ‘‘delayed stall,’’ is associated to the stabilizati
of the vorticity shed at the leading edge, thus preventing
formation of a two-dimensional von Ka´rmán street, which
ultimately destabilizes and leads to stall. As a result, a qu
stationary, spanwise elongated vortex structure is form
near the leading edge@8#. This vortex was shown, using po
tential two-dimensional theory, to also produce enhanced
with respect to the case with no vortex@9#. The stabilization
of the leading-edge vortex is attributed to the spanwise fl
that removes leading-edge excess vorticity from its core@8#.
Recent experiments indicate that at the Reynolds num
characteristic of insect flight a downward flow induced by
vortices and wake vorticity can also explain the vortex s
bility @10#. The existence of a relatively stationary leadi
1063-651X/2002/66~5!/051907~10!/$20.00 66 0519
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vortex was also found in strictly two-dimensional simul
tions of flapping wings@11#, in which the wing changes di
rection rapidly, before the vortex separates. The absenc
stall can also be indirectly seen in the experiment reporte
Ref. @6#, where the lift and drag coefficients of the mod
wing at fixed angles of attack are plotted as functions of ti
@Figs. 2~a!, 2~b! in Ref. @6##. After the initial transient the
coefficients take on practically constant values with no os
lations that would reflect the shedding of vorticity at stall

Rotational circulation~ii ! is well known and can be cal
culated with thin airfoil theory@12# ~see also Ref.@13#!. It is
discussed in detail in Ref.@14#, where it is related to the fac
that the lift coefficient of a wing increases when the angle
attack increases with time~Kramer’s effect@15#!. The pre-
dictions of the theory have been confirmed by the exp
ments@6,7#.

Wake capture~iii ! acts shortly after the end of each ha
stroke, when the wing reverts velocity and moves into
wake previously generated. With an appropriately orien
wing, the moving fluid of the wake effectively adds to th
lift. Finally, added mass effects~iv! being dependent on th
acceleration, are specially important near stroke reve
when the quasisteady lift associated with the velocity is v
small, and also in the stages when rotational veloc
changes rapidly. All these mechanisms work together an
describe their interplay a general theory that accounts for
them is required. The purpose of this work is to show, co
paring with reported experiments@6,7#, that the nonstation-
ary, two-dimensional potential theory with the simple mod
of a stationary~with respect to the wing! two-dimensional
vortex near the leading edge reproduces well the forces
ing on a flapping wing. Usual Kutta-Joukowski condition
applied at both edges of the wing determine the intensity
the mentioned vortex and of bound circulation, including r
tational circulation. Added mass effects are automatically
cluded. As a result, a final analytical expression for the fo
is obtained, which can be used, for instance, to study dif
ent variations of complex motions and the parameter dep
dence of quantities of interest. At this stage wake capt
effects have not been included~they are discussed with som
length in the Conclusions section!, but the way the formal-
ism is introduced facilitates the inclusion of this mechani
as well improvements over the simple model used here.

II. TWO-DIMENSIONAL THEORY

To simulate the insect wing the usual model of a th
rigid, uncambered plate is employed@6#. The flow produced
©2002 The American Physical Society07-1
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F. O. MINOTTI PHYSICAL REVIEW E 66, 051907 ~2002!
by arbitrary two-dimensional movements of such a plate
an inviscid fluid~at rest far away! is known since many year
@16#. It is presented here in a way that allows to inclu
additional features easily, such as free or bound vortices,
also to simply evaluate the resulting hydrodynamic force

The plate is considered to translate with arbitrarily im
posed two-dimensional velocityU(t) and at the same time t
rotate about a fixed point contained in the plate itself w
arbitrarily imposed angular velocityV(t), normal to the
plane where the movement takes place. The goal is to ev
ate the hydrodynamic force acting on the plate, taking adv
tage of the fact that this force is frame independent and
can be conveniently evaluated in a noninertial frame wh
the plate is permanently at rest. The inviscid flow in t
frame where the distant fluid is at rest is irrotational~except
for possible regions of concentrated vorticity, modeled
singularities of a potential flow!, while the flow in the plate
frame,u(x,t), has a uniform vorticity given by22V(t). A
Cartesian (x,y) coordinate system is taken, with thex axis
along the plate’s chord and the origin in the rotation axis~see
Fig. 1!. The incompressibility condition allows us to intro
duce a stream functionc as

ux5
]c

]y
, uy52

]c

]x
. ~1!

At the same time, the flow with uniform vorticity can b
decomposed into irrotational flow, of potentialw, plus a rigid
body rotation:

ux5
]w

]x
1V~ t !y, uy5

]w

]y
2V~ t !x. ~2!

Now, the modified potential and stream function are d
fined as

w̃5w2V~ t !x y, c̃5c2V~ t !y2, ~3!

which according to Eqs.~1! and ~2! satisfy

]w̃

]x
5

]c̃

]y
,

]w̃

]y
52

]c̃

]x
;

that is, a complex potentialw function can be defined with
the complex variablez5x1 i y ( i is the imaginary unit!,

w~z!5w̃1 i c̃. ~4!

FIG. 1. Sketch showing the plate, comoving frame and conv
tions used.
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Since the plate is rigid and at rest in the chosen frame
contour must coincide with a streamline, that is, the real fl
in the plate’s frame satisfies the boundary conditionc
5const over the plate (y50), which, from Eq.~3!, corre-
sponds then toc̃5const at that boundary. That is, the pla
corresponds to a solid boundary for the fictitious flow to
Besides, the real flow at large distances is given by

ux→2Ux~ t !1V~ t !y,

uy→2Uy~ t !2V~ t !x.

From Eqs.~2! and ~3! it is then seen that the fictitious flow
described byw(z) must behave at large distances as

ũx→2Ux~ t !2V~ t !y,

ũy→2Uy~ t !2V~ t !x,

which corresponds to a complex potential given at large d
tances by

w~z!→2U* ~ t !z1
iV~ t !

2
z2, ~5!

whereU(t)5Ux(t)1 i U y(t), and the asterisk denotes com
plex conjugation. In this way,w(z) can be calculated ana
lytically using conformal mapping methods by means of
appropriate Kutta-Joukowski transformation applied to
static circular cylinder in a flow given at large distances
the transformed version of Eq.~5!. In particular, isolated sin-
gularities such as point vortices can be easily incorpora
Most importantly, it yields that the real hydrodynamic forc
on the plate coincides with that calculated fromw(z) using
the Blasius formula@17#. This can be seen from the Eule
equation foru(x,t) in the noninertial frame,

Du

Dt
52

“p

r
1fr22V3u2

dU

dt
2V3V3x2

dV

dt
3x,

~6!

wherefr denotes conservative real forces per unit mass,p is
the pressure,r the constant fluid density, andD/Dt repre-
sents the material derivative. Using expressions~2! for u,
and the first of Eqs.~3!, a direct replacement in Eq.~6! and a
little algebra leads to a Bernoulli first integral of the Eul
equation that gives~leaving out an integration constant!

2
p

r
5

]w̃

]t
1

1

2
u“w̃u21fm12V~ t !y

]w̃

]x
, ~7!

wherefm is a modified potential that includes that of the re
forcesf r , plus that corresponding to the conservative par
the inertial forces, and all otherw̃-independent terms with
explicit spatial dependence,

fm5f r1x•
dU

dt
2

1

2
V2~x21y2!1

dV

dt
xy12V2y2.

-
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UNSTEADY TWO-DIMENSIONAL THEORY OF A . . . PHYSICAL REVIEW E66, 051907 ~2002!
The hydrodynamic force~per unit length! over the plate is
then calculated as the integral, extended along the perim
of the plate,

F52 R pndl, ~8!

wheren is the normal to the plate andp is given by Eq.~7!.
In particular, the term withfm gives the Archimedes force
which is zero in the case of an infinitesimally thin plat
Besides, when evaluated over the plate (y50), the last term
in Eq. ~7! is zero, at least for finite values ofũx at the plate.
This last condition is assured if care is taken to regularize
velocity atboth edges of the plate. The remaining terms a
precisely those considered in the derivation of the Blas
theorem~see the Appendix for a short derivation!, which is
applicable because the plate is at rest in the frame in whicw̃
is defined. In this way, the~complex! force per unit length
can be calculated from the Blasius expression for the po
tial ~4! as

Fx2 iF y5
ir

2 R S dw

dzD 2

dz1 ir
]

]t F R wdzG* . ~9!

III. APPLICATION

An uncambered, infinitesimally thin plate with chor
lengthL is considered. Thex axis runs along the chord, with
its origin in the rotation axis which is located on the pla
itself at a distanced from the leading edge~see Fig. 1!. The
plate boundary in the complexz plane corresponds to a cir
cular cylinder of radiusa5L/4 centered in the origin of the
§ plane through the Kutta-Joukowski transformation@18#

z~§!5x01§1
a2

z
, ~10!

wherex05L/22d is ~minus! the position of the rotation axis
as measured from the midpoint of the plate. From Eq.~5!,
the complex potential in the§ plane, v(§)5w@z(§)#, is
given at large distances by

v~§!→2U* ~ t !§1
iV~ t !

2
~§1x0!2, ~11!

where thex0 in the second term must be retained, for it giv
rise to a term of the same order as the first one. Applying
Milne-Thomson circle theorem@18# to Eq. ~11!, the trans-
formed potential is obtained, eventually with the addition
bound circulation. Moreover, if localized singularities a
needed, they can be directly incorporated in Eq.~11! prior to
the application of the Milne-Thomson theorem. The force
then simply calculated by usual techniques using Eq.~9!. As
an example, the case of a purely rotating plate with bou
circulation G is considered. The corresponding transform
potential is

v~§!5
iV~ t !

2
~§1x0!22

iV~ t !

2 S a2

§
1x0D 2

1
G

2p i
ln~§!,
05190
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from which the velocity field is

ux2 i uy5
dw

dz
5

dv

d§ S dz

d§ D 21

5
dv

d§

§2

§22a2
.

If the Kutta-Joukowski condition is imposed at the trailin
edge~conventionally taken as that corresponding to§5a),

dv

d§
u§5a50,

the resulting circulationG is

G54pa2V~ t !S 11
x0

a D5pL2V~ t !S 3

4
2

d

L D ,

a well known result@12# that was experimentally verified in
Refs.@6,7#.

The model considered for an arbitrarily moving plate i
cludes bound circulationG and also a stationary~with re-
spect to the plate! leading-edge vortex with circulationG l .
Taking asb the fixed position of this vortex in the§ plane,
the transformed potential can be written as

v~§!52U* ~ t !§2U~ t !
a2

§
1

iV~ t !

2
~§1x0!2

2
iV~ t !

2 S a2

§
1x0D 2

1
G l

2p i
ln~§2b!

2
G l

2p i
lnS §2

a2

b*
D 1

G1G l

2p i
ln~§!. ~12!

To regularize the velocity at both edges, the Kutta-Joukow
condition must be imposed atz5a andz52a:

dv

d§
u§56a50,

which determines bothG andG l . The resulting expression
are, settingb5a(bx1 iby),

G5
4pa~11bx

21by
2!~Uy1Vx0!

bx~bx
21by

221!
14pa2V, ~13!

G l522pabx
21~bx

21by
221!21~Uy1V x0!@bx

412bx
2~by

2

21!1~by
211!2#. ~14!

Using Eq.~9! the force is also readily evaluated using

R S dw

dzD 2

dz5 R S dv

d§ D 2S dz

d§ D 21

d§, ~15a!

R w~z!dz5 R v~§!
dz

d§
d§, ~15b!

and considering as internal singularities those located a§
50, §52a ~if this is taken to correspond to the leadin
7-3
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F. O. MINOTTI PHYSICAL REVIEW E 66, 051907 ~2002!
edge; the resulting force is independent of this choice!, and
§5a2/b* . The integral in Eq.~15a! is easily performed by
residues, as the terms in Eq.~15b! with no logarithmic de-
pendence, while the rest of the terms can be evalua
readily taking care of the logarithm branch cut. As a result
the regularization of the velocity at both edges, the force
normal to the plate (Fx50). They component of the force is
given by the sum of the two following expressions, aga
with b5a(bx1 iby):

Fy
(a)54parbx

22~bx
21by

2!21~bx
21by

221!23$Uxbx~bx
2

1by
2!~bx

21by
221!2@Uy~12bx

21by
2!1V~x02abx

2x0bx
21abx

31x0by
21abxby

2!#1~Uy1Vx0!2by

3@2bx
822bx

6~by
221!1by

4~by
211!212bx

2by
4~by

2

13!1bx
4~6by

221!#1aV~Uy1V x0!by@bx
9

14bx
7~by

221!1bx~by
421!212bx

5~3by
424by

213!

14bx
3~by

62by
41by

221!#%, ~16!

Fy
(b)522arH dG

dt
1

dG l

dt F11
bx

bx
21by

2 ~12Abx
21by

2!G J
24pa2rS dUy

dt
1x0

dV

dt D , ~17!

whereFy
(a) comes from the integral~15a!, andFy

(b) from Eq.
~15b!.

At this point an important issue needs to be discussed
the potential proposed, Eq.~12!, no representation exists o
the vorticity shed by the plate to adjust the circulationG so
as to fulfill the Kutta-Joukowski condition whenU and V
change. In principle, a trailing vortex sheet should be pres
to account for this shed vorticity, which is ultimately swe
away. Analogously, a vortex sheet should also exist at
leading edge, to feed vorticity to the leading vortex. T
force generated by these sheets is not considered in
model, for the vorticity content in them is not expected to
important at any given time, and that vorticity is either swe
away or included in the leading vortex. However, they pla
key role in the determination of the precise way in which t
circulation adjusts to changes in the velocities of the w
@19#. In this way, the vortex sheets have an indirect effect
the force through the values ofdG/dt anddG l /dt in Eq. ~17!
that they determine. To estimate this effect we use the res
in Ref. @19# where the shedding of vorticity and generati
of circulation on unsteady airfoils is studied in detail f
starting flows. In particular, it is determined in that Ref.@19#
that a starting flow in whichUx;tg, Uy;tg generates a
circulation over an airfoil with a cusplike trailing edge th
behaves to leading order int asG;tm, with m5(3g11)/2
or m5(4g11)/3, depending on whether the convection
the vortex sheet is dominated byUx or Uy , respectively. For
a velocity field with finite time derivative att50, that is,
g51, the circulation then grows very slowly, asG;t2 or
G;t5/3; in particular,dG/dt50 at t50, whendU/dt is fi-
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nite. This result applies, of course, also to the change
circulation from a constant, finite value, when the velocity
the wing changes att50, and shows that taking into accou
the dynamics of the shed vorticity results in much sma
values ofdG/dt than those corresponding to assuming t
instantaneous adjustment of the circulation to the chang
conditions of the flow~this is reminiscent of the Wagne
effect for impulsively started wings@20#!. A simple possible
way of including the effect considered is to takedG/dt
5dG l /dt50 in the evaluation of the last term in Eq.~17!,
while still assuming the instantaneous adjustment ofG for
the rest of the terms, which could be termed a quasistation
approach.

A complementary justification of this choice comes fro
the following. For a body with time dependent bound circ
lation G, the force term proportional todG/dt, by itself, is
not physically correct, in general. For instance, in the case
a stationary cylinder of radiusa and circulationG, a change
in G would give rise to a finite force (Fx50,Fy5
2ra dG/dt) violating isotropy in the (x,y) plane. Similarly,
for a thin airfoil the corresponding term is easily seen
violate reflection symmetry. The only value that gives a
ceptable forces at this level of approximation isdG/dt50.

With these considerations the conditiondG/dt5dG l /dt
50 will be used in Eq.~17!; however, since this approxima
tion yields the full time derivatives, it will also be presente
for comparison purposes.

There exists still an explicit dependence on the param
b, which reflects the three-dimensional nature of the pr
lem, as the stabilization of the leading-edge vortex is a ge
ine three-dimensional effect~see Refs.@8,10#!. In the present
model b is determined so as to adjust the experimental
and drag coefficients reported in Ref.@6# for all angles of
attack. In Fig. 2 the results obtained withb5a(21.25
1 i 0.48) are presented, together with the experimental
ues. The following definitions for the lift and drag coeffi
cients, respectively, were used

CL5
2Fy cosa

ruUu2L
,CD5

2Fy sina

ruUu2L
,

FIG. 2. Coefficients of lift (CL) and drag (CD) for the model
wing, as obtained from the theory withb/a521.251 i 0.48, solid
line, and experimental values from Ref.@6#, dots and squares.
7-4
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UNSTEADY TWO-DIMENSIONAL THEORY OF A . . . PHYSICAL REVIEW E66, 051907 ~2002!
with a the angle of attack. The experiments were perform
under stationary conditions, so in Eq.~16! one must takeV
50 and U5const, with Ux52uUucosa and Uy5
2uUusina.

Of course, the theory does not reproduce the small
cous drag that gives a nonzero drag coefficient for zero a
of attack, but the overall agreement is rather good, consi
ing that a single value ofb was used.

For complex movements of the wing the same posit
for the vortex, relative to the leading edge, is assumed, wh
is only an approximation, expecting that the adjustment
only the circulationG l may compensate for possible chang
in b.

A related final consideration is that care must be taken
choose the leading edge as that for which the angle with
velocity vector is acute. In this way, the value ofb must be
changed to keep the relative position fixed. This is requi
when the angle of attack crosses 90° or when the velo
reverts, and reduces simply to changing appropriately
sign of the real and/or imaginary part ofb, as shown in Fig.
3, which can be simply expressed as

zb5uRe~b!usgn~Ux!2 i uIm~b!usgn~Uy!. ~18!

This is in fact a very simple modelization of the detachm
of the leading vortex and its replacement by a newly gen
ated one at a different position.

IV. RESULTS

In the experiments to be analyzed, the motion of
model wing is genuinely three-dimensional as the veloc
changes along the wing length~the wing tip describes a
spherical motion!, so that the application of a two
dimensional theory requires some elaboration. The usua
proach is the blade element method~see Ref.@14#! that re-
sults in expressions for the hydrodynamic force depend
on different averages over the wing length. In this work
simpler approach will be adopted: the velocity used to eva
ate the force is taken as the wing tip velocity times the squ

FIG. 3. Schematic position of the leading vortex, represented
the dot, according to the different orientations of velocity, toget
with the corresponding coordinates in the§ plane.
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root of the nondimensional second moment of the wing ar
This is the correct result of the blade element theory fo
rotating wing at constant angular velocity and fixed angle
attack, and seems to be a reasonable good approximatio
the more complex cases considered.

The experimental results are simulated using a ch
lengthL56.5 cm, wing lengthLW525 cm, and distance be
tween leading edge and rotation axis,d50.25L, deduced
from data in Refs.@6,7#; the density of the oil used in the
experiment isr50.88 g cm23. In the lower panel of Fig. 4
are represented the profiles of translational and rotational
locities emulating the wing movement of the fruit fly mod
@6#, whereUmax514.5 cm s21, andVmax51.96 s21. The ve-
locity was taken to be always horizontal, which is well sa
isfied in the experiment, and represented by the express

U~ t !52Umax

~11c1!sin~vt !

11c1sin2~vt !
,

where the flapping angular frequency isv52p
3145 mHz, andc151.5 reproduces well the experiment
profile. The value ofUmax corresponds to an averaged val

over the wing length, given byUmax5U0Ar̂ 2
2, where r̂ 2

2

50.4 is the nondimensional second moment of the w
area, andU0523 cm s21 is the maximum velocity of the
wing tip.

y
r

FIG. 4. Upper panel: theoretical lift force~thick solid line! dur-
ing a flapping cycle and its different contributions—translational
~thin solid line!, rotational lift ~short dashes! and added mass~long
dashes!. Lower panel: translational and rotational velocities duri
the flapping cycle.Umax514.5 cm s21, Vmax51.96 s21.
7-5
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F. O. MINOTTI PHYSICAL REVIEW E 66, 051907 ~2002!
The angle of attack was represented by a similar exp
sion

a~ t !5a01a1F ~11c2!sin~vt2u!

11c2sin2~vt2u!
1

~11c2!sin~u!

11c2sin2~u!
G ,

with c251, andu50.8125p. The values ofa0 anda1 were
chosen to satisfy the experimental conditionsa540° in the
middle of the downstroke (t50.5p/v), anda5180°220°
at the middle of the upstroke (t51.5p/v), resulting ina0
549° anda1560°. The angular velocity is then given by

V~ t !52
p

180

da

dt
,

resulting in the above reported value ofVmax.
In the upper panel of Fig. 4 the different contributions

theoretical total lift~thick solid line! are shown. They corre
spond to purely translational lift, which is calculated as t
force given by Eq.~16! with V50; the rotational lift calcu-
lated as the difference between Eq.~16! and the translationa
contribution; and the added mass contribution Eq.~17! with
dG/dt5dG l /dt50. As can be seen, rotational and add
mass contributions are of similar importance and both add
to produce the strong peaks that increase the lift over
purely translational component.

In Fig. 5 the theoretical lift and drag forces are show
together with the reported experimental values for the cho
dG/dt5dG l /dt50. The main features are reasonably w

FIG. 5. Theoretical~thick solid line! and experimental~thin
solid line! force during a flapping cycle with the time derivative
circulations equal to zero. Upper panel: lift force. Lower panel: d
force.
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reproduced both in phase and magnitude. The peaks oc
ring in both forces neart50.2 s andt53.6 s, which are not
reproduced by the model, are probably due to wake cap
effects, as both take place'0.2 s s after stroke reversa
which occurs att50 and att53.4 s. The same kind of effec
is probably responsible too for the valleys following bo
peaks, also not reproduced by the theoretical results.

The two dips near the peaks of theoretical drag coinc
with the angle of attack crossing 90°, and are the resul
the corresponding change in position of the leading vor
from one edge of the plate to the other~see Fig. 3!; since at
that moment the angular velocity is nonzero~it is almost at
its peak! there is a small discontinuity in the drag force r
vealed by the dip~for V50, by reflection symmetry, at an
angle of attack of 90° the force does not depend on wh
edge the leading vortex is attached to, and no discontin
shows up!.

The effect of considering the time derivatives ofG andG l
in Eq. ~17! is shown in Fig. 6, where the corresponding th
oretical lift and drag forces are shown, together with t
experimental values. The comparison with Fig. 5 indica
that the main features of the force are also reasonably
reproduced. In particular, the peaks missing in Fig. 5 sh
up here, generated by the new terms, which are also res
sible for the increased values of the other peaks. Althoug
is tempting to consider the new terms genuinely respons
for the observed peaks neart50.2 s andt53.6 s, for the
arguments given above it is more probable that they are
to wake capture effects, and that the new terms spuriou

g

FIG. 6. Theoretical~thick solid line! and experimental~thin
solid line! force during a flapping cycle with the time derivative o
circulations included. Upper panel: lift force. Lower panel: dr
force.
7-6
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UNSTEADY TWO-DIMENSIONAL THEORY OF A . . . PHYSICAL REVIEW E66, 051907 ~2002!
overestimate nonstationary effects.
Finally, a comparison was made with some of the res

reported in Ref.@7#. There, a wide variety of flapping pa
terns are presented, among which those with the most c
plex structure were chosen for comparison purposes. T
correspond to the ‘‘oval’’ and ‘‘figure of eight’’ patterns de
termined by the superposition of the horizontal and verti
~or meridional! motion of the wing.

Again, a more correct application of a two-dimension
theory to a genuine three-dimensional motion would resul
very involved expressions, specially for the complex patte
considered. To obtain a simpler approximation, correction
the radius of horizontal rotation and other vector projectio
due to stroke deviation from the mean stroke plane will
neglected~they represent factors in the range@;0.9,1# in the
patterns analyzed!. Similarly, the anglea will be taken to
correspond to the angle between wing chord and mean st
plane. All these approximations become exact in the limit
horizontal motion and are expected to give good results
the small angles (<25°) of stroke deviation in the pattern
shown.

In this way, to simulate the tip velocities in the experime
the following expressions are used for the horizontal a
vertical motion, respectively:

UH~ t !5UH0

tanh@c1sin~vHt !#

tanh~c1!
, ~19a!

UV~y!5UV0cos~vVt !, ~19b!

wherevH52p3170 mHz,c154.762,vV5vH for the oval
pattern andvV52vH for the figure of eight pattern,Q(t) is
the angle between the axis of the wing and the horizo
planeQ(t)5Q0sin(vVt), with Q0 being the vertical angula
amplitude. The velocity amplitudes areUH05LWF0vH /p
andUV05LWQ0vH , with LW being the wing length andF0
the peak-to-peak-amplitude of horizontal angular moti
The angle between wing chord and the horizontal plane
given by

a~ t !5
p

2
1S a02

p

2 D tanh$c2sin@vH~ t1t0!#%

tanh~c2!
,

wherea0545p/180, c254.762, andt050.2941. The angu-
lar velocity is given byV(t)52da/dt. In the patterns pre-
sented F05p and Q05625p/180, where the positive
~negative! value corresponds to upward~downward! motion
at the beginning of downstroke. The values ofc1 and c2
were chosen so that the flip duration of bothUH anda lasts
0.1T, with T52p/vH . The value oft0 corresponds toa
starting a flip at time 0.1T before stroke reversal. The value
of wing parameters and ambient fluid were taken to be
same in both experiments and the velocities in Eq.~19! were

multiplied by Ar̂ 2
2, again with r̂ 2

250.4, to be used as ave
aged values in Eqs.~16! and ~17!. Lift and drag are defined
following the convention used in Ref.@7#. The results for
dG/dt5dG l /dt50 are shown in Fig. 7 together with th
experimental values.A andB correspond to the oval pattern
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while C andD to the figure of eight pattern, differing in eac
case in the direction of vertical motion at the beginning
downstroke.

As indicated in Ref.@7# the upstroke of caseA ~second
half period! and the downstroke of caseB ~first half period!
are characterized by substantial wake effects at the sta
the stroke, which can explain the differences between exp
mental and theoretical results in those parts of the stro
The systematic underestimation of the theoretical force d
ing most of the upstroke in caseA, not seen in caseB, is
particularly interesting. This may be an indication of a mo
persistent wake capture due to the downward motion of
wing. The forces in the figure of eight patterns with the
expected more complex wing-wake interaction are less w
represented by the theory. Some of the differences can
attributed to the approximate representation of the velo
and angle as functions of time used in the theoretical desc
tion. Since the force depends on second-order time der
tives of angle~and first order of velocity! it is very sensitive
to the details of the motion. In fact, slight changes in t
parameters of the motion, such as flip duration and flip tim
lead to marked changes in the forces. In order for this to
appreciated and to facilitate the use of the formalism
other cases, an annotated and easy to useMATLAB script was
written to simulate all possible patterns~with the approxima-
tions mentioned above! in the experiment@21#.

V. CONCLUSIONS

The nonstationary two-dimensional potential theory
model the forces on a flapping wing was developed. T
theory allows analytical computations and the modelizat
of different mechanisms of importance. In particular, t
rather crude model of a stationary vortex, which ensu
regularization of the velocity at the leading edge, reprodu
with reasonable accuracy the measured forces, and ha
advantage of leading to an explicit general expression for
force. There remains the point of whether different values
the position of the mentioned vortex, represented by
value of b in Eq. ~16!, are needed to model different win
shapes. In principle, since the mechanisms that stabilize
leading vortex seem to be of a three-dimensional nature,
reasonable to suppose that there should be a dependen
the wing shape. On the other hand, the two-dimensional
rect numerical simulations performed in Ref.@11# give val-
ues for the lift coefficient similar to those in Fig. 2 when th
thickness of the simulated wing tends to zero. This could
an indication of a more general validity of the value used
b.

A particularly important point is the consideration of th
zero time derivative for the circulations in Eq.~17!. It was
argued that if vortex sheets conveying the shed vortic
were included, the circulations would have smaller time d
rivatives than those resulting from an approximation th
does not include those sheets, and that the simplest, ph
cally acceptable model corresponds to zero time derivativ
The simple comparison of the results with zero and nonz
time derivatives does not decisively favor either of them, a
in this respect it would be of much interest to perform e
7-7
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FIG. 7. Theoretical~thick solid line! and experimental~thin solid line! lift and drag forces for different flapping patterns, with zero tim
derivative of circulations.~a! Oval pattern with upward motion at beginning of downstroke.~b! Oval pattern with downward motion a
beginning of downstroke.~c! Figure of eight pattern with upward motion at beginning of downstroke.~d! Figure of eight pattern with
downward motion at beginning of downstroke.
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UNSTEADY TWO-DIMENSIONAL THEORY OF A . . . PHYSICAL REVIEW E66, 051907 ~2002!
periments in which a more decisive comparison can
made; for instance, an experiment in which wake capt
effects were minimized, such as a flapping with simultane
fast translation.

Finally, a few considerations can be made about the ef
of wake capture. At the end of a half stroke, whenU→0 and
V has a valueV0, the magnitude of the leading vortex
given by expression~14! to be ~for the value ofb used! G l
.9.8x0aV0.1.2L2V0. This vortex is the one that durin
the time it stays close to the plate produces the additio
force. A more complete theory should take into considerat
its subsequent movement and interaction with the wing.
this point we can only make a rough estimation of the fo
~per unit wing span! due to this vortex~using the standard
potential theory! as Fw'rG l

2/L'rL3V0
2 , which can be

compared, for instance, to the maximum translational co
ponent, estimated asFt'rLUmax

2 . In this way, we could
anticipate strong wake capture effects if the squared r
tional velocity at stroke reversal,V0

2, is not small compared
to (Umax/L)2. In the results shown in Figs. 4 and 5 one h
(V0L/Umax)

2.0.1, so that the formalism can be applied w
some confidence. This is not the case for the hoverfly mo
also considered in Ref.@6#, in which it is preciselyV0
5Vmax, and (VmaxL/Umax)

2.1.85, so that wake capture e
fects are very notorious.
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APPENDIX

A simple derivation of the Blasius formula~9! is included
here to make the mathematical approach employed m
self-contained. For this, consider the evaluation of Eq.~8!
with only these terms of Eq.~7! that contribute to the force

F5r R
C
S 1

2
U“w̃U21

]w̃

]t
D ndl, ~A1!

whereC is a curve representing the static solid boundary
the (x,y) plane,dl represents a differential length along th
curve, andn is the ~external! normal. One can then write
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ndl5dl3k5dyi2dxj , ~A2!

where3 represents the vector product,dl5dxi1dyj is the
vector differential displacement along the curve, (i,j ) are
unit vectors along the (x,y) coordinates, andk is the unit
vector normal to the (x,y) plane. It is at this point useful to
introduce the complex representation of two-dimensio
vectors:Axi1Ayj→Ax1 iAy , which allows us to write, from
Eq. ~A2!, ndl→2 i (dx1 idy)52 idz, and represent Eq
~A1! as

Fx1 iF y52
ir

2 R
C
u“w̃u2dz2 ir R

C

]w̃

]t
dz. ~A3!

Using

u“w̃u25uũu25S dw

dzD * dw

dz
,

the complex conjugate of Eq.~A3! can be written as

Fx2 iF y5
ir

2 R
C

dw

dz S dw

dzD *
dz* 1 ir

]

]t S R
C
w̃dzD *

.

~A4!

The time derivative was taken out of the second integ
because the solid is at rest. For the same reason, the
boundary corresponds to a streamline and so, along
boundary,c̃5const ordc̃50; that is,dw5dw̃1 idc̃ is real
along the boundary, which allows us to write

S dw

dzD *
dz* uC5dw* uC5dwUC5

dw

dz
dzU

C

, ~A5!

and, sincerCdz50,

R
C
w̃dz5 R

C
~w2 i c̃ !dz5 R

C
wdz. ~A6!

Replacement of Eqs.~A5! and~A6! in Eq. ~A4! leads then to
expression~9!.
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Mathématique a` la Mécanique des Fluides~Gauthier-Villars,
Paris, 1959!, p. 458.

@17# C. Jacob,Introduction Mathe´matique a` la Mécanique des Flu-
ides ~Gauthier-Villars, Paris, 1959!.

@18# G.K. Batchelor,An Introduction to Fluid Dynamics~Cam-
bridge University Press, 2000!.
05190
@19# J.M.R. Graham, J. Fluid Mech.133, 413 ~1983!.
@20# H. Wagner, Z. Angew. Math. Mech.5, 17 ~1921!.
@21# This script called ‘‘fly.m’’ can be downloaded from http:/

www/lfp.uba.ar and used as it stands or modified for oth
applications.
7-10


