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Length and speed selection in dendritic growth of electrohydrodynamic convection
in a nematic liquid crystal

N. Gheorghiu and J. T. Gleeson
Department of Physics, Kent State University, Kent, Ohio 44242

~Received 25 September 2001; revised manuscript received 9 August 2002; published 19 November 2002!

We present results on dendritic growth of electrohydrodynamic convection in a nematic liquid crystal subject
to parallel magnetic and electric fields. Previous work found that these dendrites have many properties in
common with crystalline dendrites. Nevertheless, crystalline dendrites are significantly different from the
system studied here. Specifically, the length selection mechanism for these dendrites is substantially richer than
that which controls crystalline dendritic growth. In contrast with the sharp selection mechanism operating in
the case of crystalline dendrites, these dendrites show onlypartial selection. As the separation between
electrodes and the magnetic field becomes larger, the selection becomes even less sharp. We quantify the
selection by measuring two important characteristics of these dendrites, their length scale, as reflected by the
tip radius of curvature, and their growth speed. We measure these quantities as functions of the most important
control parameters: the spacing of the liquid crystal cell, the magnetic field, and the applied voltage. A
nontrivial scaling relationship is found for the tip radius of curvature. These dendrites occur in a system
containing only one state of matter, and they are defined not by an abrupt boundary but by a diffuse interface.
We find that the width of that interface is determined solely by the applied magnetic field.

DOI: 10.1103/PhysRevE.66.051710 PACS number~s!: 61.30.2v, 47.54.1r, 81.30.Fb
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I. INTRODUCTION

Pattern formation in nonlinear dissipative systems driv
outside of equilibrium is an important problem in scienc
How is it possible for complex structures, including high
self-organized forms of life, to develop in a structurele
environment? One crucial element in both describing a
understanding spontaneously organized patterns is the s
tion mechanism. What are the relevant length and ti
scales, and how are they determined? In this paper, we
vestigate this problem for a pattern forming system that
been shown to have not only striking similarities but also k
differences from other, more familiar systems. In search
for answers, what has to be understood is how the interp
between the intrinsic properties of a system, and impo
geometries or external perturbations determine the selec
mechanism for the pattern in a particular system.

In pattern-forming instabilities, a system is driven outsi
of equilibrium, so that a stable state replaces an unstable
metastable state. Variations in the control parameters
make different states of the system change stability. Tur
@1# first understood that patterns would evolve only in a s
tem driven out of equilibrium. There is an endless variety
patterns found in nature and produced in experiments@2,3#.
A comprehensive classification scheme for different patte
can be found in Ref.@4#. Patterns that in this scheme a
classified in categoryA are formed at the interface betwee
two distinct states of matter. In this category are dendr
patterns, such as snowflakes, which are formed during so
fication from undercooled melts, compact patterns~such as
Saffman-Taylor fingers!, crystallizations, or electrodeposit
In contrast, patterns belonging to categoryB have no inter-
face and are found in systems containing only a single s
of matter. Examples from category-B patterns are: convec
tion patterns in fluids~Rayleigh-Bénard convection!, chemi-
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n
.

s
d
ec-
e
n-
s

y
g
y
d

on

r a
ay
g
-
f

s

c
i-

te

cal waves, and electroconvection patterns in liquid cryst
The system discussed in this paper belongs to categorB;
but the type of pattern formation exhibited, dendritic grow
has previously been known only in categoryA. The observa-
tion that dendritic growth occurs not only at interfaces b
tween states of matter, but also in interface-free syste
appears to be a manifestation of the same underlying p
ciples operating in very different systems.

There are two important problems for patterns belong
to categoryA. The first problem is how the interface shape
selected, for example, whether it is dendritic, dense bran
ing, fractal, or faceted. The second is what then selects
characteristic size and speed of the pattern; this problem
the selection mechanism problem and is the main focus
the present work.

The canonical system in which the dendritic growth mo
phology occurs is a substance solidifying from its melt@5#.
The dendrite consists of a growing needle crystal with
parabolic tip and sidebranches developing away from the
The needle tip grows with constant speed and its parab
shape is unchanging in the frame of reference moving at
speed. At the same time, sidebranches are continously de
oped as a result of the amplification of thermal fluctuatio
@6,7#. The solidification process is controlled by diffusion
the latent heat generated at the interface of the growing c
tal. Therefore, the important dynamical field is the tempe
ture. The latent heat diffuses more effectively when the
terface has bumps than when it is flat. As a result of t
process, dendrites or snowflake structures are created
other systems in which dendrites occur, the diffusion
chemical components away from the interface controls
growth, so that the concentration of these components is
important dynamical field. Dendritic growth has both fund
mental and practical interest. From a fundamental point
view, one would like to know what is the mechanism th
leads to the selection of this particular pattern in differe
©2002 The American Physical Society10-1



ca
k

th
in
n
a
e
l-
ity
th
i o

sy
ys
th
e
pe
he
st
a

-
e
de
py
g
d

n
ri
c

is
lle

fe
ar
at
, b

id

lie
-

g

tio
he
-

e

ac

not

in
st

ran-
a

ld

sta-
en-

e
n-
is a

he
tion

Fig.
ng
pa-

vide
.

of
Hz
rate

-
r;

era;

N. GHEORGHIU AND J. T. GLEESON PHYSICAL REVIEW E66, 051710 ~2002!
systems. In practice, it is the important process of solidifi
tion in making goods, or the ‘‘snowflake problem,’’ at wor
@8#.

Identifying the length selection mechanism for the grow
of crystalline dendrites proved to be the most challeng
problem in dendritic growth. Experimentally, under give
growth conditions, crystalline dendrites invariably exhibit
narrowly selected tip radius of curvature and growth spe
@9#. Not until the microscopic solvability criterion was deve
oped was this problem solved. Microscopic solvabil
showed how surface tension and anisotropy worked toge
to produce stable dendrite tips, with sharply defined radi
curvatures growing in specific directions@10#. The important
role played by the anisotropy has been shown for other
tems as well, such as Saffman-Taylor fingers in liquid cr
tals @11#. Dendritic growth can be seen as the result of
coupling of two apparently independent growth process
the growth of the tip, which preserves its parabolic sha
and the non-steady-state evolution of the sidebranc
whose existence is associated with the morphological in
bility present at all regions of the needle dendrite other th
the tip @9#.

Electrohydrodynamic convection~EC! in nematic liquid
crystals~NLC! is a field of intensive study of pattern forma
tion @12,13#. This system has several features that mak
particularly attractive for studying pattern formation outsi
of equilibrium. The most important is the intrinsic anisotro
of liquid crystals, which is a result of the preferred avera
orientation of their molecular axes along a macroscopic
rection described by the director field, a unit vectorn̂(rW). As
a consequence, the material constants are, in general, a
tropic. Relevant for EC are the anisotropy in the dielect
permittivity ea5e i2e' and the anisotropy in the electri
conductivity sa5s i2s' , where the symbolsi(') denote
that the property is measured with a probe field parallel~per-
pendicular! to n̂. The most common configuration for EC
when a liquid crystal is sandwiched between two para
glass plates where it has a planar~homogeneous! alignment.
The glass plates have an indium tin oxide~ITO! coating that
makes them conducting. When an ac electric potential dif
ence is applied between the conducting coatings, a ch
separation can take place in the liquid crystal. The separ
charge experiences a force from the applied electric field
the Carr-Helfrich ~CH! mechanism@14,15#. Above some
critical value of the applied potential difference, the liqu
crystal becomes unstable against convective flow.n̂(rW)
couples to the hydrodynamic flow, via the Ericksen-Les
equations@16#; the result is a spatial deformation of the nem
atic director. The EC instability is normally visualized usin
the shadowgraph method@17#, in which the transmitted light
intensity is modulated as a result of the spatial deforma
of the refractive index of the liquid crystal, caused by t
distortion ofn̂(rW). The first instability is usually to rolls hav
ing the orientation normal to the molecular axis~normal
rolls!. Their periodicity is of the order of the cell spacingd.
Since the aspect ratio~the ratio of the lateral extension of th
active area to the separation between electrodes! is of the
order of 102, hundreds of structures are obtained in the
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tive area, and therefore lateral boundary conditions are
important in this case.

In electroconvection with large enough magnetic field
the direction parallel to the applied electric field, the mo
important feature is the subcritical~backward! nature of the
bifurcation from the quiescent~nonconvective! state to the
convective state. This is analogous to a first order phase t
sition, with one significant difference: it takes place in
system containing only one state of matter~category-B pat-
tern formation!. This occurs when the applied magnetic fie
is larger thanHC , its value at the tricritical point@27#. When
the applied voltage exceeds the threshold for the CH in
bility, convective state invades the quiescent state via a d
dritic growth morphology@18# ~category-A pattern forma-
tion!. Since HC is larger than the Fre´edericksz fieldHF ,
convection arises from the Fre´edericksz distorted state. Th
most significant problem in the growth of crystalline de
drites was the selection of the length and speed scales. It
major goal of this work to quantitatively characterize t
length and speed scales, including studying their selec
for dendritic growth of electroconvection.

II. EXPERIMENTS

The experimental setup is schematically presented in
1. The liquid crystal sample cell is obtained by first prepari
the empty cell. This is made from two glass substrates, se
rated by a spacer at some distanced. For this experiment we
have used both prefabricated cells@28# and custom cells. The
glass substrates are ITO coated and then treated to pro
homogeneous~planar! alignment for the nematic director
We denote this initial direction byx̂. The value ofd for the
empty cell is found interferometrically. The capacitance
the empty cellC0 is measured using an autobalancing 1-k
capacitance bridge. This measurement provides an accu
value for the ratioS/d, whereS is the active~conducting!

FIG. 1. Experimental setup~not to scale!. LC stands for liquid
crystal; GE for glass electrodes;T for temperature controlled hous
ing; V for function generator; LS for light source; PO for polarize
P for electromagnet pole;O for microscope objective;I for iris; L
for eye piece lens; CCD for charge coupled device video cam
FG for frame grabber; and PC for personal computer.
0-2
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area of the glass substrates. The nematic liquid crys
48-methoxybenzylidene-4-n-butylaniline~MBBA ! is doped
with 0.0005 wt % of tetrabutylammonium bromide~TBAB!
in order to obtain the desired value of electrical conductiv
The doped NLC is introduced between the two glass e
trodes via capillary action. Any residual defects in the pla
alignment are removed by heating the sample;20 °C above
the nematic-isotropic transition temperature. The quality
the alignment is checked using a polarizing microscope.
sample is inserted in a temperature controlled~within
60.01 °C! copper block, and held at 25.00 °C. This block
introduced in the gap between the poles of an electromag
the faces of which have 2-cm-diameter holes drilled for o
tical access. The magnetic fieldH is controlled within
65 G. A function generator applies a sinusoidal voltage a
frequency of 100 Hz. In this geometry, the applied elec

and magnetic fields are in theẑ direction, parallel to each
other, and perpendicular to the liquid crystal film.

The two important parameters for the measurements
sented here are the spacingd and the magnetic Fre´edericksz
field HF5(p/d)A(K11/xa) (K11 is the splay elastic constan
andxa5x i2x' is the diamagnetic anisotropy of the liqu
crystal!. For the cells we have used in this experiment,
spacingd was uniform within less than63%. HF is found
by monitoring the capacitance and the conductance of
cell as a function ofH. From this measurement andS/d,
measured previously, we also find both dielectric consta
(e i ,e') and both electric conductivities (s i ,s'). Slow
drifts with time of the electric conductivities are not impo
tant during the time scale of the experiment.

Dendritic growth is induced following a particular proc
dure. With the voltage at zero, and the magnetic field fixed
a chosen value aboveHC , the system is in the equilibrium
Fréedericksz state. The convective state is obtained by m
ing a jump in the voltage. This sudden change in the con
parameter drives the system to a nonequilibrium, highly n
linear regime; this is exactly what is needed for pattern f
mation. A complex pattern of convective rolls invades t
quiescent state in the form of dendrites. Surprisingly sim
to the classical example of solidification, these EC dendr
grow with constant speed and they have an unchanging p
bolic shape in the frame of reference moving at that spe
Starting in pairs, the dendrites grow in opposite directio
~twofold anisotropic growth!. Reference@18# contains a pro-
posed configuration of the nematic director and the direc
of the fluid flow corresponding to the dendritic structure. F
a dendrite growing in the opposite direction, the correspo
ing configuration is obtained from the previous one by
reflection with respect to the midway plane.

EC dendrites exist only when both applied fields are e
within ranges that both depend ond. For the magnetic field
the lower limit isHC , and the upper limit is about 5.5HF ;
above the upper limit we observe no structures growing w
an unchanging shape. In order to observe dendritic grow
the applied voltage has to be within a range that depend
bothd andH. The manner in which growth starts depends
the applied voltage. Below some minimum value, denoted
VA , there is no electrohydrodynamic flow. Above this vo
05171
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age, convection starts from small inhomogeneities presen
the sample at some locations~heterogeneous nucleation!. At
voltages close to the maximum valueVC , the dendrites star
in many locations simultaneously~homogeneous nucleation!.

The final state after the dendritic growth has filled the c
with the conductive state is spatiotemporal chaos. Meas
ments on isolated dendrites can be done, therefore, u
some value of the applied voltage. Far aboveVC , there is no
dendritic growth, instead, the convection arises simu
neously everywhere. We find that the pattern is independ
of the frequency of the applied sinusoidal voltage.

We use a modified shadowgraph technique to visua
the growth of these dendrites in thex-y plane. The shadow-
graph is the overwhelmingly preferred method of studyi
convective structures, including localized structures@19–26#.
An example is shown in Fig. 2. This figure also reveals
complexity of these structures. Outside of these structure
the quiescent state. Inside these structures there is conve
flow. These structures grow, in the direction where the tip
the parabola is pointing, at constant speed. Thus, the con
tive state invades the quiescent state via the passages of
drites, exactly analogous to how, in the case of crystall
dendrites, the solid state invades the fluid state. Rather
setting the polarizer so that direction of polarization is p
allel to the alignment direction (x̂), our shadowgraph is
modified in that we rotate the polarizer until the dark, inn
parabolic curve is darkest and most distinct; the reasons
this are outlined below. Our quantitative measurements c
centrate on this curve, but there clearly is more to th
dendrites than this curve alone. A significant amount of
dendrite’s structure lies outside this curve, and this cu
substantially deviates from parabolic shape in the region
away from the tip of this parabola. Nevertheless, the in
curve is the subject of our length scale measurements
several reasons. First, and most important, although the
drite structure is indeed substantially more complicated t
just this curve alone, the length scale associated with
curve, specifically the radius of curvature at the tip, ac

FIG. 2. EC dendrites growing in opposite directions. The ima
size is 1963147 mm. This image was taken withH57.00 kG, V
511.573Vrms , andd533 mm.
0-3
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rately reflects the length scale of the dendritic structure. S
ond, this is the appropriate length scale to combine with
tip velocity to yield the Pe´clet number, as was shown in Re
@18#, as well as below. The shadowgraph technique is se
tive to the gradient in the refractive index of the materi
Rotating the polarizer until the inner curve is sharpest th
indicates the locus, within thex-y plane, of the largest gra
dient in the refractive index and hence the nematic direc

The shadowgraph is viewed with a 53 microscope objec-
tive and an eyepiece lens located at approximately 2 and
cm, respectively, from the sample. The final image is
tected by a video camera placed at about 90 cm from
sample. By increasing or decreasing the distance betwee
eyepiece and the video camera we are able to change
magnification such that the width of the video image var
between 193 and 354mm. At prescribed time intervals, th
video image is digitized by a frame-grabber board.

The dendrites grow in a direction that makes an an

;80° –90° with thex̂ direction. This angle increases slight
with H and more significantly withV. The boundary between
the quiescent state and the convective state has a finite w
comparable to the tip radius. It is therefore much less sh
than is found on crystalline dendrites. Nevertheless, wit
the width of this diffuse boundary, there is a darkest po
where the intensity has a minimum. The coordinates of t
point are found; all points that correspond to a minimum
the intensity define the outline of the dendrite. The result
curve corresponds to the best estimate of the inner parab
shape seen on Fig. 2. This curvey5y(x) is fit to a second-
order polynomialy5ax21bx1c, so that the tip radius o
curvature isr5u1/2au. For illustration, an example is pre
sented in Fig. 3. In all cases the tip was parabolic for a ra
in y at least 2r. Having a time sequence of images, t
growth speedv is determined from a linear fit to the ti

FIG. 3. Experimental points and the second-order polynomia
from which the tip radiusr is determined. For this case,d is
72.7mm, the magnetic fieldH53.59 kG, and the voltageV
515.980Vrms . r is found to be 3.5mm. The coordinates used ar
relative to the dendrite’s tip.
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displacement versus time. Figure 4 illustrates results forv at
two different values ofV.

III. RESULTS

In this experiment we perform systematic variations
two relevant length scales: the spacingd and the mag-
netic coherence length @29#; jm5(1/H)A(K11/xa)
5(d/p)(HF /H). Note that in previous experiments@18#
both these quantities were held fixed. Four different value
d: 24.660.6 mm, 33.060.5 mm, 50.860.4 mm, and 72.7
60.8 mm were considered, and for each, measurement
four different values ofH were done, except for the large
spacing, where only three values ofH were considered. The
two most important quantities that characterize a single d
drite are the growth speedv and the radius of curvature o
the parabolic tip,r. As the control parameters are varied,
large number of images are recorded and analyzed in ord
extract these quantities.

As in the case of crystalline dendrites, the characteri
length for this pattern is the tip radius of curvature,r. How-
ever, in marked contrast to crystalline dendrites, the len
scale is not sharply selected, but rather is only partially
lected. Specifically, under identical experimental conditio
(V,H,d), the tip radius of curvature corresponding to diffe
ent individual dendrites can vary inside a band having wi
almost640% around the average. Thus, there is a band
tip radii that is selected, but within this band, the tip radius
not selected; this is why we use the term ‘‘partial selectio
This is distinct from crystalline dendrites for which the t
radius is uniquely determined by the experimental conditio
~sharp selection!, or the Ivantsov prediction in which the tip
radius can take on any value~no selection!. Partially selected
length scales are well known in Taylor vortex flow@30# and
directional solidification@31#. Furthermore, whend and the
applied magnetic field are fixed, we find no systematic

t FIG. 4. Experimental points and the linear fit from which the
speed is determined.d is 50.8mm and the applied magnetic fiel
H55.000 kG. For two different values of the undercoolin
D, the speeds are (3.026.02) mm/s, and (24.9960.25) mm/s,
respectively.
0-4
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pendence ofr on the applied voltage. Indeed, the standa
deviation inr, when considering values measured over
entire range ofV, can be almost 40% of the average value.
spite of this unexplained partial selection, there is a n
trivial, measurable dependence of theaveragevalue of r
upon the two experimentally chosen length scales,d andjm .
rav is obtained by averaging the values ofr obtained over
the entire range ofV at fixedd andH. While rav andjm are
comparable,d can be over twenty-eight times larger tha
rav . Plotted on Fig. 5, our results are consistent with
following scaling:

rav

d
5aS H

HF
D 2

5
a

p2 S d

jm
D 2

; ~1!

a is found~using a weighted, single-parameter, least-squa
fit!, to be 0.0034. The error bars onrav in Fig. 5 directly
reflect the partial selection mechanism. As (d/jm)2 in-
creases, the larger error bars indicate even less sharp s
tion. We have explored other possible scaling relationsh
none describes the data as well as Eq.~1! does.

In the laboratory frame of reference, the tip travels a
constant speedv. The uncertainty in determining this quan
tity is typically 1%, and never exceeds 5%. Since dendr
speed up as they approach each other, speed measure
are done only on dendrites that are far enough apart so
they do not affect each other’s growth. The separation, m
sured along the direction of growth, has to be at least
diffusion length l 5D/v, whereD is the appropriate diffu-
sion constant; the determination ofD is described subse
quently.

Within the possible range of applied voltages, betweenVA
andVC , the speed varies by up to two orders of magnitu
while the tip radius varies only by at most670% from its
average value. Crystalline dendrites exhibit sharp selec
for tip speed as well as for tip radius of curvature. In co
trast, the tip speed for EC dendrites is not sharply selec

FIG. 5. Tip radius of curvature,rav , in units of the spacingd, as
a function of square of the scaled field (H/HF)2. The solid line
represents the weighted, single-parameter, least-squares fit.
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but neither does it vary widely;v is partially selected, just as
is r. Under identical experimental conditions (V, H, andd),
the speeds for different dendrites can vary by as much
75%. The speed is less sharply selected asd increases. This
is illustrated by the histograms shown in Fig. 6, obtained
doing measurements on 227 individual dendrites and us
two different values ofd but with the same values of th
dimensionless control parameters (D50.34 and H/HF
53.83, respectively!. The parameterD, known in crystalline
growth as the dimensionless undercooling@8# is defined here
as D5(V22VA

2)/(VC
2 2VA

2). The voltagesVA and VC are
determined as described in the next paragraph.

The product of the tip radius of curvature,r, and the
growth speedv follows the two-dimensional Ivantsov rela
tion @32,33# for a crystalline dendrite growing into a supe
cooled melt:

D5ApP exp~P!erfc~AP!, ~2!

whereP5rv/2D is the Pe´clet number. Fitting to this form
yields the two voltagesVA and VC defined previously, and
the relevant diffusion constantD.

Figure 7, referring tod550.8mm, is an example of this
fit. For larger spacings, 50.8 and 72.7mm the values ob-
tained forD are close to the orientational diffusion consta
for the nematic director (K11/g1, whereg1 is the orienta-
tional viscosity!, which is of the order of 5.4
31027 cm2 s21 for pure MBBA @34#. Thus, the diffusion
field controlling this dendritic growth seems to be the orie
tation of the nematic director. However,D is not constant.
We find larger values forD at smallerd.

The apparent width of the transition region between
convective and quiescent state depends solely on the m
netic coherence length; as was the case withr, there is no
systematic dependence ofw on the applied voltage. When
averaging over all voltages, we findw;2jm ~see Fig. 8!. We
discuss the significance of these measurements subsequ

FIG. 6. Histograms showing the selection of the dendrite
speed at two values ofd. The number of dendrites used for me
surements is 120 ford533.6mm, and 107 ford557.6mm.
0-5



,
re

a
an
fu
tip
he

w

o-
lied
on-

ape
a
ate
iffi-
rly
th

the
nds
ely

C
has
nly
The
the
ed.
re
ub-
in
In

in
s
es,

; the
son
; in
ch

tter,
e of
een
riate
l
all
rly
on-
hat
ea-
tion
ld
es

ow-
for
ce,
ex-
n-
a

es
r.

o

N. GHEORGHIU AND J. T. GLEESON PHYSICAL REVIEW E66, 051710 ~2002!
IV. DISCUSSION

Just like crystalline dendrites, EC dendrites~a! occur in a
system with a strongly discontinous transition,~b! are the
growth morphology by which one state~quiescent! is re-
placed by another~convective!, ~c! travel at constant speed
~d! have an unchanging parabolic shape in the frame of
erence moving at the growth speed, and~e! are consistent
with the constitutive relationship for the two-dimension
Ivantsov solution. It is also important to state some import
differences though, the growth is not controlled by the dif
sion of a conserved quantity, there are no sidebranch
and most important, they exhibit sharp selection for neit
the length scale nor the growth speed.

The mechanism that determines their shape and gro

FIG. 7. Dimensionless undercoolingD as a function of the prod-
uct of the tip speed and the tip radius of curvature,r, for d
550.8mm, and for different magnetic fieldsH.

FIG. 8. The width of the dendrite shadowgraph outlinew as a
function of the magnetic coherence lengthjm . The line is a single-
parameter, weighted, least-squares fit, whose slope is found t
1.160.2.
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f-

l
t

-
s,
r

th

speed is very different from that elucidated in the micr
scopic solvability criterion that has been successfully app
to crystalline dendrites. The shape of EC dendrites is c
trolled by both an externally imposed geometric factord and
the magnetic coherence length. More surprisingly, the sh
is not strictly controlled but varies substantially within
band. The origin of this band is not known, and an accur
determination of the distribution of selected shapes is d
cult to obtain. The selection of the growth speed is simila
nontrivial. While the speed varies enormously as the grow
conditions are varied, under identical growth conditions
speed is only selected within a band whose width depe
primarily on d. Thus, these dendrites represent an entir
new selection problem.

How can the occurrence of dendritic growth in a NL
undergoing EC instability be understood? Recall what
been shown for crystalline dendrites, they are observed o
in the presence of both surface tension and anisotropy.
directions determined by the anisotropy determine
growth direction in which stable dendrite tips are observ
Is this also true for EC dendrites? By definition, NLCs a
intrinsically anisotropic, and the treatment on the glass s
strates provides a preferred direction for this anisotropy
thex-y plane, the plane in which pattern formation occurs.
the presence of a magnetic field larger thanHF , the quies-
cent state is spatially anisotropic in thex-y plane within a
lengthjm of each substrate. Therefore, smallerjm means less
anisotropy in the the xy plane. The degree of anisotropy
the x-y plane decays withjm /d, and the selection become
less sharp. Crystalline dendrites exhibit sidebranch
whereas no sidebranches are observed in this system
reason for this difference is not known. One possible rea
might be related to the presence of a twofold anisotropy
this situation there is no direction in which stable sidebran
tips can exist.

Because this system contains only one state of ma
there can be no sharp interface. The shadowgraph outlin
the dendrite that we observe is a diffuse boundary betw
the quiescent state and the convective state. An approp
framework for diffuse interfaces is thephase-field mode
@35#, where the width of the boundary is treated as a sm
parameter. The results presented in Fig. 8 will be particula
germane in any phase-field model of dendrites of electroc
vection. We note that the width as shown in this figure is t
obtained from the shadowgraph, which is not a direct m
surement. However, the characteristic size of the transi
region will be proportional to this width. The phase-fie
model has successfully explained Saffman-Taylor plum
@36#, which is another example of category-A pattern forma-
tion in a category-B system. It is therefore likely that this
model can explain many of the results presented here. H
ever, given that surface tension is apparently required
stable dendritic growth, in the absence of a sharp interfa
what plays the role of surface tension? One interesting
periment that might resolve this is to permit only one de
drite to grow, in analogy with a Saffman-Taylor finger into
channel.

The diffusion problem for this system seemingly reduc
to the diffusion of the orientation of the nematic directo

be
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Comparable to the self-diffusion of MBBA molecules, th
diffusion of the ionic impurities TBAB is not relevant. An
estimate for an average diffusion coefficient for the TBA
ions gives ^D&TBAB5331028 cm2/s, where the Einstein
formula D5kBTm/q has been used, with valuem
51026 cm2/s V for the ion mobility@34#. The relevant dif-
fusion constant, as found from the Pe´clet number, is more
than twenty times larger.

The dependence ofr on uHW u2 ~and not on uHW u), is
expected, since the magnetic torque, defined asGW m

5xa(nW •HW )(nW 3HW ), is quadratic in the magnetic field. Th
same dependence onuHW u2 is obtained in experiments on the
mally driven convection in NLC@13#, where the patterns ar
symmetric with respect to a plane perpendicular to the m
netic field. Our experimental results show that both the sp
ing d of the liquid crystal cell and the magnetic coheren
s,
lex

. A

xp

05171
g-
c-

lengthjm determine the characteristic length of the dendr
the tip radius of curvature,r. The partial selection of the two
characteristics of the dendrite,r and v, becomes even les
sharp asw becomes larger. A diffuse boundary is expect
because the observation of a sharp boundary would co
spond to a large gradient inn̂(rW), such as in a disclination
line, but that is not the case here. The wider boundary occ
at smaller values ofH/HF and/or larger values ofd, where
there is less anisotropy in thex-y plane.
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