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Rotation due to hydrodynamic interactions between two spheres in contact
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We analyze the rotational and translational motion of two close spheres in a fluid at low Reynolds number
to investigate if their surfaces come into mechanical contact. The rotational motion of a sphere settling close to
another fixed ball is calculated from a model in which contact interactions between the spheres are added to the
gravitational and hydrodynamic forces. The model predicts a transition from pure rolling to rolling with slip,
determined by the Coulomb’s law, when the ratio of the mechanical friction to the load increases up to the
static friction coefficient. The dependence of the angular and translational velocities on the kinetic friction
coefficient and on the separation between the particle surfaces is analyzed. The angular and translational
velocities of a millimeter size bead in a viscous oil, close to a fixed bead of a similar size, are measured from
video images. Interferometric data on translational motion are also collected according to the method intro-
duced in our earlier studies. A systematic fitting procedure of the model to the experiment is developed and
applied to the rotational and translational measurements. The model parameters are determined.
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[. INTRODUCTION regions of the motion: pure rolling and rolling with slip de-
scribed by the standard Coulomb’s law. The roll-slip model
The understanding and calculation of the macroscopicleals with averaged quantities such as an effective distance
structure and transport properties of suspensions, such as thetween the particle surfaces rather than with the local real
effective viscosity or the sedimentation velocity, are basedeparation, which varies with tin{d7].
on the investigation of hydrodynamic interactions between Before applying a model of contact to describe a suspen-
the suspension particles immersed in a fltde-9]. One of  sion, it is essential to study in detail how the contact inter-
very special, inherent features of such interactions is that thactions modify the two-particle relative translational and
so-called lubrication forces between close particle surfacestational motion, and verify these predictions in
separated by a thin liquid layer increase indefinitely with thecorresponding experiments. For example, the measurements
decrease of the gap sig&0]. The fluid between two smooth of the relative translational velocities of two particles in a
rigid spheres resists their approach so strongly that it prefluid at rest from Ref[14], are neither in agreement with the
vents both surfaces from touching each other. However, thstick-rotate model, nor with the roll-without-slip model, nor
real particles have certain asperities, and the questiowith the frictionless roll-slip model14].
whether(and under which conditionghey actually get into Descriptions of the two systems of touching spheres
contact is a subject of recent stud{d4-17. within the roll-slip model were constructefl3,15 and
The practical reason for such investigations is that theshown to be in agreement with the measurements of the par-
contribution from very close distances between pairs of particle translationalvelocities[14,15. In Ref.[15] one sphere
ticles gives a non-negligible contribution to the macroscopiowvas fixed, and the other one was moving due to gravity; in
properties of suspensions, even if they are not d¢t8e-  Refs.[13,14] both spheres were mobile—one was heavy and
22]. As aresult, the existence of contact interactions betweethe other one was buoyant. The translational motion of
rough particle surfaces is expected to simplify the calculaspheres was measured by a video technique in[Réf.and
tions and to influence the suspension structure and values by an interferometric methof85,36] in Refs.[15,37].
its transport coefficient$23]. Quantitative estimations of However, the fitting of the experimental data performed in
such modificationg13,24—28 are based on very simple these approaches leads only to rough estimates of the model
models of the contact. For example, in the simplest stickparameters. There exist three reasons for this drawback.
rotate model, both particles are locked togef{l2®—31. The  First, there exists an essential theoretical source of the inac-
alternative roll-slip mode[13,15, which we use in this pa- curacy; that is, the lubrication forces depend logarithmically
per, assumes that for very close spheres mechanical frictioon the gap size and this is why the motion is weakly sensi-
forces should be added to the other forces acting on the pative to changes of the effective averaged distance between
ticles (i.e., hydrodynamic, gravitational, etcThen the de- the particle surfaces. Second, the model depends on four pa-
scription of the mechanical friction forces is based on therameters, and it is difficult to evaluate their values and un-
standard friction theory32-34. The model predicts two certainty by a simultaneous fit of them all. Third, during the
rolling with slip, there appear large velocity fluctuations
which do not allow to benefit from the high accuracy of
*Electronic address: mekiel@ippt.gov.pl interferometry. As a result, measurements of the relative
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translational velocities practically do not allow to specify namic forces caused by the fluid. Since the Stokes equations
what is the effective distance between the particle surface€l) are linear, the particle translational and angular velocities,

[15]. U, andQ;, depend linearly orfr; and T,
To remove this inaccuracy, in this paper we analyze both
theoretically and experimentally the relativetational mo- Ug Fi
tion of two close spheres, in addition to the translational one Q)= it T, 2
[38]. We develop a systematic procedure to compare the

model of combined contact and hydrodynamic interactions

with the experimental results for the relative translationalFor ideally smooth spheres, the components of the inverse of
and rotational motion of two close spheres and we discusghe two-particle hydrodynamic friction matrif; [39], have
how it improves in accuracy over the previous studies of theyeen constructed from the solution to the Stokes equations

translation only. . _ ~and evaluated numerically as functions of the distance be-
In Sec. Il we derive the model equations for the rotationtween the particlefl,8,10.
and combine them with the formulas for the translafip8]. However, the surfaces of the real particles are rough with

In Sec. lll we present the experiment and describe our analyrandomly distributed asperities of a different size and shape.
sis of the video images and their coupling with the interfero-it is not possible to evaluate exactly the friction matrix for
metric measurements. In Sec. IV we select the variables to b&ch a complex geometry. As it has been mentioned in Intro-
compared with the experiment in order to optimize the accuduction, the hydrodynamic repellent forces between the ap-
racy, and we calculate from the model their time dependenceyroaching spheres increase to infinity when the gap size
In Sec. V we present our fitting procedure. Sections VI andends to zero. Therefore, a question arises that how do typical
VIl contain the final results, their discussion, and the concluminimal separations between the ideal, smooth spheres com-
sions. pare to the roughness of real particles—is it really necessary
to go beyond the model of ideal, separated spheres. The af-
Il. THE MODEL firmative answer to this question follows from the calcula-
tion of the motion of a smooth sphere in vicinity of the other
smooth, fixed sphere. If initially the moving sphere is almost
We investigate the translational and rotational motion of aabove the fixed onéas in our experimentsthen the calcu-
sphere that settles due to gravity onto a fiXewbtionlesy  lated hydrodynamic interactions between the smooth spheres
sphere of approximately the same radiugfa Fig. 1). Both  would eventually lead a#=n/2 to unrealistically small
spheres are surrounded by an incompressible viscous fluigeparations between the surfaces, even smaller than the atom
The Reynolds number of the fluid motion is low comparedsize, which certainly cannot be accep{dd]. Therefore we
with unity. The fluid velocityv and pressure satisfy the —assume that in our experiments, the particles come so close
Stokes equations, to each other that the asperities on their surfaces come into
2 o B mechanical contactFor rough particles, unlike for the ideal
7Vv—-Vp=0, V.v=0, @ spheres, there is no evidence that the lubrication forces
) o ) . would be sufficiently strong to prevent particles from touch-
where 7 is thg .f|UId V|sc0_5|ty. We assume that the s'tlcking_) To describe the system, we follow DaVis3] and ap-
boundary conditions hold_, i.e., the fluid at th_e contact with 3proximate the real particles at contact by effective, ideally
sphere surface moves with the same velocity as the_ sphergmooth spheres, separated by a thin liquid layer of an “av-
The “external” forces and torques acting on the mobile par-graged” constant thickness, under external mechanical con-
ticle, F, and T,, are balanced by the “internal” hydrody- (act forces in addition to gravity. This is @t hocassump-
tion with no explanation in terms of any systematic effective
theory. In the model, the settling motion of sphere 1 is driven
by the following external forceE; and torquedT; (see Fig.
1 for notation [13,15.
(2) If there is no contact, thefi; =0 andF; is due to the
gravity only, F;=(0,0,—G), whereG is the weight minus
the buoyancy. These formulas apply when sphere 1 ap-
proaches sphere @.e., for 6 less than a “touching angle”
6,) or when it moves apalfi.e., for 6> 7/2).
(2) If contact occurs, then the mechanical interaction of
X the touching surfaces supplements the grawty (P sing
—Rc0s6,0,P cosf+Rsin6—G) and T,=(0,Ra,0), where
the friction R is tangential and the reacti¢his normal to the
FIG. 1. The system and notation. Sphere 2 is fixed and sphere 3urface. These formulas apply féy= < /2.
moves with the angular and translational velocitie€), We specifyRandP by making three assumptions. First, at
=(0,14,,0) and U;=(Uy,,0Uy,). The position of the moving contact we introduce an effective, averaged distance between
sphere center, with respect to the fixed sphere center, is parametéhe surfaces, & which does not change witho: ¢
ized by 0 and ¢ as (24 £)a(sing,0,cosb). =constant(i.e., the component of the translational velocity

A. The basic assumptions
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along the line of the centers vanisheSecondly, foré be-  the kinetic friction coefficient. For larger anglé’/P= u, .
tween#, and a critical angl®, which is related to the static Note thatu, is not larger thanug [32,33.

friction, a pure rolling motior{i.e., without slip takes place:

aQ,;=U,, where Q;=|Q,| and U;=|U,|. Finally, if 6 C. Units

< #=</2, then rolling with slip occurs, and the Coulomb’s
law givesR= u P, where u is the kinetic friction coeffi-
cient[32-34.

Distances are expressed in particle radii, a, and transla-
tional velocities are normalized by the Stokes velocity,

(6)

B. Transition from pure rolling to rolling with slip Ustzﬂaz(pp_pf)g’

The assumptions presented in the preceding section arWhere andp; are the densities of the moving particle and
Eq. (2) allow to calculate the expressions for the reaction Pp Pt 9p

force P (that is, also of the logdand for the mechanical of the fluid, respectively, and is the gravitational accelera-

friction R t|on._ . . . )
' Time 7 is measured in the Stokes unitg;, defined as the
P=G cosé, 3 time for an isolated sphere in unbounded fluid to move along
a distance equal to its radius,
a Gsing for pure rolling a
R=1 tanfs @ o= @

wux G cosd  for rolling with slip. Ust

Angular velocities are therefore normalized by 7l/

From Eg.(2) it follows that the static friction coefficient —v./a
—Ust/i &

is related to the transition anglé; and to the normalized
distance between the particle surfacésby the followin _ .
relation: P Esby 9 D. The translational and the angular velocities at the contact
In Ref. [15] the translation of sphere 1 was evaluated

from Eq. (2). Since there is no motion along the line of the

where s depends logarithmically o#. In Appendix A the ~SPhere centerd),, andU,, are expressed in terms of the

functions is specified in terms of components of the friction (ransverse velocity); as

matrix &;; [10] and its dependence on lpg is depjcted. U,,=U;cosf, U;,=—U;sing. (8
The nature of the contact dependsRi#P, the ratio of the _

forces specified in Eqg3) and (4). This parameter changes ~ Now we calculate the rotation, also from Eg). The total

with ¢, as schematically shown in Fig. 2. During the puremotion due to gravitational, hydrodynamic, and contact

rolling motion, the ratioR/P increases linearly with tap, ~ forces is given by Eq(8) and the following formulas.

tan 6= .S, )

until it reaches a critical valuds, which is related to the (1) For pure rolling at contact; < 6<6s),
static friction coefficienjug by Eq.(5). At 6, the rolling with 0
slip starts, with a sudden decreasdrdP to u, , the value of U_l =1, 9
1
% : ' : U;=wvgr siné. (10
[ (2) For rolling with slip at contact < < 7/2),
[T ST AAAAAAAAAAAAAAAAAAAAAAAA FOUUURRRUURROROUOURR AAAAAAAAAAAAAAAAAAAAAAA 4 ) sin -+ ew, cosd
s E : _1:(1— - Kk <1, (12
" U, sinf—du, cosé
AN S
U;=vot(sinf#— u,d cosd). (12

: 5 : Hered,e,rtare positive coefficients determined by the two-
oo forvesnns frn e 1 sphere friction matrixy;. They depend logarithmically of
(cf. Appendix A for the details
Lo oo e b . In Egs.(10) and(12), vo<1 is a parameter that accounts
for the effect of the container wall45], which slow down
[ S P e q the motion. Since contact takes place in the middle part of
: the container, we assume thaj~ const.
tan C} an In Fig. 3 we plotU; and Q; due to rolling with slip
versus @ for different values of¢, w,, andv,. Figure 3
FIG. 2. The transition between pure rolling and rolling with slip illustrates why the comparison between the experimental and
corresponds to a discontinuous decrease of the friction-to-load ratiéhe theoreticatranslational velocities only is not sufficient
R/P, from u, (the static friction coefficientto u, (the kinetic ~ to determine the set of the model parameters accurately and
friction coefficien). explains why it is helpful to measure also tegularveloci-
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FIG. 3. Translational and angular velocities for rolling with slip, normalized fyandv,/a, respectively. Sensitivity to a change of the
model parameters, u,, andv, is shown. The full model of the contact is obtained if the part whiere; is replaced by the pure rolling
with Q,=U;~sing; in general, with a jump af= 45, where the slip stops.

ties. That is, Figs. @) and 3c) indicate that one could match If ws>py, thenUy, Q4, andQ,/U, are discontinuous
the same experimentdl; points by different sets of the functions ofd at éy, i.e., at the transition from pure rolling to
model parameters. Indeed,§fandv, generated a good fit, rolling with slip. We calculate values and signs of the relative
then also¢’ andv, would generate a reasonable fit, if the jumps]i.e., the difference of the corresponding valuegat
increase of¢ (i.e., £'>¢) is compensated by the suitable given by Eqs(11) and(12) and by Eqs(9) and(10), divided
decrease of (i.e.,v4<vg), and vice versa. But this remark by the values given by Eq&9) and(10)]. The relative jumps
holds for theU; points only. Both setsgv,) and ¢',v() are the following.

would not match the same experimental set(bf points. (1) For the translational velocity ;,

This example illustrates that the measurement of the rota-

tional motion in addition to the translational one allows to (1= /) (t/r—=1)>0.
decrease the uncertainty of the model parameters following

from the fitting procedure. (2) For the angular velocity2,,

It is convenient to represent rotation in terms(®f/U ., Q, (u/us—1) (1—d)te(rs) 1<o.
because in this way we eliminatg, so that only three pa- _
rameters of the rotation model are left in E¢s0) and (11): (3) For the ratio€2,/U,,
&, uy, andég. In Fig. 4 we plotQ), /U, due to rolling with Jue—1)sT(1= e/ ud+r/(t=r)1"t<0.
slip, given by Eq(11), versusp, for different values ot and (el ps= 1) SLL= gl ) ( )]
my - If 0 is close tow/2, thenQ),/U,;~1—d is independent By comparison, for a sphere rolling with slip along an

of uy and sensitive to a logarithmic changeéfConversely, inclined plane in the Stokes flo\w1], dependence of the
the smaller the, the stronger the dependence(®f/U, on  rotational and translational velocities as well as of their ratio
M - on the inclination angle (and also ornu,, &) is analogous
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11 ; ; ; g +Cé&In &, whereA, B, C are constants, given, e.g., in Refs.
1 : ; : 1 ; : [1,10], and listed in Appendix A. As a result, the expressions
d,e,r,s,t in Egs.(5) and(10)—(12) are sensitive to changes

09 of logyo¢ (or In¢) rather than to changes &t In addition,

0.8 functions d(logo¢), r(logio¢), s(logieé), t(logioé),
So7 which determine the translational motion, are flat. This prop-
=~ erty is illustrated in Fig. 11 in Appendix A. Faf varying
Sos between X 10 ° and 102 (more than by a factor of 300

05 the functionsd,r,s,t change only by a factor of 1.1-1.3.

) As it has been pointed out in Ré¢fL5], Egs.(5), (10), and

0.4 (12) are not sufficient to determine what is the valueéof
03 from measurements of the translational motion of sphere 1.
) . The wide range of admissiblg given in Ref.[15] was esti-

0.2 oz Lo SR : mated in a different way—by the requirements tlgais

o1 $-01 (-1, =001 {golih, &-9.0001 ¢ = 5 smaller than the height of the surface asperitigs,,, and

0 02 04 06 e([)r'gd] 1 12 14 16 that ¢ cannot be lower tha#,,,;, determined from the condi-
tion thatv <1, i.e., the walls effectively decrease the Stokes
velocity.

The main idea of this paper is to analyze the rotational
motion of sphere 1, together with the translational one, in
order to provide a more accurate way to compare the model
to the experiment. Such a refinement is expected, because the
experiment provides more information and in addition, as
illustrated in Fig. 11 in Appendix A, the functiog which
determines the angular velocity at the rolling with slip in Eq.
(11), is more sensitive to changes of lg§ thand,r,s,t,
which specify the translational motion.

Ill. THE EXPERIMENT

- - : : : This section is devoted to present the experimental setup,
=005 (~.-), 1 =0.10 {solid), p;=0.15 (i~ -) which combines a new video image processing system for
1o 02 04 06 08 1 12 124 16 measurement of rotgtional and translational motions with an
o [rad] interferometric techniquédeveloped in Ref4.35,37]) for ac-
) o ) o curate detection of the translational motion. Both methods
FIG. 4. Theoretlca_l predl_ctlon§ for the rolling W|th_sI|p. The full gre applied simultaneously.
model of the co_ntact is obtained if the part wh@Fe_ A |s_replaced The moving sphere is a steel ball bearing with diameter
by the pure rolllng_ withQ,/U;=1; in general, with a jump af d=6.35 mm, departure from spherici0.5 um and den-
= 05, where the slip stops. sity 7800 kg m 3. Its surface is smooth, viz., the height of its
g_sperities typically does not exceeduln, and arithmetic
roughnessRa=0.013 um. The fixed sphere is a polyacetal
ball bearing with diameter=6.30+0.02 mm and the height
of its surface asperities is around A®n. Both particles are
immersed in a silicon oi(Rhodorsyl 47V100000 by Rime-
Pouleng, with a kinematic viscosityy=0.1 nf/s and den-
In our model, the interactions between the real particlesity 974 kgm 2 at 25°C. The fluid flow is slower than
with rough surfaces are described as effective hydrodynamie-1.5 mms?, so that the Reynolds number is less than
plus contact interactions between smooth spheres. The cond/v=<10 *. The cell is a closed cuboid with a square hori-
cept of an effective smooth surface, which accounts for theontal cross section of 50 mxb0 mm and a height of 40
hydrodynamic interactions of the real rough one, has beemm. The motionless sphere is fixed in the center of the cell
extensively investigated in other contexts, i.e., for a roughwith a horizontal nonmagnetic metallic rod.
sphere falling away from a smooth plaf42] and for a The initial position of the steel sphere is controlled with a
rough plane in shear flopd3—-45. magnet located on the upper side of the top wall, so that the
At the contact, the distance between the effective, smoothnitial distance of the sphere from the vertical line specified
sphere surfaces, is very small, and the dominant contribu- by the fixed sphere center is typically around 106 (1) to
tion to the friction matrixg;; and its inverse, which appears obtain later very small separations between the particle sur-
in Eq. (2), comes from the lubrication asymptotic expansionfaces and to allow them to get into contact d8yto control
in small values oft [46,47. The components af;; respon- the motion such that it occurs in the vertical plane perpen-
sible for the transverse motion behave dsiné&+B  dicular to the viewing axis of the video camera, with a typi-

to the one presented in Figs. 3 and 4, as illustrated and di
cussed in Appendix B. The pure rolling motion and the
jumps are also similar.

E. The lubrication phenomena
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cal deviation angle not exceeding 5°. (2) Second, the interferometric measurements are used to
Therefore, it is sufficient to trace the rotational motion of calibrate the video image; in particular, to transform the ver-
the steel sphere through subsequent positions of a dot paintédal and horizontal dimensions of a pixel into mm.
on its surface. Another dot is painted on the fixed sphere to (3) Third, the interferometric measurement is used to es-
determine the positions of both sphere centers more accdimate the Stokes velocity. Since the fluid viscosity is very
rately. The dots are kept away from the contact area. sensitive to the temperature changes, which are not rr_leasured
The video camera is a DCR-TRV9E model by Sony. Thell our experiments, we use the method descrlbgd in Refs.
number of pixels per frame is 726676 and the chosen en- [36,48 rather than the standard formul). That is, the
largement ratio is such that the vertical frame size correStokes velocity is measured by comparing accurate experi-
sponds to four particle diameters. A standard rate of 24nental results for the motion of a sphere towafds away
frames/s is sufficient to record the motion, since during 1/24r0m) a plane wall with the exact analytical result by Brenner
s the sphere is moving at most 1/150 of its diameter, that, i549] and Maude[50]. The precision on this experimental
at most one pixel per frame. The time is recorded automatiStokes velocity is estimated to be around 1%.
cally in each frame.
The positions of both sphere centers and of the dots in V. HOW TO CHOOSE ONE OF THE VARIOUS
each frame are extracted from video images using a softward HEORETICAL REPRESENTATIONS OF THE MOTION?
developed specifically for this experiment. The three colors
(red, green, and blyerecorded by the camera are treated
separately. Color intensity levels of each pixel are in the In the previous studies of the hydrodynamic and contact
range[0, 255. The classical gradient method is used to de-interactions between two spheres, or a sphere and a plane,
termine the edges of the spheres. The centers of the yellotfie fitting of the motion predicted by the model to that mea-
dots are determined as barycenters of the pixels for which theured in the experiment was based on a comparison of the
color intensity is above a given threshold. The uncertainty otheoretical and the experimental velocit[d$,15,4]. How-
the measured positions of the sphere center and the dot ce@ver, the procedure of extractin@,=da/d7 and U,
ter is around one pixel. =2dé/dr from time derivatives of video experimental data
As a result, we obtain the positions of the dots and of botifor & and« has its own error bars that decrease precision. A
spheres centers as functions of time. We use these data better method would be to exploit the relation
calculate also the time dependence of the relative positions Q. da
and of the angle® and « denoted in Fig. 1. Examples of 1
such an experimental relation will be given in Sec. V C in Uy de
Fig. 6.

A. The difficulties of a fitting procedure

(13

and compare the experimental and theoretical plotg vér-

Simultaneously with the video detection, we also Measurg o for each trial. Integration of Eq¢9) and (11) and the
the translational motion of the sphere in the same way as i@ontinuity of a(6) give the following

Ref.[15]. That is, we use the laser interferometric technique :
from Ref.[35] to record the vertical translational velocity in (1) For pure rolling,
the standard way. The typical sensitivity of the measured a(0)=2(0—0,)+ «;, (14
vertical displacement is of the order of 100 nm. The vertical i i i

laser beam is reflected back by the moving steel particle as a (2) For rolling with slip,

cone of light, which changes its orientation and shape when sin@—d u, cosé

the sphere moves horizontally with respect to the laser bean(6)=E In

: +F(0— 09)+2(05— 6)+
sin (95_d,LLk Coses F(a 65) 2( 95 al) al;

These changes are detected by a system of photodiodes, and (15)
the corresponding horizontal displacements are evaluated
[35]. where, is the angular position of the moving sphere center

Interferometric measurements require that the movingt the beginning of the contaet; = «(#6;), and the constants
sphere surface should efficiently reflect the laser beam. Howg andF depend or¢ and

ever, a consequence is that there are also parasitic reflections

ing i i i d+e
of the surrounding light, so that the image analysis becomes E=2(1—d)u (16)

difficult to perform. Nevertheless, the benefits from the si- d? pp+1’

multaneous interferometric detection are significant since the

gained information allows to improve the accuracy of video 1—deﬂi

measurement in the three following ways. F=2(1-d) d? Mi+ 1’ (17)

(1) First, the interferometric technique is used to trace the
plane of the motior{denoted axz in Fig. 1) and to check The functionsd(log,,£&) ande(log,o€) are given in Appen-
how much it differs from the camera plane of view. Since wedix A.
control if the sphere was released in the right plane with an The dependence o& on # while rolling with slip is
accuracy of 2Qum [35], we are able to make the angle be- shown in Fig. 5. Globally, the rotation velocity is larger for
tween both planes reasonably small. We perform several exhe smaller separation between spheres and for the larger
periments and retain only those for which this angle does ndfiction coefficient. Locally, for small angles the slope
exceed 5°. (which is proportional to the ratio of the angular and the
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1.6

1.4

§g=o.o41 .f(solid) . ..........
£0.00t (- --)

02k SR S O E=0.0001 (crrn)...... ]
: g ' £=0.00001 (-.—-)
02 04 06 08 1 12 14 16 02 04 06 08 1 12 14 16
o [rad] 6 [rad]

FIG. 5. Theoretical predictions for the angular positions of the dot on the moving sphere rolling with slip along the fixed<pReage
1 for the notation A: Sensitivity to a change of. B: Sensitivity to a change gk .

translational velocitiesdepends onu,, but it is practically Unlike all the previous theoretical expressions, the above
independent of. On the contrary, for angles close#d2 the  quantities are stilldimensiongl since before normalizing
slope depends o8, but it is practically independent qf, . them, we first need to specify the particle radius and the

Note that the curves in Fig. 5 can be shifted and (cut ~ Stokes velocity from the measurements.
extended to match the values ofs and ag, which corre-
spond to the beginning of the rolling-with-slip motion. The C. Positions versus time

pure rolling could be also included in Fig. 5, if fox< 65 the . . : . .
straight line of the slope 2 was drawn through the point In this section we specify theoretical expressions for the

(6...). The intersection of this line with the vertical line corresponding relativdimensionlespositions of the moving
0= 6; specifies the initial angular position of the de,. sphere center,Z) and of the dot,2),

Minimization of the squared distances between the model (X,Z2)=(2+&) (sin6,cosh), (18
curve and the experimental points on the plotversusé }
would allow to analyze the rotational motion. However, to (X,2)=Ry(sina,cosa). (19

reach the highest accuracy, we want toafitthe same time o

also the measurements of the translational motion. To thid "€ @nglesx and ¢ are specified in Fig. 1, anBy charac-
goal we use another theoretical representation of the motiofi€/izes the distance between the dot and the moving sphere
also based on the comparison of experimental and theoreticGfter on the video frame. Since the motion takes place in

positions rather than of their derivativése., velocities. the plane of the video framé&,=const. o
The dependence df on the dimensionless timeis ob-

tained by integration of Eq$10) and (12).
B. The quantities to be fitted (1) For pure rolling[for r< 7, i.e., for < 6,= 6(74)]

In this paper we evaluate from the model the expressions 0
for those time-dependent variables, which we have mea- tafEZTeXF{D(T— )], (20
sured, and then wsimultaneouslyminimize the distances
between all the corresponding theoretical and experimentg{here
functions. The set of independent quantities, which are de-
tected by our video measurements, is the followisge Fig.

1). T=tan:,

r
2 Dzvom, (21)

(1) ?k, k=1,... L—times of subsequent measurements. _ o
2 (X, Z,)—coordinates of the moving sphere center,W'th 0,= 6(7;), and the timer; corresponds to the beginning

measured with respect to the fixed sphere center at#ime of t(rzl)e'?r?gtsgtﬁsition angle, is specified by Eq(20)
(3) (X« ,z)—coordinates of the dot on the moving sphere, ° ’

measured with respect to the moving sphere center at time Os
= tan§=Tex;{D(rs— 7i)]. (22
'
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(3) For rolling with slip (for 7> 75, i.e., for 6> 6,) 1 N+2i—1 ~y o1
6 Y(r)+C Ri“an & (Xicr 2™ 8
BT v 3 _ | N
wherex,, z, are the experimental relative positions of the
where dot (with respect to the moving sphere centduring the
motion at contact.
0 The anglese; and 6; can be directly measured in the
tang—c experiment, but with large error bars. To increase the accu-
Y(1)= ——exd A(7—79)], (24)  racy of the fit, we allow for small changes of the parameters
1+Ctan§ a; and 6;, so as we include them also as the minimization
2 parameters, together with wu,, vo, andrs.
5 In our fitting procedure, we aim towards the least aver-
Ayt 1+B o 1-B (25 aged squared error per point, so we minimize the following
0"2(2+¢)B’ 1+B’ function:
B[+ 1]~ pud. (26 ey A 29
k=i 4(Nr+ Nrs) ,
The function a(7) is obtained when Eqs(20)—(26) 5 B B
(which specify the time dependence®fare combined with AZ= (X=X 12)%+ (Z—Z 1a)?+ (X — X /a)?
Egs.(14) and(15) (which determinex in terms of6). _
+(z—2z¢/a)?, (30)
V. COMPARISON OF THE MODEL ~ = o~ o~ . o )
AND THE EXPERIMENT where X, Zy, X, Zx, the experimental positions at times
7¢, are compared with the corresponding theoretical values,

A. Rescaled sphere radius Xi=X(7), Zk=2(7), Xx=%x(7), Zx=2(7)-
In Sec. Il C we have used the effective “theoretical” ra- !N the minimization procedure the number of the experi-
dius of the smooth sphere, a, to normalize positions. Now wé"ental points at the contachN=N,+N, is fixed, and

determine the “experimental” radius from the relation specified by the choice of; and 7,. However,N; andNs
are the numbers of the experimental points, which are as-

S (a3 27 signedby the fittingto the pure rolling and rolling with slip,

2N & k' &k, respectively. That isN, andN,s depend on the value af;,
which is the outcome of the minimization.

where the indicek=i and k=0=i+N—1 correspond to In the fitting the difference between the static and kinetic

the beginning and to the end of the contact, respectively. [Tiction coefficients is automatically non-negatives= s -
The dimensionless experimental positions used in the fit] "€ minimization is performed by ouATLAB numerical

ting procedure are always measured in terms.ofn prin- ~ Program.

ciple, the experimental radius, which we measure, is slightly

larger than the theoretical one, that B=(1+£/2)a. In C. The results

practice,£=1%; in the model, we neglect the comparable  This section consists of three parts. First, we perform the
difference between the sizes of both spheres used in the eygtailed analysis of an exemplary experimental trial(ttie

N+i—1
a

periment, therefore we also approximate a. one with the smallest minimal value &%). Then we present
values of the model parameters obtained by the same method
B. The fitting procedure for another trials. Finally, we estimate the error bars of the

. model parameters for the trial 17.
The model parameters to be determined from the experi- For trial 17 the basic units are

ment are¢, the effective distance between the sphere sur-

faces,u, the kinetic friction coefficientp,, the effective a=3.16-0.01 mm, (32)
Stokes velocity, and, the time of the transition from pure

rolling to rolling with slip. To make use of Eq$18)—(26), vs=1.49£0.02 mms, (32
we need to specify from the experiment also the time interval a

(7, 7o), which corresponds to the contact, the distaRge Tg=—=2.12+0.03 s. (33
and the initial position of the dot given hy; and 6, . Ust

To determiner; and 7, we use the interferometric mea-
surements, which have been performed simultaneously wit
the video recording. In particulat; corresponds to the mini-

H’he above values are used to normalize all the dimensional
quantities for this trial. In particular,

mum of the vertical translational velocity. Ry=0.817+0.007, (34)
We specifyRy in a similar way as in Eq. (27); however,
now we usea to makeRy dimensionless, To— 7=18.77£0.02. (35
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The error bars of about 0.3% and 0.9% frandRy, re- 2
spectively, are estimated as the standard deviations of thi
expression$27) and(28). The method used to determine the
Stokes velocity ; is explained in Sec. lIl.

The error bars of; and 7, in Egs.(35) correspond to the
time separation between video frames. For convenience, wi
shifted the time coordinates to get=0.

The question is how to find the minimum of functién
given by Eq.(29). The first approach is to use the standard £ |
MATLAB minimization procedure, in which the downhill sim- |
plex method due to Nelder and Mef&ll] is applied. We get § ; : ; :
Fmin~5x10"°. However, the corresponding model param- >Xggf.......ccccooooioviioienn T A SR W 1

| : :
|
|
I
|

dii)

e ra
-t
o
i

particl

e e & et o _

d Z

eters are not specified uniquely. The difficulty is that close to
its minimum, functionF is flat (for example, in a wide range X
of logypé, and the suitably adjusted range wf, cf. Sec. .
I D). To evaluateF,;, by the standardiaTLAB procedure, 00 10 15
one needs to specify “input” values of the model parameters. time 1 (in Stokes units)
Different input choices result in a certain dispersior-gf, ,
which is of the order of a few percent, and the corresponding
dispersion of the model parameters.

To describe this ambiguity more rigorously, we calculate
values of functionF on over two million grid points in the
four-dimensional space of the model parameters. We take
(ms— my), logioé, andvg as the coordinates and a uniform
distribution of the grid points along each axis.

To specify the grid units, we first estimatd=, the accu-
racy of F, as AF/F~1/JN~3%, whereN~1000 is the : ; ~
number of the measurement points at the contact. Next W(TJ 03k ....'.....I..I..i ........ SRRSO £\ TR ]
use AF/F to construct the spacing along each axis of the 2 . e :
grid. That is, we start from a preliminary grid, and we opti- = Lo :
mize it in the fo||owing way. We find the coordinates, which 0.F o] ] :: ........ .......................... .................. J

T :
ni
i’

0.9 !

¢ e
3
T

in particle radii)
o
n

correspond to the smallest valueFobn the preliminary grid,
ie., F1. We estimate that at the real minimuf=Fp;,
=F3i—AFZN/2, where ARSI is the largest difference =01 m
betweenFg/\¢ and the value of at the eight closest points time 7 (in Stokes units)
of the grid. We compard F9119/F91d \ith 2AF/F, i.e., with
~6%, and optimize the preliminary grid until
AFZIIFIe<69%.

15
FIG. 6. Top: Translational motion. Relative positions of the

moving sphere center with respect to the fixed sphere center versus
min min ~

T it th fth del hich time. Bottom: Rotational motion. Relative positions of the dot on
o specify the rangg of the model parameters, whic ,ma¥he moving sphere with respect to the moving sphere center versus
correspond to the minimum d%, we search for all the grid

] ) grid grid ° : time. Dots: the experimental data; solid lingsiperimposexd the-
points, for whichF<F +AFg; /2, i.e., for which €  gretical relation with g, ,&,v,,7) ~(0.11,0.0030,0.83,7.5)0.11,
—F319)/AF919<309. For each coordinate, we calculate its 0.0032, 0.83, 84 (0.11, 0.0025, 0.84, 7)%and(0.12, 0.0038, 0.83,
minimal and maximal values over all the selected grid points8.0); 1 pixel=0.015. The transition from pure rolling to rolling
[51]. We get the following range of the model parameters: with slip is marked by vertical dashed lines.

u=0.11-0.12, (36) - - -
In Fig. 6 the experimental dataxX(,zZ,)/a, (X«,z\)/a,
£=(24-4.1)X107°%, —log;0é=2.4-2.6, (37) and the fitted theoretical values[X(7),Z(7)],
_ [x(7),z(7)] are plotted.
7s=7.4-86, (38) The fitting procedure described above has been applied to
vo=0.83-0.84. (399  determine the model parameters for eight experimental trials
performed in the same system. The results are given in Table
The minimization refines the accuracy of the measured valk.

ues of¢; and o; as To discuss the error bars of the obtained model param-
eters, we concentrate on the analysis of the exemplary trial

6;~0.06, a;~0.23. (40 17 with the corresponding values given in E31)—(41).
Comparison of ,;, with o2, the squared standard deviation
From Egs.(5), (22), and(39) we get of a single measurement poife.g., of X), provides an as-
0s=0.19-0.22, wus=0.11-0.13. (41) sessment of the goodness of[Btl]. F,,;,~o? corresponds
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TABLE |. The model parameterg,, us, vg, 10g;9é obtained for eight experimental trials performed in the same system. The fitting
procedure described in Sec. V C has been used. The corresponding vadues,oénd 6, are also given for comparisghowever, note that
only four model parameters are indepenglevalue ofmx 10 is the averaged difference between the model and the experiment per
point ando X 107 is the standard deviation of a single measurement pioth are expressed in particle radii: in these units 1 pixel
X 10P~1.5).

Trial no. 4 6 7 10 11 12 14 17

i 0.11-0.12  0.11-0.13  0.14-0.15 0.12-0.14  0.11-0.13  0.12-0.13  0.10-0.11  0.11-0.12
s 0.11-0.14  0.11-0.14  0.14-0.17 0.13-0.17 0.11-0.15 0.12-0.16  0.10-0.13  0.11-0.13
voX 102(in %) 79-82 81-83 80-83 80-84 77-79 77-79 83-85 83-84
—logyp ¢ 2.2-2.7 2.4-2.9 24-2.8 2.2-2.9 2.0-2.5 1.9-2.4 2.4-2.8 2.4-2.6
EX10° 2.0-6.0 1.3-4.3 1.5-4.4 1.4-6.5 3.5-10.2 4.2-11.7 1.7-3.9 2.4-4.1

Te 8-10 8-10 10-11 9-11 9-10 8-10 7-8 7-9

05 0.18-0.23  0.19-0.24  0.23-0.28  0.21-0.28  0.19-0.25 0.20-0.26  0.16-0.21  0.19-0.22
JF minX 107 15 1.4 1.2 2.1 1.8 1.6 1.2 0.7

o X 10 1.8 1.8 1.4 1.7 1.8 1.8 0.9 1.1

to o~0.5 pixel, in agreement with the slightly higher than trials may be larger than those given by E4p), because for
average precision of this particular trigdee Table )L trial 17 o is smaller than for the averaged trigkee Table)l

The model parameters, calculated in E(@6)—(41), are  Note that reflections of light may introduce also some sys-
characterized by an uncertainty, which is now estimated by &matic errors of the automatic detection of the positions
Monte Carlo simulation of 12 000 “synthetic data sef§1]. ~ (smaller than one pixel for trial 17, and not exceeding two
The random draws have the normal distribution with the avJixels for the other trials

erage equal to the real measuremems,(Zy, X, z), K We expect that the experimental errors explain a paradox,
—1 N and with the standard deviation 'equr;llato si.  Which can be seen in Table I. That is, for trials 11 and 12 the

multaneously, we also simulate the experimental coefficientditting gives for the effective gap siz&s=0.003-0.010 and
which are needed as an additional input to the fitting proceé = 0-004-0.012, respectively. Therefore separations, which
dure. are three to four times larger than the estimated height of

Next, for each “synthetic set of data and coefficients,” we aSPerities on the fixed sphetee., 0.003, are admissible
perform the same procedure for estimation of the model palc9ether with the gap sizes comparable with the roughness.
rameterd51], as was performed on the actual experimental
data and coefficients by theaTLAB minimization in Sec. V1. DISCUSSION OF THE RESULTS
VB. Using standard confidence levels1], we looked for Following the theoretical analysis displayed in Fig. 5, we
the upper limit of F values, which would correspond 0 ot in Fig. 7 the experimental and theoretical angular posi-
68.3% of the points in the space of the model parameters;ons  versusd. The theoretical curve is specified by Egs.
We found it to be equal tol 3.8, The'selected pomtg (14) and(15), with the parameters given in Eq81)—(41) as
with Fnin<F<3.31F,;, defined the confidence region in ihe result of the fitting procedure.
the space of the model parameters. The projection of this 14 compare the experimental and theoretical velocities we
confidence regiof <3.31F, ONto u axis, us axis, 104e€  calculate the numerical derivative of the experimental data
axis andv, axis gives the following estimations for the un- o, the angles? and @ versus timer. Following a standard
certainty of model parameters for trial 17, with the 68.3%gea, the data are fitted in the sense of least squares with a

confidence level: polynomial of degreé. =3, usingK =250 additional points
error bars for u,: (0.10,0.13, to the right andK =250 additional points to the left of each
desiredr value. As in Ref[51], the estimated derivative is
error bars for us: (0.11,0.16, the derivative of this polynomial, taken at[52].

The numerical derivatives of the experimental daia,

error bars for (—logyo¢): (2.02,2.86, =2d6é/dr andQ,=da/dr, are plotted in Fig. 8, and their

error bars forv,: (0.80,0.85. (42) ratio (), /U, in Fig. 9. (Compare also with the theoretical
families of curves for rolling with slip in Figs. 3 and 4,
Therefore we also have respectively.

. In Fig. 8 the experimental velocities are interpreted by the
error bars for¢: (0.001,0.003 model. For small angleg the experimental translational and
error bars for 65: (0.18,0.26. (43) angular velocities coincide, in agreement with the pure roll-

ing motion, for whichU;=Q~sin6d. For the anglesfd
The model parameters vary from trial to trigkee Table)l  larger than a transition valué,, the translation dominates
in a wider range than the uncertainty lim{#2) for trial 17.  the rotation, in agreement with the rolling-with-slip model,

However, the corresponding uncertainty limits for the othersee Eqgs(11) and(12).
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I : : : : : : FIG. 9. The ratio of the angular and translational velocities
02 v : : : ; : : (measured in the Stokes unit©ots: numerical derivative of the
0 02 04 06 e([)r.asd] 1 12 14 16 experimental data; solid lines: theoretical relatipaire rolling for
0< 65 and rolling with slip for 6> 6,); u,=0.115, £=0.003,v,
FIG. 7. The angular positions of the dot on the moving =0-83, 5=0.20.
sphere versus the angular positions of the mobile sphere center
I(_Cf- F'?- 1 for the ;Ottf“r;“o)’ 'tD_OtT thle t?Xpe“Tﬁ”};" gata;es)ohd reflections from the fixed sphere cause a systematic error of
Ines {superimposen heorelical refation With Ax.£.00.%)  the order of one and two pixels in the determination of the
~(0.11,0.0030,0.83,0.19)0.11, 0.0032, 0.83, 0.22(0.11, 0.0025, ositions(cf. Figs. 6 and 15
0.84, 0.20, and(0.12, 0.0038, 0.83, 0.21The transition from pure P The t .I t'g ) | velociti luated f the vid
rolling to rolling with slip is marked by vertical dashed lines. € transiational velocilies eva uae rom the \_/' €0 mea-
surements can be now compared with the previous results

The ratio of the experimental velocities, given by E@. ~ obtained by the interferometric meth¢#5]. In Fig. 10 we
and (11), is displayed in Fig. 9. For small angl®s a large plot the video data in the same way as the interferometric
discrepancy between the model and the experiment is visiblglata were plotted in Fig. 10 of Ref15]. In both cases, a
We interpret it by a very large uncertainty of the experimen-change of the slope, interpreted as the transition from pure
tal points in this range. This is due to two reasons. First, irrolling to rolling with slip, is observed.
this case(), is divided by very small values &f ;. Actually, Finally, let us compare the estimation of the effective dis-
in Fig. 9 the uncertainty of the experimental points increasesance between the sphere surfagesbtained in this work
rapidly for decreasing. Second, for small angles the light with the previous estimation for the same systei]. The

interferometric measurements of the translational motion in

; ? ; ; ; ; ; Ref. [15] gave ¢=3%x10°-3x10° (e, ¢a
0.6F - ............ ............ ............ ............ ............ .......... B :Oll.Lm—lol.Lm) HOWeVer, these I|m|tS fo”OWed from

: : : : : : : the imposed requirement that the effective Stokes velocity
(in the closed containgdoes not exceed the Stokes velocity
and the effective distance is not larger than the height of the
largest asperities. Now the simultaneous video detection of
both rotation and translation allows to estimétéy the fit-
ting procedure(the results are given in Tablg. [That is, we
significantly improve on accuracy, and therefore we also per-
form a more rigorous experimental test of validity of the
model. The effective distance between the surfagedpl-
lowing from the fitting procedure is of the order of the maxi-
mal height of asperities on the fixed sphere, that is of the
order of 0.003. However, values éfgiven in Table | change
from trial to trial. The mean value of Iqgé for a given trial
corresponds t@ between 0.0023 and 0.0070. The admissible
dispersion of log, ¢ for a given trial is 0.23—0.68. The total

FIG. 8. Angular and translational velocitiés the Stokes units ~ fange of values for all the trials is given as 0.0883
Dots: numerical derivatives of the experimental data; solid lines:<0.0117. We assign these differences to the experimental
theoretical relatior{pure rolling for §< 65 and rolling with slip for  error bars. However, a change of roughness from trial to trial
0>05); ux=0.115,£=0.003,v,=0.83, 0;=0.20. cannot be excluded.
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05 T g g g plied to evaluate the two-sphere friction matrix components,
0.45 ; : : ' Y41, Y5 andY{; [1,10],
o4 vA—_ 4 £+0.9983 (A1)
=——In&+0. :
0.35 11 6
3 03 8 1 1
80.25 Yllzzln &+ 0.2390+ §§In ¢, (A2)
>
0.2
c 1 47
0.15 Y=— gln £+0.7028- gog In&. (A3)
0.1
0.05 To test if this approximation is justified for the considered
’ 5 5 ; 5 system, we evaluated the exact numerical valuet @fr,s,t
% 02 0a 05 0B with the use of the numerical program of E. Wajnry2i]
| " tane ) (based on the algorithm from Rd8]) and we plotted them

_ ) ) together with the corresponding lubrication asymptotic ap-
FIG. 10. Th_e trans_latlorjal motion. The dots: the video me,asurebroximation in Fig. 11. Fog< 102 the difference between
ments; the solid straight lines: the model of the contact with 6 exact numerical values dfe,r,s,t and their lubrication
;c?bleli‘rs"é;%rogir:’?;%l?i fg;r?ézo' For rolling with slip, the 5oy htotic approximation does not exceed 0.4%efoand
' 0.07% for the other functions. Therefore in Fig. 11 both
curves are practically superimposed and the lubrication ex-
pansion(A1)—(A3) is sufficiently accurate to describe the
The model of combined hydrodynamic, gravitational, andmotion at contact. This approximation has been used in the
contact interactions from Refl5] was developed to de- numerical fitting procedures, which have been applied in this
scribe therotational motion of a sphere in contact with an- paper.
other fixed sphere, both being immersed in a low-Reynolds-
number fluid flow. A video measurement of rotation and
translation was performed in addition to the interferometric APPENDIX B: A SPHERE ROLLING ALONG
measurement of translation. A systematic procedure to com- AN INCLINED PLANE IN VISCOUS FLUID
pare the model and the experiment was designed. The model
of contact interactions between the spheres was confirmed, The goal of this section is to compare the translational and
and its parameters determined more precisely than in Refingular velocities of a sphere close to the motionless sphere
[15], where only the translational motion had been investi-of equal radius with the corresponding velocities of the same
gated. sphere close to a motionless rigid plane. The plane can be

VIl. CONCLUSIONS
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APPENDIX A: THE LUBRICATION EXPRESSIONS FOR 94 _3'5 _; _2i5 2
TWO-SPHERE HYDRODYNAMIC INTERACTIONS ) Iogm& ’
In Fig. 11 we present functi(:')nd,e,r,s,t, which h_aV? FIG. 11. The functiond,er,s,t, introduced in Egs(5) and
been used in this work to describe the hydrodynamic interf10)—(12), are given in terms o¥%,, Y2, andYS,, the compo-
actions between two close spheres. nents of the friction matrix;; [1,10]. Note thatd,e,r,s,t depend on

For small separations between the particle surfaces, i.e¢, logarithmically and therefore they change only a little in a wide
for £<1, the lubrication asymptotic expansion may be ap-range ofé.
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FIG. 12. The translational and angular velociti@®rmalized byvg andvg/a, respectively of a sphere rolling with slip along an
inclined plane(theoretical resuls

interpreted as “a sphere of an infinite radius,” therefore thenation angled, and a similar sensitivity to a change pf,
comparison gives also some idea about the change in thend¢. However, the velocities are significantly smaller for a
relative motion of the two spheres with the ratio of their plane than for a fixed sphere.
radii. By comparison of Figs. (@) and 4b) with Figs. 13a) and
The translational and rotational motion of a sphere in con43(b), respectively, one can observe a similar sensitivity of
tact with an inclined plane is calculated from the same modethe angular and translational velocity ratio to a changg ,of
of mechanical friction as for the two spheres, replacing theand ¢£&. The contribution to the overall motion coming from
lubrication asymptotic expressions for two sphe(@ppen-  the rotation is larger for a fixed sphere than for a plane,
dix A) by the corresponding formulas for a sphere and aespecially for larger angleg.
plane[54,55. The same expressions for the rolling with slip of a sphere
We plot the results for the rolling-with slip of a sphere along an inclined plane were given earlier in Rgfl], to-
along an inclined plane in Figs. 12 and 13, using the samgether with the experimental data. Note that the quantities
values of the gap sizé& and kinetic friction coefficiengy, as  plotted in Fig. 3a) and Fig. 4a) from Ref.[41] areU,/sin#
the ones applied in Figs. 3 and 4 for the two spheres. and Q,/sin6 rather thanU,; and Q4, plotted in Fig. 12.
By comparison of Figs. @) and 3b) with Figs. 1Za) and  Moreover, Figs. 4) and 4b) from Ref. [41] need to be
12(b), respectively, one can see essentially the same depenerrected according to the theoretical expressions from Refs.
dence of the angular and translational velocities on the inclif54 -54.

141 T T T T T T T 11 T T T T T ! T

1 1
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FIG. 13. The ratio of the angular and translational velocities of a sphere rolling with slip along an inclinedtpéoretical resuljs
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