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Nucleation rates and induction times during colloidal crystallization:
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A kinetic model for the evolution of the cluster size distribution during crystal nucleation and growth is
presented. The model allows one to establish precise links between model parameters and experimental mea-
sures of nucleation kinetics. This approach demonstrates the significance of several processes not accounted for
in classical nucleation theories. Chief among these is that the driving force for crystal nucleation decreases
rapidly due to a reduction of the background monomer concentration as crystallization progresses, resulting in
a reduction of nucleation rates. This, coupled with the disparities in the definitions of measured and predicted
guantities, leads to significant discrepancies between predictions of extant models and experimental estimates
of nucleation rates. Accounting for these effects, calculations of the kinetic model are shown to be in good
agreement with experimental estimates of nucleation rates, crystal growth velocities, and induction times
during the crystallization of hard sphere colloidal suspensions.
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[. INTRODUCTION predictions of classical nucleation theory are extremely sen-
sitive [5,6,9—13. As crystallization progresses, the back-
The kinetics of crystallization of colloidal suspensions hasground concentration drops significantly reducing the driving
seen extensive study due to the ability of these systems t@rce for subsequent crystallizati¢8,13,14, whereas extant
mimic molecular crystallization and due to applications in-theories assume the supersaturation to remain constant. For
volving highly ordered arrays of colloidal particl¢s—3)]. more complex systems such as proteins, discrepancies arise
Since the pioneering work of Becker and Dorid, models from uncertainties in the_ knowledge of the pair interactio_ns
based on classical nucleation theory have been employed & Well. and these details have not been incorporated into

analyze nucleation kinetic daf&,6]. Despite being the stan- descriptions of nucleation kineti¢45-22.
dard, however, comparisons of experimental estimates of. Asecond reason for the d|screpqn0|gs betwe.en m'o.del pre-
élctlons and experimental results lies in the disparities be-

nucleation rates and predictions of classical models are pooWeen the quantities measured experimentally and the quan-
often showing discrepancies of tens of orders of magnitud q P y q

[5.6]. Experimental investigation of nucleation kinetics in ities predicted by models. Nucleation rates are determined
/0l EXp Investig . rom light scattering experimenf&3,14 where the scattered
molecular systems is difficult because of the small time an

. . ; . ntensity detected involves the cumulative effect of the dis-
length scales associated with nucleation phenomena in thegg, iion of cluster sizes, whereas models predict the nucle-
systems and can be a cause for these discrepaf®i®ls  tion rate of clusters of the critical sizeefined below. Es-

Colloidal suspensions render these time and length scalggnates of nucleation rates are often obtained by measuring
amenable to experimental measurement. Even in these syggyction times during crystallizatiori3,14,23—2§ usually
tems, however, independent estimates of nucleation rates ofefined as the time after supersaturating a suspension for
tained using different experimental techniques but undegetectable crystals to first appear. Links between induction
identical crystallization conditions show severe discrepancieimes and nucleation rates are only empirif@j23,25,27,

not only for complex systems such as protefif but also  making comparisons of model predictions and measurable
for well characterized hard sphere colloidal suspensionguantities questionable. Currently, no models exist for pre-
[9,10]. dicting induction times.

One reason for these discrepancies lies in the inadequa- Due to these limitations, definitive interpretations of the
cies in the nucleation rate models employed. Due to the foelata obtained from experiments on the kinetics of crystal
cus of classical models on the energetics of cluster formaaucleation are difficult. As a consequence, a fundamental
tion, a detailed description of what is inherently a understanding of the governing principles of the crystalliza-
nonequilibrium, kinetic process is compromised. Further, untion process is still lacking. To facilitate such an understand-
certainties exist in our knowledge of the solid fluid surfaceing, we present in this paper a model of colloidal crystalli-
tension—often used as an adjustable parameter—to whichkation kinetics that predicts precisely the quantities measured

in nucleation kinetics experiments.
We consider light scattering experiments on supersatu-
* Author to whom all correspondence should be addressed. Emaiated hard sphere colloidal suspensions. There are two ad-
address: czukoski@uiuc.edu vantages of starting with this system. First, there is a grow-
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ing database with which to compare our predictionsvery good agreement with reported quantities. The model
[9,12—14,28—-3B Second, the pair potentials governing the thus provides significant insights into the underlying mecha-
particle interactions are well understood: Two hard spher&isms governing crystal nucleation and also a more rigorous
particles experience no direct interactions in suspension exoute for interpreting data obtained from nucleation kinetics
cept for an infinite repulsion at contact. The resulting phas@€Xperiments. ) )
behavior is simple: only solid-fluid phase transitions occur, 1Ne paper is organized as follows. In Sec. Il, we describe
governed by a single parameter, the particle volume fractiorfn® quantities measured in scattering experiments in terms of
4 [39,40. The freezing boundary occurs ét=0.495. As¢ the cluster size distribution in a crystallizing sample. In S.ec.
increases above,, an increasing fraction of the suspension!l» We develop the population balance model that predicts
is eventually crystallized, the fraction reaching 100% at thdhe time evolution of thl_s (_:Iuster size dlstr_|but|(_)n._ln S_ec. v,
melting boundarygb,,=0.55. Wheng> ¢, 100% crystal- we pr(_asent model prgdlct_lons o_f cluster size distributions and
lization is achieved with the crystalline phase at a packing*Perimental quantities including nucleation rates, crystal
fraction ¢ equal to the initial particle volume fraction in the 9rowth velocities, and induction times, and compare them
fluid phase. Crystallization can be suppressed under terreddth €xperiments. In Sec. V we draw conclusions.
trial conditions by rapid increases @f above ¢, resulting
in a hard sphere glass @t-0.58[41]. In microgravity, crys-
tals eventually emerge from glassy suspens|@es.

Light scattering experiments detect the number and the We consider a colloidal suspension containing spherical
size of the scattering units in a crystallizing sample. Thel’e-partides of radiia, occupying a volume fractio@ﬁo_ If bo
fore, prediction of quantities derived from these measure=- ¢ the particles will aggregate to form growing clusters.
ments demands knowledge of the evolution of the distribuywith time, a distribution of cluster sizea(m,t), defined as
tion of cluster sizes as crystallization progresses. Previouslyhe number of clusters in the sample containimgnonomers
cluster size distributions have been predicted using classicak a timet after the onset of crystallization, emerges and the
nucleation theory, but the assumptions employed make thgolume fraction of single particles, or monomers, decreases.
predictions approximat€5,42—46. For example, WU42]  |n typical light scattering experimenfd3,14, the intensity
assumes that a Steady state distribution of small clusters tﬁ ||ght scattered by such a Suspension is detected around the
instantaneously achieved, whereas Schneidman and Weifirst Bragg peak. As crystals nucleate, the Bragg peak grows
berg[43] assume that small clusters exist in an equilibriumand narrows. The area under the Bragg peak contains infor-
distribution dictated by the energetics of cluster formation.mation about the fraction of the Suspension that is Crysta|_
Shi and Seinfeld44] rigorously calculate the evolution of jine, while the width of the peak contains information of the
the distribution of clusters of all sizes, but assume that th%verage Crysta| size. This information is ana|yzed to obtain
background monomer concentration remains fixed as crystajnduction times, crystal growth velocities, and nucleation
lization progresses. rates[13,14,38. Below, we use Bragg scattering theory to

Here, we develop a population balance model to describgejate measured quantities to the cluster size distribution,
the evolution of the cluster size distribution in crystallizing n(mt).
systems. In this model, clusters form and grow as a result of yUsing Laue’s approximatiof47], the linewidth of the
a competition between two processes: the aggregation @fcattering from a cubic crystalline cluster consistingnof
single particles onto and the dissociation of single particlesbartides can be shown to equal 1&)2n'® and is inversely
from cluster surfaces. Particles aggregate onto cluster sufroportional to the linear dimension of the cubic crystal.
faces by gradient diffusion, driven by the differences be-Here, 2 is the lattice spacing assumed to equal a particle
tween their concentrations in the bulk suspension and negfjameter. In the presence of more than one cluster, the line-
cluster surfaces. Particles on cluster surfaces reside in poteidth gives an average cluster size. Assuming the clusters to
tial energy wells because of their bonds with neighboringse optically independent so that the total intensity scattered
particles. These surface particles dissociate back into thg the sum of the intensities scattered by the individual clus-

bulk suspension by diffusing out of their respective potentiakers[47), the average crystal size follows as:
wells via thermal motion. In a previous stufi0], we have

II. QUANTITIES ESTIMATED FROM LIGHT
SCATTERING EXPERIMENTS

developed descriptions of these processes for hard sphere %

systems and calculated steady state nucleation rates and crys- Z m*3f (m,t)

tal growth velocities. Here, we employ these descriptions to L(t) m=m*

build a population balance model that allows the determina- 2a = ' )
tion of the evolution of the cluster size distribution. Interest- E mf(m,t)

ingly, we find that as crystallization progresses the back- m=m*

ground monomer volume fraction rapidly decreases from the

initial value, lowering the driving force for crystallization where the smallest sized cluster that can produce a detectable
significantly. This important effect is ignored in classical ap-Bragg scattering intensity is set to*, the critical cluster
proaches. Linking the quantities measured in scattering exsize defined below, anf{m,t) =n(m,t)/N is the normalized
periments to the cluster size distribution, we are able to preeluster size distribution, witiN being the total number of
dict the measured nucleation rates, crystal growth velocitiesnonomers in the suspension at titne0 marking the onset
and, in particular, induction times. The predictions are inof crystallization.
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The fraction of the suspension crystallizeX{t), is de- lution of the cluster size distribution of the normalized num-
fined as the ratio of the volume occupied by the crystals tder densitiesf(m,t)=n(m,t)/N, as
the total volume of the suspension. Assuming thatrepar-

ticle cluster occupies a spherical volume of radiRg, df(m,t)
%a(m/d)cryst)llsa it follows that BT f(m+1t)a(m+1,¢p)+f(m=1t)B(m—1,¢4)
“ mf(m,t) —f(mt)[a(m,¢)+B(m,¢)], m>1,
X(t)=do 2 2

mem* Perys{P(1)’
df(L)

dt

2f(2)a(2,0)—21(11)B(1,9)
where ¢y is the packing fraction of monomers inside a
cluster, assumed here to be independennhdifut dependent %
on the instantaneous monomer volume fractig(t). It can + > [f(m+1h)a(m+1,6)—f(mt)B(m,¢)].
be shown tha¥X(t) determined experimentally agrees with m=2
Eg. (2) to within a constant multiplicative factor.

Finally, the number density ofaverage-sizedcrystals

N(t) is calculated as the ratd(t)/L>(t) and can be written i . . _— .
as Solving these equations with the initial conditions,

f(1,0)=1 and¢(0)= ¢, Yields the evolution of the cluster
. 4 size distribution as crystallization progresses. This requires
bo [2 e Mf(M,1)] knowledge of¢(t) and the average dissociation and aggre-

©)

N = (223 6(0) (37, P (mp O gation ratesa(m.¢) and(m.d).
For hard sphere suspensions the aggregation and dissocia-
o . . tion rates have been determined previoyd9,48 as fol-
giving the experimental nucleation rate lows. To determine dissociation rates, particles on a cluster
surface are assumed to reside in potential energy wells be-
N(t) cause of their bonds with their nearest neighbd8,49.

d
J(t)= (4)  Although two hard sphere particles experience no interac-

tions in dilute suspensions except for an infinite repulsion at

contact, in dense suspensions, the prominent peak in the pair

Classical theories predict the steady state nucleation raigistribution function,g(r), at contact indicates the tendency

as the steady rate of increase of clusters bigger than the critbf two nearby hard sphere particles to come close to each
cal size [5]. Thus, Jgassica IS proportional to other rather than stay separaf&@]. This tendency is treated
d[Z:;:m*f(m,t)]/dt. Clearly, this is not the same as the rateas an effective attraction between the particles that leads to
J(t) determined experimentally, the latter representing a subbond formation. The strength of these bonds is estimated
stantially different average over the cluster size distributionusing the potential of mean fordd0,50. The number of
Similarly, the crystal growth velocitiesR,,/dt, predicted these bondsCs, depends on the cluster radiuR as
by models are not the same as the velocitis(t)/dt, de-  Cs(R)=C;+(Cs..— C) (I —exp{{(Rnin—R)/2a}), and deter-
termined experimentally. It is not surprising, therefore, thatmines the depth of the potential well in which the surface
extant models are poor predictors of measured quantities. Tarticles reside. Heré; is the number of nearest neighbors
extract meaningful information from these experiments, weof a particle in the fluid, which, following previous esti-
require a model that predicts the evolution of the cluster sizénates, is set at 9 over the volume fraction range of interest
distribution, f(m,t), the background monomer volume frac- [10]. Cs..=11 is the number of nearest neighbors of a par-

tion, ¢(t), and the crystal packing fractiom,s. We de- ticle on the surface of an infinitely large cluster, and its value

dt

velop such a model in the following section. is determined from conditions enforcing thermodynamic
consistency[10]. R,,,=a(2/0.74}® is the radius of the
IIl. POPULATION BALANCE MODEL smallest possible cluster, i.e., containing two patrticles. The

form for C4(R) chosen here is an empirical interpolation,
We consider again a colloidal suspension contairihg where the parametef controls the rate of increase @,
spherical particles of radi, occupying a volume fraction from C; to Cy,. asR increaseg10]. This parameter can, in
¢o>¢s. In this suspension, individual clusters form and principle, be determined independently. In addition, it is re-
grow as a result of the competition between two processesated to the curvature dependence of the solid-fluid surface
the aggregation of monomers onto and the dissociation ofension as discussed below.
monomers from cluster surfaces. The rates of these pro- The motion of the particles in this potential well is de-
cesses, denotefl and «, respectively, depend om and ¢. scribed by the Smoluchowski equatigd8]. Solving the
On average, a cluster growsgt> « and shrinks ifB<a. At Smoluchowski equation, the average time required for the
any ¢, the sizem* =m*(¢) at which =g is called the particles to diffuse out of their potential wells into the bulk
critical cluster size. Herep(t) = v,n(1t) and vp=4wa3/3. suspension is determined. Then, the rate at which particles
WhenN is large, population balance determines the evo-dissociate from the cluster surface is
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6wDyprR[1—(1—a/R)®] [1+a/R]? {(1—¢Rﬁ Cs=Cy I
a(m, )= a’ [1-a/2R] [(1+a/R)*—1]|(1—¢Rr/2) ’ ’ (6)
0, m=1
|

where the clusters are assumed to be spherical, sonthat dof(Lt)
= (R/a)% s The packing fraction of particles on the sur- d(t)= bo(1l—T(1D) 9
face, pr=0.486+0.154 expé(p—0.64)/(¢— <)}, and ¢ s el
=0.495 is the solubility boundary for hard sphere suspen- berys(H(1))

sions[10]. Again, the form for¢g is an empirical interpola-
tion where the parametercharacterizes how the density of Equation(9) closes the set of coupled differential population
particles in the surface layer changes with the suspensiopalance equations, represented by Egs-(8) above, which
volume fraction. We relate this parameter to the volume fracean now be solved to obtain the evolution of the cluster size
tion dependence of the solid fluid surface tension as disdistribution as crystallization progresses. We present our cal-
cussed belowDj is the Stokes-Einstein diffusivity of the culations and comparisons with experiments in the following
particles, andv=0.2 is an approximate hydrodynamic cor- section.
rection toD, on the cluster surfacil0].

As particles associate to form clusters, a small zone
around the clusters becomes depleted of monomers. This V- MODEL CALCULATIONS AND COMPARISONS
generates a gradient in the concentration of monomers from WITH EXPERIMENTS
the bulk suspension to the cluster surfaces. Particles are as-
sumed to aggregate onto cluster surfaces by diffusing down o . _ _ o
this concentration gradient. Knowing the gradient diffusivity ~SNOWn in Fig. 1 is the evolution of the cluster size distri-
of hard sphere particles, the diffusion equation is solved t®ution, f(m,t), obtained by integrating the population bal-
give the aggregation rate &80] ance equations, Eq$5)—(9), for a hard §phere suspension
with ¢o= ¢,=0.55. (For these calculations, the valués
=0.9 andé=1.0 have been used and will be explained be-
low.) Beginning withf(m,0) as as function atm=1, f(m,t)
increases with time fom>1 and decreases fan=1. The
monotonic decrease df(1t) indicates the conversion of

—4¢"3+¢'de'. (7) " monomers to larger clusters. Fon>1, f(m,t) first in-
creases, reaches a maximum valfE{mt™®), at which it

To determined(t), we assume that all clusters exist in St&ys for an extended period of time and eventually de-
mechanical equilibrium with the background suspensiorfT€8S€Simax increases monotonically witm. We note that
[10]. For determining nucleation rates and induction timesSimilar trends, where the number densities of clusters of in-
we are interested in the evolution of the system over time§'€asing sizes sequentially reach steady states, have been
small compared to the times over which crystallizationPredicted by Shi and Sienfe(d4].
reaches completion. At these short times, Harland and van 1€ corresponding evolution of the monomer volume
Megen[13] showed that crystals exist in mechanical equilib-action, ¢(t), is shown in Fig. 2 for several values ¢b.
rium with the background suspension 6> ¢, Here, we Three (_j|§t_|nct regimes chara_cterlze the evolutiorpéf): a
assume the approximation to hold fog< &, as well. Then, sharp initial decrease, an |ntermed|ate plategu, whgre
by equating the pressures in the solid and fluid phases usirg pia{ $0), and a late third regime of less rapid decrease.
the known equations of state for the two pha§és,52, e existence of these regimes leads to the following de-

deysiCanN be related tep as follows[10]; scription of the nucleation process.
In a metastable suspension consisting of monomers alone,

pairs of monomers aggregate to form dimers. Wheh

A. Evolution of the cluster size distribution

3RD,
a3

B(m, )= (1+%)f¢(1—¢')2-5%1+4¢'+4¢'2
PR

_ 0.738 g >2, dimers have a much greater tendency to shrink than to
berysi= 2171—¢)° 8) grow. As a result, a pseudo-steady-state distribution is
+ (1t ¢t o269 quickly established between monomers and dimers. Accord-

ingly, ¢ decreases fron®g to ¢ 5. Slowly, however, trim-

ers form, and the distribution shifts to a steady state between
From ¢¢ys and f(1t), the volume occupied by the clusters monomers, dimers, and trimers. As the number density of
is determined. Assuming the total volume of the crystallizingtrimers is small[ f(3,t)/f(2t)<1], ¢ remains nearly con-
sample to be fixed, this gives the volume available for thestant atép,. This process continues, with bigger clusters
monomers in the background suspension. Then, knowing thi®rming at increasingly slower rates, until clusters of the
volume occupied by the monomess(t) can be determined critical size are formed. These clusters have a greater ten-
as dency to grow than to shrink. As they grow, monomers are

051602-4



NUCLEATION RATES AND INDUCTION TIMES DURING.. ..

PHYSICAL REVIEW E66, 051602 (2002

10° 0.57
1
F - T 2 0.56 |- o =057
.2 =5 [ o
107 ¢ \ ——10
b \ \\ --+--31 0.55 r
Oy xe42 : 0.56
107 | N\ tD /a® -~ 52 054 |
= i § ° - 73 =
s [ \ ™ - =3
§, .\ 1) *g;’ 0.53 [ 0.55
10° VAN 104 0.54
; vONAERY -o— 156 052 [
E el oo\ s- 208 0.53
' \ v -‘\.\ \O E]‘
8 b | RO N --e--261 051 L
10 LV ——s1a ' 0.52
[ | RN S
F (a) LI T ‘?Wi)\ 0.5 b * ‘
1o L METEREE WY 10 100 1000 10000
1 10 100 tDO/az
m
10° FIG. 2. Time evolution of the background monomer volume
E m=1 fraction, ¢, for different values ofp, .
E 2

B. Nucleation rates, growth rates, and induction times

Measurements of nucleation rates during the crystalliza-
tion of hard sphere suspensions have been reported by sev-
eral groups[12—-14,3Q. Simulation studies have also been
performed[9], and classical13,14,28,35,4P and kinetic
[10] models have been applied to interpret the experiments
and simulations. While significant quantitative discrepancies
exist, the following qualitative trends have been observed: At
small supersaturations, gsincreases abové,, the thermo-
dynamic driving force for crystallization increases, resulting
in an increase in nucleation rates. At very high volume frac-
tions, however, the concentration gradient between the sur-
face of a crystal nucleus and the bulk suspension diminishes.
Aggregation of particles onto the crystal surface, being
driven by gradient diffusion, also diminishes, reducing the
nucleation rate. As a result of these competing influences, a
maximum in the nucleation rate occurs at an intermediate
volume fraction of about 0.56.

f(m.t)

(b)

1070 Lo L
1 10

tD /a2
o]

100

FIG. 1. Time evolution of the cluster size distribution, obtained
by solving Egs.(5)—(9), in a suspension with an initial monomer
volume fraction,¢y= 0.55.

rapidly consumed from the background suspension driging 0.58 ¢
below ¢pja;- s
Based on this description, a good estimatepgf; can be f
obtained from a steady state distribution of monomers and 0.56 [
dimers alone. This yields
¢O s
= . (10) 2 054}
o 2B L[ o } <
a(2a¢plat) ¢crysl( ¢plat) _
As shown in Fig. 3, estimates @, obtained thus are in 052
excellent agreement with the values obtained from solving g
the population balance equations. The slightly but systemati-
cally higher values ofp, obtained from Eq(10) suggest 0.5 e s .
0.5 0.52 0.54 0.56 0.58

the presence of small numbers of larger clusters as expected.
The rapid reduction of the background monomer volume o
fraction during crystallization significantly reduces the driv- °

ing force for nucleation. Nucleation occurs at a rate deter- FIG. 3. Intermediate plateau volume fractiofsee text, ¢pa,
mined by ¢~ ¢, and not ¢, as assumed in classical for different values ofp,. The solid line represents calculations via
models. Eq. (10) and the symbols are obtained by solving E@s—(9).
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FIG. 4. Time evolution of the number of crystals for different
values of¢g, calculated using Eq3).

FIG. 5. Time evolution of the total number of crystdkolid
line) compared with that of the number of crystals of the critical
size(dashed lingfor ¢,=0.53. The inset shows the crossover time

Steady state nucleation rates predicted by the classic#dee tex), tqoss @s a function ofpg.
approach capture the experimental data well, albeit using the

solid fluid surface tensiotfor another quantity such as the i, experiments,J(t) appears to attain a pseudo-steady-state
particle  diffusivity as an adjustable parameter \5,e after a transient period.

[9,10,13,14,49 In the classical approaclhy is assumed to In Fig. 7, we compare our calculations &, ¢o) with
remain constant ap, during crystallization. From the popu- e experimental estimates of Palbdity], Schatzel and
lation balance model above, howgver, we note thgtickly Ackerson[29], and Harland and van Megdi3], and the
decreases 1@b 5. At the same time, the analyses of the gimylation data of Auer and FrenK@l]. We find good agree-
experimental estimates in Sec. Il show that the experimenyment between our predictions and the experimental esti-
tally determined)(t) measures a different quantity from that mates. Our predictions capture the qualitative trends of the
predicted by classical models. Employing classical modelgyperiments accurately. Quantitative discrepancies of several
for analyzing data from scattering experiments is thereforgygers of magnitude exist between independent experimental
questionable. Here, we employ the population balance modelstimates, and between experiments and simulations. The
to calculate experimental quantities as described in Sec. Il.origins of these discrepancies remain poorly understood. One
We begin in Fig. 4 with calculations of the number of reason for the discrepancies might be that the simulations of
crystals,Ng(t), using Eq.(3), for several values ofy. The  Ayer and Frenkel9] employ approximate descriptions of the
parameter valueg=0.9 and¢=1.0 are usedsee below.  pydrodynamic interactions of the colloidal particles in sus-

At small timesN,(t) increases rapidly, followed by a regime pension. Our predictions agree with the experimental esti-
of much slower increase. The two regimes are understooghates to within the uncertainties in the experiments.

by comparing N.(t) to the quantity Ng(m*,t)
=(1/8a3)[¢0/¢crysl(t)]f(m*,t), which is the contribution

of the number of critical clusters td.(t), as shown in Fig. 10° [
5 for ¢o=0.53. We note that up to the crossover from the .
first to the second regime, which occurs at a time we denote 10° |
terosd P0), Ne(t)=~Nc(m*,t). Beyondtcess, Ne(t) continues 0 |
to increase, whereds.(m*,t) stays constant for a substan- ~° 10 i
tial period of time and then decreases. ThygsCcharacter- R T
izes the time for the cluster size distribution up to the critical & E
size to reach steady state and is closely related to the lagtime £ 10™¢{
. . . . =
predicted by classical mod€]5,42—4§. In the inset of Fig. .
5, we showtssas a function ofey. 107 ;

In Fig. 6, we present calculations of time dependent 1078 ] ;
nucleation rates](t), using Eq.(4), for different values of {
¢o. Since changes iN(t) are over several orders of mag- 1020 L

10

nitude, we simplify Eq.(4) using dN(t)/dt~N(t)/t. For
all values of¢g, we find thatJ(t) first rises sharply untit
~terosd Po)- Beyond tgose, J(t) rises more slowly and
reaches a plateau valdg,{ ¢o) before decreasing eventu-

ally. Thus, as predicted by classical models and as observedr several values ob,.
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FIG. 7. Pseudo-steady nucleation rafdse plateau values in short times and the"2 dependence at long times.

Fig. 6) as a function ofg, (filled circles compared to the experi-

mental estimates from Palbef@4] (open squargs Schatzel and  gjon of Auer and Frenkdl9], who find that the values of

Ackerson[29] (circles, maximum(checkered squareand average  gptained from such fitsya2/k T~0.12) are lower than those
(dotted squargsucleation rates from Harland and van Me28], obtained from fits to their simulation data/éézlkT~0.18).

a:d fro dm tk:e d§imUIa2§r;sh°f c’fueL and Frenlknglio:] monodisperse  nnte that classical nucleation theory predicts nucleation rates
(+) and polydispers ard sphere suspensions. to be proportional to exp(y®), whereA is a constant at a

. . given supersaturation so that the rates are exceptionally sen-
The parameterg and ¢ are associated with the volume sitive to changes iny. Interestingly, however, we find that

g:cgageitcéhif Ctll'?:tﬁ[lrlrlw%lg? C;Ptrfé];\ar?star:]:i tl?gofslus_‘lfﬁéssézggredlctlons of steady state nucleation rates using the classical
P . 9 ' approach[10] (not shown with the parameter valueg
rameters can be linked to the curvature and the volume frac-' N : ) .
: . . . =0.9 andé= 1.0 but usingg,,,; instead of¢, compare quite
tion dependence, respectively, of the solid fluid surface ten- . : P
. i well with the experiments.
sion, v, as follows[10]:

To compare crystal growth rate data with model predic-

YR, p)a’>  ¢gR (1—(1—a/R)%) tions, we present in Fig. 8 calculationsloft) using Eq.(1)
KT 4ma  (1-al2R) [Cerystin 9(2a, derysy) for several values ot),. Again, two distinct regimes char-
acterize the evolution of (t), separated by.os{ ¢g). L(1)
—CslIng(2a,¢R)]1, (11)  is nearly independent dffor t<<tg,ss, and begins to rise for

t>t0ssWith @ power law dependence onThe behavior for

where Cgys—=12, ¢r=0.486+0.154 expé(p—0.64)/(p  t<t.,ssiS consistent with the fact that in this regime the
—¢g)}, and ¢s=0.495, Cy=C;+(Cq.— Cs)exd {(Rmin number of clusters of the critical size increases tremen-
—R)/2a], and g(2a,¢)=(1— ¢/2)/(1— ¢)3. Thus, know- dously, whereas the number of bigger clusters remains al-
ing the curvature and volume fraction dependence,dhe  most constant. Therefore,(t<tcmsg~[m*(¢p|at(¢o))]l’3,
parameterg and £ can be determined independently. Suchand is almost constant. Fdr>t... we find that L(t)
information for hard sphere crystals is not available. As a~t'2 for all ¢,. Both these dependences have been ob-
result, we treat the parameters as adjustable and choose terved in experiments and have been predicted by the recent
values{=0.9 and¢=1.0, to yield the best agreement be- analysis of Chengt al.[36]. In Fig. 9, we compare experi-
tween predictions ofl,,{#o) and experimental nucleation mental growth rate data with the predictions of Et. The
rates. comparisons are quite satisfactory indicating that the popu-

Because nucleation rates attain pseudo-steady-state vadtion balance model captures much of the behavior observed
ues, classical treatments, assumif@o be constant, can be experimentally during the nucleation and growth of hard
applied to predict the experimental nucleation rates. Asphere crystal§We note that the model for crystal growth in
shown previously, such approaches lead to a different set dtef. [10] using ¢(t)= ¢, predicts thet*? dependence for
values for{ and £ [10]. Differences in the parameter values long times but fails to predict the? dependence for small
correspond to differences if. In particular, forR>a and times. This is due to its inability to predict the growth of
$~0.55, ya?/kT=0.23 when{=0.9 and¢=1.0, whereas subcritical clusters. As a result, experimental values.of
ya?/kT=0.20 as determined previougl§0]. This suggests (>R*) andt were employed as inputs for calculating growth
that fits to experimental estimates of nucleation rates assunates, resulting in the apparent better agreement between
ing ¢ remains constant apy result in smaller values o  model predictions and experiments.
than their true values. This is in agreement with the conclu- Finally, we present comparisons of measured and calcu-
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FIG. 9. Time evolution of the average crystal sizes calculated FiG. 11. Induction times calculated using E@) (circles (see

using Eq.(1) for ¢o=0.535(solid line), compared with the experi-  text) and compared with the experimental estimates of Harland and

mental estimates of Palbef§j4] obtained via small angle light scat- yan Megen[13] (checkered squarpsand Palberg[14] (open
tering (triangles and Bragg scatteringsquares also for ¢ squares
=0.535.

Fig. 11, we present calculations of the induction times and
lated induction times during hard sphere crystallization. WQ:Ompare them with the experimental estimates of Harland
emphasize that due to the inability of previous attempts tgynd van Megeri13] and Palberd14], both obtained from
predict the evolution of cluster size distributions and the fa”-Bragg Scattering experiments_ We note that a quaiitati\/e dis-
ure to link measured and predicted quantities, no modelgrepancy exists in the,, dependence of the induction times,
currently exist to predict induction times. The present com+, .. reported in the two experimental data sets. Ag is
parison is only possible because the model is developed tgcreased up to 0.5%;,4 decreases and the two data sets
prediCt the evolution of cluster size diStI’ibutiorfE(,m,t), agree to within an order of magnitude_ Beyomz 055,
and thus provides a rigorous test of model predictions.  however,t;,q increases in the estimates of Harland and van
~ The time evolution of the fraction of the sample crystal- \jegen, whereas it continues to decrease monotonically ac-
lized, X(t), calculated using Eq2), is presented in Fig. 10 cording to Palberg. The origins of this discrepancy remain
for several values of,. X(t) counts clusters bigger than the poorly understood. Our model agrees qualitatively with the
critical cluster Sizem*, and is small during the rapid forma- estimates of Harland and van Megen, predicting a minimum
tion of smaller clusters in the initial stage of nucleation. Asijp t,,g at ¢o~0.55. Quantitatively as well, our model cap-
the number of clusters bigger than® increasesX(t) in-  tures the data of Harland and van Megen to within an order
creases and yields an induction time determined as shown. & magnitude.

The ability of our model to predict induction times is a
significant advantage over classical models. Direct measure-
ments of nucleation rates are difficult and more reproducible
; induction time measurements are often used to estimate
015 | : nucleation rates. More recent applications involving protein

/ crystallization preclude nucleation rate measurements from
scattering experiments, as the particle sizes are significantly
smaller than the wavelength of light. Here, small angle light
scattering experiments allow induction time measurements,
but their interpretation is confounded by the lack of models
ind [24,25. The present model thus provides a route to extract
0.05 - ,"' ! valuable information from such experiments.

¢ =057
e —"GE | V. CONCLUSIONS

0 5000 10000 15000 The population balance model presented here predicts the
tD /a? time evolution of the cluster size distribution during crystal-
e lization and allows us to predict quantities that are measured
FIG. 10. Time evolution of the fraction of the suspension crys-experimentally to probe the kinetics of colloidal crystalliza-
tallized calculated using E2) for several values of,. The pro-  tion. In particular, comparisons have been made between
cedure for calculating;,q is demonstrated fop,=0.54. predicted and measured nucleation rates, crystal growth ve-

0.2

£ o1}
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locities, and induction times, the measurements made vidly for these effects. In addition, a significant advantage over
light scattering experiments on the crystallization of hardclassical models is the ability of the population balance
sphere suspensions. Model calculations suggest that predigrodel to predict induction times. Measurements of induction
tions of these quantities are affected significantly by the detimes are much simpler than nucleation rates, but interpreting
crease in the background monomer volume fraction as cryshe resulting data has been confounded by the lack of mod-

tallization progresses. Classical approaches assume thgs Predictions of induction times using the kinetic model
background monomer volume fraction to remain fixed, anccompare well with experiments.

therefore, overestimate the driving force for crystallization.

At the same time, discrepancies exist in the definitions of the

guantities predicted by classical models and the quantities ACKNOWLEDGMENTS

measured experimentally. Consequently, fits using the classi-

cal approaches to experimental estimates of nucleation and The authors acknowledge support from the U.S. DOE via
growth rates result in erroneous values of the adjustable pahe University of lllinois at Urbana Champaign, Frederick
rameters like the solid-fluid surface tension. The kineticSeitz Materials Research Laboratory Grant No. DEFGO02-
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