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Length and speed selection in dendritic growth of electrohydrodynamic convection
in a nematic liquid crystal
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We present results on dendritic growth of electrohydrodynamic convection in a nematic liquid crystal subject
to parallel magnetic and electric fields. Previous work found that these dendrites have many properties in
common with crystalline dendrites. Nevertheless, crystalline dendrites are significantly different from the
system studied here. Specifically, the length selection mechanism for these dendrites is substantially richer than
that which controls crystalline dendritic growth. In contrast with the sharp selection mechanism operating in
the case of crystalline dendrites, these dendrites show paitial selection. As the separation between
electrodes and the magnetic field becomes larger, the selection becomes even less sharp. We quantify the
selection by measuring two important characteristics of these dendrites, their length scale, as reflected by the
tip radius of curvature, and their growth speed. We measure these quantities as functions of the most important
control parameters: the spacing of the liquid crystal cell, the magnetic field, and the applied voltage. A
nontrivial scaling relationship is found for the tip radius of curvature. These dendrites occur in a system
containing only one state of matter, and they are defined not by an abrupt boundary but by a diffuse interface.
We find that the width of that interface is determined solely by the applied magnetic field.
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[. INTRODUCTION cal waves, and electroconvection patterns in liquid crystals.
The system discussed in this paper belongs to cateBpry
Pattern formation in nonlinear dissipative systems driverbut the type of pattern formation exhibited, dendritic growth,
outside of equilibrium is an important problem in science.has previously been known only in categdxyThe observa-
How is it possible for complex structures, including highly tion that dendritic growth occurs not only at interfaces be-
self-organized forms of life, to develop in a structurelesstween states of matter, but also in interface-free systems,
environment? One crucial element in both describing and@PPears to be a manifestation of the same underlying prin-
understanding spontaneously organized patterns is the selédP!es operating in very different systems. _
tion mechanism. What are the relevant length and time | "€ré are two important problems for patterns belonging
scales, and how are they determined? In this paper, we irfo categoryA. The first problem is how the interface shape is

vestigate this problem for a pattern forming system that hagelected, for example, whether it is dendritic, dense branch-

o L2 Ing, fractal, or faceted. The second is what then selects the
been shown to have not only striking similarities but also keychgaracteristic size and speed of the pattern; this problem is

differences from other, more familiar systems. In searching{he selection mechanism problem and is the main focus of
for answers, what has to be understood is how the interpla,g1e present work
o .

between_ the intrinsic propertles.of a system, and IMPOS€d The canonical system in which the dendritic growth mor-
geometries or external perturbations determine the SeIeCt'O[Shology occurs is a substance solidifying from its nislk
mechanism for the pattern in a particular system. The dendrite consists of a growing needle crystal with a
In pattern-forming instabilities, a system is driven OUtSideparabolic tip and sidebranches developing away from the tip.
of equilibrium, so that a stable state replaces an unstable orghe needle tip grows with constant speed and its parabolic
metastable state. Variations in the control parameters Maghape is unchanging in the frame of reference moving at that
make different states of the system change stability. Turingpeed. At the same time, sidebranches are continously devel-
[1] first understood that patterns would evolve only in a sysoped as a result of the amplification of thermal fluctuations
tem driven out of equilibrium. There is an endless variety of{6,7]. The solidification process is controlled by diffusion of
patterns found in nature and produced in experimght3.  the latent heat generated at the interface of the growing crys-
A comprehensive classification scheme for different patternsal. Therefore, the important dynamical field is the tempera-
can be found in Ref[4]. Patterns that in this scheme are ture. The latent heat diffuses more effectively when the in-
classified in categonA are formed at the interface between terface has bumps than when it is flat. As a result of this
two distinct states of matter. In this category are dendritiqorocess, dendrites or snowflake structures are created. In
patterns, such as snowflakes, which are formed during solidisther systems in which dendrites occur, the diffusion of
fication from undercooled melts, compact pattefsisch as  chemical components away from the interface controls the
Saffman-Taylor fingeps crystallizations, or electrodeposits. growth, so that the concentration of these components is the
In contrast, patterns belonging to categ@ave no inter-  important dynamical field. Dendritic growth has both funda-
face and are found in systems containing only a single statmental and practical interest. From a fundamental point of
of matter. Examples from categoB/-patterns are: convec- view, one would like to know what is the mechanism that
tion patterns in fluid§Rayleigh-B@ard convectiop chemi-  leads to the selection of this particular pattern in different
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systems. In practice, it is the important process of solidifica- P P

tion in making goods, or the “snowflake problem,” at work C:.Ui

[8]. I\
Identifying the length selection mechanism for the growth B i

of crystalline dendrites proved to be the most challenging L5 6 \ ! £en

-

problem in dendritic growth. Experimentally, under given =
growth conditions, crystalline dendrites invariably exhibit a
narrowly selected tip radius of curvature and growth speed. ==
[9]. Not until the microscopic solvability criterion was devel- I_i
oped was this problem solved. Microscopic solvability E@t'

showed how surface tension and anisotropy worked togethe v
to produce stable dendrite tips, with sharply defined radii of

curvatures growing in specific directiohB0]. The important

role played by the anisotropy has been shown for other sys 3
tems as well, such as Saffman-Taylor fingers in liquid crys-
tals [11]. Dendritic growth can be seen as the result of the
Coup"ng of two apparent|y independent growth processes: FIG. 1. Experimental SetU(]’lOt to scaIQ; LC stands for |IqU|d
the growth of the tip, which preserves its parabolic Shapegrystal; GE for glass electrodes;for temperature controlled hous-
and the non-steady-state evolution of the sidebrancheg]g; V for function generator; LS _for light source; PO for pglarizer;
whose existence is associated with the morphological instef " électromagnet poleD for microscope objectivel, for iris; L

bility present at all regions of the needle dendrite other thari®! &Y€ Piece lens; CCD for charge coupled device video camera;
the tip[9]. FG for frame grabber; and PC for personal computer.

¥

X

Electrohydrodynamic convectiof(EC) in nematic liquid
crystals(NLC) is a field of intensive study of pattern forma- .
tion [12,13. This system has several features that make itm

articularly attractive for studying pattern formation outside N i S
D y ying p the direction parallel to the applied electric field, the most

of equilibrium. The most important is the intrinsic anisotropy . . Bk
q P Py mportant feature is the subcritic8backward nature of the

of liquid crystals, which is a result of the preferred average'

orientation of their molecular axes along a macroscopic dilifurcation from the quiescerfnonconvectivg state to the

. . . . . ~ convective state. This is analogous to a first order phase tran-
rection described by the director field, a unit veatr). As g P

: _ _sition, with one significant difference: it takes place in a
a consequence, the material constants are, in general, an'ss‘g/'stem containing only one state of matteategoryB pat-

tropiq. .R.elevant for EC are the an'isotropy ?n the dieIecFrictem formation. This occurs when the applied magnetic field
permlttl\_/lt_y €a=¢€—¢, and the anisotropy in the electric is larger tharH ¢, its value at the tricritical poirft27]. When
conductivity o, =0y — o, , where the symbol§(L) denote applied voltage exceeds the threshold for the CH insta-
that the property is measured with a probe field pargfief- bility, convective state invades the quiescent state via a den-
pendiculay to n. The most common configuration for EC is gritic growth morphology[18] (categoryA pattern forma-
when a liquid crystal is sandwiched between two parallekion). SinceHc is larger than the Feslericksz fieldHg,
glass plates where it has a plarfiaromogeneoysalignment.  conyection arises from the Federicksz distorted state. The
The glass plates have an indium tin oxidO) coating that  most significant problem in the growth of crystalline den-
makes them conducting. When an ac electric potential differyrites was the selection of the length and speed scales. Itis a
ence is applied between the conducting coatings, a chargfajor goal of this work to quantitatively characterize the

separation can take place in the liquid crystal. The separatg@ngth and speed scales, including studying their selection
charge experiences a force from the applied electric field, bygr dendritic growth of electroconvection.

the Carr-Helfrich (CH) mechanism[14,15. Above some
critical value of the applied potential difference, the liquid

crystal becomes unstable against convective floir)
couples to the hydrodynamic flow, via the Ericksen-Leslie The experimental setup is schematically presented in Fig.
equationg 16]; the result is a spatial deformation of the nem- 1. The liquid crystal sample cell is obtained by first preparing
atic director. The EC instability is normally visualized using the empty cell. This is made from two glass substrates, sepa-
the shadowgraph methdd7], in which the transmitted light rated by a spacer at some distadcé&or this experiment we
intensity is modulated as a result of the spatial deformatiorhave used both prefabricated c¢l8] and custom cells. The

of the refractive index of the liquid crystal, caused by theglass substrates are ITO coated and then treated to provide

distortion ofn(r). The first instability is usually to rolls hav- homogeneoudplanaj alignment for the nematic director.
ing the orientation normal to the molecular axisormal = We denote this initial direction by. The value ofd for the
rolls). Their periodicity is of the order of the cell spacidg empty cell is found interferometrically. The capacitance of
Since the aspect ratighe ratio of the lateral extension of the the empty cellC, is measured using an autobalancing 1-kHz
active area to the separation between electiodesf the  capacitance bridge. This measurement provides an accurate
order of 1@, hundreds of structures are obtained in the acvalue for the ratioS/d, whereS is the active(conducting

tive area, and therefore lateral boundary conditions are not
portant in this case.
In electroconvection with large enough magnetic field in

II. EXPERIMENTS
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area of the glass substrates. The nematic liquid crystall
4’ -methoxybenzylidene-4-n-butylanilinélBBA) is doped ‘
with 0.0005 wt % of tetrabutylammonium bromid€BAB)
in order to obtain the desired value of electrical conductivity.
The doped NLC is introduced between the two glass elec
trodes via capillary action. Any residual defects in the planar
alignment are removed by heating the sampRk0 °C above
the nematic-isotropic transition temperature. The quality of
the alignment is checked using a polarizing microscope. Th
sample is inserted in a temperature controll@githin
+0.01 °Q copper block, and held at 25.00 °C. This block is
introduced in the gap between the poles of an electromagne
the faces of which have 2-cm-diameter holes drilled for op-
tical access. The magnetic field is controlled within
+5 G. Afunction generator applies a sinusoidal voltage at a
frequency of 100 Hz. In this geometry, the applied electric
and magnetic fields are in the direction, parallel to each FIG. 2. EC dendrites growing in opposite directions. The image

other, and perpendicular to the liquid crystal film. size is 196147 um. This image was taken witH=7.00 kG, V

The two important parameters for the measurements pre- ++-273¥ms, andd=33 um.

sented here are the spacid@nd the magnetic Feglericksz
field He = (7/d) (K 11/xa) (K1 is the splay elastic constant ade, convection starts from small inhomogeneities present in
and x,= x|— x, is the diamagnetic anisotropy of the liquid the sample at some locatioffseterogeneous nucleatjort
crysta). For the cells we have used in this experiment, thevoltages close to the maximum val\e , the dendrites start
spacingd was uniform within less thart 3%. Hg is found  in many locations simultaneous({fomogeneous nucleatipn
by monitoring the capacitance and the conductance of the The final state after the dendritic growth has filled the cell
cell as a function ofH. From this measurement argld, with the conductive state is spatiotemporal chaos. Measure-
measured previously, we also find both dielectric constant§'ents on isolated dendrites can be done, therefore, up to
(e/.€,) and both electric conductivitieso{,o,). Slow  some value of the applied voltage. Far ab¥e, there is no
drifts with time of the electric conductivities are not impor- dendritic growth, instead, the convection arises simulta-
tant during the time scale of the experiment. neously everywhere. We find that the pattern is independent
Dendritic growth is induced following a particular proce- Of the frequency of the applied sinusoidal voltage.
dure. With the voltage at zero, and the magnetic field fixed at We use a modified shadowgraph technique to visualize
a chosen value abowud., the system is in the equilibrium, the growth of these dendrites in tixey plane. The shadow-
Freedericksz state. The convective state is obtained by mal@raph is the overwhelmingly preferred method of studying
ing a jump in the voltage. This sudden change in the controfonvective structures, including localized structUr®-26.
parameter drives the system to a nonequilibrium, highly nonAn example is shown in Fig. 2. This figure also reveals the
linear regime; this is exactly what is needed for pattern forcomplexity of these structures. Outside of these structures is
mation. A complex pattern of convective rolls invades thethe quiescent state. Inside these structures there is convective
quiescent state in the form of dendrites. Surprisingly similaflow. These structures grow, in the direction where the tip of
to the classical example of solidification, these EC dendrite$he parabola is pointing, at constant speed. Thus, the convec-
grow with constant speed and they have an unchanging paréive state invades the quiescent state via the passages of den-
bolic shape in the frame of reference moving at that speedrites, exactly analogous to how, in the case of crystalline
Starting in pairs, the dendrites grow in opposite directiongdendrites, the solid state invades the fluid state. Rather than
(twofold anisotropic growth Referencd 18] contains a pro-  Setting the polarizer so that direction of polarization is par-
posed configuration of the nematic director and the directiorallel to the alignment directionxj, our shadowgraph is
of the fluid flow corresponding to the dendritic structure. Formodified in that we rotate the polarizer until the dark, inner
a dendrite growing in the opposite direction, the correspondparabolic curve is darkest and most distinct; the reasons for
ing configuration is obtained from the previous one by athis are outlined below. Our quantitative measurements con-
reflection with respect to the midway plane. centrate on this curve, but there clearly is more to these
EC dendrites exist only when both applied fields are eachiendrites than this curve alone. A significant amount of the
within ranges that both depend dnFor the magnetic field, dendrite’s structure lies outside this curve, and this curve
the lower limit isHc, and the upper limit is about 55 ; substantially deviates from parabolic shape in the region far
above the upper limit we observe no structures growing withaway from the tip of this parabola. Nevertheless, the inner
an unchanging shape. In order to observe dendritic growtlgurve is the subject of our length scale measurements for
the applied voltage has to be within a range that depends oseveral reasons. First, and most important, although the den-
bothd andH. The manner in which growth starts depends ondrite structure is indeed substantially more complicated than
the applied voltage. Below some minimum value, denoted byust this curve alone, the length scale associated with this
V,, there is no electrohydrodynamic flow. Above this volt- curve, specifically the radius of curvature at the tip, accu-
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FIG. 3. Experimental points and the second-order polynomial fit G- 4. Experimental points and the linear fit from which the tip
from which the tip radiusp is determined. For this case, is speed is determinedl is 50.8 um and the applied magnetic field

72.7um, the magnetic fieldH=3.59 kG, and the voltage/ H=5.000 kG. For two different values of the undercooling
=15.980V,,,c. p is found to be 3.5m. The coordinates used are 2+ the speeds are (3.8202) um/s, and (24.920.25) umis,
relative to the dendrite’s tip. respectively.

- displacement versus time. Figure 4 illustrates results fat
rately reflects the length scale of the dendritic structure. SeGy,q different values ol.

ond, this is the appropriate length scale to combine with the
tip velocity to yield the Pelet number, as was shown in Ref.
[18], as well as below. The shadowgraph technique is sensi-
tive to the gradient in the refractive index of the material. In this experiment we perform systematic variations of
Rotating the polarizer until the inner curve is sharpest thenwo relevant length scales: the spacidgand the mag-
indicates the locus, within the-y plane, of the largest gra- netic coherence length [29]; &,=(1/H)V(Ki1/x2)
dient in the refractive index and hence the nematic director=(d/«)(Hg/H). Note that in previous experimen{d8]

The shadowgraph is viewed with ascmicroscope objec- both these quantities were held fixed. Four different values of
tive and an eyepiece lens located at approximately 2 and 7@ 24.6-0.6 um, 33.0:0.5 um, 50.8-0.4 um, and 72.7
cm, respectively, from the sample. The final image is de-+0.8 um were considered, and for each, measurements at
tected by a video camera placed at about 90 cm from théur different values oH were done, except for the largest
sample. By increasing or decreasing the distance between tis@acing, where only three valuesidfwere considered. The
eyepiece and the video camera we are able to change tfwO0 most important quantities that char:_:tcterize a single den-
magnification such that the width of the video image variesdrite are the growth speed and the radius of curvature of
between 193 and 354m. At prescribed time intervals, the the parabolic tlpp. As the control parameters are v_arled, a
video image is digitized by a frame-grabber board. large number of images are recorded and analyzed in order to

The dendrites grow in a direction that makes an angléXtract these quantities. . . -
. a o ) . ) g As in the case of crystalline dendrites, the characteristic
~80°-90° with thex direction. This angle increases slightly le

. o . ngth for this pattern is the tip radius of curvatupse,How-
with H and more significantly witlv. The boundary between gyer in marked contrast to crystalline dendrites, the length

the quiescent state and the convective state has a finite widtgsgje is not sharply selected, but rather is only partially se-

comparable to the tip radius. It is therefore much less sharpcted. Specifically, under identical experimental conditions
than is found on crystalline dendrites. Nevertheless, withiny H d), the tip radius of curvature corresponding to differ-
the width of this diffuse boundary, there is a darkest pointent individual dendrites can vary inside a band having width
where the intensity has a minimum. The coordinates of thahimost+40% around the average. Thus, there is a band of
point are found; all points that correspond to a minimum intip radii that is selected, but within this band, the tip radius is
the intensity define the outline of the dendrite. The resultinghot selected; this is why we use the term “partial selection.”
curve corresponds to the best estimate of the inner parabolithis is distinct from crystalline dendrites for which the tip
shape seen on Fig. 2. This curye-y(x) is fit to a second- radius is uniquely determined by the experimental conditions
order polynomialy=ax?+bx+c, so that the tip radius of (sharp selection or the Ivantsov prediction in which the tip
curvature isp=|1/2a|. For illustration, an example is pre- radius can take on any valgeo selection Partially selected
sented in Fig. 3. In all cases the tip was parabolic for a rangéength scales are well known in Taylor vortex fl§80] and

in y at least 2. Having a time sequence of images, thedirectional solidification31]. Furthermore, whenl and the
growth speedv is determined from a linear fit to the tip applied magnetic field are fixed, we find no systematic de-

Ill. RESULTS
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FIG. 5. Tip radius of curvatures, , in units of the spacing, as FIG. 6. Histograms showing the selection of the dendrite tip
a function of square of the scaled fielth(Hg)>. The solid line  speed at two values af. The number of dendrites used for mea-
represents the weighted, single-parameter, least-squares fit. surements is 120 fod=33.6 wm, and 107 ford=57.6 um.

pendence op on the applied voltage. Indeed, the standardpyt neither does it vary widely; is partially selected, just as
deviation inp, when considering values measured over thes . Under identical experimental conditiong,(H, andd),
entire range o¥/, can be almost 40% of the average value. Inthe speeds for different dendrites can vary by as much as
spite of this unexplained partial selection, there is a non759,. The speed is less sharply selected axreases. This
trivial, measurable dependence of theeragevalue of p s illustrated by the histograms shown in Fig. 6, obtained by
upon the two experimentally chosen length scademdé,.  doing measurements on 227 individual dendrites and using
pay is Obtained by averaging the values @fobtained over two different values ofd but with the same values of the
the entire range of at fixedd andH. While p,, and¢, are  dimensionless control parameters\£0.34 and H/H
comparabled can be over twenty-eight times larger than =3.83, respectively The parameteA, known in crystalline
pa, - Plotted on Fig. 5, our results are consistent with thegrowth as the dimensionless undercoolijis defined here
following scaling: as A=(V2—V34)/(VZ—V3). The voltagesV, and V. are

determined as described in the next paragraph.

The product of the tip radius of curvaturp, and the

; 1) growth speed> follows the two-dimensional Ivantsov rela-

tion 32,33 for a crystalline dendrite growing into a super-

. . . . cooled melt:
a is found(using a weighted, single-parameter, least-squares

fit), to be 0.0034. The error bars ¢n, in Fig. 5 directly

reflect the partial selection mechanism. Ad/4,)? in- A=\/mP exp(P)erfo( VP), @)
creases, the larger error bars indicate even less sharp selec-

tion. We have explored other possible scaling relationshipsyvhere P=puv/2D is the Pelet number. Fitting to this form
none describes the data as well as @g.does. yields the two voltage¥/, and V. defined previously, and

In the laboratory frame of reference, the tip travels at athe relevant diffusion constaii.
constant speed. The uncertainty in determining this quan-  Figure 7, referring tad=50.8 um, is an example of this
tity is typically 1%, and never exceeds 5%. Since dendritedit. For larger spacings, 50.8 and 72«m the values ob-
speed up as they approach each other, speed measuremdataed forD are close to the orientational diffusion constant
are done only on dendrites that are far enough apart so thér the nematic directorK,,/v,, where v, is the orienta-
they do not affect each other’s growth. The separation, meaional viscosity, which is of the order of 5.4
sured along the direction of growth, has to be at least onex10™ 7 cn? s~ for pure MBBA [34]. Thus, the diffusion
diffusion lengthl=D/v, whereD is the appropriate diffu- field controlling this dendritic growth seems to be the orien-
sion constant; the determination &f is described subse- tation of the nematic director. Howeveb, is not constant.
quently. We find larger values foD at smallerd.

Within the possible range of applied voltages, betwégn The apparent width of the transition region between the
andV, the speed varies by up to two orders of magnitudeconvective and quiescent state depends solely on the mag-
while the tip radius varies only by at most70% from its  netic coherence length; as was the case witlthere is no
average value. Crystalline dendrites exhibit sharp selectiorystematic dependence wof on the applied voltage. When
for tip speed as well as for tip radius of curvature. In con-averaging over all voltages, we fing~ 2&,,, (see Fig. 8 We
trast, the tip speed for EC dendrites is not sharply selectediscuss the significance of these measurements subsequently.
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1.0 T T speed is very different from that elucidated in the micro-
scopic solvability criterion that has been successfully applied
to crystalline dendrites. The shape of EC dendrites is con-
trolled by both an externally imposed geometric fact@nd

the magnetic coherence length. More surprisingly, the shape
is not strictly controlled but varies substantially within a
band. The origin of this band is not known, and an accurate
determination of the distribution of selected shapes is diffi-
cult to obtain. The selection of the growth speed is similarly

O B =400 kG nontrivial. While the speed varies enormously as the growth

! A B =5.00 kG conditions are varied, under identical growth conditions the
02 B O B=550kG - speed is only selected within a band whose width depends
O B=6.00KkG primarily on d. Thus, these dendrites represent an entirely

new selection problem.
0 % ™ 50 200 2;0 300 How can the.occur_r.ence of dendritic growth in a NLC
pv (um?s) undergoing EC mstabll'lty be understood? Recall what has
been shown for crystalline dendrites, they are observed only

FIG. 7. Dimensionless undercoolidgas a function of the prod- 1N the presence of both surface tension and anisotropy. The
uct of the tip speed and the tip radius of curvatupe,for d  directions determined by the anisotropy determine the
=50.8 um, and for different magnetic fieldd. growth direction in which stable dendrite tips are observed.
Is this also true for EC dendrites? By definition, NLCs are
intrinsically anisotropic, and the treatment on the glass sub-
strates provides a preferred direction for this anisotropy in

Just like crystalline dendrites, EC dendritesoccur in a  thex-y plane, the plane in which pattern formation occurs. In
system with a strongly discontinous transitidb) are the the presence of a magnetic field larger thép, the quies-
growth morphology by which one stafguiescent is re-  cent state is spatially anisotropic in tley plane within a
placed by anothefconvective, (c) travel at constant speed, lengthé,, of each substrate. Therefore, smaljgrmeans less
(d) have an unchanging parabolic shape in the frame of refanisotropy in the the xy plane. The degree of anisotropy in
erence moving at the growth speed, deyl are consistent the x-y plane decays witlf,,/d, and the selection becomes
with the constitutive relationship for the two-dimensionalless sharp. Crystalline dendrites exhibit sidebranches,
Ivantsov solution. It is also important to state some importantvhereas no sidebranches are observed in this system; the
differences though, the growth is not controlled by the diffu-reason for this difference is not known. One possible reason
sion of a conserved quantity, there are no sidebranch tipsnight be related to the presence of a twofold anisotropy; in
and most important, they exhibit sharp selection for neithethis situation there is no direction in which stable sidebranch
the length scale nor the growth speed. tips can exist.

The mechanism that determines their shape and growth Because this system contains only one state of matter,

there can be no sharp interface. The shadowgraph outline of
20 : : : the dendrite that we observe is a diffuse boundary between
the quiescent state and the convective state. An appropriate
framework for diffuse interfaces is thphase-field model
[35], where the width of the boundary is treated as a small
15 — parameter. The results presented in Fig. 8 will be particularly
germane in any phase-field model of dendrites of electrocon-
vection. We note that the width as shown in this figure is that
obtained from the shadowgraph, which is not a direct mea-
% surement. However, the characteristic size of the transition
region will be proportional to this width. The phase-field
model has successfully explained Saffman-Taylor plumes
5 |- . [36], which is another example of categohypattern forma-
tion in a categoryB system. It is therefore likely that this
model can explain many of the results presented here. How-
ever, given that surface tension is apparently required for
00 SL 1'0 1'_.., stable dendritic growth, in the absence of a sharp interface,
2¢_(um) tht plays the r_ole of surface_ te_n5|on? On_e interesting ex-
m periment that might resolve this is to permit only one den-

FIG. 8. The width of the dendrite shadowgraph outlimas a  drite to grow, in analogy with a Saffman-Taylor finger into a
function of the magnetic coherence lendth. The line is a single- channel.
parameter, weighted, least-squares fit, whose slope is found to be The diffusion problem for this system seemingly reduces
1.1+0.2. to the diffusion of the orientation of the nematic director.

0.0 | | | t
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Comparable to the self-diffusion of MBBA molecules, the length¢,, determine the characteristic length of the dendrite,
diffusion of the ionic impurities TBAB is not relevant. An the tip radius of curvaturgs. The partial selection of the two
estimate for an average diffusion coefficient for the TBAB characteristics of the dendritp,andv, becomes even less
ions gives (D)rgag=3%10 8 cn?/s, where the Einstein sharp asw becomes larger. A diffuse boundary is expected
formula D=kgTw/q has been used, with valuew because the observation of a sharp boundary would corre-
=10"° cn?/sV for the ion mobility[34]. The relevant dif-  spond to a large gradient i(r), such as in a disclination
fusion constant, as found from the dket number, is more |ine, but that is not the case here. The wider boundary occurs
than twenty times larger. A A at smaller values oH/Hg and/or larger values o, where

The dependence op on |H|? (and not on|H|), is there is less anisotropy in they plane.
expected, since the magnetic torque, defined fa§
=xa(n-H)(nx H), is quadratic in the magnetic field. The
same dependence $if|? is obtained in experiments on ther-
mally driven convection in NLJ13], where the patterns are This work was supported by Kent State University and
symmetric with respect to a plane perpendicular to the magthe National Science Foundation Grant No. DMR-9988614.
netic field. Our experimental results show that both the spacWe also acknowledge D. R. Bryant and H. A. Wonderly for
ing d of the liquid crystal cell and the magnetic coherencesome of the liquid crystal cells.
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