PHYSICAL REVIEW E 66, 051501 (2002
Simple model for heterogeneous flows of yield stress fluids

Guillemette Picartl and Armand Ajdari
Laboratoire de Physico-Chimie Theque, UMR CNRS 7083, ESPCI, 10 Rue Vauquelin, F-75231 Paris Cedex 05, France

Lyderic Bocquet
Laboratoire de Physique de I'ENS de Lyon, UMR CNRS 5672, 4& Alliealie, 69364 Lyon Cedex, France

Franmis Lequeux
Laboratoire de Physico-Chimie Macromolgaire, UMR CNRS 7615, ESPCI, 10 Rue Vauquelin, F-75231 Paris Cedex 05, France
(Received 7 June 2002; published 5 November 2002

Various experiments evidence spatial heterogeneities in sheared yield stress fluids. To account for heteroge-
neities in the velocity gradient direction, we use a simple model corresponding to a nonmonotonic local flow
curve and study a simple shear geometry. Different types of boundary conditions are considered. Under
controlled macroscopic shear stré&swe find homogeneous flow in the bulk and a hysteretic macroscopic
stress—shear-rate curve. Under controlled macroscopic shedt,rakear banding is predicted within a range
of values ofl’. For small shear rates, stick-slip can also be observed. These qualitative behaviors are robust to
changes in the boundary conditions.
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[. INTRODUCTION cal shear rates. This statement is usually substantiated by a
simple argument invoking inertial termsee, for instance,
Complex materials, such as concentrated colloidal sug-12]). This type of banding is referred to as “gradient band-
pensions, gels, or foams, often exhibit exotic rheological being” as opposed to “vorticity banding{coexistence of do-
havior at low sheaf1-11], very different from the Newton- mains flowing at different local shear stress and common
ian linear response characterized by a str@sdinearly  shear rate

proportional to the shear rafe (in scalar languageA term The question then arises of the structure of the heteroge-
often coined for some of these behaviors is that of “yieldneous flow pattern observed in these conditictisve 1V,
stress fluids.” Although often loosely used, it most of the gradient banding of its stability (i.e., are there always
time describes fluids that have one or both of the followingSteady-state solutiong?and of the resulting macroscopic
properties: when one looks at the steady state flow curvow curveX (I") for the steady-state solutions. Investigating

3 (") at low shear(i) the stres tends to a finite valug, this problem in generic terms is very difficult as many un-

e th shea e goe o et o fowing steay sate (NI AT s Lo o0 e Tbe o
solution exists for stresses smaller than a valye Conse- . 9 d '
In this paper, to make progress, we consequently make a

quently, at low stresses, the system does not really flow, angpecific choice for this underlying dynamics, which we jus-
these “pastes” often display physical aging in a way rather,[ify now '

similar to structural glasses. . Coa .
A traditional way to apprehend thisacroscopiaheologi- Formally, taking the ver_tlcaif— 0 axis as part of the Io_cal
flow curve, the problem is very similar to the analysis of

cal nonlinear behavior is to suppose the existence lotal . . : ., "

. . flow-induced or flow-assisted “phase” transitions for sys-
relation between thiocal stresso- and thelocal shear ratey
of one of the forms | to IV in Fig. 1. Classically again, 1 to lll
being monotonic can lead to a homogeneous flow so that the °
macroscopic response is identical to the local flow curve:
while 1l and 1l correspond to genuine yield stress fluids

satisfying both(i) and (i) above[with 3,=3y= o (y=0)],
| yields a power law fluid behaviok = AI'® which can be I T

experimentally very difficult to tell apart from the yield I
stress behaviors Il and Il i& is small. It is classically ar-

gued, on the other hand, that the decreasing branch of IV
(d>/dI'<0) cannot lead to the corresponding homogeneous
situation, as such a flow is unstable with respect to the for- o
mation of “shear bands” or domains flowing at different lo- v

v

FIG. 1. Schematic representation of possible local steady-state
*Electronic address: guillemette@turner.pct.espci.fr curve o(y) generating a macroscopic yield stress fluid behavior.
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tems with a local nonmonotonic relationshigy). For some ~ Stress(called the “fluidity”), as expressed by a Maxwell
systems, the change in rheological properties can be ascribedjuationd,o= —a(t) o+ y (stress has been rescaled so that
to a structural phase transition occurring under flow: Ramoghe elastic modulus is 1). Then the evolution of the fluidity
et al. with lyotropic hexagonal phasdg], Diat et al. with ~ a(t) results from the competition betweefi) aging—
onions[4], and Britton and Callaghafi] and Berretet al.  relaxation rates in the system decrease during the spontane-
with wormlike micelles[3] observe a phase transition, and 0us evolution of the pasty system, this evolution being itself
the coexistence of two well defined phases. Such behavio@ower and slower as time passes; afiid flow-induced
are quite reminiscent of equilibrium phase transitions, alféjuvenatior—flow induces rearrangements in the system,
though no general principle appliespriori in such out of which in turn increase the fIU|d!ty of the system as a f(_eed—
equilibrium situationg13]. The identification of structural Pack mechanism{9,24-2@. This competition results in
differences between the flowing phases then provides a guioaerI equation fora_that §upplements Fhe Maxwell onéia
as to what are the most likely relevant local variables beyond™ — f(a) +9d(&,0,7), with f andg positive functions. .
the rheological ones: @onconservednematic order param- Here, to address the question at hand, we focus on choices
eter, the(conserveyl concentration of a constituent, etc. Re- for f andg leading to local flow curvedlocal steady stat¢s
lated theoretical descriptions have thus tried to describe thwith a decreasing branch at low valuesyofand we attempt
coupling between this order parameter and flow in order td0 describe spatial heterogeneities, through a simple diffusion
obtain a selection criterion for the flow pattern and the ret€rmDAa in the equation describing the evolution af
sulting macroscopic rheological behav[di3—19. We then study the flow patterns in a S|mple_ shear geom-
However, for many yield stress fluids there is no obviouselry for such a system, when it is driven at either imposed
structural difference between the coexisting flowing phasegnacroscopic shear stress or imposed macroscopic shear
experimental reports often describe “shear bands” of a flow-atel’, and deduce the resulting macroscopic rheological be-
ing “phase” in a stationary “phase” with no clear structural havior. We will on the way provide analytical and numerical
or textural difference between the two parts of the systemarguments, using when necessary explicit choicetdodg,
Such “soft glassy materials[8] include gels, pasty systems, and pinpoint the role of the boundary conditions. In particu-
concentrated glassy suspensions, and so on. One may cite #3é We will show that the model accounts for the following
work by Raynaucet al. [7], where banding is observed in a features.
suspension of bentonite and the interface between the bands (1) WhenZ is imposed, the flow curve jumps in a hyster-
is in the velocity-vorticity plandgradient banding the sys-  €tic fashion between two branches: one corresponds to no
tem is sheared within a band at the inner moving cylinderflow but for a wall layer in the vicinity of the walls; the other
while the rest of the sample remains unsheared. Laponitgorresponds to a fully fluidized situation.
suspensions also undergo banding for a certain range of im- (2) When the global shear raté is imposed, shear band-
posed shear rates, a range for which the shear stress is almasg can occur, as well as sometimes a stick-sliplike oscillat-
constant[10]. Noticeably, for a range of lower shear ratesing behavior at small shear rate that corresponds to a local-
stick-slip is observed in this system: a layer reversibly frac-ized oscillation of the fluidity.
tures and reheals, showing stationary oscillations in the mea- These features will be analyzed in the context of experi-
sured stress. Eventually, one may note that inhomogeneousental results.
velocity profiles are also observed in sheared fo@bisand The paper is organized as follows. We recall in Sec. Il the
granular pastegl1]. basic ingredients of the model in Rg23] and propose a
For these systems with no clearly identified structuralgeneralization to account for inhomogeneities in the system.
variable that would distinguish coexisting phases, there i§he homogeneous case is detailed in Sec. Il and the stability
much less guidance for building models. Still, banding isof the homogeneous solutions is discussed. Heterogeneous
likely to originate from the same basic physical mechanisnsolutions are considered in Secs. IV and V. In Sec. IV the
as for phase separating fluifi20]. Models have therefore controlled stress situation is considered, while in Sec. V the
been derived along similar lines, which differ by the choiceglobal shear rate is imposed. In Sec. VI, choices made in
of the hidden variablgequivalent to the order parameter building the model and the influence of the boundary condi-
and of its dynamic$20,22. In addition, or alternatively, gra- tions are discussed.
dient terms were included in the nonmonotonic intrinsic law

o() 12,21, i Il. MODEL AND GEOMETRY
In the present paper we follow the route initiated by Derec

et al. [23], which has been shown to be a simple though In this section we define more clearly the model and the
useful guide to understand the interplay between nonlineageometry we are going to study, following the physical ar-
rheology and aging properties for yield stress fluids characguments given in the Introduction. In Sec. Il A, we specify
terized by local flow curves of types | to [[R3,24]. In the  further the functiond and g, in Sec. IIB we describe the
present work we adapt it to describe local flow curves of typegeometry considered and the corresponding description of
IV, and to take into account spatial heterogeneities. heterogeneities in the equations, in Sec. IIC we define the

The essence of the model [#3] is to describe the local boundary conditions for both velocity and fluidity, and
state of the system by a single scalar variable that is fowe summarize in Sec. IID by recalling the resulting set of
convenience taken to be the local relaxation frequency of thequations.
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FIG. 2. Schematic drawing of the local steady-state flow curve -—D' z]
a(y),0(a),y(a). e |
X
A. Accounting for a nonmonotonic local flow curve FIG. 3. Geometry: simple shear alorgvariations along only.

From the Introduction, we start with the model [&3], The flow can be heterogeneous; the example depicted here corre-
devised for homogeneous situations: sponds to a low fluidity in the bulk and wall layers of higher fluidity
close to the wall.

ho=—aoc+ '.y,
B. Incorporating heterogeneities: Geometry and model
In principle, a general description of heterogeneous flows
implies complex algebra describing the evolution of scalar
. ) . .and tensorial quantities through convected derivatives, and
For the sake of explicitness, and with loss of generality, ity jting various conservation equatiorifor mass, momen-
will often be useful to restrict the choices for the functidns etc). We focus here on the simplest flow geometry
andg appearing in Eq(1). This is particularly true for the (gimple shear allowing only variations along one direction,
flow-induced rejuvenation terng(a,o,y) which can take perpendicular to flow and vorticity.
many f0fm5- _ More precisely, we consider our complex fluid to be
Following again Dereet al. [23], we take forms corre- pounded by two parallel plates located zt0 andz=H
sponding to low values of the stress, shear rate, and fluiditysee, e.g., Fig.)3 The top plate moves alongat a velocity
so that power laws may express a kind of expansion of morg, while the bottom one is immobile, so that the macroscopic
general functions. Alsoa being a positive scalar, the direc- gneqr rate ig"=V/H. In this situation we consider laminar
tion of shear is of no influence so one expegi®,o,y)  fiows alongx, where the local variables=a,,, v, anda
=g(a,—o,—7). A simple solution is theng(a,o,y)  depend only or (i.e., not onx andy).
=h(a)oy. Neglecting acceleratiofinertial) terms is a common as-
Then, following the Introduction, we want the steady- sumption for suckthighly viscous fluids on the ground of a
state flow curver(y) to have a decreasing branch for small low Reynolds number. This in general makes the stress di-

but nonzero values of (as sketched in Fig.)2In that case, vergence free, but in the present geometry it results in the

. : stress being spatially constant so that it is no longer a local
the steady-state solutions of the systé consist of the variable. We will in this paper make this assumption of fast

vertical axis @=0, 7:82' o arbitrary, and solutions given  1omentum diffusion, while keeping in mind that by doing so
by o(a) =[f(a)/ah(a)]"* when expressed in the plas@.  \ye formally suppress a “mechanical instability” that desta-
The functiona(y) is a monovalued increasing function, bilizes into bands any homogeneous flow solution corre-
whereaso(a) is multivalued, decreasing for small values of sponding to a decreasing part of the local flow curve
a and then increasing for larger values. The requirements argald'y<0 (see, €.9.[12,20,27). In this framework, the lo-
thus thatf(a)/ah(a) has a negative derivative for<Ga g stress depends solely on time, and is identical to the
<a,, and a positive one foa,<a. The minimum thus macroscopic stress(z,t) = o(t) =3 (t).
reached fom,, corresponds to the minimal value of the stress  Now in order to discuss spatial heterogeneities we need to
om=[f(amn)/anh(an) 1" Eventually, as for curve IVin Fig.  account for the effect on the dynamics of a heterogeneous
1, o tends toward a finite value whepgoes to zero, which value of the fluidity. Again, for the sake of simplicity, we
we call oy, . model this as a diffusion process in the evolution of the
When numerical calculation proves necessary to analyzfuidity and correspondingly add BV?a diffusion term to
the evolution of the system, we make even more explicithe second equation dfl). This choice corresponds to a
choices regarding and h, which must of course satisfy the picture in which the system is fluidized in a localized region;
above requirements. We use the simple chdit@)=ra® this triggers spontaneous local relaxations which themselves
+a* h(a)=r'a+a? with r andr’ arbitrary numbers that tend to fluidize the neighborhood of the initial region. Ac-
we vary to check the robustness of our conclusions. Thatordingly, we take the “diffusive coefficient” to be a positive
f(a) scales am? for small values ofa gives a spontaneous constant. A negative value would generate local, small wave-
relaxation ofa as the inverse of the elapsed time, a situationlength instabilities that destabilize homogeneous flow even at
often referred to as “full aging(see[23]). high shear rates. As we focus here on the instability gener-

ga=—f(a)+g(a,a,7). (1)
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ated by the nonmonotonic branch of the local flow curve, andnd (ii) a zero gradient condition
in line with experimental observatiofg,9] of homogeneous

flow at high shear, we discard this possibility here. In addi- 78] ;-on=0. )
tion, we do not consider other terms formally allowed by

symmetry such asVa)?. D. Summary

tiorTshe system is therefore described by the coupled equa- We summarize here the equations that we will use in the

remainder of the paper:
do(t)=—a(z,t)a(t)+ y(z,1),

z?tE: —az-‘r'y,
da(z,t)=—f(alzt)+h@zt)o(t) ¥y(z,t) + DI A(z1). da=—f(a)+h(a)Sy+Dda,
2 !
One may note that in its present form the equation for the fo dZ')’(Z.t)=V=fH,

fluidity is close to the equation for the granular temperature

obtained within the granular hydrodynamics of inelastic _

beads[28]: the spatial diffusion term accounts in the latter alz-on=ay

case for “heat” diffusion(according to Fourier layand the . .

“aging” term corresponds to the energy dissipation term\_/vherez(t),l"(t) are global vang?les vyhereaas(z,t) and

(due to the inelasticity of collisionswhich drives the granu-  ¥(z:t) are local ones. When explicit choices are necessary to

lar material toward a state of zero temperature. Eventuallystudy the corresponding dynamics, we will ul@)=ra’

the granular temperature is indeed a measure of the locata* andh(a)=r’a+a’

fluidity of the granular material. Let us recall that by neglecting the inertial terms we for-
An important comment is also that the diffusion coeffi- mally suppress the “mechanical instability” that destabilizes

cient D that we took constant here could in principle be athe decreasing branaho/dy<0.

function of a. This would affect the length scale appearing ~Numerical methodFor various cases, it is difficult or im-

from the competition off(a) and Dﬁiza- If, as in the ex- Possible to get analytical results_ and numerlcal calculation

ample at the end of the previous subsectibfa)~a? for becomes necessary. The evolution equations for the stress

smalla, then this length scale depends on the actual value dind the fluidity, Eq(6), have been solved numerically using
a: (D/a)Y2 indicating algebraic tails for spatial structures & pseudospectral method, together with a Runge-Kutta inte-
of low fluidity. grator[31]. This technique integrates the diffusion part of the

time equation for the fluidity in Fourier space, while the
nonlinear part is solved in real space. Special care has been
taken to avoid aliasing of the solutions. A standard fast Fou-
The equation for the fluidity and velocity have to be rier transform algorithm is used for the forward and back-
supplemented by boundary conditions at the confining wallsvard transformations between real and Fourier space.
atz=0 andz=H. We wish to use Eqs(6) to deduce the macroscopic be-
We here exclude any direct wall slippage and assume theavior of the system, to analyze the conditions for the exis-
plates to be sufficiently rough for the plate velocity to betence of a steady state, and to describe the features of the
equal to the limit velocity in the fluid approaching the plate flow. Note that the boundaries appear explicitly, as potential

or aza|z:0,H:01 (6)

C. Boundary conditions

(no slip velocity. This is equivalent to heterogeneities, so that most of the time the structure close to
y the boundaries will be different from the one in the bulk,
: _ i allowing the walls to nucleate new “phases” before the bulk.

fo dzy(zH=V()=T(OH. ® Actually, the absence of noise terms in these equations sup-

presses the equivalent of homogeneous nucleation in thermo-

It is important to point out that this hydrodynamic condition dynamics problems. We briefly comment upon the addition
is not sufficient: a boundary condition for the fluidity equa- ©f noise when it plays a significant role. In the following
tion is also required. How the walls affect the density’ Order,three SeCtionS, we first consider br|3ﬂy the formal case of a
and relaxation processes of the fluid in their vicinity is obvi- homogeneous behavig¢sec. Il); we then analyze the sim-
ously a complex problem with many aspects to it, even forPler case of the response to a fixed stiegSec. V), before
simple liquids[29]. A smooth flat wall can enhance ordering; turning to the more complex case of a fixed global shear rate
a rough or chemically disordered one can on the contrary” (Sec. ).

locally disorganize the fluidrelative to what happens in the

bulk). The consequences of these on the local relaxation rates I1. HOMOGENEOUS BEHAVIOR

being far from trivial[30], we choose here to investigate two

limiting simple cases that hopefully bracket the true behav- We first analyze briefly the homogeneous case, where we

ior: (i) a fixed fluidity at the wall impose the requirement that the fluidigyt) is independent
of z so thatS andI" are similar too and y. Although
a(z=0)=a(z=H)=a,, (4) slightly redundant with previous discussions of the flow
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curve, this analysis will highlight the potential differences
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FIG. 5. Effective potentiaV/s(a) for the evolution ofa(t) in the

;homogeneous case. Depending on the actual valde, o¥/s has

one or two minima.

between the stability analyses at fixed stress and fixed shear Linear stability immediately resultésee Fig. 4, as the
rate. These differences naturally result from the fact that system falls in the potentialy(a) along the instantaneous

andT are treated on a different footing in E€L).

slope at poina(t) (see Fig. .

As previously stated, steady-state solutions consist of Branch 0 is stable fok <oy so that the system evolves

three branches.

Branch 0 '=0, a=0, 3 arbitrary. This corresponds to

a frozen, nonflowing system.

Branch 1 a<a,,, < y,=anon,, ands is a decreasing
function of botha andT".

Branch 2 a>a,,, ['>y,,, and3 is an increasing func-

tion of botha andI", from o, up to .
The three solutiongor branchesof fluidity are schemati-

cally plotted in the £ ,a) plane in Fig. 4the 3 (I') plot has

a similar aspect and is identical to the left curve in Fig. 2

We will use the notationa;(X) and a,(3) to designate
branches 1 and Rhe two roots of.?=f(a)/ah(a)].

A. Imposed stressY,

The evolution of a homogeneous system at fiXed o is
truly simple as the Maxwell model yields=a2 which can

to this frozen situation whenever the stress is too weak,
<oy,. Atlong times the system typically creeps but does not
flow, I'(t)=a(t)3 with a(t) decreasingtypically algebra-
ically in time) to 0. For example, with the explicit values of
f and h proposed above, one hadt)~1/t so thatI'(t)
~3 In(t).

Branch 1 is always unstable, so that tey;>2 > o, the
system fluidity evolves either to Qagain leading to creep,
not to steady flowif the initial value ofa is smaller than
a,(X), or towarda,(X) in the opposite case. Note that such
a behavior is rather similar to the recently reported “viscos-
ity bifurcation” [32]. This similarity remains if the constraint
of homogeneity is lifted as will be discussed in Sec. IV. The
stable branches 0 and 2 correspond, respectively, to stable
nonflowing and flowing states of the system undler

For larger stresses > oy, branch 0 is unstable and the
fluidity always evolves toward,(2).

Eventually we note that fooy, >3 > o, the addition of

be injected in the equation describing the fluidity, so that thehoise to the equation describing the evolutioraabuld lead
evolution of the system is completely described by the solehe system to select either branch 0 or branch 2, depending

differential equation

da_ dVE 7
G- da @ (7
where the “effective potentialVs is
a
Vz(a)=f da'[f(a’)—a’h(a’)3?]. (8)
0

The above equation describes the relaxatiom of the po-
tential Vs . Depending on the value of the imposgd this
potential has either one or three extrema: oK o,,, a
=0 is the only minimum; foroy>%>0,, Vs has two
minima, a=0 and a=a,(3) and a single maximuna
=a,(2); and for> >0y, a=ay(X) is the only minimum.

on which one corresponds to the lowest valueVef (the
noise could allow the system to jump to the more favorable
well, although possibly after very long timesComparing
these two values leads to the introduction of a vattiethat

will prove important in the following: fore,,<%<o*, 0
=Vs(0)<Vs(a,) so that branch 0 is the absolute minimum;
for > >¢* branch 2 is the minimum. Formallg* is given

by V «(as;(c*))=0 (see Fig. .

B. Imposed shear ratel’
Although the steady-state solutions are obviously the
same as in the previous case, the dynamics is more complex

whenT is fixed, as it is governed by the coupled equations
for the evolution in time o (t) anda(t).
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The stability of the steady-state solutions can, however, be ¥
examined by linearization around these solutions. The two
stable branches 0 and 2 in Fig. 4 described in the case of an
imposed stress remain stable. The stability of the decreasing
branch 1 at fixed shear rate and with homogeneity imposed
depends on the choice of the functiohand h in Eq. (6)
(recall that as mentioned in Sec. Il B we have formally sup-
pressed the mechanical inertial mode of destabilizatiBar
generalf and h, one cannot preclude destabilization of the
steady solution (1) to a limit cyclg83]. However, this is not
the case with the expressions of Sec. IlIf§a)=ra’+a*

; . a
andh(a)=r'a+a?, for which the branch 1 is always stable | w
(again when homogeneity is enforged a_
IV. HETEROGENEOUS FLOW AT IMPOSED STRESS 3, FIG. 6. Threshold values; ando 4 of the stress as a function of

the fluidity at the walls,, . Above o; the frozen branch is unstable;
The situation at imposed fixed stress can be apprehendelow o, the fluidized branch is unstable. When the imposed mac-
rather simply starting from the analysis of the homogeneousoscopic stresg is betweensy and o, both branches are stable.
case mentioned above with its two stable branches 0 and 2Vhich one is selected depends then on the initial conditions, i.e., on
Heterogeneities are generated by the walls, which inducthe system’s history. Areas in gray correspond to bulk destabiliza-
wall layers of different fluidities, with a major effect on the tion (“spinodal”), whereas a simple thick line denotes destabiliza-
selection of the steady-state flow branch. tion from the wall(*heterogenous nucleation”

ceases to be stable3f is increased so that it becomes inter-
esting(in terms of minimizingFy) to increasea beyonda,,
We start by considering the case where the walls imposet the expense of a section of tlae=0 central part. The
the local value of the fluidity|,—o=a,,. The evolution of  threshold roughly corresponds Y& (a,,) =Vs(0) which de-
the system is described by that afz,t) from which the fines a maximal value of the stresga,,) for stability on the

shear rate can easily be deducedzt)=a(zt)S. For- pasty branch. Beyond this value, théz) solution “slips”

A. Imposed fluidity at the wall

mally, into the potential well of branch 2. Similarly, the fluid branch
ceases to be stable upon decrease of the streshen the
d_a_ _ OFs ) latter reaches the valuerg(a,) defined by V, (ay)
dt oa(z) =V, (@(0g)). It is easy to check thabr,<oq=<o*,

whereas o* <o;<oy. Typical curves for oi(a,) and
o4(a,) are plotted in Fig. 6.

A second process of destabilization exists. If the wall flu-
idity has extreme valuegither low or high walls may no
Vs(a)+ =D(d,a)2|dz, (10)  longer be involved in the destabilization process, which is

2 then “spinodal” (gray areas in Fig. )6
o The conclusion for the macroscopic steady-flal’)
where it is implicitly understood thaa equalsa, on the  giagram is thus simple. At fixedl there are two stable flow
boundaries. o curves. Fo2 <o(a,,) a branch exists close to the axis cor-

The evolution can be uglderstood as a minimization ofegponding to a frozen bulk with two layers of finite fluidity
Fs, as diFy=-[dz(d@a)°<0. Schematically, minima cjose to the walls(as schematized, e.g., in Fig). ZThis
correspond to adopting throughout the sample a valua of pranch s indistinguishable from the vertical axis for large
minimizing Vs [i.e., 0 oray(X)], and then connecting at the yajyes of the thicknes#d. For S>oy(a,), a fluidized
boundaries to the imposed valag with a minimal penalty  pranch exists very close to @entical in the limitH— ),
obtained as a compromise between Wie term and the jith a flowing bulk, and slightly less fluid wall layers.
square gradient ternia more formal description of these | the intermediate range,<3 <o, both branches are
steady-state solutions is given in the Appendbhis leads to  staple. The branch actually selected depends on the system
steady-state branches in the,{") plane that deviate from history and preparatiofinitial conditiong. This is very com-
the branches 0 and 2 only by the contribution of these walpatible with recent observations of a “bifurcation” of the
layers, which shifts the average shear rate by a small terrasymptotic viscosity at a given value of the applied stress for
proportional to¢/H, where¢~[Da,,/f(a,)]"?is the thick-  a given preparatiof32].
ness of these layers. If one starts with macroscopic bands of fluidized and fro-

The stability of these branches is now limited by the factzen material, the fronts between these zones will move so
that the walls af,, can act as nucleating sites for the otherthat one typically ends on the fluid branch Br¢* and on
phase. For example the “frozen” branch, where fluidity de-the frozen branch fok <o*.
creases frona,, on the wall to almost zero in the middle, If the stressy, is varied slowly in a systematic wajy.e.,

which is a rather classical equation describing the local re
laxation of a “free energy’Fs(a(z)). Here this functional is

H
Fa(a(2)= JO
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FIG. 8. Destabilization of the frozen bulk by heterogeneous
nucleation. The initial state is plotted with dotted lines. As the stress
is increased so that=o;, two fronts come from the walls, as
shown by the arrows, before they merge in the center. The steady
state is the fluidized bulk. In this simulatidifa)=a?+a* h(a)
=0.0%+a? a,=0.8, and> =1.45.

FIG. 7. Macroscopic flow curve at imposed streSs(thick
lineg). The thin lines(dashed and continuougorrespond to the
local flow curve of Fig. 2. The value of the fluidigy, at the walls
fixes the location of the limits of stabilityg; and o4 of the frozen
and fluid branchegsee Fig. 8 When the stress is varied monotoni-
cally, the shear rate suddenly jumps at these valtiesk arrows.

increased or decreasedne has the simple hysteretic behav-  In this interpretation, the sections* — ¢; on the pasty
ior described by the thick arrows in Fig. 7. branch andoy— o* on the flowing one would be called
The departure from the homogeneous case described inetastable. The absence of noise in the equations used here
the previous section is due to the walls, which introduce thenakes them absolutely stable. Adding some noise in the bulk
parametersd anda,, . Although the former has a moderate equation fora would reduce the metastable branch, bringing
role in shifting by a small amount the branches in the diathe system(possibly after prohibitively long waiting times
gram(by a term proportional té/H), the latter controls the g jump from the pasty to the fluid branch at .
position of the instability. thresholds, and thus the amp_litude Note that it may be experimentally difficult to detect the
oj—oy of the hysteresis loop observed macroscopicallynysteresis loop if its amplitude is smatither because;
(Actually, looking at the details, these threshold stresses de- o4 is small or because of the presence of npisehich
pend Very slightly onH but this effect is almost invisible would make this macroscopic flow curve very similar to a
numerically. See the Appendix textbook description of a fluid with a yield stree$, with

The above picturgFig. 7) is confirmed by numerical .
simulations by starting from various arbitrary initial condi- poss.|bly a rather abrupt change of the steady-state shear rate
At this value.

tions and also by submitting the system to ramps of increa
ing and decreasing stress. These simulations also allow one
to follow the destabilization process. Starting from a frozen
solution, the bulk is destabilized wheéi o;. This destabi-
lization process is initiated at the wall, where the fluidity is  If the boundary conditions are such thga=0 on the
fixed and nonvanishingacting therefore as a destabilizing walls, then the behavior of the system is exactly that ob-
nucleus: two fronts of large fluidity are first created at each tained in the analysis of the homogeneous model: the system
wall, and then propagate in the material to merge eventuallyends to relax any inhomogeneity, and its stable steady-state
at the middle of the Couette cell to give the homogeneousolutions are those of the homogeneous model, a pasty
a,(2) bulk solution(Fig. 8). branch 0 forS <o), and a fluid branch 2 fok >o,,. Both

On the other hand, starting from the fluidized branch,pranches are stable solutions fef<3 <o), . It results in a
when the stress is decreased this highly sheared solution fgsteretic loop of amplitude larger than in the previous case.
destabilized foz = 4. The destabilization process depends ~ So the picture is still quite similar to Fig. 7 above with the
onay. If ay,<ay, thenoy>op, and the destabilization oc- following differences: herer,=oy, and o4=0y,, and the
curs by fronts merging, as previously described, whereas iBranches follow the local flow curve strictly, with no slight
the reverse casey=oy,, and the bulk is destabilized as a deviation due to wall layers.
whole, as a plateau decreasing in time toward zero. Again we have checked the validity of this picture nu-

Note that the problem is formally very similar to that of merically.
wetting transitions in thermodynamics: it reduces to the
minimization of a free energy functional that is the sum of |, |,cTEROGENEITIES AT IMPOSED SHEAR RATE T
squared gradient termyga)? and a potential with two wells '
V(a), with boundary conditions on the walls that can favor ~We now turn to the case where the global shear rate is
one or the other of the phases. controlled, i.e., the velocity of the top wall is fixed, so that

B. No flux at the wall: @,al,-¢ =0
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the average shear rafe is imposed. The dynamics of the 2
system is now more complex and governed by two coupled
integro-differential equations, that can be obtained from Eq. |
(6): Oy,
o3 =—(a)(X()+T, ol
(11 1l IR
da=—f(a)+ah(a)22(t)+h(a)2a3 +Dd’a, o -} =
Gcf : i L
where<a> is the spatial average @f(z,t), O = ‘/ .
1 (H ; LB I
(a)(t)= ﬁf dza(z,t), 12 E 5 o
0 ’Yi ’Ym ’Yd
and where the boundary conditions are eimk%Lq,H: ay or FIG. 9. Schematic macroscopic flow curve at imposed shear rate
d,a|,-on=0. The local shear rate is given by(z,t)=I" T (thick lines. Again the thin linegcontinuous and dashgdenote
+la(z,t)—<a>(t)]=. the local flow curve. The value of the fluidity at the walls fixes the

This set of dynamic equations leads to a much richer s@bcation of the limit shear rateg, and 4 of the frozen and fluid
of situations, as the dynamics af does not relax a free homogeneous branches. Between these values the system tends to
energy[formally, ;a=— oFy )/ da(z) + sh(a)a2?]. As a segregate into shear bands. At the transition between thégray
result, for some values of, the system can have many areas, stable or oscillating thin layer structures are observed in the
steady states corresponding to different valuel oind for  Vicinity of the walls.
some others nongthe system then tends to a limit cycle

corresponding to a periodic solution fafz,t) and for(t) These behaviors have different signatures as shown on the
that yields a macroscopic stick-slip behavior macroscopic flow curve sketched in Fig. 9.

To explore this ensemble of scenarios it is necessary to
solve these equations numerically. Our numerical exploration 1. Frozen and fluidized regimes
leads to a complex picture. Starting with the case of a fixed , .
fluidity at the walls, we first describe the main features ob- First, for small and large imposed shear ritene recov-
served, before pointing out more complex features, including"™s the solutions obtained at imposed stress: except for small
the metastability of various patterns of shear bands and thgoundary effects, they correspond to the frozen branch 0, and
occurrence of localized oscillations. At this stage we have ndC the fluidized branch 2 of the local flow curve.
analytical understanding of some of these features, and of Along the fluidized branch, th&(I") relationship almost
their dependence on the parameters. The behaviors reportégactly follows the intrinsic flow curve obtained in the ho-
here result from numerical simulations witlandh fixed to ~ mogeneous case. The frozen branch actually displays an al-
f(a)=ra®+a* andh(a)=r'a+a?. At the end of this sec- Mmost vertical section going to zero in the limit of vanishing

tion we turn to the case of zero fluidity gradient at the wallsshear ratd"—0 due to the presence of a small wall layer of

to underline a few differences from the previous case. finite fluidity imposed by the wall,, and of thicknes<.
These domains are limited by the global stressgs,,)
A. Imposed fluidity at the wall and oy(a,), as discussed in Sec. IV. The corresponding

We start by analyzing the case where the fluidity at theShear ratey; and y4 can be calculated numerically with the

walls is fixed to a value,, . Depending od” anda,, differ- method described in the Appendix.
ent behaviors are observed. The main features are the follow- . _
ing. First, the frozen &3<o; and fluidized oy<3 2. Shear-banding regime

branches found at fixed stre€Sec. V) are also found to be A shear-banding domain connects the two previous frozen
stable at imposedl. Second, between two valugsandyy  and fluidized regions. It corresponds to a coexistence in the
defined in terms of the threshold stresses on these branchglear cell of the frozen and the fluidized states. Its signature
(see Fig. 9, the most frequent long time behavidshich ~ on the macroscopic flow curve is a quasiplateau at a stress
we take as the steady statese solutions corresponding to 3 ~o*. All over the banding domaifffor a givena,,), the

the coexistence of “bands” of frozema&=0) and fluidized stress is found to remain in the vicinity of the valgé
phased a=a,(c*)] coexisting at a stres§=¢*. Finally, defined in Sec. lll byV «(a,(c*))=V«(0). This approxi-

in a narrow vicinity of the transition from the quasihomoge- mately fixes the value of the fluidity in the fluidized region to
neous branches to this situation of coexisting “shear bandsa* =a,(o*), with a,(o) being the corresponding branch
(i.e., T slightly larger thany, or slightly smaller thany,), obtained in the homogeneous cdsee Sec. ). The shear
various phenomena can occur in the vicinity of the wall:rate in the fluidized region is approximately given accord-
nucleation of thin layers of fluidity different from the bulk, ingly asy* =a* o*. The total width of the frozen and fluid-

or of layers of periodically oscillating fluidity. ized regions are determined by the global constraint on the
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(a) FIG. 11. Behavior at low shear rate for a fixeld=100, r=1,

r’=0.01. The solid line corresponds &,,=0.3 and the dashed
linetoa,,=1. In the case o4,,;, oscillations are observed, and the
envelope of the oscillations is represented.

No analytical characterization was found to the limits of
stability of the multifront branches. Beyond these limits, ei-
ther oscillations are observed, or other stable branches are
reached. Their complex dependenceagnand?;, is shown
in Fig. 11. Note that, with the parameters taken to plot Fig.
10(a), for a small range of" [just left of the middle cross in
Fig. 10@], two solutions are possibledepending on the
history of the system stable oscillations of a central fluid-
ized layer(branch &), and a steady solution with a single
fluid layer at the wallbranch }. In the case of oscillations,

whenl is further decreased to the limit of stability of branch

Fluidity

Z coordinate 2b, the system evolves toward the pattern of branch 1 as
ib) indicated by the arrow in Fig. 18).
FIG. 10. (a) Calculated steady-state flow curves: the unstable 3. Stick-slip behavior

stationary solutions are plotted with thin lines, the stable solutions ) _
with thick lines, and the oscillating solutions with dotted lines. The ~ When no stable branch is reached, a time dependent os-

numbers on the branches represent the number of fronts betwe@illating behavior is evidenced for stress and fluidity. As seen
the fluidized and frozen bands=1, r'=0.01, H=40, a,,=0.25.  in Fig. 11, this occurs for small wall fluidity and imposed
(b) Fluidity profiles corresponding to the points marked with shear rate. This behavior is very reminiscent of stick-slip, a
crosses orfa) for the branches @, 2b, and 1. phenomenon commonly encountered in solid friction
[33,34. Here it originates in an oscillating behavior of the

total shear rate. The width of the fluidized regiopis typi- ;:E:g:tzégitgtee?s?hs ;)rhoazseg statistick phasgand a partially

cally given byh;=HI/y*, with y* defined abovesmall The fluidization however, occurs only within one layer,
boundary effects neglected __ the rest of the system being frozen. This spatially localized
An interesting question concerns the number of fluidizedygilating behavior resembles a periodic fracture-healing
bands: how many fronts between a frozen and a ﬂu'd'ze‘ﬂ)rocess, as observed, e.g., by Pigmtral. [10]. The fluid-
band can be stabilized for givet, a,,, andI'? In order to ized layer is localized either close to the wall, or in the
answer this question, a zoom of the quasiplateau is plotted imiddle of the shear cell, its fluidity oscillates between two
Fig. 10 for given H anda,,. The stable quasiplateau ac- extremal values, and its thickness is approximately constant.
tually consists of parts of the branches representing th&he time evolution of>, and the maximum fluidity of the
steady-state solutions with several frotis the figure these layer are plotted in Fig. 12, showing characteristic features of
stable parts of the branches are plotted with thick inEee  stick-slip behavior.
steady-state multifront branches were calculated numerically The system rapidly relaxes to the frozen state, i.e., a very
with the method detailed in the Appendix. The fluidity pro- small fluidity, while the stress increases until a limit where
files corresponding to the branches with one and two frontshe fluidity abruptly increases, i.e., the fluid is suddenly
are represented in Fig. (). Their stability was then exam- sheared. This sudden increase is due to the penetration of the
ined with the numerical simulation described in Sec. IID. maximum fluidity in the basin of attraction of the fluidized
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' one, depending on initial condition@n initial inhomoge-
neous state often leading to a banded inhomogeneous solu-
- tion).

The macroscopic flow curve for Eqéll) and (12) with
the present boundary conditions consists of the following:
| (1) The two increasing branches of the local cufliee
branches are parts of the local curve as the solutions are

homogeneoys Those branches are also stable in the case of
2 | | imposed stress.

U;. E | (2) The decreasing branch of the local curve. This is of
" r ' 4] course an artifact due to our neglecting inertial terms, which
......... . A et i suppresses the“mechanical instability” that always destabi-

0 30 L lizes this branch.

Time (3) The quasiplateau, with ~c*. As in the case of an
ia) imposed fluidity at the wall, it is constituted of parts of mul-
tifront branches, which become unstable at different values

3 : T ' ' ; ' : of the shear rate.

- — ] (4) An oscillating domain, for small shear rates, when the

— single front branch loses its stability.

231 7 Ruling out the unphysical decreasing branch, the picture

is thus quite similar to Fig. @without the effective wall slip

in branch 1 due to the finite wall fluidity there

i
n

CoEEpFEsSEEREe————

Stress Z— Fluidit

Stress
I
|
—
1

C. Comment on the oscillations

1.5k i Oscillating response under steady driving has recently
1 g been numerically observed in a model for shear-thickening
; T materialg 35], which in contrast to the present one described
. | . the homogeneous behavior of a syst@m spatial heteroge-
o 2 4 6 8 neity in the formalisny and the oscillations were shear-rate
Fluidity oscillations at fixed stress. Formally there are some similari-
(b) ties as in both cases a continud@asd thus infinitg set of

variables evolves through coupled differential equations with

FIG. 12. The amplitudes of the oscillations of the global stressnonmonotonic functions involved, and driven by a global
and of the maximum fluidity in the oscillating layer are representedintegral constraint. However, in contrast to the situation of
as a function of timea), and in the planed,X) (b), in the case  [35] where all the variables were involved in the oscillation,

a,=0.3,r=1,r'=0.01,I'=0.12. Its width hardly varies. here only a limited set of variables afeorresponding to a
spatially localized oscillating laygr
solutiona,(o), which is enlarged as increases. To main- In principle a finite number of variables is enough to get
tain a fixed global shear rate, relaxes quickly and the cycle an oscillating rheological responsgimit cycles) under
starts again. steady drivind 36], so it is no surprise that oscillations show
up here given the complexity of the set of equati@t,(12)
B. No flux at the wall: @,a|,—o=0 and the number of variables involved. One may even expect

In the case of a no flux boundary condition and for inter-rnore 'complex dynamical behavior such as some form of
] A i chaotic responsg36], but we found none within the set of
mediate values of (i <I'<yq), two very different locally  parameters numerically explored. Clearly, a truly three-
stable sets of solutions of Eq4.1) and(12) are possible: one - gimensional version of this model, with the corresponding
is very similar to the solutions obtained above for fixed flu-ponjinear convective terms, should increase the likeliness of

idity at the walls and exhibits shear banding and stick-slipchaotic behaviofeven in the absence of iner(ia7]).
behavior; the other one is the homogeneous solution at fixed

shear rate obtained in Sec. lll. This peculiarity is associated
with the specific form of the boundary condition, which is
compatible with a homogeneous fluidity in the cell. More- In the present paper we used an extension of a model
over, as discussed in Sec. lll, the decreasing branch is limpreviously introduced to account for the rheology and aging
early stable at fixed shear ratemember that we have sup- in pasty systems, in which the steady-state local flow curve is
pressed inertial termsand no destabilizing mechanism is nonmonotonic so that heterogeneous flows can be generated
induced here by the boundariéis contrast with the fixed at steady state. The key ingredient of the model is a coupling
wall fluidity casg. Formally, the system is thus attracted ei- between the mechanical variables, namely, shear stress or
ther by the homogeneous solution or by the inhomogeneoushear rate, and local relaxation within the fluid, characterized

VI. DISCUSSION
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by a fluidity. Although analytically very simple, the model W , , —
yields a rather rich macroscopic phenomenology.

(1) Under controlled stresX, the steady-state behavioris = ‘:_:Vz(az)
schematized in Fig. 7. The fluid undergoes a hysteretic phe- m 1™
nomenon if the stress is increased or decreased progressively
The effective yield stress is shown to depend on the fluid @22
history and on the wall conditions. In addition, no banding is 0\ ’ 10
observed and there is a discontinuity in shear faterhich Wila,) W(a,)

occurs at specific values of the stress.

In this case, we have shown that the dynamics reduces to
the minimization of a free energy function. This is general-
izable to any functiorf,g describing aging and fluidization, 0 a
and to more complex diffusion termi3(a). Note that the Fluidity
dynamics was not built as a free energy relaxation but natu- (@
rally appears this waysee the related discussions[it3]).

This gives some generality to the qualitative results, beyond l
the specific model studied here.

As no noise term was included, the equivalent of homo- 2, -
geneous nucleation in thermodynamics problem was sup-
pressed and boundary conditions play a crucial role in desta-
bilization processes. Hence, the values of the thresholds é‘
depend on the boundary conditions. However, the qualitative 'g
behavior(hysteretic loopis rather insensitive to the specific
type of boundary condition chosen.

(2) At fixed global shear ratg, the macroscopic behavior
is schematized in Fig. 9: banding solutions show up, separat-
ing a frozen region from a fluidized region. The shear rate
within the fluidized band is hardly dependent on the imposed
global shear rate, and fixed only by characteristics of the
material. Within the banding domain, the thickness of the
fluidized region increase@early) linearly with the global (b)

shear ratd” to eventually fill the full shear cell. FIG. 13. (a) PotentialWs . $=1.44,r=1, r' =0.01. (b) Fluid-
At small (total) shear rate, an oscillating behavior of the jty profile for a fluidized bulka, =1, H=15.
stress2, is observed, with features very reminiscent of a
classical stick-slip behavior. The system is globally in a fro-
zen state, and fluidizes periodically within a thin layer. Such
a behavior compares well with the fracturing and healing
process observed by Chenal. [6] and Pignonet al. [10].
These localized oscillations are to be contrasted with homo-
geneous oscillations obtained in other models for different alz-on=2au
systemge.g.,[35)).
Our observations result from numerical simulations an

1 1 |
a a a
W

a R
w

1
0 H2 H
Z coordinate

a(2)3=y(z),
—f(a(z))+a(z)h(a(z))22+Dd%,a(z)=0,
or d,al,-on=0. (A1)

GFor clarity, the potentiaWs(a) is introduced asWs(a)

a ! ! ! ! —
the influence of the specificity of the modelization of the __ —Joda'[f(a’)—a’h(a )22].' Note thatWs = —Vs as de-
fluidization and aging remains to be understood. Again, théIned in Eq.(8). Hence for a giverk we look for a solution
different thresholds depend on the boundary conditions, bLR(Z) such that
the qualitative behaviors described are robust to changes in
the types of boundary conditions. Extension of the present
model to a fully three-dimensional description could, how-
ever, yield a more complex dynamical behavior.

In conclusion, we suggest that analyzing yield stress flu- . . . -
99 yzing y he local shear rate is then immediately deduce(z)

ids close to the yield stress at both constant stress and coa a(2)s

stant shear rate could provide interesting information. It™ . . . .
could also be informative to check the sensitivity of the re- Eq“?t'O”(AZ) can_be interpreted as the c!qssma_l equation
sults to the nature of the surfaces bounding the fluid. of motion of a particle of mas® and positiona in the
potential Wy where z plays the role of time. The energy
Em=13(d,a)%+Ws(a) is conserved during the motion.
With this interpretation, the boundary conditions impose
In this appendix, we detail the steady-state solutions ofnitial and final positions 4,, imposed at the waljsor ve-
Eq. (6) recalled here: locities (9,a=0 imposed at the walls

—d,Ws(a)=Dd%a(z),

a-|z:0,H:a-W or aza|z:0,H:O- (A2)

APPENDIX: STATIONARY SOLUTIONS OF EQ. (6)
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We choose to detail here the case of an impaggdt the For H~ow, o(«,a,) is defined byW,,i(aW):O. With

wall, and the stres is chosens;>2> oy (see Sec. IV. the mechanical analogy, the mechanical endtgyis set to
The potentialWy is represented in Fig. 13. The extreme o iha is, the particle leaves its positiag with a velocity

values of the mechanical enerdy, are Wx(a,) and ;5 0, and spends an infinite time at the positiag

Ws(ap). From the analysis of these solutions, it is possible_ 5

to progress further in answering a few questions. For o>o0,,W,(a,)>0, and for a<a,,W,(a)

1) What is the fluidity profile on the frozen and fluidized . : .
bra(n)ches of Figs. 7 andyQ%or a given thicknessl, E. is <W,(a,). With the mechanical analogy, the particle cannot
: ' oo leave the positiom,, with a negative velocity and come back

set so that|,_oy=a, With d,a|,-,>0. With the mechani- . ) . ; )
cal analogy, this amounts to fixing the mechanical energy ofo It after a _t'mEH' There is no 50'““9” with a frozen bulk.
For a finiteH, a frozen bulk require&,,<0; therefore

initial velocity for the particle to leave positioa,,, reach a e
maximuma,, with 9,ala,=0, and go back to its initial po- i(H.aw) is Sl'qgtly smaller thar;(,a,), by an amount
sition within a timeH. that scales asl~~. _ o

The fluidity profile is represented in Fig. 13. Note that ~The situation is symmetric for the definition of
E.»=Ws(a,) corresponds to a fluidized bulk, with an infinite oa(H.ay), which is found to be slightly larger than

thicknessH ~ o, a4q(*,ay). - _
With d,a|,-¢>0, a profile with a bulk of fluidity higher (3) How can one calculate the fluidity profile for a solu-
thana,, is described. tion with several bandsThe mechanical energy,, is now

Symmetrically, a profile on the frozen branch, that is, withdecreased from mijiWs(0),Ws(a,)] to Ws(a,) to find
a bulk fluidity smaller thana,, is described by fixing banded stationary solutions: a frozen bulk solution with
d,a],-0<0, and following the same procedure. thicknessh; and, a fluidized bulk solution with thicknebs

(2) What is the limit of existence for the fluidized bulk (both with the same enerdy,,) such thath,;+h,=H form
solutiono;? o;(H,a,) was defined in Sec. IV as the stress together a single interface solution. The same process is de-
beyond which a profile with a frozen bulk can not be ob-rived to find multibanded solutions. Solutions of Fig. 10
served. were calculated numerically with this method.
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