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Wetting and capillary nematization of binary hard-platelet and hard-rod fluids

L. Harnad and S. Dietrich
Max-Planck-Institut fu Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
and Institut fu Theoretische und Angewandte Physik, Univétsguttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
(Received 2 July 2002; published 11 November 2002

Density-functional theory is used to investigate the phase behavior of colloidal binary hard-platelet and
hard-rod fluids near a single hard wall or confined in a slit pore. The Zwanzig model, in which the orientations
of the particles of rectangular shape are restricted to three orthogonal orientations, is analyzed by numerical
minimization of the grand potential functional. The density and orientational profiles as well as the surface
contributions to the grand potential are determined. The calculations exhibit a wall-induced continuous surface
transition from uniaxial to biaxial symmetry for the hard-rod fluid. Complete wetting of the wall-isotropic
liquid interface by a biaxial nematic film for rods and a uniaxial nematic film for platelets is found. For the
fluids confined by two parallel hard walls, we determine a first-order capillary nematization transition for large
slit widths, which terminates in a capillary critical point upon decreasing the slit width.
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[. INTRODUCTION platelet fluids and binary rod fluids we address the problem
of a possible surface transition from uniaxial to biaxial sym-

Many complex fluids used in industry or in soft metry. To the best of our knowledge properties of binary rod
condensed-matter laboratories consist of nonspherical collofluids near a hard wall or in a slit pore have also not been
dal particle[1]. In particular, suspensions of hard platelike Studied before. Our study provides a direct comparison of the
colloidal particles have recently received experimefal6] ~ structural properties and of the behavior of fluids consisting
and theoretical attentiof7—12], because of the rich phase Of rodlike and platelike particles, respectively.
behavior and the geophysical and technological implications. In Sec. Il we describe the density-functional theory and
It has been shown experimentally], theoretically{10], and  the third-order virial excess free energy functional. Section
by simulation[7] that polydispersity in the size of the plate- Il presents bulk phase diagrams of binary mixtures of thin
lets strongly affects the phase behavior. Whereas the theordilatelets and binary mixtures of thin rods, showing how the
ical studies have focused on the understanding of the intel€nsity gap at the isotropic-nematic transition varies with the
actions and the phase behavior of homogeneous bulk fluid§pole fraction of the larger particles. In Sec. IV we determine
experimentally it turns out that boundaries such as the walls
of the sample cells have a pronounced influence on the phase
behavior[2,4,5]. Liquid-liquid or wall-liquid interfaces are
intrinsic inhomogeneities of the experimental samples which
have been studied recenflg—6].

Here we study inhomogeneous colloidal fluids consisting
of nonspherical particles by examining both binary hard-
platelet and binary hard-rod fluids within the Zwanzig model
[13]. Platelets or rods are represented by square parallelepi-
peds and the allowed orientations of the normal of the par-
ticles along their main axis of symmetry are restricted to
three mutually perpendicular directions, rather than a con-
tinuous range of orientations in spacee Fig. 1. Zwanzig's
model may be considered as a coarse-grained version of the
Onsager model which allows for continuously varying orien-
tations[14]. Zwanzig's model offers the advantage that the
difficult determination of inhomogeneous density profiles be-

comes numerically _straightforward, a_IIOWing one to study FIG. 1. The system under consideration consists of a binary
various aspects Of_ Inhomoge_neous blnary_ hard-platelet anﬂjid of thin platelets of surface sizd3, XD, (gray squargsand
pmary hgrd—rod qu_|ds in detail. On the basis of recent eXPep, %D, (black squarésin contact with a planar hard wall at
rience with monodisperse hard-rod fluld$-17, the Zwan-  __The figure displays configurations contributing to the second-
zig model is expected to provide a qualitatively correct de-grder virial termp{®(z,)p{?(z,) (left), and the third-order virial
scription of the aforementioned colloidal suspensions b)fermpff)(zl)p(yl)(zz)pgl)(zg) (right) for D,=2D,. For comparison
focusing on the entropic properties. In studying both binarya configuration contributing to the second-order virial term

p\2(21)p{P(2,) of a binary rod fluid is shown. Within this model of

only three discrete orientations particles lying very close to the wall
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the density and orientational profiles as well as the exceswhich is not present in the Onsager second virial approxima-
adsorptions of the fluids near a hard wall. The calculationgion [14] used in the description of thin rods, already follows
exhibit a wall-induced surface transition from uniaxial to bi- from recent calculations of equilibrium properties of a homo-
axial symmetry for fluids consisting of rods. Binary hard-rod geneous fluid consisting of monodisperse thin platdigts

and binary hard-platelet fluids confined by two parallel hard For model systems of hard particles near a structureless
walls are investigated in Sec. V. For sufficiently large slitwall at z=0, apart from a possible surface freezing at high
widths a first-order capillary nematization transition is found.densities, nonuniformities of the density occur only in the

Our results are summarized in Sec. VI.

direction, so thap$(r)=p{}(z). Hence the excess free en-

ergy functional can be written as
II. DENSITY FUNCTIONAL FOR THE ZWANZIG MODEL

2
We consider a bi_nary mixture of hard rectangulgr particles Fex[Pfgi)(Z)]: _ kB_T 2 Z dz,dz,l
of sizeL;xD;xD; (i=1,2) [13]. The number density of the 2
centers of mass of the particles of spediest a pointr is
denoted byp{(r). The number density of the centers of
mass of the particles of specieat a pointr is denoted by
p(r). The position of the center of massis continuous,
while the allowed orientations of the normal of the particles K109, (2, 21D, (20.20)p%(24)
along their main axis of symmetry is restricted to directions BBy 42148 B3,y 8, 41) P g 3
B=x,y,z. The equilibrium density profiles of the mixture
under the influence of external potential§(r) minimize  \ith
the grand potential functional

2;1,),32(21 ¥2))

Lj=1 B1.B2

1 2
1+ — dz
3A kgl B 3

3

IACATIHE

)

. 2 . H G = B
Q[pg)(r)]zz 2 J'drp’(é)(r){kBT(|n[Ai3p'(€:)(r)]—l) IﬁlijZ(Zl’ZZ) JXmdY1dX2dY2fﬁ1'_B2(r1,rz)
=1 “B i J | .
= = A, + S (S5, + )

x0O(3(S0y +SUs ) ~1z1-2)), (5

— i V(D Fed p§(N)]1, (1)

whereA; are the thermal de Broglie wavelengths andare

the chemical potentials. Within a third-order virial approxi-
mation the excess free energy functiormx[pg)(r)] is  whereA is the macroscopic surface area in they plane.
given by The particular factorization of the Mayer functi¢8), which

results from both particle shape and restricted orientations,

. 2 . leads to the relative simplicity of the functioh$'), (z;,z,).

Folpln]-— 2L 3 > Jdrldrzfg’{g (r1,12) e Bla(2a.20)
2 i1 BB, 12

) tion schematically.

1 Third-order virial contributions for thin rods O

1+ 3 gl E drg <L;,i,j=1,2) are negligible due to the small intermolecular

X p(ro)p(ra) >
$ interaction between rod$13,14. For thin platelets I(;

Figure 1 displays a second- and third-order virial contribu-

<D;j,i,j=1,2) the truncation of the virial expansion after

><fgz’%(fz,rs)fﬁgk;,)ﬁl(rg,fl)Pﬁa?(fs)}, (2)  the second order cannot be justified because of the nonzero
probability of intersection even at small thicknelss (see

wheref{; 1), (ry,r5) is the Mayer function. The Mayer func- Fig. D).

tion equals— 1 if the particles overlap and is zero otherwise.

With the defini_tionsg?ﬁz|_3i+_(Li—_Di)5a’B, which repre- IIl. ISOTROPIC AND NEMATIC BULK PHASES

sents the spatial extent in directier=X,y,z of a particle Based on the density functional in Eq4), (4), and (5)

with orientationg of the normal, the Mayer function can be

e study first the homogeneous bulk fluid with(r)=0 in
written explicitly as we study geneous bulk fluid witf}(r) =0 i

a macroscopic volum¥. The equilibrium profiles are then
3 1 constanf p{})(r)=p}] and the Euler-Lagrange equations re-

ffgl'lj,)ﬁz(rlvrz):_ 1;[ 0 E(S(a',)ﬂﬁsg)gz)_|ra,1_ra,2| , sulting from the statlon.arlty conditiongQ[ py ]./<9p_3 =0
a=1 @ for the binary platelet mixture reag3(# B,# B3,i #j)

. S o . 3 ()= . “1_95p3, O+ NM_p.D.(D. )
wherer , 1 is the projection of the position vectoy in « I“(Aipﬂll)_“'(kBT) ZDi[PBIZJ“PﬁIs] DiD;(Di+Dj)
direction and®(r) is the Heaviside step function. The
density-functional theory is completely specified by the ex-
cess free energy functional and the Mayer function. The ne- A2 () () e () ()
cessity for including the third-order density term in Eg), DiDjlpg,ps,+ Ps,P sl )

X[pd)+p1-DPpgpf) —DID]p{) o)
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The Euler-Lagrange equations for a binary mixture of thin
rectangular rodsl{=D;=D;) are given by{18]

In(AFpf) = (keT) = 2LEDLf) ¢ )]

—2L,L;Dlp)+ 1. (7)

S 8§,
2
o
o
@
8’ 1

The Euler-Lagrange equatiof® for the platelet mixture are
independent of the platelet thickndssbecause the integrals
over Mayer functions in Eq(2) are independent of; for
thin platelets. For example, the integral over the Mayer func-
tion of two particles of specieisorthogonal to each other is
given by

p.D,” pL%, D

vid= [ antid 0= 02  @®
FIG. 2. Relative bulk nematic order parametess (upper

In the limit of thin platelets [;<D;) the integral over the curves ands; (lower curves for a binary mixture of thin rectan-
Mayer function reduces tVf(iQ)NZDig, which is the prefac- gular plateletgsolid curvesD;=2%D,) and thin rectang_ular rods
tor of the second term on the right side of E€). In other ~ (dashed curved,;=2L,, L,/D—). The number densities of the
words, thin platelets have an excluded voluftiee volume  |a/9er and the smaller particles are fixecpio= p,. Isotropic orien-
which is denied to a platelet by the condition that it must nottat(;on.s at (I)ZW ielns!tles afre ct&afracagrlrz]edgpyo_, While nematic
intersect another platejetalthough they have a vanishing ordering (0<s;=1) is preferred for higher densities.
volume LiDi2 (see Fig. 1L On the other hand, the integrals
over Mayer functions and the excluded volume of thin rodstil = #in @nd pi=py, where u;;, wiy and p;=—Q,/V,
depend on bott; andD; : V(Xi,zi)~2|_izDi _We have solved pNz'—QN/.V are the chemlc_al potentials and Fhe pressure of
Egs. (6) and (7) numerically for given chemical potentials. the Isotropic aT‘d the nematic pha_se, respect!vely. The ph_ase
For convenience the total number dens;i’gFEiEBpg) and dlagrams fqr binary platelet qnd binary rod mixtures are d|§-
the number densities; of particles of species are intro- playgd in F!g. 3. The calculations render the cgncentratlon in
duced according t@i=p§i)+p§i)+p§i), o1t pa=pp. The the isotropic phase always to be less than in the nematic

hase. F i latelet fluids th i h
theory has been formulated in a way that is completely symp ase. For monodisperse platelet fluids the density gap at the

_ _ _ ; IN transition Ap=(p™N—p")/p1=0.23 is smaller than
metrical with respect to the three coordinate axis. Henc‘?hat for monodisperse rod fluids\p=0.52). The different

there must be a corresponding threefold degeneracy 'n.tr@ze of the density gap is due to larger intermolecular inter-

e s v s o e e gEUons btveen plcets as compared wih tose beeer
s=[pW— (D4 )21/ . A typical set of 6,.5,) as a rods. Moreover, a widening of the IN coexistence region is
i—LPz T \Px T Py pi- 12 observed at intermediate values of the mole fraction of the
function of p,, with p;=p,, L;=2L, for rods andD;,

/3 f 1= > - larger particles. With increasing the size ratios of the par-
=2°"D, for platelets is shown in Fig. 2. The size ratios of {j-|es (L,=3L,,D,=32°D,) the calculations exhibit a

the rods and platelets have been fixed such that the secopghater degree of fractionation between the two coexisting
virial coefficientsb, of the equation of state of the monodis- phases. The smaller particles are preferentially in the isotro-
perse fluids ¢,=0) in the isotropic phase are equal: pic phase. The results for rods are in agreement with earlier

calculationd 18].
0= pyl 1+ bypy+ bapZlksTV, © 118

with b,=2L{D/3 for thin rods, andb,=2D3/3 for thin V. HARD-ROD AND HARD-PLATELET FLUIDS

pIateI_ets. For small va_ll_Jes ok, th_e isotropic phasesgzsz_ NEAR A HARD WALL

=0) is stable. At a critical density another set of solutions,

with 0<s;=<1, appears which represents the more favorable The density and orientational profiles of both components
nematic phases. The isotropic-nemdtid) transition of the  of binary hard-rod and binary hard-platelet mixtures close to
binary platelet mixture takes place at a smaller density tha@ planar hard wall are obtained by a numerical minimization
for the rod mixture. We notice that the chemical potentigls of the grand potential functiongll) with the excess free
can be written as a function &f andp; using Eqs(6) and  energy functiona(4). The results are conveniently expressed
(7). At this point it is convenient to introduce the variables in terms of the orientationally averaged number density pro-
w’ = pi—kgTIN(A¥/c), wherec;=L2D for the rod fluid and ~files

ci=D§ for the platelet fluid. In the following numerical data

are .given in terms Oﬁ!* and we drop th.e.asterisk in prder to pi(2) =pg)(z)+p§,i)(z)+pg)(z), (10)
avoid a clumsy notation. The compositions, densities, order

parameters, and thermodynamic properties of the IN coexist-

ence phases are found by solving the coexistence conditioqmsition-dependent nematic order parameters
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platelets 1
------ rods

L isotropic

" 1 " 1 " E 1 "
-1.0 -05 0 05 1.0
w/(k,T)

. (b) |
nematic

s,(2), a,(2)

0 1 .... 'u&‘g AN
0 0.5 1.0 1,5 2,0 z/D,, z/L,
D p.L°D
Pl e Pty FIG. 4. Orientationally averaged number density profile&),

FIG. 3. (s) Bulk phase diagram of a fluid consisting of a binary nematic or_der paramete@(z), an_d biaxial order p_arameteq@(z)
mixture of thin plateletsisolid curve,D;=22%D,) and a binary for monodlsperse_thln platelet_solld curve$ and thin rods(dashgd
mixture of thin rodgdashed curvd,;=2L,, L, /D—) as a func- C.urves,D/L.lHoc) in contact with a.planar hard wall at:Q. F’OSI-
tion of the chemical potentialg; and u,. (b) Bulk phase diagram tive (negative values of the nem_atlc or(_jer parameters indicate that
of the same fluids in the density-density, i@, p, plane[with the the platelets(rodg are preferentially allgped parallel_to the wall.
same line code as if@)]. The straight lines are tielines illustrating Biaxial symmetry of rods near the wall is charagterl_zed_cti(/z)
isotropic-nematic coexistence. (a) and(b) the dotted lines mark #0. Hereqy(2)#0 for z>1,/2. The bulk density is fixed to

3_ 2 _
the locations of the uniaxial-biaxial transition densities of the binary?1P1= 1.13 for the platelets ang, 11D =1.13 for the rods.

rod fluid in contact with a hard wall. In Figs. 5 and 6 excess ad-
sorptions near a hard wall are shown along the two thermodynamic A. Monodisperse fluids

paths indicated by arrows.
The phase behavior of monodisperse hard-rod fluids

[p2(2)=0] near a structureless wall has been investigated
(1) using the Zwanzig model and a wall-induced transition from
uniaxial to biaxial symmetry upon increasing the bulk den-
sity has been founfil5,16. Moreover, we have recently in-
nd ition-dependent biaxial order parameter vestigated both monodisperse hard-platelet fluids and mono-
and posttion-cepende axial order parameters disperse hard-rod fluids near a structureless wall at low bulk
densities using a model that allows for continuous orienta-
0) (i) tions of the particle§12]. Here we extend these previous
oY (2-p{(2) . g
UEAGS Shanay (12) calculations and present in Fig. 4, the calculated order pa-
ri(2) rameters of monodisperse hard-platelet fluids and monodis-
perse hard-rod fluids for high bulk densities. The sharp cusps
. . atz=D,/2 for platelets, and at=L,/2 for rods, reflect the
At small distances from the wall the value of the nematic _. s (1) 1)
iscontinuities ofp,™’(z) and p,~(z) for platelets, and of

order parameter reflects the geometric constraints. A platele 1)(2) for rods. which determine the value of the nematic

(rod) lying very closely to the wall must adopt a fully paral- Pz
lel alignment(see Fig. 1, so that the nematic order param- order parameters close to the wall. The most noteworthy fea-

eters reach their limiting values;(0)=1 [s;(0)=—1/2] ture is that no biaxiality is found for the platelet fluid
there, whereas the isotropic orientatisiiz)=0 is attained [01(z)=0] while the loss of translational invariance due to
at large distances from the wall. Orientational profiles ofthe hard wall breaks the uniaxial symmetry of the rod fluid
biaxial symmetry are described bgi(z)#0, q(z2)#0, [d:1(2)#0]. In order to study the possible onset of biaxiality,
where a positive or negative sign qf(z) signals a sponta- We rewrite the Euler-Lagrange equations in terms of the ori-
neous preferential alignment of the normals parallel toxhe entationally averaged number density profile and of the order

axis ory axis, respectively. parameters:

p(2)-0.5pP(2)+p{(2)]
pi(2)

si(2)=

Qi(z)=

051702-4
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3 1.0 v T T T
1=s:1(2)+ qu(z) large rods (@)
IN[AZp{M(2)]-IN[ATp{P(2)]=In 3 [
1-5,(2) = 5 0 (2) ]
=A4(2), (13
with i
A4(2)=2L3Dp1(2)04(2), (14) 12
for the hard-rod fluid and
1 (z+Dg 3
Nq(2)= D_f dz;D1p1(z1)| d1(z1)
1 _Dl
4 [z+Dy/2 D, i
+D—1 + D2 d22®(7_|21_22| 01(22) |,
(15
"0 0.4 0.8 1.2

for the hard-platelet fluid. One easily finds that the uniaxial
distribution, withq4(z)=0, is a solution of Eqs(14) and

(1.5) _for a.‘”y_ de_nSIIypl(z) and nematic or(jer profllel(_z). . FIG. 5. The excess adsorptiohig andI", of large(a) and small

Biaxial dlité;butlonsql(z) #0 for th_e roq flgld are poss.lkl)le if (b) rods, respectivelyl(;=2L,,L,/D—), near a hard wall as a

p1(2)=pj ~’(2), where the uniaxial-biaxialUB) transition  fynction of the bulk density, of the large rods for two values of

densityp{"®(z) follows from a lowq; expansion ofA1(z)  the bulk density of the small rodg,L2D =2 (solid lines, p,L 2D

=3q1(z)/[1—sl(z)]+O(qf(z)) for s;(2) #1, =0.5 (dashed lines The corresponding thermodynamic paths are
indicated in Fig. 8). The diamonds and the vertical lines mark the
location of the uniaxial-biaxial transition densitig§"® and the

(16) densities of the isotropic bulk phase at isotropic-nematic coexist-
encep!), respectively. For comparisop{"® and p, are marked

. . . by the dotted line and arrows in the bulk phase diagram displayed in

Sinces,(z)=—1/2 (Qs ZSUIB-l/Z) is the minimum value qf Fig. 3a). I'; diverges logarithmically ag,— p{" , while I',, attains

s,(2) for rods and since{"®(z) decreases with decreasing finite values ¢) via square-root cusp singularities.

s1(2), it follows that local biaxiality starts to develop if

p1(2)=1 in the interval Gsz<L,/2 (see Fig. 4. For plate- between the latter as compared to the isotropic bulk fluid.

lets the values;(z)=1 (0<z=<D,/2) is determined by the Due to the same mechanisii; increases upon increasing

geometric constraint. Henag (z) =0 is the only solution of p, for constant bulk densities of the large particlgs The

2
p,L,D

(UB) - -
p1(2) [1-s,(2)]L2D

Egs.(13) and(15) close to the wall. excess adsorption of the large particles exhibits a change of
sign and sharp increase with increasingwhile a net deple-
B. Binary fluids tion of the small particles is found for small bulk densities

. : . s . o . Th Iculati derk; to di I ithmicall
The binary fluids considered in this section consist eithef’2 (?) cateua |c()|r; renders, o diverge logarrhmicaly as
of two types of thin rodsI(, = 2L ,) or of two types of thin p1—pi’ ., Wherep}’ is the bulk density of the large particles

platelets D, =22%D,). We focus on the numerically deter- in the isotrc_npic phaS(_a atthe IN t(rl?nsiti(Hee lower curves in
: : ! the upper figure of Fig.)3Nearp}’ the excess coverage can
mined excess adsorptions defined as be fi _ 2 () .
e fitted byI';=A;—A,In(LiD[pi’—p,]) for the rod fluid
x andI';=B;—B,In(DIp{"—p,]) for the platelet fluid, with fit
= fo d7pi(2) = pil, (17 parameterd\;, A, andB;, B,, while the excess coverage of
the small particles remains finite and attains the critical value
wherep, = p;(z—). Figures 5 and 6 display, for binary 'S’ Vvia a square-root cusp singularityl’,— 'Y
rod fluids and binary platelet fluids, respectively. For a fixed~ \/pl( J—p,. The logarithmic increase of; is consistent
bulk density of the small particleg, and for small bulk with complete wetting of the wall-isotropic fluid interface by
densities of the large particlgs,, the excess adsorption of a nematic film ab(l'). Complete wetting is confirmed explic-
the small particles increases upon increagipngThe reason itly by the vanishing of the contact anglsee Sec. IY. One
for this is that the increasing number of large particles lyingobserves that the UB transition of the rods marks the onset of
close to the wall enforces the orientational ordering of thea pronounced variation of';, while I'; increases more
small particles, leading to an enrichment of small particlessmoothly upon increasing, for the binary platelet fluid, due
near the wall because of reduced intermolecular interaction® the absence of biaxiality. In order to study the possible
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1.0 T T T rods, biaxiality of one species of the fluid is always accom-
(a) panied by biaxiality of the other species, as expected on geo-
1 metrical grounds.

large platelets

V. BINARY HARD-ROD AND HARD-PLATELET FLUIDS
CONFINED BY TWO PARALLEL HARD WALLS

The results of the preceding section show that a hard wall
favors planar nematic ordéthe main body of the particles is
1.0 oriented parallel to the wallover isotropic order upon in-
creasing the particle densities. We now consider binary hard-
rod and hard-platelet fluids confined by two parallel hard
(b) walls atz=0 andz=H and investigate a possible capillary

] condensation of a nematic phase. Particularly, we calculate
the surface contributions defined via

1 QpP(2)]=Vop+2Ayy+Av(H), (20)

whereA is the area of a single surface,, is the bulk grand-
canonical potential density, afwlis defined as the volume of
the container with its surface given by the position of the rim
1.2 of the particles at closest approach so #atAH. vy, is the
wall-isotropic liquid surface tension in the absence of the

FIG. 6. The excess adsorptiohis andI", of large(a) and small ~ S€cond wall ando(H) is the finite-size contribution. We re-
(b) platelets, respectivelyd,;=22°D.), near a hard wall as a func- Strict our attention to chemical potentigls smaller than the
tion of the bulk densitys; of the large platelets for two values of chemical potentialg{"™) at bulk isotropic-nematic coexist-
the bulk density of the small pIateIet%szZ (solid lines, ence.
psz=0.5 (dashed lines The corresponding thermodynamic paths
are indicated in Fig. @). The vertical lines mark the locations of A. Surface tensions and wetting at a single hard wall
the densities of the isotropic phase at isotropic-nematic coexistence
p{"). T'; diverges logarithmically ap;— p{", while T, attains fi-
nite values {) via square-root cusp singularities.

p,D;

Figure 7 displays the surface tensigy, as a function of

the chemical potential of the larger particles. The steric in-

teraction between the particles, which is more pronounced
onset of biaxiality for the binary rod fluid, we rewrite the for the platelets, increases the surface tension with increasing

Euler-Lagrange equations in terms of the density profiles anghemical potential. On the other hand, nematic ordering of
order parameters the particles, induced by the walls, leads to a decrease of the

surface tension for large chemical potentials. For fixed small

3 3 chemical potentiaj, of the small particles a maximum of
1=-51(2)+5m0(2) L, 1-5,(2)+ 502(2) va1 as a function of the chemical potential of the large
In = L—In particles is observed.

1-5,(2) —=0x(2) For large negative chemical potentials, i.e., in the limit of
2 noninteracting particles, the wall-isotropic liquid surface ten-
sion is given by

3
1-51(2) - 50(2)

=2D[Lip1(2)q:(2)
L.D 1 L
+2L3p5(2)0x(2)]. (18) Ywi=12 2o HL | 42 exd 22
2P2 2 KaT 5 ex KaT +Llex kaT| |’ (22
For anys;j(z) and p;(z) there is a trivial uniaxial solution ] )
0:(z)=0 to Eq.(18). Nontrivial biaxial solutionsg;(z)#0  for the binary rod fluid, and
exist at sufficiently high local densitigs(z) = p{"®)(z) with )
the UB transition densities following from an expansion of YwD1 _ F{ﬂ) +&ex;{ ﬁ) 22)
the logarithms in Eq(18): kgT keT/ Dy~ "\kgT)’
3 [1-5s,(2)] for the binary platelet fluid. The prefactor 1/2 in E@1)
_ (UB 2 uB 2
M1=5,02)] =p{"P ()LD + —[1_51(2)]13(2 ((z)L3D. reflects the fact, that the orientationally averaged excluded

(199  volume due to the wall is smaller for rods than for platelets.
For the binary rod mixturey,,, is @ nonmonotonic func-
In the case of a monodisperse hard-rod fluid @§) reduces tion of u,; close the uniaxial-biaxial transition. The local
to Eq. (16). Since sy(z)=s,(z)=—1/2 close to the wall, minimum of y,, displayed in the inset of Fig. 7 disappears
local biaxiality sets in ifpl(z)+L§/L§p2(z)=1 near the upon increasing or decreasipg, i.e., in the limit of mono-
wall. We notice that, independent of the size ratios of thedisperse fluids.

051702-6



WETTING AND CAPILLARY NEMATIZATION OF . ..

PHYSICAL REVIEW E 66, 051702 (2002

0 T T T
—_ F -0.04
) 2 |
x i
a S -0.08
4 T I
G 4 = o2k -0.272 |
-0 24 6 (a) rods
L T - -0.16 1 1 1 N 1
1.0 -0.5 0 0.5 1.0 0.64 0.72 0.80
1/ (k) pJ(k,T)
T T T 0 T v T v T
04 F - c
= & -0.02 |
X Ol
&~ a
o I
g | F -0.04
(b) platelets 0 2 H/D,4 6 (b) platelets.
-0.06 " 1 " 1 " 1
L L . 0.60 0.64 0.68 0.72
-1.0 -0.5 0 0.5 1.0 AT
1 /(K. T) 1, /(ksT)

FIG. 7. The wall-isotropic liquid surface tensiay, of a binary
hard-rod fluid {;=2L,,L,;/D—~) (a) and a binary hard-platelet
fluid (D,;=2%°D,) (b), respectively. The chemical potential of the

FIG. 8. The finite size contributiom(H) of the grand potential
functional [see Eg. (20)] of a binary hard-rod fluid I(;
=2L,,L;/D—x) (@ and a binary hard-platelet fluid D
=228D,) (b), respectively, confined in a slit of widthl, and in
contact with an isotropic bulk reservoir at chemical potentigl

small particles is kept fixed for each curve and increases from bot--rhe chemical potential of the small particles is kept fixed at

tom to top: w,/(kgT)=—1,0,1. Bulk isotropic-nematic coexist-
ence occurs afu;=u{™(u,), which corresponds to the final
points of the curves at the righsee Fig. 8)]. The inset displays
vwi Of the binary hard-rod fluid fop,/(kgT)=1 with increased
resolution. The diamonds mark the uniaxial-biaxial transitions.

We have confirmed that complete wetting of the wall-

mol(kgT)=—1. The width of the slit increases from top to bottom:
H/L,=1.5,1.75,2.5,3 in(a) and H/D;=3,3.5,5,6 in(b). Bulk
isotropic-nematic coexistence occursmtzu(l'N)(Mz), which are
the maximumu, values displayedsee Fig. 8)]. The insets dis-
play the solvation free energw(H) as a function ofH at
n1/(kgT)=0.64.

isotropic liquid interface by a nematic film occurs along theMixtures close to the uniaxial-biaxial transition. As a func-
whole isotropic-nematic coexistence by observing a vanishtion of H the finite size contributiom(H) corresponds to the

ing contact angley,

_ 7w|(,U~i(IN))_ Ywn( i
YIN

(lN))

0s9 (23

Here yw|(,ui('N)) is the wall-isotropic liquid surface tension,
yun("™) is the wall-nematic liquid surface tension, and
N IS the isotropic-nematic interfacial tension. All tensions

solvation free energy for the immersed two plates acting as
the confining walls for the fluid. According to the insets in
Fig. 8, w(H) exhibits a minimum aH =0 [by construction,
w(0)=—2v,, and w(»)=0] so that the solvation force
—dw(H)/dH is attractive. For a discussion on the repercus-
sions of this solvation force in the context of colloidal sta-
bility we refer to, e.g., Ref[19]. Whereas for the present
systemsy,, >0 (see Fig. 7, for simple fluids the surface

are taken at isotropic-nematic two-phase coexistence. THENSION vy IS typically negative whenever the wall-liquid

chemical potentials at the IN transitions are denoteqhw)
[see Fig. 80)].

B. Film geometry

The results for the finite-size contributiom(H) are
shown in Fig. 8. For sufficiently large slit widths$ the slope

attractions dominate over liquid-liquid attractions and even
for hard wallsy,, <0 at densities well above liquid-vapor
coexistence for which drying does not occur. In those situa-
tions w(0)>0 and the solvation potential decreasesHas
increases.

The occurrence of the capillary condensed nematic phase
can be inferred more directly from the density and nematic

of w(H) as a function of the chemical potential of the large order profiles displayed in Fig. 9. The density profile of the
particles changes discontinuously at a critical value, signaleapillary condensed nematic phase is characterized by a
ling a first-order capillary nematization transition. We em-nematic phase throughout the slit, whereas the density profile
phasize thato(H) is a smooth and monotonic function@ff  of the coexisting phase decays toward an isotropic phase in
for fixed H close to the uniaxial-biaxial transition whereas asthe middle of the slit. As expected from the presence of
discussed aboveg,,, exhibits a local minimum for binary rod purely repulsive walls, the total local midplane density
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FIG. 10. (a) Phase diagram of a confined binary hard-rod fluid
FIG. 9. Coexisting isotropic and capillary condensed nematidL1=2L;, L;/D—) as a function of the chemical potentialg ,
profiles for a binary hard-rod fluidL(=2L,,L,/D—x) (a) and a &2, and wall separatiofl. The solid line represents the bulk phase
binary hard-platelet fluid ©,=22"D,) (b), confined in a slit of diagram[see Fig. 8a)], while the dashed and the dash-dotted lines

width H=6L,; andH=6D, respectively. The isotropic profiles of correspond to wall separatioms=6L, andH=2L,. For fixedH

the large particlegdashed lingsare characterized by;(z)=0 in ~ <H(u1,u2) the capillary condensation transition is first order and
the central region, while negativ@ositive) values of the nematic terminates at a critical point. These critical points for various slit
order parameters;(z) close to the confining walls &=0 andz widths form the dotted line. One example of such a capillary critical
=6L, (z=6D,) indicate that the rodélatelets are aligned paral- point is indicated by the solid circle. There the corresponding line
lel to the walls. The capillary condensed nematic phaséid liney ~ of first-order capillary transitions foH=2L; (dash-dotted ling

is characterized by strong orientational orderifig;(z)#0]  ends.(b) Phase diagram of the same fluid plotfedth the same
throughout the slit. The chemical potential of the small particles igine code as in(@] as a function of the average number densities
wy!(kgT)=—1.0 so that in the bulk{’L2D=0.44 andp{’L?D (p1) and(p,) in the slit. In between corresponding lines, there is
=1.14 in(a) andp(z')szo.44 andp(l')szl.OZ in (b). two-phase coexistence between isotropic and capillary condensed
nematic phases. For a small slit width=2L, (dash-dotted ling

. . the branches of the coexisting capillary condensed nematic phase
Pl(H/2)+p2(H/2) of the Caplllary_ C(_)ndensed _nematlc pha_seand isotropic phase end at a critical point denoted by the solid
is slightly smaller than the coexisting nematic bulk density ,qje.

p™M+pMN . For the binary rod fluid both the capillary con-
densed nematic phase and the nematic film in the coexistingh . . o o
isotropic phase are biaxially symmetric. The location of thecheémical potentials and the slit widths are shown in Figs.
uniaxial-biaxial transition has practically not been altered by!®@ and 11a). Upon decreasing the slit widtH
the confinement. =H.(u1,10)], the capillary nematization transition is shifted
It is apparent from Fig. 9 that the interfacial profile in the t0 smaller chemical potentials reminiscent of the shift of the
isotropic phase is larger for the platelet fluid than for the rodcapillary condensation transition in confined simple liquids.
fluid because of the relatively smaller intermolecular interacUpon increasing the chemical potentjaj of the small par-
tions between rods as compared with those between platelet&les, the critical wall separation decreases because the small
We observe coexistence between the isotropic and the capiparticles are preferentially in the isotropic phase in the
lary condensed nematic phase providest H (u,,u,). For  middle of the slit. This leads to a depletion of the large par-
sufficiently narrow slitd H<H.(uq,u,)] a sharp capillary ticles in the middle of the slit and prevents a continuous
nematization transition no longer occurs and is replaced by #lling of the slit even for rather small slit widths.
steep but continuous filling. Hence the capillary nematization Figures 10b) and 11b) display an alternative representa-
transition ends in a capillary critical point at a critical wall tion of the capillary phase diagrams in terms of average

separatiorH ,(wy , u,). number densities defined as

We have determined the capillary nematization transition
for various slit widths and the phase diagrams for binary rod (pi)= ifHde-(z). (24)
and binary platelet mixtures constructed as a function of the Y "HJo '
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2 @ T y T y proximation of the excess free energy functional, to deter-
nematic mine numerically the density profiles, orientational profiles,
1R TR ST . surface and finite-size contributions to the grand potential,
= : and phase diagrams with the following main results.
<o . (1) Figures 2 and 3 demonstrate that the bulk isotropic-
} I ] nematic transition of the binary platelet mixtufgize ratio:
1| isotropic . D,=2%°D,, whereD;xD; is the surface size of the thin

platelets of speciel§ occurs at a smaller density than for the
rod mixture (size ratio:L,=2L,, wherelL; is the length of
the thin rods of speciel§. Moreover, the density gap at the
isotropic-nematic transition is smaller for the rod fluid than
for the platelet fluid because of larger intermolecular interac-
tions between platelets as compared with those of rods.
(2) Plateletdrodg| lying very closely to a planar hard wall
must adopt a fully parallel alignmefgee Fig. 1, so that the
nematic order parametef&q. (11)] reach their limiting val-
uess;(0)=1 [s;(0)=—1/2] there(Fig. 4). The biaxial order
profiles[Eq. (12)] for the inhomogeneous fluids at densities
slightly below the bulk isotropic-nematic transition densities
demonstrate biaxial symmetryq;(0)#0] of rods and
uniaxial symmetry g;(0)= 0] of platelets near the wdlFig.
4].

FIG. 11. Phase diagrams of a confined binary hard-platelet fluid (3) The e>'(ces.s adsorptloﬁl(l)of the Iarg(fa) partlcles di-
(D,=22°D,). The solid lines represent the bulk phase diagram"€9€S logarithmically ap,—p;’, wherep;” is the bulk

(see Fig. 3 while the dashed and the dash-dotted lines correspond€nSity Of the large particles in the isotropic phase at the
to wall separationdd=6D; andH=2D,. The critical points for iSotropic-nematic transitioFigs. 5 and & Complete wet-

various slit widths form the dotted line ifa). ting of the wall-isotropic liquid interface by a nematic film is
confirmed by observing a vanishing contact angle.
Here the curves with low values ¢b|> represent the coex- (4) The steric interaction between the particles increases

isting isotropic phase and the curves with high valueppf  the wall-isotropic liquid surface tensiop,, with increasing

the capillary condensed nematic phase. Upon approachirgiemical potential, whereas nematic ordering of the par-
the critical pointf H<H.({p1),{p,))] the difference of the ticles, induced by the walls, leads to a decrease of the surface
average densities in the coexisting phases becomes smallénsion for large chemical potentialsig. 7).

and vanishes at the critical point. The shape of the coexist- (5) For sufficiently large slit widths the slope of the finite-
ence curves in Figs. 16) and 11b) reflects the fact that the Size contribution to the grand potential as a function of the
difference |n<p|> between the two phases is used as Ordephemlcal pOtentlal of the Iarge partlcleS Changes discontinu-
parameter. Our calculations lead to mean-field order paranfusly at a critical value, signaling a first-order capillary
eter exponents; hence the dash-dotted lines in Figh) 2dd ~ Nematization transitiofFig. 8). The density profile of the
11(b) do not intersect under an acute angle. The actua$apillary condensed nematic phase is characterized by a

rounding becomes visible only at higher resolutions. nematic phase throughout the slit, whereas the density profile
of the coexisting phase decays toward an isotropic phase in

the middle of the sli{Fig. 9. The isotropic-nematic interfa-
cial profile is broader for the platelet fluid than for the rod
We have applied a density-functional theory to fluids con-fluid.
sisting of binary hard-platelets and hard-rods near a single (6) Coexistence between the isotropic and the capillary
hard wall or confined in a slit pore of widtH. The particles condensed nematic phase is observed, provided the slit width
are square parallelepipeds with orientations restricted tél is sufficiently large H=H_ (x4, u,). For sufficiently nar-
three mutually perpendicular directiofiSig. 1). The rectan- row slits [H<H (uq,1,)], a sharp capillary nematization
gular shape of the particles and their restricted orientationgransition no longer occurs and is replaced by a steep but
allow one, within the framework of a third-order virial ap- continuous filling(Figs. 10 and 1L
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