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Rotation due to hydrodynamic interactions between two spheres in contact
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We analyze the rotational and translational motion of two close spheres in a fluid at low Reynolds number
to investigate if their surfaces come into mechanical contact. The rotational motion of a sphere settling close to
another fixed ball is calculated from a model in which contact interactions between the spheres are added to the
gravitational and hydrodynamic forces. The model predicts a transition from pure rolling to rolling with slip,
determined by the Coulomb’s law, when the ratio of the mechanical friction to the load increases up to the
static friction coefficient. The dependence of the angular and translational velocities on the kinetic friction
coefficient and on the separation between the particle surfaces is analyzed. The angular and translational
velocities of a millimeter size bead in a viscous oil, close to a fixed bead of a similar size, are measured from
video images. Interferometric data on translational motion are also collected according to the method intro-
duced in our earlier studies. A systematic fitting procedure of the model to the experiment is developed and
applied to the rotational and translational measurements. The model parameters are determined.
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I. INTRODUCTION

The understanding and calculation of the macrosco
structure and transport properties of suspensions, such a
effective viscosity or the sedimentation velocity, are bas
on the investigation of hydrodynamic interactions betwe
the suspension particles immersed in a fluid@1–9#. One of
very special, inherent features of such interactions is that
so-called lubrication forces between close particle surfa
separated by a thin liquid layer increase indefinitely with
decrease of the gap size@10#. The fluid between two smooth
rigid spheres resists their approach so strongly that it p
vents both surfaces from touching each other. However,
real particles have certain asperities, and the ques
whether~and under which conditions! they actually get into
contact is a subject of recent studies@11–17#.

The practical reason for such investigations is that
contribution from very close distances between pairs of p
ticles gives a non-negligible contribution to the macrosco
properties of suspensions, even if they are not dense@18–
22#. As a result, the existence of contact interactions betw
rough particle surfaces is expected to simplify the calcu
tions and to influence the suspension structure and value
its transport coefficients@23#. Quantitative estimations o
such modifications@13,24–28# are based on very simpl
models of the contact. For example, in the simplest sti
rotate model, both particles are locked together@29–31#. The
alternative roll-slip model@13,15#, which we use in this pa-
per, assumes that for very close spheres mechanical fric
forces should be added to the other forces acting on the
ticles ~i.e., hydrodynamic, gravitational, etc.!. Then the de-
scription of the mechanical friction forces is based on
standard friction theory@32–34#. The model predicts two
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regions of the motion: pure rolling and rolling with slip de
scribed by the standard Coulomb’s law. The roll-slip mod
deals with averaged quantities such as an effective dista
between the particle surfaces rather than with the local
separation, which varies with time@17#.

Before applying a model of contact to describe a susp
sion, it is essential to study in detail how the contact int
actions modify the two-particle relative translational a
rotational motion, and verify these predictions
corresponding experiments. For example, the measurem
of the relative translational velocities of two particles in
fluid at rest from Ref.@14#, are neither in agreement with th
stick-rotate model, nor with the roll-without-slip model, no
with the frictionless roll-slip model@14#.

Descriptions of the two systems of touching sphe
within the roll-slip model were constructed@13,15# and
shown to be in agreement with the measurements of the
ticle translationalvelocities@14,15#. In Ref. @15# one sphere
was fixed, and the other one was moving due to gravity
Refs.@13,14# both spheres were mobile—one was heavy a
the other one was buoyant. The translational motion
spheres was measured by a video technique in Ref.@14# and
by an interferometric method@35,36# in Refs.@15,37#.

However, the fitting of the experimental data performed
these approaches leads only to rough estimates of the m
parameters. There exist three reasons for this drawb
First, there exists an essential theoretical source of the in
curacy; that is, the lubrication forces depend logarithmica
on the gap size and this is why the motion is weakly sen
tive to changes of the effective averaged distance betw
the particle surfaces. Second, the model depends on fou
rameters, and it is difficult to evaluate their values and u
certainty by a simultaneous fit of them all. Third, during t
rolling with slip, there appear large velocity fluctuation
which do not allow to benefit from the high accuracy
interferometry. As a result, measurements of the rela
©2002 The American Physical Society04-1
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translational velocities practically do not allow to specif
what is the effective distance between the particle surfa
@15#.

To remove this inaccuracy, in this paper we analyze b
theoretically and experimentally the relativerotational mo-
tion of two close spheres, in addition to the translational o
@38#. We develop a systematic procedure to compare
model of combined contact and hydrodynamic interactio
with the experimental results for the relative translatio
and rotational motion of two close spheres and we disc
how it improves in accuracy over the previous studies of
translation only.

In Sec. II we derive the model equations for the rotati
and combine them with the formulas for the translation@15#.
In Sec. III we present the experiment and describe our an
sis of the video images and their coupling with the interfe
metric measurements. In Sec. IV we select the variables t
compared with the experiment in order to optimize the ac
racy, and we calculate from the model their time depende
In Sec. V we present our fitting procedure. Sections VI a
VII contain the final results, their discussion, and the conc
sions.

II. THE MODEL

A. The basic assumptions

We investigate the translational and rotational motion o
sphere that settles due to gravity onto a fixed~motionless!
sphere of approximately the same radius a~cf. Fig. 1!. Both
spheres are surrounded by an incompressible viscous fl
The Reynolds number of the fluid motion is low compar
with unity. The fluid velocityv and pressurep satisfy the
Stokes equations,

h¹2v2“p50, “•v50, ~1!

where h is the fluid viscosity. We assume that the sti
boundary conditions hold, i.e., the fluid at the contact with
sphere surface moves with the same velocity as the sph
The ‘‘external’’ forces and torques acting on the mobile p
ticle, F1 and T1, are balanced by the ‘‘internal’’ hydrody

FIG. 1. The system and notation. Sphere 2 is fixed and sphe
moves with the angular and translational velocities,V1

5(0,V1y,0) and U15(U1x,0,U1z). The position of the moving
sphere center, with respect to the fixed sphere center, is param
ized byu andj as (21j)a(sinu,0,cosu).
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namic forces caused by the fluid. Since the Stokes equat
~1! are linear, the particle translational and angular velocit
U1 andV1, depend linearly onF1 andT1,

S U1

V1D 5z 11
21 " S F1

T1D . ~2!

For ideally smooth spheres, the components of the invers
the two-particle hydrodynamic friction matrixz11 @39#, have
been constructed from the solution to the Stokes equat
and evaluated numerically as functions of the distance
tween the particles@1,8,10#.

However, the surfaces of the real particles are rough w
randomly distributed asperities of a different size and sha
It is not possible to evaluate exactly the friction matrix f
such a complex geometry. As it has been mentioned in In
duction, the hydrodynamic repellent forces between the
proaching spheres increase to infinity when the gap s
tends to zero. Therefore, a question arises that how do typ
minimal separations between the ideal, smooth spheres c
pare to the roughness of real particles—is it really necess
to go beyond the model of ideal, separated spheres. The
firmative answer to this question follows from the calcu
tion of the motion of a smooth sphere in vicinity of the oth
smooth, fixed sphere. If initially the moving sphere is almo
above the fixed one~as in our experiments!, then the calcu-
lated hydrodynamic interactions between the smooth sph
would eventually lead atu5p/2 to unrealistically small
separations between the surfaces, even smaller than the
size, which certainly cannot be accepted@40#. Therefore we
assume that in our experiments, the particles come so c
to each other that the asperities on their surfaces come
mechanical contact.~For rough particles, unlike for the idea
spheres, there is no evidence that the lubrication for
would be sufficiently strong to prevent particles from touc
ing.! To describe the system, we follow Davis@13# and ap-
proximate the real particles at contact by effective, idea
smooth spheres, separated by a thin liquid layer of an ‘‘
eraged’’ constant thickness, under external mechanical c
tact forces in addition to gravity. This is anad hocassump-
tion with no explanation in terms of any systematic effecti
theory. In the model, the settling motion of sphere 1 is driv
by the following external forcesF1 and torquesT1 ~see Fig.
1 for notation! @13,15#.

~1! If there is no contact, thenT150 andF1 is due to the
gravity only, F15(0,0,2G), whereG is the weight minus
the buoyancy. These formulas apply when sphere 1
proaches sphere 2~i.e., for u less than a ‘‘touching angle’
u i) or when it moves apart~i.e., for u.p/2).

~2! If contact occurs, then the mechanical interaction
the touching surfaces supplements the gravity,F15(P sinu
2Rcosu,0,P cosu1Rsinu2G) and T15(0,Ra,0), where
the frictionR is tangential and the reactionP is normal to the
surface. These formulas apply foru i<u<p/2.

We specifyR andP by making three assumptions. First,
contact we introduce an effective, averaged distance betw
the surfaces, aj, which does not change withu: j
5constant~i.e., the component of the translational veloci

1

ter-
4-2
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along the line of the centers vanishes!. Secondly, foru be-
tweenu i and a critical angleus , which is related to the static
friction, a pure rolling motion~i.e., without slip! takes place:
aV15U1, where V1[uV1u and U1[uU1u. Finally, if us
<u<p/2, then rolling with slip occurs, and the Coulomb
law givesR5mkP, wheremk is the kinetic friction coeffi-
cient @32–34#.

B. Transition from pure rolling to rolling with slip

The assumptions presented in the preceding section
Eq. ~2! allow to calculate the expressions for the react
force P ~that is, also of the load! and for the mechanica
friction R,

P5G cosu, ~3!

R5H ms

tanus
G sinu for pure rolling

mk G cosu for rolling with slip.

~4!

From Eq.~2! it follows that the static friction coefficientms
is related to the transition angleus and to the normalized
distance between the particle surfaces,j, by the following
relation:

tanus5mss, ~5!

where s depends logarithmically onj. In Appendix A the
functions is specified in terms of components of the frictio
matrix z11 @10# and its dependence on log10j is depicted.

The nature of the contact depends onR/P, the ratio of the
forces specified in Eqs.~3! and ~4!. This parameter change
with u, as schematically shown in Fig. 2. During the pu
rolling motion, the ratioR/P increases linearly with tanu,
until it reaches a critical valueus , which is related to the
static friction coefficientms by Eq.~5!. At us the rolling with
slip starts, with a sudden decrease ofR/P to mk , the value of

FIG. 2. The transition between pure rolling and rolling with s
corresponds to a discontinuous decrease of the friction-to-load r
R/P, from ms ~the static friction coefficient! to mk ~the kinetic
friction coefficient!.
05150
nd

the kinetic friction coefficient. For larger angles,R/P5mk .
Note thatmk is not larger thanms @32,33#.

C. Units

Distances are expressed in particle radii, a, and tran
tional velocities are normalized by the Stokes velocity,

vst5
2

9h
a2~rp2r f !g, ~6!

whererp andr f are the densities of the moving particle an
of the fluid, respectively, andg is the gravitational accelera
tion.

Time t is measured in the Stokes units,tst , defined as the
time for an isolated sphere in unbounded fluid to move alo
a distance equal to its radius,

tst5
a

vst
. ~7!

Angular velocities are therefore normalized by 1/tst
5vst /a.

D. The translational and the angular velocities at the contact

In Ref. @15# the translation of sphere 1 was evaluat
from Eq. ~2!. Since there is no motion along the line of th
sphere centers,U1x and U1z are expressed in terms of th
transverse velocityU1 as

U1x5U1 cosu, U1z52U1 sinu. ~8!

Now we calculate the rotation, also from Eq.~2!. The total
motion due to gravitational, hydrodynamic, and conta
forces is given by Eq.~8! and the following formulas.

~1! For pure rolling at contact (u i,u,us),

V1

U1
51, ~9!

U15v0r sinu. ~10!

~2! For rolling with slip at contact (us,u,p/2),

V1

U1
5~12d!

sinu1emk cosu

sinu2dmk cosu
<1, ~11!

U15v0t~sinu2mkd cosu!. ~12!

Hered,e,r,t are positive coefficients determined by the tw
sphere friction matrixz11. They depend logarithmically onj
~cf. Appendix A for the details!.

In Eqs.~10! and~12!, v0,1 is a parameter that accoun
for the effect of the container walls@15#, which slow down
the motion. Since contact takes place in the middle par
the container, we assume thatv0'const.

In Fig. 3 we plot U1 and V1 due to rolling with slip
versusu for different values ofj, mk , and v0. Figure 3
illustrates why the comparison between the experimental
the theoreticaltranslational velocities only is not sufficient
to determine the set of the model parameters accurately
explains why it is helpful to measure also theangularveloci-

io,
4-3
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EKIEL-JEŻEWSKA et al. PHYSICAL REVIEW E 66, 051504 ~2002!
FIG. 3. Translational and angular velocities for rolling with slip, normalized byvst andvst /a, respectively. Sensitivity to a change of th
model parametersj, mk , andv0 is shown. The full model of the contact is obtained if the part whereu,us is replaced by the pure rolling
with V15U1;sinu; in general, with a jump atu5us , where the slip stops.
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ties. That is, Figs. 3~a! and 3~c! indicate that one could matc
the same experimentalU1 points by different sets of the
model parameters. Indeed, ifj andv0 generated a good fit
then alsoj8 and v08 would generate a reasonable fit, if th
increase ofj ~i.e., j8.j) is compensated by the suitab
decrease ofv0 ~i.e.,v08,v0), and vice versa. But this remar
holds for theU1 points only. Both sets (j,v0) and (j8,v08)
would not match the same experimental set ofV1 points.
This example illustrates that the measurement of the r
tional motion in addition to the translational one allows
decrease the uncertainty of the model parameters follow
from the fitting procedure.

It is convenient to represent rotation in terms ofV1 /U1,
because in this way we eliminatev0, so that only three pa
rameters of the rotation model are left in Eqs.~10! and~11!:
j, mk , andus . In Fig. 4 we plotV1 /U1 due to rolling with
slip, given by Eq.~11!, versusu, for different values ofj and
mk . If u is close top/2, thenV1 /U1'12d is independent
of mk and sensitive to a logarithmic change ofj. Conversely,
the smaller theu, the stronger the dependence ofV1 /U1 on
mk .
05150
a-
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If ms.mk , thenU1 , V1, andV1 /U1 are discontinuous
functions ofu atus , i.e., at the transition from pure rolling to
rolling with slip. We calculate values and signs of the relati
jumps@i.e., the difference of the corresponding values atus ,
given by Eqs.~11! and~12! and by Eqs.~9! and~10!, divided
by the values given by Eqs.~9! and~10!#. The relative jumps
are the following.

~1! For the translational velocityU1 ,

~12mk /ms!~ t/r 21!.0.

~2! For the angular velocityV1 ,

V1 , ~mk /ms21! ~12d! t e ~rs!21,0.

~3! For the ratioV1 /U1 ,

~mk /ms21! s @~12mk /ms!1r /~ t2r !#21,0.

By comparison, for a sphere rolling with slip along a
inclined plane in the Stokes flow@41#, dependence of the
rotational and translational velocities as well as of their ra
on the inclination angleu ~and also onmk , j) is analogous
4-4
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ROTATION DUE TO HYDRODYNAMIC INTERACTIONS . . . PHYSICAL REVIEW E 66, 051504 ~2002!
to the one presented in Figs. 3 and 4, as illustrated and
cussed in Appendix B. The pure rolling motion and t
jumps are also similar.

E. The lubrication phenomena

In our model, the interactions between the real partic
with rough surfaces are described as effective hydrodyna
plus contact interactions between smooth spheres. The
cept of an effective smooth surface, which accounts for
hydrodynamic interactions of the real rough one, has b
extensively investigated in other contexts, i.e., for a rou
sphere falling away from a smooth plane@42# and for a
rough plane in shear flow@43–45#.

At the contact, the distance between the effective, smo
sphere surfaces,j, is very small, and the dominant contribu
tion to the friction matrixz11 and its inverse, which appear
in Eq. ~2!, comes from the lubrication asymptotic expansi
in small values ofj @46,47#. The components ofz11 respon-
sible for the transverse motion behave asA ln j1B

FIG. 4. Theoretical predictions for the rolling with slip. The fu
model of the contact is obtained if the part whereu,us is replaced
by the pure rolling withV1 /U151; in general, with a jump atu
5us , where the slip stops.
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1Cj ln j, whereA, B, C are constants, given, e.g., in Ref
@1,10#, and listed in Appendix A. As a result, the expressio
d,e,r ,s,t in Eqs.~5! and ~10!–~12! are sensitive to change
of log10j ~or lnj) rather than to changes ofj. In addition,
functions d(log10j), r (log10j), s(log10j), t(log10j),
which determine the translational motion, are flat. This pro
erty is illustrated in Fig. 11 in Appendix A. Forj varying
between 331025 and 1022 ~more than by a factor of 300!,
the functionsd,r ,s,t change only by a factor of 1.1–1.3.

As it has been pointed out in Ref.@15#, Eqs.~5!, ~10!, and
~12! are not sufficient to determine what is the value ofj
from measurements of the translational motion of sphere
The wide range of admissiblej given in Ref.@15# was esti-
mated in a different way—by the requirements thatj is
smaller than the height of the surface asperities,jmax, and
thatj cannot be lower thanjmin determined from the condi
tion thatv0,1, i.e., the walls effectively decrease the Stok
velocity.

The main idea of this paper is to analyze the rotatio
motion of sphere 1, together with the translational one,
order to provide a more accurate way to compare the mo
to the experiment. Such a refinement is expected, becaus
experiment provides more information and in addition,
illustrated in Fig. 11 in Appendix A, the functione, which
determines the angular velocity at the rolling with slip in E
~11!, is more sensitive to changes of log10j than d,r ,s,t,
which specify the translational motion.

III. THE EXPERIMENT

This section is devoted to present the experimental se
which combines a new video image processing system
measurement of rotational and translational motions with
interferometric technique~developed in Refs.@35,37#! for ac-
curate detection of the translational motion. Both metho
are applied simultaneously.

The moving sphere is a steel ball bearing with diame
d56.35 mm, departure from sphericity&0.5 mm and den-
sity 7800 kg m23. Its surface is smooth, viz., the height of i
asperities typically does not exceed 1mm, and arithmetic
roughnessRa50.013mm. The fixed sphere is a polyacet
ball bearing with diameter d56.3060.02 mm and the heigh
of its surface asperities is around 10mm. Both particles are
immersed in a silicon oil~Rhodorsyl 47V100000 by Rhoˆne-
Poulenc!, with a kinematic viscosityn50.1 m2/s and den-
sity 974 kg m23 at 25 °C. The fluid flow is slower thanv
'1.5 mm s21, so that the Reynolds number is less th
vd/n&1024. The cell is a closed cuboid with a square ho
zontal cross section of 50 mm350 mm and a height of 40
mm. The motionless sphere is fixed in the center of the
with a horizontal nonmagnetic metallic rod.

The initial position of the steel sphere is controlled with
magnet located on the upper side of the top wall, so that
initial distance of the sphere from the vertical line specifi
by the fixed sphere center is typically around 100mm ~1! to
obtain later very small separations between the particle
faces and to allow them to get into contact and~2! to control
the motion such that it occurs in the vertical plane perp
dicular to the viewing axis of the video camera, with a typ
4-5
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cal deviation angle not exceeding 5°.
Therefore, it is sufficient to trace the rotational motion

the steel sphere through subsequent positions of a dot pa
on its surface. Another dot is painted on the fixed sphere
determine the positions of both sphere centers more a
rately. The dots are kept away from the contact area.

The video camera is a DCR-TRV9E model by Sony. T
number of pixels per frame is 7203576 and the chosen en
largement ratio is such that the vertical frame size co
sponds to four particle diameters. A standard rate of
frames/s is sufficient to record the motion, since during 1
s the sphere is moving at most 1/150 of its diameter, tha
at most one pixel per frame. The time is recorded autom
cally in each frame.

The positions of both sphere centers and of the dots
each frame are extracted from video images using a softw
developed specifically for this experiment. The three col
~red, green, and blue! recorded by the camera are treat
separately. Color intensity levels of each pixel are in
range@0, 255#. The classical gradient method is used to d
termine the edges of the spheres. The centers of the ye
dots are determined as barycenters of the pixels for which
color intensity is above a given threshold. The uncertainty
the measured positions of the sphere center and the dot
ter is around one pixel.

As a result, we obtain the positions of the dots and of b
spheres centers as functions of time. We use these da
calculate also the time dependence of the relative posit
and of the anglesu and a denoted in Fig. 1. Examples o
such an experimental relation will be given in Sec. V C
Fig. 6.

Simultaneously with the video detection, we also meas
the translational motion of the sphere in the same way a
Ref. @15#. That is, we use the laser interferometric techniq
from Ref. @35# to record the vertical translational velocity i
the standard way. The typical sensitivity of the measu
vertical displacement is of the order of 100 nm. The verti
laser beam is reflected back by the moving steel particle
cone of light, which changes its orientation and shape w
the sphere moves horizontally with respect to the laser be
These changes are detected by a system of photodiodes
the corresponding horizontal displacements are evalu
@35#.

Interferometric measurements require that the mov
sphere surface should efficiently reflect the laser beam. H
ever, a consequence is that there are also parasitic reflec
of the surrounding light, so that the image analysis becom
difficult to perform. Nevertheless, the benefits from the
multaneous interferometric detection are significant since
gained information allows to improve the accuracy of vid
measurement in the three following ways.

~1! First, the interferometric technique is used to trace
plane of the motion~denoted asxz in Fig. 1! and to check
how much it differs from the camera plane of view. Since
control if the sphere was released in the right plane with
accuracy of 20mm @35#, we are able to make the angle b
tween both planes reasonably small. We perform severa
periments and retain only those for which this angle does
exceed 5°.
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~2! Second, the interferometric measurements are use
calibrate the video image; in particular, to transform the v
tical and horizontal dimensions of a pixel into mm.

~3! Third, the interferometric measurement is used to
timate the Stokes velocity. Since the fluid viscosity is ve
sensitive to the temperature changes, which are not meas
in our experiments, we use the method described in R
@36,48# rather than the standard formula~6!. That is, the
Stokes velocity is measured by comparing accurate exp
mental results for the motion of a sphere towards~or away
from! a plane wall with the exact analytical result by Brenn
@49# and Maude@50#. The precision on this experimenta
Stokes velocity is estimated to be around 1%.

IV. HOW TO CHOOSE ONE OF THE VARIOUS
THEORETICAL REPRESENTATIONS OF THE MOTION?

A. The difficulties of a fitting procedure

In the previous studies of the hydrodynamic and cont
interactions between two spheres, or a sphere and a p
the fitting of the motion predicted by the model to that me
sured in the experiment was based on a comparison of
theoretical and the experimental velocities@13,15,41#. How-
ever, the procedure of extractingV15da/dt and U1
52 du/dt from time derivatives of video experimental da
for u anda has its own error bars that decrease precision
better method would be to exploit the relation

2
V1

U1
5

da

du
, ~13!

and compare the experimental and theoretical plots ofa ver-
susu for each trial. Integration of Eqs.~9! and ~11! and the
continuity of a(u) give the following.

~1! For pure rolling,

a~u!52~u2u i !1a i , ~14!

~2! For rolling with slip,

a~u!5E ln
sinu2d mk cosu

sinus2d mk cosus
1F~u2us!12~us2u i !1a i ,

~15!

whereu i is the angular position of the moving sphere cen
at the beginning of the contact,a i5a(u i), and the constants
E andF depend onj andmk ,

E52 ~12d!mk

d1e

d2 mk
211

, ~16!

F52 ~12d!
12demk

2

d2 mk
211

. ~17!

The functionsd(log10j) ande(log10j) are given in Appen-
dix A.

The dependence ofa on u while rolling with slip is
shown in Fig. 5. Globally, the rotation velocity is larger fo
the smaller separation between spheres and for the la
friction coefficient. Locally, for small angles the slop
~which is proportional to the ratio of the angular and t
4-6
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FIG. 5. Theoretical predictions for the angular positions of the dot on the moving sphere rolling with slip along the fixed sphere~cf. Fig.
1 for the notation!. A: Sensitivity to a change ofj. B: Sensitivity to a change ofmk .
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translational velocities! depends onmk , but it is practically
independent ofj. On the contrary, for angles close top/2 the
slope depends onj, but it is practically independent ofmk .

Note that the curves in Fig. 5 can be shifted and cut~or
extended! to match the values ofus and as , which corre-
spond to the beginning of the rolling-with-slip motion. Th
pure rolling could be also included in Fig. 5, if foru,us the
straight line of the slope 2 was drawn through the po
(us ,as). The intersection of this line with the vertical lin
u5u i specifies the initial angular position of the dot,a i .

Minimization of the squared distances between the mo
curve and the experimental points on the plota versusu
would allow to analyze the rotational motion. However,
reach the highest accuracy, we want to fitat the same time
also the measurements of the translational motion. To
goal we use another theoretical representation of the mo
also based on the comparison of experimental and theore
positions rather than of their derivatives~i.e., velocities!.

B. The quantities to be fitted

In this paper we evaluate from the model the expressi
for those time-dependent variables, which we have m
sured, and then wesimultaneouslyminimize the distances
between all the corresponding theoretical and experime
functions. The set of independent quantities, which are
tected by our video measurements, is the following~see Fig.
1!.

~1! t̃k , k51, . . . ,L—times of subsequent measuremen
~2! (X̃k ,Z̃k)—coordinates of the moving sphere cent

measured with respect to the fixed sphere center at timet̃k .
~3! ( x̃k ,z̃k)—coordinates of the dot on the moving sphe

measured with respect to the moving sphere center at
t̃k .
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Unlike all the previous theoretical expressions, the abo
quantities are stilldimensional, since before normalizing
them, we first need to specify the particle radius and
Stokes velocity from the measurements.

C. Positions versus time

In this section we specify theoretical expressions for
corresponding relativedimensionlesspositions of the moving
sphere center (X,Z) and of the dot (x,z),

~X,Z!5~21j! ~sinu,cosu!, ~18!

~x,z!5Rd~sina,cosa!. ~19!

The anglesa and u are specified in Fig. 1, andRd charac-
terizes the distance between the dot and the moving sp
center on the video frame. Since the motion takes place
the plane of the video frame,Rd5const.

The dependence ofu on the dimensionless timet is ob-
tained by integration of Eqs.~10! and ~12!.

~1! For pure rolling@for t,ts , i.e., for u,us5u(ts)]

tan
u

2
5T exp@D~t2t i !#, ~20!

where

T5tan
u i

2
, D5v0

r

~21j!
, ~21!

with u i5u(t i), and the timet i corresponds to the beginnin
of the contact.

~2! The transition angleus is specified by Eq.~20!,

tan
us

2
5T exp@D~ts2t i !#. ~22!
4-7
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~3! For rolling with slip ~for t.ts , i.e., for u.us)

tan
u

2
5

Y~t!1C

12CY~t!
, ~23!

where

Y~t!5

tan
us

2
2C

11C tan
us

2

exp@A~t2ts!#, ~24!

A5v0t
11B2

2~21j!B
, C5

12B

11B
, ~25!

B5@~mkd!211#1/22mkd. ~26!

The function a(t) is obtained when Eqs.~20!–~26!
~which specify the time dependence ofu) are combined with
Eqs.~14! and ~15! ~which determinea in terms ofu).

V. COMPARISON OF THE MODEL
AND THE EXPERIMENT

A. Rescaled sphere radius

In Sec. II C we have used the effective ‘‘theoretical’’ r
dius of the smooth sphere, a, to normalize positions. Now
determine the ‘‘experimental’’ radius from the relation

a5
1

2N (
k5 i

N1 i 21

~X̃k
21Z̃k

2!1/2, ~27!

where the indicesk5 i and k5o5 i 1N21 correspond to
the beginning and to the end of the contact, respectively

The dimensionless experimental positions used in the
ting procedure are always measured in terms ofa. In prin-
ciple, the experimental radius, which we measure, is sligh
larger than the theoretical one, that is,a5(11j/2)a. In
practice,j&1%; in the model, we neglect the comparab
difference between the sizes of both spheres used in the
periment, therefore we also approximatea'a.

B. The fitting procedure

The model parameters to be determined from the exp
ment arej, the effective distance between the sphere s
faces,mk , the kinetic friction coefficient,v0, the effective
Stokes velocity, andts , the time of the transition from pure
rolling to rolling with slip. To make use of Eqs.~18!–~26!,
we need to specify from the experiment also the time inter
(t i , to), which corresponds to the contact, the distanceRd ,
and the initial position of the dot given bya i andu i .

To determinet i andto , we use the interferometric mea
surements, which have been performed simultaneously
the video recording. In particular,t i corresponds to the mini
mum of the vertical translational velocity.

We specifyRd in a similar way asa in Eq. ~27!; however,
now we usea to makeRd dimensionless,
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Rd5
1

a N (
k5 i

N1 i 21

~ x̃k
21 z̃k

2!1/2, ~28!

where x̃k , z̃k are the experimental relative positions of th
dot ~with respect to the moving sphere center! during the
motion at contact.

The anglesa i and u i can be directly measured in th
experiment, but with large error bars. To increase the ac
racy of the fit, we allow for small changes of the paramet
a i and u i , so as we include them also as the minimizati
parameters, together withj, mk , v0, andts .

In our fitting procedure, we aim towards the least av
aged squared error per point, so we minimize the follow
function:

F5 (
k5 i

N1 i 21
Dk

2

4~Nr1Nrs!
, ~29!

Dk
25~Xk2X̃k /a!21~Zk2Z̃k /a!21~xk2 x̃k /a!2

1~zk2 z̃k /a!2, ~30!

where X̃k , Z̃k , x̃k , z̃k , the experimental positions at time
tk , are compared with the corresponding theoretical valu
Xk5X(tk), Zk5Z(tk), xk5x(tk), zk5z(tk).

In the minimization procedure the number of the expe
mental points at the contact,N5Nr1Nrs , is fixed, and
specified by the choice oft i and to . However,Nr andNrs
are the numbers of the experimental points, which are
signedby the fittingto the pure rolling and rolling with slip,
respectively. That is,Nr andNrs depend on the value ofts ,
which is the outcome of the minimization.

In the fitting the difference between the static and kine
friction coefficients is automatically non-negative,ms>mk .
The minimization is performed by ourMATLAB numerical
program.

C. The results

This section consists of three parts. First, we perform
detailed analysis of an exemplary experimental trial 17~the
one with the smallest minimal value ofF). Then we present
values of the model parameters obtained by the same me
for another trials. Finally, we estimate the error bars of
model parameters for the trial 17.

For trial 17 the basic units are

a53.1660.01 mm, ~31!

vst51.4960.02 mm/s, ~32!

tst5
a

vst
52.1260.03 s. ~33!

The above values are used to normalize all the dimensio
quantities for this trial. In particular,

Rd50.81760.007, ~34!

to2t i518.7760.02. ~35!
4-8
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ROTATION DUE TO HYDRODYNAMIC INTERACTIONS . . . PHYSICAL REVIEW E 66, 051504 ~2002!
The error bars of about 0.3% and 0.9% fora and Rd , re-
spectively, are estimated as the standard deviations of
expressions~27! and~28!. The method used to determine th
Stokes velocityvst is explained in Sec. III.

The error bars oft i andto in Eqs.~35! correspond to the
time separation between video frames. For convenience
shifted the time coordinates to gett i50.

The question is how to find the minimum of functionF,
given by Eq.~29!. The first approach is to use the standa
MATLAB minimization procedure, in which the downhill sim
plex method due to Nelder and Mead@51# is applied. We get
Fmin'531025. However, the corresponding model para
eters are not specified uniquely. The difficulty is that close
its minimum, functionF is flat ~for example, in a wide range
of log10j, and the suitably adjusted range ofv0, cf. Sec.
II D !. To evaluateFmin by the standardMATLAB procedure,
one needs to specify ‘‘input’’ values of the model paramete
Different input choices result in a certain dispersion ofFmin ,
which is of the order of a few percent, and the correspond
dispersion of the model parameters.

To describe this ambiguity more rigorously, we calcula
values of functionF on over two million grid points in the
four-dimensional space of the model parameters. We takets ,
(ms2mk), log10j, andv0 as the coordinates and a unifor
distribution of the grid points along each axis.

To specify the grid units, we first estimateDF, the accu-
racy of F, as DF/F'1/AN'3%, whereN'1000 is the
number of the measurement points at the contact. Next
use DF/F to construct the spacing along each axis of
grid. That is, we start from a preliminary grid, and we op
mize it in the following way. We find the coordinates, whic
correspond to the smallest value ofF on the preliminary grid,
i.e., Fmin

grid . We estimate that at the real minimum,F5Fmin

>Fmin
grid2DFmin

grid/2, whereDFmin
grid is the largest difference

betweenFmin
grid and the value ofF at the eight closest point

of the grid. We compareDFmin
grid/Fmin

grid with 2DF/F, i.e., with
'6%, and optimize the preliminary grid unt
DFmin

grid/Fmin
grid&6%.

To specify the range of the model parameters, which m
correspond to the minimum ofF, we search for all the grid
points, for which F<Fmin

grid1DFmin
grid/2, i.e., for which (F

2Fmin
grid)/DFmin

grid<3%. For each coordinate, we calculate
minimal and maximal values over all the selected grid poi
@51#. We get the following range of the model parameters

mk50.1120.12, ~36!

j5~2.424.1!31023, 2 log10j52.422.6, ~37!

ts57.428.6, ~38!

v050.8320.84. ~39!

The minimization refines the accuracy of the measured
ues ofu i anda i as

u i'0.06, a i'0.23. ~40!

From Eqs.~5!, ~22!, and~39! we get

us50.1920.22, ms50.1120.13. ~41!
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In Fig. 6 the experimental data (X̃k ,Z̃k)/a, (x̃k ,z̃k)/a,
and the fitted theoretical values @X(tk),Z(tk)#,
@x(tk),z(tk)# are plotted.

The fitting procedure described above has been applie
determine the model parameters for eight experimental tr
performed in the same system. The results are given in T
I.

To discuss the error bars of the obtained model para
eters, we concentrate on the analysis of the exemplary
17 with the corresponding values given in Eqs.~31!–~41!.
Comparison ofFmin with s2, the squared standard deviatio
of a single measurement point~e.g., ofX), provides an as-
sessment of the goodness of fit@51#. Fmin's2 corresponds

FIG. 6. Top: Translational motion. Relative positions of th
moving sphere center with respect to the fixed sphere center ve
time. Bottom: Rotational motion. Relative positions of the dot
the moving sphere with respect to the moving sphere center ve
time. Dots: the experimental data; solid lines~superimposed!: the-
oretical relation with (mk ,j,v0 ,ts)'(0.11,0.0030,0.83,7.5),~0.11,
0.0032, 0.83, 8.4!, ~0.11, 0.0025, 0.84, 7.9!, and~0.12, 0.0038, 0.83,
8.0!; 1 pixel'0.015. The transition from pure rolling to rolling
with slip is marked by vertical dashed lines.
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TABLE I. The model parametersmk , ms , v0 , log10 j obtained for eight experimental trials performed in the same system. The fi
procedure described in Sec. V C has been used. The corresponding values ofj, ts , andus are also given for comparison~however, note that
only four model parameters are independent!. Value ofAFmin3102 is the averaged difference between the model and the experimen
point ands3102 is the standard deviation of a single measurement point~both are expressed in particle radii: in these units 1 pi
3102'1.5).

Trial no. 4 6 7 10 11 12 14 17

mk 0.11–0.12 0.11–0.13 0.14–0.15 0.12–0.14 0.11–0.13 0.12–0.13 0.10–0.11 0.11–
ms 0.11–0.14 0.11–0.14 0.14–0.17 0.13–0.17 0.11–0.15 0.12–0.16 0.10–0.13 0.11–
v03102(in %) 79–82 81–83 80–83 80–84 77–79 77–79 83–85 83–84
2 log10 j 2.2–2.7 2.4–2.9 2.4–2.8 2.2–2.9 2.0–2.5 1.9–2.4 2.4–2.8 2.4–2
j3103 2.0–6.0 1.3–4.3 1.5–4.4 1.4–6.5 3.5–10.2 4.2–11.7 1.7–3.9 2.4–4
ts 8–10 8–10 10–11 9–11 9–10 8–10 7–8 7–9
us 0.18–0.23 0.19–0.24 0.23–0.28 0.21–0.28 0.19–0.25 0.20–0.26 0.16–0.21 0.19–
AFmin3102 1.5 1.4 1.2 2.1 1.8 1.6 1.2 0.7
s3102 1.8 1.8 1.4 1.7 1.8 1.8 0.9 1.1
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to s'0.5 pixel, in agreement with the slightly higher tha
average precision of this particular trial~see Table I!.

The model parameters, calculated in Eqs.~36!–~41!, are
characterized by an uncertainty, which is now estimated b
Monte Carlo simulation of 12 000 ‘‘synthetic data sets’’@51#.
The random draws have the normal distribution with the
erage equal to the real measurements (X̃k , Z̃k , x̃k , z̃k), k
51, . . . ,N, and with the standard deviation equal tos. Si-
multaneously, we also simulate the experimental coefficie
which are needed as an additional input to the fitting pro
dure.

Next, for each ‘‘synthetic set of data and coefficients,’’ w
perform the same procedure for estimation of the model
rameters@51#, as was performed on the actual experimen
data and coefficients by theMATLAB minimization in Sec.
V B. Using standard confidence levels@51#, we looked for
the upper limit of F values, which would correspond t
68.3% of the points in the space of the model paramet
We found it to be equal to 3.31Fmin . The selected points
with Fmin<F<3.31Fmin defined the confidence region i
the space of the model parameters. The projection of
confidence regionF,3.31Fmin ontomk axis,ms axis, log10j
axis andv0 axis gives the following estimations for the un
certainty of model parameters for trial 17, with the 68.3
confidence level:

error bars formk : ~0.10,0.13!,

error bars forms : ~0.11,0.16!,

error bars for ~2 log10j!: ~2.02,2.86!,

error bars forv0 : ~0.80,0.85!. ~42!

Therefore we also have

error bars forj: ~0.001,0.009!,

error bars forus : ~0.18,0.26!. ~43!

The model parameters vary from trial to trial~see Table I!
in a wider range than the uncertainty limits~42! for trial 17.
However, the corresponding uncertainty limits for the oth
05150
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trials may be larger than those given by Eq.~42!, because for
trial 17 s is smaller than for the averaged trial~see Table I!.
Note that reflections of light may introduce also some s
tematic errors of the automatic detection of the positio
~smaller than one pixel for trial 17, and not exceeding tw
pixels for the other trials!.

We expect that the experimental errors explain a parad
which can be seen in Table I. That is, for trials 11 and 12
fitting gives for the effective gap sizesj50.003–0.010 and
j50.004–0.012, respectively. Therefore separations, wh
are three to four times larger than the estimated heigh
asperities on the fixed sphere~i.e., 0.003!, are admissible
together with the gap sizes comparable with the roughne

VI. DISCUSSION OF THE RESULTS

Following the theoretical analysis displayed in Fig. 5, w
plot in Fig. 7 the experimental and theoretical angular po
tions a versusu. The theoretical curve is specified by Eq
~14! and~15!, with the parameters given in Eqs.~31!–~41! as
the result of the fitting procedure.

To compare the experimental and theoretical velocities
calculate the numerical derivative of the experimental d
for the anglesu anda versus timet. Following a standard
idea, the data are fitted in the sense of least squares w
polynomial of degreeL53, usingK5250 additional points
to the right andK5250 additional points to the left of eac
desiredt value. As in Ref.@51#, the estimated derivative is
the derivative of this polynomial, taken att @52#.

The numerical derivatives of the experimental data,U1
52 du/dt andV15da/dt, are plotted in Fig. 8, and thei
ratio V1 /U1 in Fig. 9. ~Compare also with the theoretica
families of curves for rolling with slip in Figs. 3 and 4
respectively.!

In Fig. 8 the experimental velocities are interpreted by
model. For small anglesu the experimental translational an
angular velocities coincide, in agreement with the pure ro
ing motion, for which U15V1;sinu. For the anglesu
larger than a transition valueus , the translation dominate
the rotation, in agreement with the rolling-with-slip mode
see Eqs.~11! and ~12!.
4-10
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The ratio of the experimental velocities, given by Eqs.~9!
and ~11!, is displayed in Fig. 9. For small anglesu, a large
discrepancy between the model and the experiment is vis
We interpret it by a very large uncertainty of the experime
tal points in this range. This is due to two reasons. First
this caseV1 is divided by very small values ofU1. Actually,
in Fig. 9 the uncertainty of the experimental points increa
rapidly for decreasingu. Second, for small angles the ligh

FIG. 7. The angular positions of the dot on the movi
sphere versus the angular positions of the mobile sphere ce
~cf. Fig. 1 for the notation!. Dots: the experimental data; soli
lines ~superimposed!: theoretical relation with (mk ,j,v0 ,us)
'(0.11,0.0030,0.83,0.19),~0.11, 0.0032, 0.83, 0.22!, ~0.11, 0.0025,
0.84, 0.20!, and~0.12, 0.0038, 0.83, 0.21!. The transition from pure
rolling to rolling with slip is marked by vertical dashed lines.

FIG. 8. Angular and translational velocities~in the Stokes units!.
Dots: numerical derivatives of the experimental data; solid lin
theoretical relation~pure rolling foru,us and rolling with slip for
u.us); mk50.115,j50.003,v050.83, us50.20.
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reflections from the fixed sphere cause a systematic erro
the order of one and two pixels in the determination of t
positions~cf. Figs. 6 and 10!.

The translational velocities evaluated from the video m
surements can be now compared with the previous res
obtained by the interferometric method@15#. In Fig. 10 we
plot the video data in the same way as the interferome
data were plotted in Fig. 10 of Ref.@15#. In both cases, a
change of the slope, interpreted as the transition from p
rolling to rolling with slip, is observed.

Finally, let us compare the estimation of the effective d
tance between the sphere surfacesj obtained in this work
with the previous estimation for the same system@15#. The
interferometric measurements of the translational motion
Ref. @15# gave j53310252331023 ~i.e., j a
50.1 mm–10mm). However, these limits followed from
the imposed requirement that the effective Stokes velo
~in the closed container! does not exceed the Stokes veloc
and the effective distance is not larger than the height of
largest asperities. Now the simultaneous video detection
both rotation and translation allows to estimatej by the fit-
ting procedure~the results are given in Table I!. That is, we
significantly improve on accuracy, and therefore we also p
form a more rigorous experimental test of validity of th
model. The effective distance between the surfaces,j, fol-
lowing from the fitting procedure is of the order of the max
mal height of asperities on the fixed sphere, that is of
order of 0.003. However, values ofj given in Table I change
from trial to trial. The mean value of log10j for a given trial
corresponds toj between 0.0023 and 0.0070. The admissi
dispersion of log10j for a given trial is 0.23–0.68. The tota
range of values for all the trials is given as 0.0013<j
<0.0117. We assign these differences to the experime
error bars. However, a change of roughness from trial to t
cannot be excluded.

ter

:

FIG. 9. The ratio of the angular and translational velocit
~measured in the Stokes units!. Dots: numerical derivative of the
experimental data; solid lines: theoretical relation~pure rolling for
u,us and rolling with slip foru.us); mk50.115, j50.003, v0

50.83, us50.20.
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VII. CONCLUSIONS

The model of combined hydrodynamic, gravitational, a
contact interactions from Ref.@15# was developed to de
scribe therotational motion of a sphere in contact with an
other fixed sphere, both being immersed in a low-Reyno
number fluid flow. A video measurement of rotation a
translation was performed in addition to the interferome
measurement of translation. A systematic procedure to c
pare the model and the experiment was designed. The m
of contact interactions between the spheres was confirm
and its parameters determined more precisely than in
@15#, where only the translational motion had been inve
gated.
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APPENDIX A: THE LUBRICATION EXPRESSIONS FOR
TWO-SPHERE HYDRODYNAMIC INTERACTIONS

In Fig. 11 we present functionsd,e,r ,s,t, which have
been used in this work to describe the hydrodynamic in
actions between two close spheres.

For small separations between the particle surfaces,
for j!1, the lubrication asymptotic expansion may be a

FIG. 10. The translational motion. The dots: the video measu
ments; the solid straight lines: the model of the contact withmk

50.115, j50.003, v050.83, us50.20. For rolling with slip, the
slope is larger than for pure rolling.
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plied to evaluate the two-sphere friction matrix componen
Y11

A , Y11
B andY11

C @1,10#,

Y11
A 52

1

6
ln j10.9983, ~A1!

Y11
B 5

1

4
ln j10.23901

1

8
j ln j, ~A2!

Y11
C 52

1

5
ln j10.70282

47

250
j ln j. ~A3!

To test if this approximation is justified for the consider
system, we evaluated the exact numerical values ofd,e,r ,s,t
with the use of the numerical program of E. Wajnryb@21#
~based on the algorithm from Ref.@8#! and we plotted them
together with the corresponding lubrication asymptotic a
proximation in Fig. 11. Forj<1022 the difference between
the exact numerical values ofd,e,r ,s,t and their lubrication
asymptotic approximation does not exceed 0.4% fore, and
0.07% for the other functions. Therefore in Fig. 11 bo
curves are practically superimposed and the lubrication
pansion~A1!–~A3! is sufficiently accurate to describe th
motion at contact. This approximation has been used in
numerical fitting procedures, which have been applied in t
paper.

APPENDIX B: A SPHERE ROLLING ALONG
AN INCLINED PLANE IN VISCOUS FLUID

The goal of this section is to compare the translational a
angular velocities of a sphere close to the motionless sp
of equal radius with the corresponding velocities of the sa
sphere close to a motionless rigid plane. The plane can

-

FIG. 11. The functionsd,e,r ,s,t, introduced in Eqs.~5! and
~10!–~12!, are given in terms ofY11

A , Y11
B , and Y11

C , the compo-
nents of the friction matrixz11 @1,10#. Note thatd,e,r ,s,t depend on
j logarithmically and therefore they change only a little in a wi
range ofj.
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FIG. 12. The translational and angular velocities~normalized byvst and vst /a, respectively! of a sphere rolling with slip along an
inclined plane~theoretical results!.
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interpreted as ‘‘a sphere of an infinite radius,’’ therefore t
comparison gives also some idea about the change in
relative motion of the two spheres with the ratio of the
radii.

The translational and rotational motion of a sphere in c
tact with an inclined plane is calculated from the same mo
of mechanical friction as for the two spheres, replacing
lubrication asymptotic expressions for two spheres~Appen-
dix A! by the corresponding formulas for a sphere and
plane@54,55#.

We plot the results for the rolling-with slip of a sphe
along an inclined plane in Figs. 12 and 13, using the sa
values of the gap sizej and kinetic friction coefficientmk as
the ones applied in Figs. 3 and 4 for the two spheres.

By comparison of Figs. 3~a! and 3~b! with Figs. 12~a! and
12~b!, respectively, one can see essentially the same de
dence of the angular and translational velocities on the in
05150
e
he

-
el
e

a

e

n-
i-

nation angleu, and a similar sensitivity to a change ofmk
andj. However, the velocities are significantly smaller for
plane than for a fixed sphere.

By comparison of Figs. 4~a! and 4~b! with Figs. 13~a! and
13~b!, respectively, one can observe a similar sensitivity
the angular and translational velocity ratio to a change ofmk
and j. The contribution to the overall motion coming from
the rotation is larger for a fixed sphere than for a pla
especially for larger anglesu.

The same expressions for the rolling with slip of a sph
along an inclined plane were given earlier in Ref.@41#, to-
gether with the experimental data. Note that the quanti
plotted in Fig. 3~a! and Fig. 4~a! from Ref.@41# areU1 /sinu
and V1 /sinu rather thanU1 and V1, plotted in Fig. 12.
Moreover, Figs. 4~a! and 4~b! from Ref. @41# need to be
corrected according to the theoretical expressions from R
@54–56#.
FIG. 13. The ratio of the angular and translational velocities of a sphere rolling with slip along an inclined plane~theoretical results!.
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