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Wetting and capillary nematization of binary hard-platelet and hard-rod fluids

L. Harnau* and S. Dietrich
Max-Planck-Institut fu¨r Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

and Institut für Theoretische und Angewandte Physik, Universita¨t Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
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Density-functional theory is used to investigate the phase behavior of colloidal binary hard-platelet and
hard-rod fluids near a single hard wall or confined in a slit pore. The Zwanzig model, in which the orientations
of the particles of rectangular shape are restricted to three orthogonal orientations, is analyzed by numerical
minimization of the grand potential functional. The density and orientational profiles as well as the surface
contributions to the grand potential are determined. The calculations exhibit a wall-induced continuous surface
transition from uniaxial to biaxial symmetry for the hard-rod fluid. Complete wetting of the wall-isotropic
liquid interface by a biaxial nematic film for rods and a uniaxial nematic film for platelets is found. For the
fluids confined by two parallel hard walls, we determine a first-order capillary nematization transition for large
slit widths, which terminates in a capillary critical point upon decreasing the slit width.
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I. INTRODUCTION

Many complex fluids used in industry or in so
condensed-matter laboratories consist of nonspherical co
dal particles@1#. In particular, suspensions of hard plateli
colloidal particles have recently received experimental@2–6#
and theoretical attention@7–12#, because of the rich phas
behavior and the geophysical and technological implicatio
It has been shown experimentally@5#, theoretically@10#, and
by simulation@7# that polydispersity in the size of the plate
lets strongly affects the phase behavior. Whereas the the
ical studies have focused on the understanding of the in
actions and the phase behavior of homogeneous bulk flu
experimentally it turns out that boundaries such as the w
of the sample cells have a pronounced influence on the p
behavior@2,4,5#. Liquid-liquid or wall-liquid interfaces are
intrinsic inhomogeneities of the experimental samples wh
have been studied recently@2–6#.

Here we study inhomogeneous colloidal fluids consist
of nonspherical particles by examining both binary ha
platelet and binary hard-rod fluids within the Zwanzig mod
@13#. Platelets or rods are represented by square paralle
peds and the allowed orientations of the normal of the p
ticles along their main axis of symmetry are restricted
three mutually perpendicular directions, rather than a c
tinuous range of orientations in space~see Fig. 1!. Zwanzig’s
model may be considered as a coarse-grained version o
Onsager model which allows for continuously varying orie
tations @14#. Zwanzig’s model offers the advantage that t
difficult determination of inhomogeneous density profiles b
comes numerically straightforward, allowing one to stu
various aspects of inhomogeneous binary hard-platelet
binary hard-rod fluids in detail. On the basis of recent ex
rience with monodisperse hard-rod fluids@15–17#, the Zwan-
zig model is expected to provide a qualitatively correct d
scription of the aforementioned colloidal suspensions
focusing on the entropic properties. In studying both bin
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platelet fluids and binary rod fluids we address the probl
of a possible surface transition from uniaxial to biaxial sy
metry. To the best of our knowledge properties of binary r
fluids near a hard wall or in a slit pore have also not be
studied before. Our study provides a direct comparison of
structural properties and of the behavior of fluids consist
of rodlike and platelike particles, respectively.

In Sec. II we describe the density-functional theory a
the third-order virial excess free energy functional. Sect
III presents bulk phase diagrams of binary mixtures of th
platelets and binary mixtures of thin rods, showing how t
density gap at the isotropic-nematic transition varies with
mole fraction of the larger particles. In Sec. IV we determi

FIG. 1. The system under consideration consists of a bin
fluid of thin platelets of surface sizesD13D1 ~gray squares! and
D23D2 ~black squares! in contact with a planar hard wall atz
50. The figure displays configurations contributing to the seco
order virial termrx

(2)(z1)rz
(1)(z2) ~left!, and the third-order virial

termrx
(2)(z1)ry

(1)(z2)rz
(1)(z3) ~right! for D152D2. For comparison

a configuration contributing to the second-order virial te
rx

(2)(z1)ry
(1)(z2) of a binary rod fluid is shown. Within this model o

only three discrete orientations particles lying very close to the w
must adopt a fully parallel alignment.
©2002 The American Physical Society02-1
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the density and orientational profiles as well as the exc
adsorptions of the fluids near a hard wall. The calculatio
exhibit a wall-induced surface transition from uniaxial to b
axial symmetry for fluids consisting of rods. Binary hard-r
and binary hard-platelet fluids confined by two parallel ha
walls are investigated in Sec. V. For sufficiently large s
widths a first-order capillary nematization transition is foun
Our results are summarized in Sec. VI.

II. DENSITY FUNCTIONAL FOR THE ZWANZIG MODEL

We consider a binary mixture of hard rectangular partic
of sizeLi3Di3Di ( i 51,2) @13#. The number density of the
centers of mass of the particles of speciesi at a pointr is
denoted byrb

( i )(r ). The number density of the centers
mass of the particles of speciesi at a pointr is denoted by
rb

( i )(r ). The position of the center of massr is continuous,
while the allowed orientations of the normal of the partic
along their main axis of symmetry is restricted to directio
b5x,y,z. The equilibrium density profiles of the mixtur
under the influence of external potentialsVb

( i )(r ) minimize
the grand potential functional

V@rb
( i )~r !#5(

i 51

2

(
b

E drrb
( i )~r !$kBT~ ln@L i

3rb
( i )~r !#21!

2m i1Vb
( i )~r !%1Fex@rb

( i )~r !#, ~1!

whereL i are the thermal de Broglie wavelengths andm i are
the chemical potentials. Within a third-order virial approx
mation the excess free energy functionalFex@rb

( i )(r )# is
given by

Fex@rb
( i )~r !#52

kBT

2 (
i , j 51

2

(
b1 ,b2

E dr1dr2f b1 ,b2

( i , j ) ~r1 ,r2!

3rb1

( i )~r1!rb2

( j )~r2!F11
1

3 (
k51

2

(
b3

E dr3

3 f b2 ,b3

( j ,k) ~r2 ,r3! f b3 ,b1

(k,i ) ~r3 ,r1!rb3

(k)~r3!G , ~2!

wheref b1 ,b2

( i , j ) (r1 ,r2) is the Mayer function. The Mayer func

tion equals21 if the particles overlap and is zero otherwis
With the definitionSa,b

( i ) 5Di1(Li2Di)da,b , which repre-
sents the spatial extent in directiona5x,y,z of a particle
with orientationb of the normal, the Mayer function can b
written explicitly as

f b1 ,b2

( i , j ) ~r1 ,r2!52 )
a51

3

QS 1

2
~Sa,b1

( i ) 1Sa,b2

( j ) !2ur a,12r a,2u D ,

~3!

where r a,1 is the projection of the position vectorr1 in a
direction and Q(r ) is the Heaviside step function. Th
density-functional theory is completely specified by the e
cess free energy functional and the Mayer function. The
cessity for including the third-order density term in Eq.~2!,
05170
ss
s

d
t
.

s

s

.

-
e-

which is not present in the Onsager second virial approxim
tion @14# used in the description of thin rods, already follow
from recent calculations of equilibrium properties of a hom
geneous fluid consisting of monodisperse thin platelets@9#.

For model systems of hard particles near a structure
wall at z50, apart from a possible surface freezing at hi
densities, nonuniformities of the density occur only in thez
direction, so thatrb

( i )(r )5rb
( i )(z). Hence the excess free en

ergy functional can be written as

Fex@rb
( i )~z!#52

kBT

2 (
i , j 51

2

(
b1 ,b2

E dz1dz2l b1 ,b2

( i , j ) ~z1 ,z2!

3rb1

( i )~z1!rb2

( j )~z2!F11
1

3A (
k51

2

(
b3

E dz3

3 l b2 ,b3

( j ,k) ~z2 ,z3!l b3 ,b1

(k,i ) ~z3 ,z1!rb3

(k)~z3!G , ~4!

with

l b1 ,b2

( i , j ) ~z1 ,z2!5E dx1dy1dx2dy2f b1 ,b2

( i , j ) ~r1 ,r2!

52A~Sx,b1

( i ) 1Sx,b2

( j ) !~Sy,b1

( i ) 1Sy,b2

( j ) !

3Q~ 1
2 ~Sz,b1

( i ) 1Sz,b2

( j ) !2uz12z2u!, ~5!

whereA is the macroscopic surface area in thex2y plane.
The particular factorization of the Mayer function~3!, which
results from both particle shape and restricted orientatio
leads to the relative simplicity of the functionsl b1 ,b2

( i , j ) (z1 ,z2).

Figure 1 displays a second- and third-order virial contrib
tion schematically.

Third-order virial contributions for thin rods (Di
!L j ,i , j 51,2) are negligible due to the small intermolecul
interaction between rods@13,14#. For thin platelets (Li
!D j ,i , j 51,2) the truncation of the virial expansion afte
the second order cannot be justified because of the non
probability of intersection even at small thicknessLi ~see
Fig. 1!.

III. ISOTROPIC AND NEMATIC BULK PHASES

Based on the density functional in Eqs.~1!, ~4!, and ~5!
we study first the homogeneous bulk fluid withVb

( i )(r )50 in
a macroscopic volumeV. The equilibrium profiles are then
constant@rb

( i )(r )5rb
( i )# and the Euler-Lagrange equations r

sulting from the stationarity conditions]V@rb
( i )#/]rb

( i )50
for the binary platelet mixture read (b1Þb2Þb3 ,iÞ j )

ln~L i
3rb1

( i )!5m i~kBT!2122Di
3@rb2

( i )1rb3

( i )#2DiD j~Di1D j !

3@rb2

( j )1rb3

( j )#2Di
6rb2

( i )rb3

( i )2Di
2D j

4rb2

( j )rb3

( j )

2Di
4D j

2@rb2

( i )rb3

( j )1rb2

( j )rb3

( i )#. ~6!
2-2
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The Euler-Lagrange equations for a binary mixture of th
rectangular rods (D5Di5D j ) are given by@18#

ln~L i
3rb1

( i )!5m i~kBT!2122Li
2D@rb2

( i )1rb3

( i )#

22LiL jD@rb2

( j )1rb3

( j )#. ~7!

The Euler-Lagrange equations~6! for the platelet mixture are
independent of the platelet thicknessLi because the integral
over Mayer functions in Eq.~2! are independent ofLi for
thin platelets. For example, the integral over the Mayer fu
tion of two particles of speciesi orthogonal to each other i
given by

Vx,z
( i ,i )5E dr1f x,z

( i ,i )~r1,0!52Di~Li1Di !
2. ~8!

In the limit of thin platelets (Li!Di) the integral over the
Mayer function reduces toVx,z

( i ,i )'2Di
3 , which is the prefac-

tor of the second term on the right side of Eq.~6!. In other
words, thin platelets have an excluded volume~the volume
which is denied to a platelet by the condition that it must n
intersect another platelet!, although they have a vanishin
volume LiDi

2 ~see Fig. 1!. On the other hand, the integra
over Mayer functions and the excluded volume of thin ro
depend on bothLi andDi : Vx,z

( i ,i )'2Li
2Di . We have solved

Eqs. ~6! and ~7! numerically for given chemical potentials
For convenience the total number densityrb5( i(brb

( i ) and
the number densitiesr i of particles of speciesi are intro-
duced according tor i5rx

( i )1ry
( i )1rz

( i ) , r11r25rb . The
theory has been formulated in a way that is completely sy
metrical with respect to the three coordinate axis. He
there must be a corresponding threefold degeneracy in
results. We define thez axis as the preferred coordinate ax
and consider the relative uniaxial nematic order parame
si5@rz

( i )2(rx
( i )1ry

( i ))/2#/r i . A typical set of (s1 ,s2) as a
function of rb , with r15r2 , L152L2 for rods andD1
522/3D2 for platelets is shown in Fig. 2. The size ratios
the rods and platelets have been fixed such that the se
virial coefficientsb2 of the equation of state of the monodi
perse fluids (r250) in the isotropic phase are equal:

V52rb@11b2rb1b3rb
2#kBTV, ~9!

with b252L1
2D/3 for thin rods, andb252D1

3/3 for thin
platelets. For small values ofrb the isotropic phase (s15s2
50) is stable. At a critical density another set of solutio
with 0,si<1, appears which represents the more favora
nematic phases. The isotropic-nematic~IN! transition of the
binary platelet mixture takes place at a smaller density t
for the rod mixture. We notice that the chemical potentialsm i
can be written as a function ofsi andr i using Eqs.~6! and
~7!. At this point it is convenient to introduce the variabl
m i* 5m i2kBTln(Li

3/ci), whereci5L1
2D for the rod fluid and

ci5D1
3 for the platelet fluid. In the following numerical dat

are given in terms ofm i* and we drop the asterisk in order
avoid a clumsy notation. The compositions, densities, or
parameters, and thermodynamic properties of the IN coex
ence phases are found by solving the coexistence condi
05170
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m i I 5m iN and pI5pN , where m i I , m iN and pI52V I /V,
pN52VN /V are the chemical potentials and the pressure
the isotropic and the nematic phase, respectively. The ph
diagrams for binary platelet and binary rod mixtures are d
played in Fig. 3. The calculations render the concentration
the isotropic phase always to be less than in the nem
phase. For monodisperse platelet fluids the density gap a
IN transition Dr5(r (N)2r (I ))/r (I )50.23 is smaller than
that for monodisperse rod fluids (Dr50.52). The different
size of the density gap is due to larger intermolecular int
actions between platelets as compared with those betw
rods. Moreover, a widening of the IN coexistence region
observed at intermediate values of the mole fraction of
larger particles. With increasing the size ratios of the p
ticles (L153L2 ,D1532/3D2) the calculations exhibit a
greater degree of fractionation between the two coexis
phases. The smaller particles are preferentially in the iso
pic phase. The results for rods are in agreement with ea
calculations@18#.

IV. HARD-ROD AND HARD-PLATELET FLUIDS
NEAR A HARD WALL

The density and orientational profiles of both compone
of binary hard-rod and binary hard-platelet mixtures close
a planar hard wall are obtained by a numerical minimizat
of the grand potential functional~1! with the excess free
energy functional~4!. The results are conveniently express
in terms of the orientationally averaged number density p
files

r i~z!5rx
( i )~z!1ry

( i )~z!1rz
( i )~z!, ~10!

position-dependent nematic order parameters

FIG. 2. Relative bulk nematic order parameterss1 ~upper
curves! and s2 ~lower curves! for a binary mixture of thin rectan-
gular platelets~solid curves,D1522/3D2) and thin rectangular rods
~dashed curves,L152L2 , L1 /D→`). The number densities of the
larger and the smaller particles are fixed tor15r2. Isotropic orien-
tations at low densities are characterized bysi50, while nematic
ordering (0,si<1) is preferred for higher densities.
2-3



tic
te
l-
-

o

-
e

ids
ted
m
n-
-
no-
ulk
ta-
s
pa-
dis-
sps

tic
fea-
d
to
id
y,
ori-
der

ry

g

ar
ad
m

hat
l.

L. HARNAU AND S. DIETRICH PHYSICAL REVIEW E66, 051702 ~2002!
si~z!5
rz

( i )~z!20.5@rx
( i )~z!1ry

( i )~z!#

r i~z!
, ~11!

and position-dependent biaxial order parameters

qi~z!5
rx

( i )~z!2ry
( i )~z!

r i~z!
. ~12!

At small distances from the wall the value of the nema
order parameter reflects the geometric constraints. A pla
~rod! lying very closely to the wall must adopt a fully para
lel alignment~see Fig. 1!, so that the nematic order param
eters reach their limiting valuessi(0)51 @si(0)521/2#
there, whereas the isotropic orientationsi(z)50 is attained
at large distances from the wall. Orientational profiles
biaxial symmetry are described bysi(z)Þ0, qi(z)Þ0,
where a positive or negative sign ofqi(z) signals a sponta
neous preferential alignment of the normals parallel to thx
axis ory axis, respectively.

FIG. 3. ~s! Bulk phase diagram of a fluid consisting of a bina
mixture of thin platelets~solid curve,D1522/3D2) and a binary
mixture of thin rods~dashed curve,L152L2 , L1 /D→`) as a func-
tion of the chemical potentialsm1 andm2. ~b! Bulk phase diagram
of the same fluids in the density-density, i.e.,r12r2 plane@with the
same line code as in~a!#. The straight lines are tielines illustratin
isotropic-nematic coexistence. In~a! and ~b! the dotted lines mark
the locations of the uniaxial-biaxial transition densities of the bin
rod fluid in contact with a hard wall. In Figs. 5 and 6 excess
sorptions near a hard wall are shown along the two thermodyna
paths indicated by arrows.
05170
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A. Monodisperse fluids

The phase behavior of monodisperse hard-rod flu
@r2(z)50# near a structureless wall has been investiga
using the Zwanzig model and a wall-induced transition fro
uniaxial to biaxial symmetry upon increasing the bulk de
sity has been found@15,16#. Moreover, we have recently in
vestigated both monodisperse hard-platelet fluids and mo
disperse hard-rod fluids near a structureless wall at low b
densities using a model that allows for continuous orien
tions of the particles@12#. Here we extend these previou
calculations and present in Fig. 4, the calculated order
rameters of monodisperse hard-platelet fluids and mono
perse hard-rod fluids for high bulk densities. The sharp cu
at z5D1/2 for platelets, and atz5L1/2 for rods, reflect the
discontinuities ofrx

(1)(z) and ry
(1)(z) for platelets, and of

rz
(1)(z) for rods, which determine the value of the nema

order parameters close to the wall. The most noteworthy
ture is that no biaxiality is found for the platelet flui
@q1(z)50# while the loss of translational invariance due
the hard wall breaks the uniaxial symmetry of the rod flu
@q1(z)Þ0#. In order to study the possible onset of biaxialit
we rewrite the Euler-Lagrange equations in terms of the
entationally averaged number density profile and of the or
parameters:

y
-
ic

FIG. 4. Orientationally averaged number density profilesr1(z),
nematic order parameterss1(z), and biaxial order parametersq1(z)
for monodisperse thin platelets~solid curves! and thin rods~dashed
curves,D/L1→`) in contact with a planar hard wall atz50. Posi-
tive ~negative! values of the nematic order parameters indicate t
the platelets~rods! are preferentially aligned parallel to the wal
Biaxial symmetry of rods near the wall is characterized byq1(z)
Þ0. Here q1(z)Þ0 for z.L1/2. The bulk density is fixed to
r1D1

351.13 for the platelets andr1L1
2D51.13 for the rods.
2-4



ia

f

g
f

he

r-

ed

f

ing
th
le
io

id.
g

e of

es

s

n

f
lue

y
-

t of

ble

f

re
e

ist-

d in

WETTING AND CAPILLARY NEMATIZATION O F . . . PHYSICAL REVIEW E 66, 051702 ~2002!
ln@L1
3rx

(1)~z!#2 ln@L1
3ry

(1)~z!#5 lnF 12s1~z!1
3

2
q1~z!

12s1~z!2
3

2
q1~z!

G
[n1~z!, ~13!

with

n1~z!52L1
2Dr1~z!q1~z!, ~14!

for the hard-rod fluid and

n1~z!5
1

D1
E

z2D1

z1D1
dz1D1

3r1~z1!Fq1~z1!

1
4

D1
E

z2D1/2

z1D1/2

dz2QS D1

2
2uz12z2u Dq1~z2!G ,

~15!

for the hard-platelet fluid. One easily finds that the uniax
distribution, with q1(z)50, is a solution of Eqs.~14! and
~15! for any densityr1(z) and nematic order profiles1(z).
Biaxial distributionsq1(z)Þ0 for the rod fluid are possible i
r1(z)>r1

(UB)(z), where the uniaxial-biaxial~UB! transition
densityr1

(UB)(z) follows from a low-q1 expansion ofD1(z)
53q1(z)/@12s1(z)#1O(q1

3(z)) for s1(z)Þ1,

r1
(UB)~z!5

3

2@12s1~z!#L1
2D

. ~16!

Sinces1(z)521/2 (0<z<L1/2) is the minimum value of
s1(z) for rods and sincer1

(UB)(z) decreases with decreasin
s1(z), it follows that local biaxiality starts to develop i
r1(z)51 in the interval 0<z<L1/2 ~see Fig. 4!. For plate-
lets the values1(z)51 (0<z<D1/2) is determined by the
geometric constraint. Henceq1(z)50 is the only solution of
Eqs.~13! and ~15! close to the wall.

B. Binary fluids

The binary fluids considered in this section consist eit
of two types of thin rods (L152L2) or of two types of thin
platelets (D1522/3D2). We focus on the numerically dete
mined excess adsorptions defined as

G i5E
0

`

dz@r i~z!2r i #, ~17!

wherer i5r i(z→`). Figures 5 and 6 displayG i for binary
rod fluids and binary platelet fluids, respectively. For a fix
bulk density of the small particlesr2 and for small bulk
densities of the large particlesr1, the excess adsorption o
the small particles increases upon increasingr1. The reason
for this is that the increasing number of large particles ly
close to the wall enforces the orientational ordering of
small particles, leading to an enrichment of small partic
near the wall because of reduced intermolecular interact
05170
l
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between the latter as compared to the isotropic bulk flu
Due to the same mechanism,G1 increases upon increasin
r2 for constant bulk densities of the large particlesr1. The
excess adsorption of the large particles exhibits a chang
sign and sharp increase with increasingr1 while a net deple-
tion of the small particles is found for small bulk densiti
r2. The calculation rendersG1 to diverge logarithmically as
r1→r1

(I ) , wherer1
(I ) is the bulk density of the large particle

in the isotropic phase at the IN transition~see lower curves in
the upper figure of Fig. 3!. Nearr1

(I ) the excess coverage ca
be fitted byG15A12A2ln(L1

2D@r1
(I)2r1#) for the rod fluid

andG15B12B2ln(D1
3@r1

(I)2r1#) for the platelet fluid, with fit
parametersA1 , A2 andB1 , B2, while the excess coverage o
the small particles remains finite and attains the critical va
G2

(c) via a square-root cusp singularityG22G2
(c)

;Ar1
(I )2r1. The logarithmic increase ofG1 is consistent

with complete wetting of the wall-isotropic fluid interface b
a nematic film atr1

(I ) . Complete wetting is confirmed explic
itly by the vanishing of the contact angle~see Sec. IV!. One
observes that the UB transition of the rods marks the onse
a pronounced variation ofG1, while G1 increases more
smoothly upon increasingr1 for the binary platelet fluid, due
to the absence of biaxiality. In order to study the possi

FIG. 5. The excess adsorptionsG1 andG2 of large~a! and small
~b! rods, respectively (L152L2 ,L1 /D→`), near a hard wall as a
function of the bulk densityr1 of the large rods for two values o
the bulk density of the small rods:r2L1

2D52 ~solid lines!, r2L1
2D

50.5 ~dashed lines!. The corresponding thermodynamic paths a
indicated in Fig. 3~a!. The diamonds and the vertical lines mark th
location of the uniaxial-biaxial transition densitiesr1

(UB) and the
densities of the isotropic bulk phase at isotropic-nematic coex
encer1

(I ) , respectively. For comparison,r1
(UB) and r2 are marked

by the dotted line and arrows in the bulk phase diagram displaye
Fig. 3~a!. G1 diverges logarithmically asr1→r1

(I ) , while G2 attains
finite values (* ) via square-root cusp singularities.
2-5
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onset of biaxiality for the binary rod fluid, we rewrite th
Euler-Lagrange equations in terms of the density profiles
order parameters

lnF 12s1~z!1
3

2
q1~z!

12s1~z!2
3

2
q1~z!

G5
L1

L2
lnF 12s2~z!1

3

2
q2~z!

12s2~z!2
3

2
q2~z!

G
52D@L1

2r1~z!q1~z!

12L2
2r2~z!q2~z!#. ~18!

For any si(z) and r i(z) there is a trivial uniaxial solution
qi(z)50 to Eq. ~18!. Nontrivial biaxial solutionsqi(z)Þ0
exist at sufficiently high local densitiesr i(z)>r i

(UB)(z) with
the UB transition densities following from an expansion
the logarithms in Eq.~18!:

3

2@12s1~z!#
5r1

(UB)~z!L1
2D1

@12s2~z!#

@12s1~z!#
r2

(UB)~z!L2
2D.

~19!

In the case of a monodisperse hard-rod fluid Eq.~19! reduces
to Eq. ~16!. Since s1(z)5s2(z)521/2 close to the wall,
local biaxiality sets in ifr1(z)1L2

2/L1
2r2(z)51 near the

wall. We notice that, independent of the size ratios of

FIG. 6. The excess adsorptionsG1 andG2 of large~a! and small
~b! platelets, respectively (D1522/3D2), near a hard wall as a func
tion of the bulk densityr1 of the large platelets for two values o
the bulk density of the small platelets:r2D1

352 ~solid lines!,
r2D1

350.5 ~dashed lines!. The corresponding thermodynamic pat
are indicated in Fig. 3~a!. The vertical lines mark the locations o
the densities of the isotropic phase at isotropic-nematic coexist
r1

(I ) . G1 diverges logarithmically asr1→r1
(I ) , while G2 attains fi-

nite values (* ) via square-root cusp singularities.
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rods, biaxiality of one species of the fluid is always acco
panied by biaxiality of the other species, as expected on g
metrical grounds.

V. BINARY HARD-ROD AND HARD-PLATELET FLUIDS
CONFINED BY TWO PARALLEL HARD WALLS

The results of the preceding section show that a hard w
favors planar nematic order~the main body of the particles i
oriented parallel to the wall! over isotropic order upon in-
creasing the particle densities. We now consider binary ha
rod and hard-platelet fluids confined by two parallel ha
walls atz50 andz5H and investigate a possible capillar
condensation of a nematic phase. Particularly, we calcu
the surface contributions defined via

V@ra
( i )~z!#5Vvb12AgwI1Av~H !, ~20!

whereA is the area of a single surface,vb is the bulk grand-
canonical potential density, andV is defined as the volume o
the container with its surface given by the position of the r
of the particles at closest approach so thatV5AH. gwI is the
wall-isotropic liquid surface tension in the absence of t
second wall andv(H) is the finite-size contribution. We re
strict our attention to chemical potentialsm i smaller than the
chemical potentialsm i

(IN) at bulk isotropic-nematic coexist
ence.

A. Surface tensions and wetting at a single hard wall

Figure 7 displays the surface tensiongwI as a function of
the chemical potential of the larger particles. The steric
teraction between the particles, which is more pronoun
for the platelets, increases the surface tension with increa
chemical potential. On the other hand, nematic ordering
the particles, induced by the walls, leads to a decrease o
surface tension for large chemical potentials. For fixed sm
chemical potentialm2 of the small particles a maximum o
gwI as a function of the chemical potentialm1 of the large
particles is observed.

For large negative chemical potentials, i.e., in the limit
noninteracting particles, the wall-isotropic liquid surface te
sion is given by

gwIL1D

kBT
5

1

2 FexpS m1

kBTD1
L2

L1
expS m2

kBTD G , ~21!

for the binary rod fluid, and

gwID1
2

kBT
5expS m1

kBTD1
D2

D1
expS m2

kBTD , ~22!

for the binary platelet fluid. The prefactor 1/2 in Eq.~21!
reflects the fact, that the orientationally averaged exclu
volume due to the wall is smaller for rods than for platele

For the binary rod mixturegwI is a nonmonotonic func-
tion of m1 close the uniaxial-biaxial transition. The loca
minimum of gwI displayed in the inset of Fig. 7 disappea
upon increasing or decreasingm2, i.e., in the limit of mono-
disperse fluids.

ce
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We have confirmed that complete wetting of the wa
isotropic liquid interface by a nematic film occurs along t
whole isotropic-nematic coexistence by observing a van
ing contact angleq,

cosq5
gwI~m i

(IN)!2gwN~m i
(IN)!

g IN
. ~23!

HeregwI(m i
(IN)) is the wall-isotropic liquid surface tension

gwN(m i
(IN)) is the wall-nematic liquid surface tension, an

g IN is the isotropic-nematic interfacial tension. All tensio
are taken at isotropic-nematic two-phase coexistence.
chemical potentials at the IN transitions are denoted bym i

(IN)

@see Fig. 3~b!#.

B. Film geometry

The results for the finite-size contributionv(H) are
shown in Fig. 8. For sufficiently large slit widthsH the slope
of v(H) as a function of the chemical potential of the lar
particles changes discontinuously at a critical value, sign
ling a first-order capillary nematization transition. We em
phasize thatv(H) is a smooth and monotonic function ofm1
for fixed H close to the uniaxial-biaxial transition whereas
discussed abovegwI exhibits a local minimum for binary rod

FIG. 7. The wall-isotropic liquid surface tensiongwI of a binary
hard-rod fluid (L152L2 ,L1 /D→`) ~a! and a binary hard-platele
fluid (D1522/3D2) ~b!, respectively. The chemical potential of th
small particles is kept fixed for each curve and increases from
tom to top: m2 /(kBT)521,0,1. Bulk isotropic-nematic coexist
ence occurs atm15m1

(IN)(m2), which corresponds to the fina
points of the curves at the right@see Fig. 3~b!#. The inset displays
gwI of the binary hard-rod fluid form2 /(kBT)51 with increased
resolution. The diamonds mark the uniaxial-biaxial transitions.
05170
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mixtures close to the uniaxial-biaxial transition. As a fun
tion of H the finite size contributionv(H) corresponds to the
solvation free energy for the immersed two plates acting
the confining walls for the fluid. According to the insets
Fig. 8, v(H) exhibits a minimum atH50 @by construction,
v(0)522gwI and v(`)50] so that the solvation force
2dv(H)/dH is attractive. For a discussion on the repercu
sions of this solvation force in the context of colloidal st
bility we refer to, e.g., Ref.@19#. Whereas for the presen
systemsgwI.0 ~see Fig. 7!, for simple fluids the surface
tensiongwl is typically negative whenever the wall-liqui
attractions dominate over liquid-liquid attractions and ev
for hard wallsgwl,0 at densities well above liquid-vapo
coexistence for which drying does not occur. In those sit
tions v(0).0 and the solvation potential decreases asH
increases.

The occurrence of the capillary condensed nematic ph
can be inferred more directly from the density and nema
order profiles displayed in Fig. 9. The density profile of t
capillary condensed nematic phase is characterized b
nematic phase throughout the slit, whereas the density pr
of the coexisting phase decays toward an isotropic phas
the middle of the slit. As expected from the presence
purely repulsive walls, the total local midplane dens

t-

FIG. 8. The finite size contributionv(H) of the grand potential
functional @see Eq. ~20!# of a binary hard-rod fluid (L1

52L2 ,L1 /D→`) ~a! and a binary hard-platelet fluid (D1

522/3D2) ~b!, respectively, confined in a slit of widthH, and in
contact with an isotropic bulk reservoir at chemical potentialm1.
The chemical potential of the small particles is kept fixed
m2 /(kBT)521. The width of the slit increases from top to bottom
H/L151.5,1.75,2.5,3 in~a! and H/D153,3.5,5,6 in ~b!. Bulk
isotropic-nematic coexistence occurs atm15m1

(IN)(m2), which are
the maximumm1 values displayed@see Fig. 3~b!#. The insets dis-
play the solvation free energyv(H) as a function of H at
m1 /(kBT)50.64.
2-7
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r1(H/2)1r2(H/2) of the capillary condensed nematic pha
is slightly smaller than the coexisting nematic bulk dens
r1

(N)1r2
(N) . For the binary rod fluid both the capillary con

densed nematic phase and the nematic film in the coexis
isotropic phase are biaxially symmetric. The location of t
uniaxial-biaxial transition has practically not been altered
the confinement.

It is apparent from Fig. 9 that the interfacial profile in th
isotropic phase is larger for the platelet fluid than for the r
fluid because of the relatively smaller intermolecular inter
tions between rods as compared with those between plate
We observe coexistence between the isotropic and the c
lary condensed nematic phase providedH>Hc(m1 ,m2). For
sufficiently narrow slits@H,Hc(m1 ,m2)# a sharp capillary
nematization transition no longer occurs and is replaced b
steep but continuous filling. Hence the capillary nematizat
transition ends in a capillary critical point at a critical wa
separationHc(m1 ,m2).

We have determined the capillary nematization transit
for various slit widths and the phase diagrams for binary
and binary platelet mixtures constructed as a function of

FIG. 9. Coexisting isotropic and capillary condensed nem
profiles for a binary hard-rod fluid (L152L2 ,L1 /D→`) ~a! and a
binary hard-platelet fluid (D1522/3D2) ~b!, confined in a slit of
width H56L1 andH56D1, respectively. The isotropic profiles o
the large particles~dashed lines! are characterized bys1(z)50 in
the central region, while negative~positive! values of the nematic
order parameterss1(z) close to the confining walls atz50 andz
56L1 (z56D1) indicate that the rods~platelets! are aligned paral-
lel to the walls. The capillary condensed nematic phase~solid lines!
is characterized by strong orientational ordering@s1(z)Þ0#
throughout the slit. The chemical potential of the small particles
m2 /(kBT)521.0 so that in the bulkr2

(I )L1
2D50.44 andr1

(I )L1
2D

51.14 in ~a! andr2
(I )D1

350.44 andr1
(I )D1

351.02 in ~b!.
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chemical potentials and the slit widths are shown in Fi
10~a! and 11~a!. Upon decreasing the slit width@H
>Hc(m1,m2)#, the capillary nematization transition is shifte
to smaller chemical potentials reminiscent of the shift of t
capillary condensation transition in confined simple liquid
Upon increasing the chemical potentialm2 of the small par-
ticles, the critical wall separation decreases because the s
particles are preferentially in the isotropic phase in t
middle of the slit. This leads to a depletion of the large p
ticles in the middle of the slit and prevents a continuo
filling of the slit even for rather small slit widths.

Figures 10~b! and 11~b! display an alternative represent
tion of the capillary phase diagrams in terms of avera
number densities defined as

^r i&5
1

HE
0

H

dzr i~z!. ~24!

c

s

FIG. 10. ~a! Phase diagram of a confined binary hard-rod flu
(L152L2 , L1 /D→`) as a function of the chemical potentialsm1 ,
m2, and wall separationH. The solid line represents the bulk pha
diagram@see Fig. 3~a!#, while the dashed and the dash-dotted lin
correspond to wall separationsH56L1 andH52L1. For fixedH
,Hc(m1 ,m2) the capillary condensation transition is first order a
terminates at a critical point. These critical points for various
widths form the dotted line. One example of such a capillary criti
point is indicated by the solid circle. There the corresponding l
of first-order capillary transitions forH52L1 ~dash-dotted line!
ends.~b! Phase diagram of the same fluid plotted@with the same
line code as in~a!# as a function of the average number densit
^r1& and ^r2& in the slit. In between corresponding lines, there
two-phase coexistence between isotropic and capillary conde
nematic phases. For a small slit widthH52L1 ~dash-dotted line!,
the branches of the coexisting capillary condensed nematic p
and isotropic phase end at a critical point denoted by the s
circle.
2-8
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Here the curves with low values of^r i& represent the coex
isting isotropic phase and the curves with high values of^r i&
the capillary condensed nematic phase. Upon approac
the critical point@H,Hc(^r1&,^r2&)# the difference of the
average densities in the coexisting phases becomes sm
and vanishes at the critical point. The shape of the coex
ence curves in Figs. 10~b! and 11~b! reflects the fact that the
difference in^r i& between the two phases is used as or
parameter. Our calculations lead to mean-field order par
eter exponents; hence the dash-dotted lines in Figs. 10~b! and
11~b! do not intersect under an acute angle. The ac
rounding becomes visible only at higher resolutions.

VI. SUMMARY

We have applied a density-functional theory to fluids co
sisting of binary hard-platelets and hard-rods near a sin
hard wall or confined in a slit pore of widthH. The particles
are square parallelepipeds with orientations restricted
three mutually perpendicular directions~Fig. 1!. The rectan-
gular shape of the particles and their restricted orientati
allow one, within the framework of a third-order virial ap

FIG. 11. Phase diagrams of a confined binary hard-platelet fl
(D1522/3D2). The solid lines represent the bulk phase diagr
~see Fig. 3!, while the dashed and the dash-dotted lines corresp
to wall separationsH56D1 and H52D1. The critical points for
various slit widths form the dotted line in~a!.
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proximation of the excess free energy functional, to de
mine numerically the density profiles, orientational profile
surface and finite-size contributions to the grand potent
and phase diagrams with the following main results.

~1! Figures 2 and 3 demonstrate that the bulk isotrop
nematic transition of the binary platelet mixture~size ratio:
D1522/3D2, where Di3Di is the surface size of the thin
platelets of speciesi ) occurs at a smaller density than for th
rod mixture~size ratio:L152L2, whereLi is the length of
the thin rods of speciesi ). Moreover, the density gap at th
isotropic-nematic transition is smaller for the rod fluid th
for the platelet fluid because of larger intermolecular inter
tions between platelets as compared with those of rods.

~2! Platelets@rods# lying very closely to a planar hard wa
must adopt a fully parallel alignment~see Fig. 1!, so that the
nematic order parameters@Eq. ~11!# reach their limiting val-
uessi(0)51 @si(0)521/2# there~Fig. 4!. The biaxial order
profiles @Eq. ~12!# for the inhomogeneous fluids at densiti
slightly below the bulk isotropic-nematic transition densiti
demonstrate biaxial symmetry@qi(0)Þ0# of rods and
uniaxial symmetry@qi(0)50# of platelets near the wall@Fig.
4#.

~3! The excess adsorptionG1 of the large particles di-
verges logarithmically asr1→r1

(I ) , wherer1
(I ) is the bulk

density of the large particles in the isotropic phase at
isotropic-nematic transition~Figs. 5 and 6!. Complete wet-
ting of the wall-isotropic liquid interface by a nematic film
confirmed by observing a vanishing contact angle.

~4! The steric interaction between the particles increa
the wall-isotropic liquid surface tensiongwI with increasing
chemical potential, whereas nematic ordering of the p
ticles, induced by the walls, leads to a decrease of the sur
tension for large chemical potentials~Fig. 7!.

~5! For sufficiently large slit widths the slope of the finite
size contribution to the grand potential as a function of
chemical potential of the large particles changes discont
ously at a critical value, signaling a first-order capilla
nematization transition~Fig. 8!. The density profile of the
capillary condensed nematic phase is characterized b
nematic phase throughout the slit, whereas the density pr
of the coexisting phase decays toward an isotropic phas
the middle of the slit~Fig. 9!. The isotropic-nematic interfa
cial profile is broader for the platelet fluid than for the ro
fluid.

~6! Coexistence between the isotropic and the capill
condensed nematic phase is observed, provided the slit w
H is sufficiently large,H>Hc(m1 ,m2). For sufficiently nar-
row slits @H,Hc(m1 ,m2)#, a sharp capillary nematizatio
transition no longer occurs and is replaced by a steep
continuous filling~Figs. 10 and 11!.
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