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Simple model for heterogeneous flows of yield stress fluids
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Various experiments evidence spatial heterogeneities in sheared yield stress fluids. To account for heteroge-
neities in the velocity gradient direction, we use a simple model corresponding to a nonmonotonic local flow
curve and study a simple shear geometry. Different types of boundary conditions are considered. Under
controlled macroscopic shear stressS, we find homogeneous flow in the bulk and a hysteretic macroscopic

stress–shear-rate curve. Under controlled macroscopic shear rateĠ, shear banding is predicted within a range

of values ofĠ. For small shear rates, stick-slip can also be observed. These qualitative behaviors are robust to
changes in the boundary conditions.
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I. INTRODUCTION

Complex materials, such as concentrated colloidal s
pensions, gels, or foams, often exhibit exotic rheological
havior at low shear@1–11#, very different from the Newton-
ian linear response characterized by a stressS linearly

proportional to the shear rateĠ ~in scalar language!. A term
often coined for some of these behaviors is that of ‘‘yie
stress fluids.’’ Although often loosely used, it most of t
time describes fluids that have one or both of the follow
properties: when one looks at the steady state flow cu

S(Ġ) at low shear,~i! the stressS tends to a finite valueSY

when the shear rate goes to zero;~ii ! no flowing steady state
solution exists for stresses smaller than a valueS0. Conse-
quently, at low stresses, the system does not really flow,
these ‘‘pastes’’ often display physical aging in a way rath
similar to structural glasses.

A traditional way to apprehend thismacroscopicrheologi-
cal nonlinear behavior is to suppose the existence of alocal

relation between thelocal stresss and thelocal shear rateġ
of one of the forms I to IV in Fig. 1. Classically again, I to I
being monotonic can lead to a homogeneous flow so tha
macroscopic response is identical to the local flow cur
while II and III correspond to genuine yield stress flui
satisfying both~i! and ~ii ! above@with S05SY5s(ġ50)],
I yields a power law fluid behaviorS5AĠa which can be
experimentally very difficult to tell apart from the yiel
stress behaviors II and III ifa is small. It is classically ar-
gued, on the other hand, that the decreasing branch o
(dS/dĠ,0) cannot lead to the corresponding homogene
situation, as such a flow is unstable with respect to the
mation of ‘‘shear bands’’ or domains flowing at different lo
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cal shear rates. This statement is usually substantiated
simple argument invoking inertial terms~see, for instance
@12#!. This type of banding is referred to as ‘‘gradient ban
ing’’ as opposed to ‘‘vorticity banding’’~coexistence of do-
mains flowing at different local shear stress and comm
shear rate!.

The question then arises of the structure of the hetero
neous flow pattern observed in these conditions~curve IV,
gradient banding!, of its stability ~i.e., are there always
steady-state solutions?!, and of the resulting macroscopi
flow curveS(Ġ) for the steady-state solutions. Investigatin
this problem in generic terms is very difficult as many u
derlying dynamical laws involving an unlimited number
‘‘hidden’’ variables can generate local equations such as
In this paper, to make progress, we consequently mak
specific choice for this underlying dynamics, which we ju
tify now.

Formally, taking the verticalġ50 axis as part of the loca
flow curve, the problem is very similar to the analysis
flow-induced or flow-assisted ‘‘phase’’ transitions for sy

FIG. 1. Schematic representation of possible local steady-s

curves(ġ) generating a macroscopic yield stress fluid behavio
©2002 The American Physical Society01-1
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tems with a local nonmonotonic relationships(ġ). For some
systems, the change in rheological properties can be asc
to a structural phase transition occurring under flow: Ram
et al. with lyotropic hexagonal phases@2#, Diat et al. with
onions @4#, and Britton and Callaghan@1# and Berretet al.
with wormlike micelles@3# observe a phase transition, an
the coexistence of two well defined phases. Such behav
are quite reminiscent of equilibrium phase transitions,
though no general principle appliesa priori in such out of
equilibrium situations@13#. The identification of structura
differences between the flowing phases then provides a g
as to what are the most likely relevant local variables bey
the rheological ones: a~nonconserved! nematic order param
eter, the~conserved! concentration of a constituent, etc. R
lated theoretical descriptions have thus tried to describe
coupling between this order parameter and flow in orde
obtain a selection criterion for the flow pattern and the
sulting macroscopic rheological behavior@13–19#.

However, for many yield stress fluids there is no obvio
structural difference between the coexisting flowing phas
experimental reports often describe ‘‘shear bands’’ of a flo
ing ‘‘phase’’ in a stationary ‘‘phase’’ with no clear structura
or textural difference between the two parts of the syste
Such ‘‘soft glassy materials’’@8# include gels, pasty system
concentrated glassy suspensions, and so on. One may ci
work by Raynaudet al. @7#, where banding is observed in
suspension of bentonite and the interface between the b
is in the velocity-vorticity plane~gradient banding!: the sys-
tem is sheared within a band at the inner moving cylind
while the rest of the sample remains unsheared. Lapo
suspensions also undergo banding for a certain range of
posed shear rates, a range for which the shear stress is a
constant@10#. Noticeably, for a range of lower shear rat
stick-slip is observed in this system: a layer reversibly fr
tures and reheals, showing stationary oscillations in the m
sured stress. Eventually, one may note that inhomogen
velocity profiles are also observed in sheared foams@5# and
granular pastes@11#.

For these systems with no clearly identified structu
variable that would distinguish coexisting phases, there
much less guidance for building models. Still, banding
likely to originate from the same basic physical mechani
as for phase separating fluids@20#. Models have therefore
been derived along similar lines, which differ by the choi
of the hidden variable~equivalent to the order paramete!
and of its dynamics@20,22#. In addition, or alternatively, gra
dient terms were included in the nonmonotonic intrinsic l
s(ġ) @12,21#.

In the present paper we follow the route initiated by De
et al. @23#, which has been shown to be a simple thou
useful guide to understand the interplay between nonlin
rheology and aging properties for yield stress fluids char
terized by local flow curves of types I to III@23,24#. In the
present work we adapt it to describe local flow curves of ty
IV, and to take into account spatial heterogeneities.

The essence of the model of@23# is to describe the loca
state of the system by a single scalar variable that is
convenience taken to be the local relaxation frequency of
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stress~called the ‘‘fluidity’’ !, as expressed by a Maxwe
equation] ts52a(t)s1ġ ~stress has been rescaled so th
the elastic modulus is 1). Then the evolution of the fluid
a(t) results from the competition between~i! aging—
relaxation rates in the system decrease during the spont
ous evolution of the pasty system, this evolution being its
slower and slower as time passes; and~ii ! flow-induced
rejuvenation—flow induces rearrangements in the syste
which in turn increase the fluidity of the system as a fee
back mechanism@9,24–26#. This competition results in
an equation fora that supplements the Maxwell one:] ta

52 f (a)1g(a,s,ġ), with f andg positive functions.
Here, to address the question at hand, we focus on cho

for f andg leading to local flow curves~local steady states!

with a decreasing branch at low values ofġ, and we attempt
to describe spatial heterogeneities, through a simple diffus
term DDa in the equation describing the evolution ofa.

We then study the flow patterns in a simple shear geo
etry for such a system, when it is driven at either impos
macroscopic shear stressS or imposed macroscopic shea
rateĠ, and deduce the resulting macroscopic rheological
havior. We will on the way provide analytical and numeric
arguments, using when necessary explicit choices forf andg,
and pinpoint the role of the boundary conditions. In partic
lar we will show that the model accounts for the followin
features.

~1! WhenS is imposed, the flow curve jumps in a hyste
etic fashion between two branches: one corresponds to
flow but for a wall layer in the vicinity of the walls; the othe
corresponds to a fully fluidized situation.

~2! When the global shear rateĠ is imposed, shear band
ing can occur, as well as sometimes a stick-sliplike oscil
ing behavior at small shear rate that corresponds to a lo
ized oscillation of the fluidity.

These features will be analyzed in the context of expe
mental results.

The paper is organized as follows. We recall in Sec. II
basic ingredients of the model in Ref.@23# and propose a
generalization to account for inhomogeneities in the syst
The homogeneous case is detailed in Sec. III and the stab
of the homogeneous solutions is discussed. Heterogen
solutions are considered in Secs. IV and V. In Sec. IV
controlled stress situation is considered, while in Sec. V
global shear rate is imposed. In Sec. VI, choices made
building the model and the influence of the boundary con
tions are discussed.

II. MODEL AND GEOMETRY

In this section we define more clearly the model and
geometry we are going to study, following the physical
guments given in the Introduction. In Sec. II A, we spec
further the functionsf and g, in Sec. II B we describe the
geometry considered and the corresponding description
heterogeneities in the equations, in Sec. II C we define
boundary conditions for both velocity and fluidity, an
we summarize in Sec. II D by recalling the resulting set
equations.
1-2
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SIMPLE MODEL FOR HETEROGENEOUS FLOWS OF . . . PHYSICAL REVIEW E 66, 051501 ~2002!
A. Accounting for a nonmonotonic local flow curve

From the Introduction, we start with the model of@23#,
devised for homogeneous situations:

] ts52as1ġ,

] ta52 f ~a!1g~a,s,ġ !. ~1!

For the sake of explicitness, and with loss of generality
will often be useful to restrict the choices for the functionf
and g appearing in Eq.~1!. This is particularly true for the
flow-induced rejuvenation termg(a,s,ġ) which can take
many forms.

Following again Derecet al. @23#, we take forms corre-
sponding to low values of the stress, shear rate, and flui
so that power laws may express a kind of expansion of m
general functions. Also,a being a positive scalar, the direc
tion of shear is of no influence so one expectsg(a,s,ġ)
5g(a,2s,2ġ). A simple solution is theng(a,s,ġ)
5h(a)sġ.

Then, following the Introduction, we want the stead
state flow curves(ġ) to have a decreasing branch for sm
but nonzero values ofġ ~as sketched in Fig. 2!. In that case,
the steady-state solutions of the system~1! consist of the
vertical axis (a50, ġ50, s arbitrary!, and solutions given
by s(a)5@ f (a)/ah(a)#1/2 when expressed in the planes,a.
The function a(ġ) is a monovalued increasing function
whereass(a) is multivalued, decreasing for small values
a and then increasing for larger values. The requirements
thus that f (a)/ah(a) has a negative derivative for 0,a
,am and a positive one foram,a. The minimum thus
reached foram corresponds to the minimal value of the stre
sm5@ f (am)/amh(am)#1/2. Eventually, as for curve IV in Fig.
1, s tends toward a finite value whenġ goes to zero, which
we call sM .

When numerical calculation proves necessary to ana
the evolution of the system, we make even more expl
choices regardingf andh, which must of course satisfy th
above requirements. We use the simple choicef (a)5ra2

1a4, h(a)5r 8a1a2 with r and r 8 arbitrary numbers tha
we vary to check the robustness of our conclusions. T
f (a) scales asa2 for small values ofa gives a spontaneou
relaxation ofa as the inverse of the elapsed time, a situat
often referred to as ‘‘full aging’’~see@23#!.

FIG. 2. Schematic drawing of the local steady-state flow cu

s(ġ),s(a),ġ(a).
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B. Incorporating heterogeneities: Geometry and model

In principle, a general description of heterogeneous flo
implies complex algebra describing the evolution of sca
and tensorial quantities through convected derivatives,
writing various conservation equations~for mass, momen-
tum, etc.!. We focus here on the simplest flow geomet
~simple shear!, allowing only variations along one direction
perpendicular to flow and vorticity.

More precisely, we consider our complex fluid to b
bounded by two parallel plates located atz50 and z5H
~see, e.g., Fig. 3!. The top plate moves alongx at a velocity
V, while the bottom one is immobile, so that the macrosco
shear rate isĠ5V/H. In this situation we consider lamina
flows alongx, where the local variabless5sxz , ġ, and a
depend only onz ~i.e., not onx andy).

Neglecting acceleration~inertial! terms is a common as
sumption for such~highly viscous! fluids on the ground of a
low Reynolds number. This in general makes the stress
vergence free, but in the present geometry it results in
stress being spatially constant so that it is no longer a lo
variable. We will in this paper make this assumption of fa
momentum diffusion, while keeping in mind that by doing
we formally suppress a ‘‘mechanical instability’’ that dest
bilizes into bands any homogeneous flow solution cor
sponding to a decreasing part of the local flow cur
ds/dġ,0 ~see, e.g.,@12,20,27#!. In this framework, the lo-
cal stress depends solely on time, and is identical to
macroscopic stresss(z,t)5s(t)5S(t).

Now in order to discuss spatial heterogeneities we nee
account for the effect on the dynamics of a heterogene
value of the fluidity. Again, for the sake of simplicity, w
model this as a diffusion process in the evolution of t
fluidity and correspondingly add aD¹2a diffusion term to
the second equation of~1!. This choice corresponds to
picture in which the system is fluidized in a localized regio
this triggers spontaneous local relaxations which themse
tend to fluidize the neighborhood of the initial region. A
cordingly, we take the ‘‘diffusive coefficient’’ to be a positiv
constant. A negative value would generate local, small wa
length instabilities that destabilize homogeneous flow eve
high shear rates. As we focus here on the instability gen

e

FIG. 3. Geometry: simple shear alongx, variations alongz only.
The flow can be heterogeneous; the example depicted here c
sponds to a low fluidity in the bulk and wall layers of higher fluidi
close to the wall.
1-3
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PICARD et al. PHYSICAL REVIEW E 66, 051501 ~2002!
ated by the nonmonotonic branch of the local flow curve, a
in line with experimental observations@7,9# of homogeneous
flow at high shear, we discard this possibility here. In ad
tion, we do not consider other terms formally allowed
symmetry such as (¹a)2.

The system is therefore described by the coupled eq
tions

] ts~ t !52a~z,t !s~ t !1ġ~z,t !,

] ta~z,t !52 f „a~z,t !…1h„a~z,t !…s~ t !ġ~z,t !1D]zz
2 a~z,t !.

~2!

One may note that in its present form the equation for
fluidity is close to the equation for the granular temperat
obtained within the granular hydrodynamics of inelas
beads@28#: the spatial diffusion term accounts in the latt
case for ‘‘heat’’ diffusion~according to Fourier law! and the
‘‘aging’’ term corresponds to the energy dissipation te
~due to the inelasticity of collisions!, which drives the granu-
lar material toward a state of zero temperature. Eventua
the granular temperature is indeed a measure of the l
fluidity of the granular material.

An important comment is also that the diffusion coef
cient D that we took constant here could in principle be
function of a. This would affect the length scale appeari
from the competition off (a) and D]zz

2 a. If, as in the ex-
ample at the end of the previous subsection,f (a);a2 for
smalla, then this length scale depends on the actual valu
a: (D/a)1/2, indicating algebraic tails for spatial structure
of low fluidity.

C. Boundary conditions

The equation for the fluidity and velocity have to b
supplemented by boundary conditions at the confining w
at z50 andz5H.

We here exclude any direct wall slippage and assume
plates to be sufficiently rough for the plate velocity to
equal to the limit velocity in the fluid approaching the pla
~no slip velocity!. This is equivalent to

E
0

H

dzġ~z,t !5V~ t !5Ġ~ t !H. ~3!

It is important to point out that this hydrodynamic conditio
is not sufficient: a boundary condition for the fluidity equ
tion is also required. How the walls affect the density, ord
and relaxation processes of the fluid in their vicinity is ob
ously a complex problem with many aspects to it, even
simple liquids@29#. A smooth flat wall can enhance orderin
a rough or chemically disordered one can on the contr
locally disorganize the fluid~relative to what happens in th
bulk!. The consequences of these on the local relaxation r
being far from trivial@30#, we choose here to investigate tw
limiting simple cases that hopefully bracket the true beh
ior: ~i! a fixed fluidity at the wall

a~z50!5a~z5H !5aw , ~4!
05150
d

-

a-

e
e

y,
al

of

ls

e

r,

r

ry

es

-

and ~ii ! a zero gradient condition

]zauz50,H50. ~5!

D. Summary

We summarize here the equations that we will use in
remainder of the paper:

] tS52aS1ġ,

] ta52 f ~a!1h~a!Sġ1D]zz
2 a,

E
0

H

dzġ~z,t !5V5ĠH,

auz50,H5aw or ]zauz50,H50, ~6!

where S(t),Ġ(t) are global variables whereasa(z,t) and
ġ(z,t) are local ones. When explicit choices are necessar
study the corresponding dynamics, we will usef (a)5ra2

1a4 andh(a)5r 8a1a2.
Let us recall that by neglecting the inertial terms we fo

mally suppress the ‘‘mechanical instability’’ that destabiliz
the decreasing branchds/dg,0.

Numerical method. For various cases, it is difficult or im
possible to get analytical results and numerical calculat
becomes necessary. The evolution equations for the s
and the fluidity, Eq.~6!, have been solved numerically usin
a pseudospectral method, together with a Runge-Kutta i
grator@31#. This technique integrates the diffusion part of t
time equation for the fluidity in Fourier space, while th
nonlinear part is solved in real space. Special care has b
taken to avoid aliasing of the solutions. A standard fast F
rier transform algorithm is used for the forward and bac
ward transformations between real and Fourier space.

We wish to use Eqs.~6! to deduce the macroscopic be
havior of the system, to analyze the conditions for the ex
tence of a steady state, and to describe the features o
flow. Note that the boundaries appear explicitly, as poten
heterogeneities, so that most of the time the structure clos
the boundaries will be different from the one in the bu
allowing the walls to nucleate new ‘‘phases’’ before the bu
Actually, the absence of noise terms in these equations
presses the equivalent of homogeneous nucleation in the
dynamics problems. We briefly comment upon the addit
of noise when it plays a significant role. In the followin
three sections, we first consider briefly the formal case o
homogeneous behavior~Sec. III!; we then analyze the sim
pler case of the response to a fixed stressS ~Sec. IV!, before
turning to the more complex case of a fixed global shear
Ġ ~Sec. V!.

III. HOMOGENEOUS BEHAVIOR

We first analyze briefly the homogeneous case, where
impose the requirement that the fluiditya(t) is independent
of z, so thatS and Ġ are similar tos and ġ. Although
slightly redundant with previous discussions of the flo
1-4
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SIMPLE MODEL FOR HETEROGENEOUS FLOWS OF . . . PHYSICAL REVIEW E 66, 051501 ~2002!
curve, this analysis will highlight the potential differenc
between the stability analyses at fixed stress and fixed s
rate. These differences naturally result from the fact thaS

and Ġ are treated on a different footing in Eq.~1!.
As previously stated, steady-state solutions consist

three branches.
Branch 0: Ġ50, a50, S arbitrary. This corresponds t

a frozen, nonflowing system.
Branch 1: a,am , Ġ,ġm5amsm , andS is a decreasing

function of botha and Ġ.
Branch 2: a.am , Ġ.ġm , andS is an increasing func-

tion of botha and Ġ, from sm up to `.
The three solutions~or branches! of fluidity are schemati-

cally plotted in the (S,a) plane in Fig. 4@theS(Ġ) plot has
a similar aspect and is identical to the left curve in Fig.#.
We will use the notationa1(S) and a2(S) to designate
branches 1 and 2@the two roots ofS25 f (a)/ah(a)].

A. Imposed stressS

The evolution of a homogeneous system at fixedS5s is
truly simple as the Maxwell model yieldsĠ5aS which can
be injected in the equation describing the fluidity, so that
evolution of the system is completely described by the s
differential equation

da

dt
52

dVS

da
~a!, ~7!

where the ‘‘effective potential’’VS is

VS~a!5E
0

a

da8@ f ~a8!2a8h~a8!S2#. ~8!

The above equation describes the relaxation ofa in the po-
tential VS . Depending on the value of the imposedS, this
potential has either one or three extrema: forS,sm , a
50 is the only minimum; forsM.S.sm , VS has two
minima, a50 and a5a2(S) and a single maximuma
5a1(S); and forS.sM , a5a2(S) is the only minimum.

FIG. 4. Schematic description of the evolution ofa at fixed
stress~horizontal arrows!. Stable steady-state branches are in bo
unstable ones in dashed lines.
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Linear stability immediately results~see Fig. 4!, as the
system falls in the potentialVS(a) along the instantaneou
slope at pointa(t) ~see Fig. 5!.

Branch 0 is stable forS,sM so that the system evolve
to this frozen situation whenever the stress is too weakS
,sm . At long times the system typically creeps but does n
flow, Ġ(t)5a(t)S with a(t) decreasing~typically algebra-
ically in time! to 0. For example, with the explicit values o
f and h proposed above, one hasa(t);1/t so that G(t)
;S ln(t).

Branch 1 is always unstable, so that forsM.S.sm the
system fluidity evolves either to 0~again leading to creep
not to steady flow! if the initial value of a is smaller than
a1(S), or towarda2(S) in the opposite case. Note that suc
a behavior is rather similar to the recently reported ‘‘visco
ity bifurcation’’ @32#. This similarity remains if the constrain
of homogeneity is lifted as will be discussed in Sec. IV. T
stable branches 0 and 2 correspond, respectively, to st
nonflowing and flowing states of the system underS.

For larger stressesS.sM branch 0 is unstable and th
fluidity always evolves towarda2(S).

Eventually we note that forsM.S.sm the addition of
noise to the equation describing the evolution ofa could lead
the system to select either branch 0 or branch 2, depen
on which one corresponds to the lowest value ofVS ~the
noise could allow the system to jump to the more favora
well, although possibly after very long times!. Comparing
these two values leads to the introduction of a values* that
will prove important in the following: forsm,S,s* , 0
5VS(0),VS(a2) so that branch 0 is the absolute minimum
for S.s* branch 2 is the minimum. Formally,s* is given
by Vs* „a2(s* )…50 ~see Fig. 5!.

B. Imposed shear rateĠ

Although the steady-state solutions are obviously
same as in the previous case, the dynamics is more com
when Ġ is fixed, as it is governed by the coupled equatio
for the evolution in time ofS(t) anda(t).

;
FIG. 5. Effective potentialVS(a) for the evolution ofa(t) in the

homogeneous case. Depending on the actual value ofS, VS has
one or two minima.
1-5
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PICARD et al. PHYSICAL REVIEW E 66, 051501 ~2002!
The stability of the steady-state solutions can, however
examined by linearization around these solutions. The
stable branches 0 and 2 in Fig. 4 described in the case o
imposed stress remain stable. The stability of the decrea
branch 1 at fixed shear rate and with homogeneity impo
depends on the choice of the functionsf and h in Eq. ~6!
~recall that as mentioned in Sec. II B we have formally su
pressed the mechanical inertial mode of destabilization!. For
generalf and h, one cannot preclude destabilization of t
steady solution (1) to a limit cycle@33#. However, this is not
the case with the expressions of Sec. II Af (a)5ra21a4

andh(a)5r 8a1a2, for which the branch 1 is always stab
~again when homogeneity is enforced!.

IV. HETEROGENEOUS FLOW AT IMPOSED STRESS S

The situation at imposed fixed stress can be apprehen
rather simply starting from the analysis of the homogene
case mentioned above with its two stable branches 0 an
Heterogeneities are generated by the walls, which ind
wall layers of different fluidities, with a major effect on th
selection of the steady-state flow branch.

A. Imposed fluidity at the wall

We start by considering the case where the walls imp
the local value of the fluidityauz50,H5aw . The evolution of
the system is described by that ofa(z,t) from which the
shear rate can easily be deduced,ġ(z,t)5a(z,t)S. For-
mally,

da

dt
52

dFS

da~z!
~9!

which is a rather classical equation describing the local
laxation of a ‘‘free energy’’FS„a(z)…. Here this functional is

FS~a~z!!5E
0

HFVS~a!1
1

2
D~]za!2Gdz, ~10!

where it is implicitly understood thata equalsaw on the
boundaries.

The evolution can be understood as a minimization
FS , as dtFS52*0

Hdz(] ta)2,0. Schematically, minima
correspond to adopting throughout the sample a valuea
minimizing VS @i.e., 0 ora2(S)], and then connecting at th
boundaries to the imposed valueaw with a minimal penalty
obtained as a compromise between theVS term and the
square gradient term~a more formal description of thes
steady-state solutions is given in the Appendix!. This leads to
steady-state branches in the (S,Ġ) plane that deviate from
the branches 0 and 2 only by the contribution of these w
layers, which shifts the average shear rate by a small t
proportional to,/H, where,;@Daw / f (aw)#1/2 is the thick-
ness of these layers.

The stability of these branches is now limited by the fa
that the walls ataw can act as nucleating sites for the oth
phase. For example the ‘‘frozen’’ branch, where fluidity d
creases fromaw on the wall to almost zero in the middle
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ceases to be stable ifS is increased so that it becomes inte
esting~in terms of minimizingFS) to increasea beyondaw
at the expense of a section of thea.0 central part. The
threshold roughly corresponds toVS(aw)5VS(0) which de-
fines a maximal value of the stresss i(aw) for stability on the
pasty branch. Beyond this value, thea(z) solution ‘‘slips’’
into the potential well of branch 2. Similarly, the fluid branc
ceases to be stable upon decrease of the stressS when the
latter reaches the valuesd(aw) defined by Vsd

(aw)

5Vsd
„a2(sd)…. It is easy to check thatsm<sd<s* ,

whereas s* <s i<sM . Typical curves for s i(aw) and
sd(aw) are plotted in Fig. 6.

A second process of destabilization exists. If the wall fl
idity has extreme values~either low or high! walls may no
longer be involved in the destabilization process, which
then ‘‘spinodal’’ ~gray areas in Fig. 6!.

The conclusion for the macroscopic steady-flowS(Ġ)
diagram is thus simple. At fixedS there are two stable flow
curves. ForS,s i(aw) a branch exists close to the axis co
responding to a frozen bulk with two layers of finite fluidit
close to the walls~as schematized, e.g., in Fig. 2!. This
branch is indistinguishable from the vertical axis for lar
values of the thicknessH. For S.sd(aw), a fluidized
branch exists very close to 2~identical in the limitH→`),
with a flowing bulk, and slightly less fluid wall layers.

In the intermediate rangesd,S,s i , both branches are
stable. The branch actually selected depends on the sy
history and preparation~initial conditions!. This is very com-
patible with recent observations of a ‘‘bifurcation’’ of th
asymptotic viscosity at a given value of the applied stress
a given preparation@32#.

If one starts with macroscopic bands of fluidized and f
zen material, the fronts between these zones will move
that one typically ends on the fluid branch forS.s* and on
the frozen branch forS,s* .

If the stressS is varied slowly in a systematic way~i.e.,

FIG. 6. Threshold valuess i andsd of the stress as a function o
the fluidity at the wallsaw . Aboves i the frozen branch is unstable
below sd the fluidized branch is unstable. When the imposed m
roscopic stressS is betweensd ands i , both branches are stable
Which one is selected depends then on the initial conditions, i.e.
the system’s history. Areas in gray correspond to bulk destabil
tion ~‘‘spinodal’’ !, whereas a simple thick line denotes destabiliz
tion from the wall~‘‘heterogenous nucleation’’!.
1-6
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SIMPLE MODEL FOR HETEROGENEOUS FLOWS OF . . . PHYSICAL REVIEW E 66, 051501 ~2002!
increased or decreased!, one has the simple hysteretic beha
ior described by the thick arrows in Fig. 7.

The departure from the homogeneous case describe
the previous section is due to the walls, which introduce
parametersH and aw . Although the former has a modera
role in shifting by a small amount the branches in the d
gram~by a term proportional to,/H), the latter controls the
position of the instability thresholds, and thus the amplitu
s i2sd of the hysteresis loop observed macroscopica
~Actually, looking at the details, these threshold stresses
pend very slightly onH but this effect is almost invisible
numerically. See the Appendix!.

The above picture~Fig. 7! is confirmed by numerica
simulations by starting from various arbitrary initial cond
tions and also by submitting the system to ramps of incre
ing and decreasing stress. These simulations also allow
to follow the destabilization process. Starting from a froz
solution, the bulk is destabilized whenS5s i . This destabi-
lization process is initiated at the wall, where the fluidity
fixed and nonvanishing~acting therefore as a destabilizin
nucleus!: two fronts of large fluidity are first created at ea
wall, and then propagate in the material to merge eventu
at the middle of the Couette cell to give the homogene
a2(S) bulk solution~Fig. 8!.

On the other hand, starting from the fluidized bran
when the stress is decreased this highly sheared solutio
destabilized forS5sd . The destabilization process depen
on aw . If aw,am , thensd.sm and the destabilization oc
curs by fronts merging, as previously described, wherea
the reverse casesd5sm , and the bulk is destabilized as
whole, as a plateau decreasing in time toward zero.

Note that the problem is formally very similar to that
wetting transitions in thermodynamics: it reduces to
minimization of a free energy functional that is the sum
squared gradient term (]za)2 and a potential with two wells
Vs(a), with boundary conditions on the walls that can fav
one or the other of the phases.

FIG. 7. Macroscopic flow curve at imposed stressS ~thick
lines!. The thin lines~dashed and continuous! correspond to the
local flow curve of Fig. 2. The value of the fluidityaw at the walls
fixes the location of the limits of stabilitys i andsd of the frozen
and fluid branches~see Fig. 6!. When the stress is varied monoton
cally, the shear rate suddenly jumps at these values~thick arrows!.
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In this interpretation, the sectionss* →s i on the pasty
branch andsd→s* on the flowing one would be called
metastable. The absence of noise in the equations used
makes them absolutely stable. Adding some noise in the b
equation fora would reduce the metastable branch, bringi
the system~possibly after prohibitively long waiting times!
to jump from the pasty to the fluid branch ats* .

Note that it may be experimentally difficult to detect th
hysteresis loop if its amplitude is small~either becauses i

2sd is small or because of the presence of noise!, which
would make this macroscopic flow curve very similar to
textbook description of a fluid with a yield stresss* , with
possibly a rather abrupt change of the steady-state shear
at this value.

B. No flux at the wall: ­zazzÄ0,HÄ0

If the boundary conditions are such that]za50 on the
walls, then the behavior of the system is exactly that o
tained in the analysis of the homogeneous model: the sys
tends to relax any inhomogeneity, and its stable steady-s
solutions are those of the homogeneous model, a p
branch 0 forS,sM and a fluid branch 2 forS.sm . Both
branches are stable solutions forsm,S,sM . It results in a
hysteretic loop of amplitude larger than in the previous ca

So the picture is still quite similar to Fig. 7 above with th
following differences: heres i5sM and sd5sm , and the
branches follow the local flow curve strictly, with no sligh
deviation due to wall layers.

Again we have checked the validity of this picture n
merically.

V. HETEROGENEITIES AT IMPOSED SHEAR RATE Ġ

We now turn to the case where the global shear rate
controlled, i.e., the velocityV of the top wall is fixed, so that

FIG. 8. Destabilization of the frozen bulk by heterogeneo
nucleation. The initial state is plotted with dotted lines. As the str
is increased so thatS*s i , two fronts come from the walls, a
shown by the arrows, before they merge in the center. The ste
state is the fluidized bulk. In this simulationf (a)5a21a4, h(a)
50.05a1a2, aw50.8, andS51.45.
1-7
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PICARD et al. PHYSICAL REVIEW E 66, 051501 ~2002!
the average shear rateĠ is imposed. The dynamics of th
system is now more complex and governed by two coup
integro-differential equations, that can be obtained from
~6!:

] tS52^a&~ t !S~ t !1Ġ,
~11!

] ta52 f ~a!1ah~a!S2~ t !1h~a!S] tS1D]zz
2 a,

where,a. is the spatial average ofa(z,t),

^a&~ t !5
1

HE
0

H

dza~z,t !, ~12!

and where the boundary conditions are eitherauz50,H5aw or
]zauz50,H50. The local shear rate is given byġ(z,t)5Ġ
1@a(z,t)2,a.(t)#S.

This set of dynamic equations leads to a much richer
of situations, as the dynamics ofa does not relax a free
energy@formally, ] ta52dFS(t) /da(z)1 1

2 h(a)] tS
2]. As a

result, for some values ofĠ, the system can have man
steady states corresponding to different values ofS, and for
some others none@the system then tends to a limit cyc
corresponding to a periodic solution fora(z,t) and forS(t)
that yields a macroscopic stick-slip behavior#.

To explore this ensemble of scenarios it is necessar
solve these equations numerically. Our numerical explora
leads to a complex picture. Starting with the case of a fix
fluidity at the walls, we first describe the main features o
served, before pointing out more complex features, includ
the metastability of various patterns of shear bands and
occurrence of localized oscillations. At this stage we have
analytical understanding of some of these features, an
their dependence on the parameters. The behaviors rep
here result from numerical simulations withf andh fixed to
f (a)5ra21a4 and h(a)5r 8a1a2. At the end of this sec-
tion we turn to the case of zero fluidity gradient at the wa
to underline a few differences from the previous case.

A. Imposed fluidity at the wall

We start by analyzing the case where the fluidity at
walls is fixed to a valueaw . Depending onĠ andaw differ-
ent behaviors are observed. The main features are the fol
ing. First, the frozen 0,S,s i and fluidized sd,S
branches found at fixed stress~Sec. IV! are also found to be
stable at imposedĠ. Second, between two valuesġ i and ġd
defined in terms of the threshold stresses on these bran
~see Fig. 9!, the most frequent long time behaviors~which
we take as the steady states! are solutions corresponding t
the coexistence of ‘‘bands’’ of frozen (a.0) and fluidized
phases@a.a2(s* )# coexisting at a stressS.s* . Finally,
in a narrow vicinity of the transition from the quasihomog
neous branches to this situation of coexisting ‘‘shear ban
~i.e., Ġ slightly larger thanġ i or slightly smaller thanġd),
various phenomena can occur in the vicinity of the wa
nucleation of thin layers of fluidity different from the bulk
or of layers of periodically oscillating fluidity.
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These behaviors have different signatures as shown on
macroscopic flow curve sketched in Fig. 9.

1. Frozen and fluidized regimes

First, for small and large imposed shear rateĠ one recov-
ers the solutions obtained at imposed stress: except for s
boundary effects, they correspond to the frozen branch 0,
to the fluidized branch 2 of the local flow curve.

Along the fluidized branch, theS(Ġ) relationship almost
exactly follows the intrinsic flow curve obtained in the h
mogeneous case. The frozen branch actually displays a
most vertical section going to zero in the limit of vanishin
shear rateĠ→0 due to the presence of a small wall layer
finite fluidity imposed by the wallaw and of thickness,.

These domains are limited by the global stressess i(aw)
and sd(aw), as discussed in Sec. IV. The correspondi
shear ratesġ i andġd can be calculated numerically with th
method described in the Appendix.

2. Shear-banding regime

A shear-banding domain connects the two previous fro
and fluidized regions. It corresponds to a coexistence in
shear cell of the frozen and the fluidized states. Its signa
on the macroscopic flow curve is a quasiplateau at a st
S;s* . All over the banding domain~for a givenaw), the
stress is found to remain in the vicinity of the values*
defined in Sec. III byVs* „a2(s* )…5Vs* (0). This approxi-
mately fixes the value of the fluidity in the fluidized region
a* 5a2(s* ), with a2(s) being the corresponding branc
obtained in the homogeneous case~see Sec. III!. The shear
rate in the fluidized region is approximately given acco
ingly asġ* 5a* s* . The total width of the frozen and fluid
ized regions are determined by the global constraint on

FIG. 9. Schematic macroscopic flow curve at imposed shear

Ġ ~thick lines!. Again the thin lines~continuous and dashed! denote
the local flow curve. The value of the fluidity at the walls fixes t

location of the limit shear ratesġ i and ġd of the frozen and fluid
homogeneous branches. Between these values the system te
segregate into shear bands. At the transition between the two~gray
areas!, stable or oscillating thin layer structures are observed in
vicinity of the walls.
1-8
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SIMPLE MODEL FOR HETEROGENEOUS FLOWS OF . . . PHYSICAL REVIEW E 66, 051501 ~2002!
total shear rate. The width of the fluidized regionhf is typi-

cally given by hf.HĠ/ġ* , with ġ* defined above~small
boundary effects neglected!.

An interesting question concerns the number of fluidiz
bands: how many fronts between a frozen and a fluidi

band can be stabilized for givenH, aw , and Ġ? In order to
answer this question, a zoom of the quasiplateau is plotte
Fig. 10~a! for given H and aw . The stable quasiplateau a
tually consists of parts of the branches representing
steady-state solutions with several fronts~on the figure these
stable parts of the branches are plotted with thick lines!. The
steady-state multifront branches were calculated numeric
with the method detailed in the Appendix. The fluidity pr
files corresponding to the branches with one and two fro
are represented in Fig. 10~b!. Their stability was then exam
ined with the numerical simulation described in Sec. II D

FIG. 10. ~a! Calculated steady-state flow curves: the unsta
stationary solutions are plotted with thin lines, the stable soluti
with thick lines, and the oscillating solutions with dotted lines. T
numbers on the branches represent the number of fronts bet
the fluidized and frozen bands.r 51, r 850.01, H540, aw50.25.
~b! Fluidity profiles corresponding to the points marked w
crosses on~a! for the branches 2a, 2b, and 1.
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No analytical characterization was found to the limits
stability of the multifront branches. Beyond these limits,
ther oscillations are observed, or other stable branches
reached. Their complex dependence onaw andS, is shown
in Fig. 11. Note that, with the parameters taken to plot F
10~a!, for a small range ofĠ @just left of the middle cross in
Fig. 10~a!#, two solutions are possible~depending on the
history of the system!: stable oscillations of a central fluid
ized layer~branch 2b), and a steady solution with a singl
fluid layer at the wall~branch 1!. In the case of oscillations
whenĠ is further decreased to the limit of stability of branc
2b, the system evolves toward the pattern of branch 1
indicated by the arrow in Fig. 10~a!.

3. Stick-slip behavior

When no stable branch is reached, a time dependen
cillating behavior is evidenced for stress and fluidity. As se
in Fig. 11, this occurs for small wall fluidity and impose
shear rate. This behavior is very reminiscent of stick-slip
phenomenon commonly encountered in solid fricti
@33,34#. Here it originates in an oscillating behavior of th
fluidity between a frozen state~stick phase! and a partially
fluidized state~slip phase!.

The fluidization however, occurs only within one laye
the rest of the system being frozen. This spatially localiz
oscillating behavior resembles a periodic fracture-heal
process, as observed, e.g., by Pignonet al. @10#. The fluid-
ized layer is localized either close to the wall, or in th
middle of the shear cell, its fluidity oscillates between tw
extremal values, and its thickness is approximately const
The time evolution ofS and the maximum fluidity of the
layer are plotted in Fig. 12, showing characteristic features
stick-slip behavior.

The system rapidly relaxes to the frozen state, i.e., a v
small fluidity, while the stress increases until a limit whe
the fluidity abruptly increases, i.e., the fluid is sudden
sheared. This sudden increase is due to the penetration o
maximum fluidity in the basin of attraction of the fluidize

e
s

en

FIG. 11. Behavior at low shear rate for a fixedH5100, r 51,
r 850.01. The solid line corresponds toaw150.3 and the dashed
line toaw251. In the case ofaw1, oscillations are observed, and th
envelope of the oscillations is represented.
1-9
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PICARD et al. PHYSICAL REVIEW E 66, 051501 ~2002!
solutiona2(s), which is enlarged ass increases. To main
tain a fixed global shear rate,s relaxes quickly and the cycle
starts again.

B. No flux at the wall: ­zazzÄ0,HÄ0

In the case of a no flux boundary condition and for int
mediate values ofĠ (ġ i,Ġ,ġd), two very different locally
stable sets of solutions of Eqs.~11! and~12! are possible: one
is very similar to the solutions obtained above for fixed fl
idity at the walls and exhibits shear banding and stick-s
behavior; the other one is the homogeneous solution at fi
shear rate obtained in Sec. III. This peculiarity is associa
with the specific form of the boundary condition, which
compatible with a homogeneous fluidity in the cell. Mor
over, as discussed in Sec. III, the decreasing branch is
early stable at fixed shear rate~remember that we have sup
pressed inertial terms!, and no destabilizing mechanism
induced here by the boundaries~in contrast with the fixed
wall fluidity case!. Formally, the system is thus attracted e
ther by the homogeneous solution or by the inhomogene

FIG. 12. The amplitudes of the oscillations of the global str
and of the maximum fluidity in the oscillating layer are represen
as a function of time~a!, and in the plane (a,S) ~b!, in the case

aw50.3, r 51, r 850.01, Ġ50.12. Its width hardly varies.
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one, depending on initial conditions~an initial inhomoge-
neous state often leading to a banded inhomogeneous
tion!.

The macroscopic flow curve for Eqs.~11! and ~12! with
the present boundary conditions consists of the following

~1! The two increasing branches of the local curve~the
branches are parts of the local curve as the solutions
homogeneous!. Those branches are also stable in the cas
imposed stress.

~2! The decreasing branch of the local curve. This is
course an artifact due to our neglecting inertial terms, wh
suppresses the‘‘mechanical instability’’ that always desta
lizes this branch.

~3! The quasiplateau, withS;s* . As in the case of an
imposed fluidity at the wall, it is constituted of parts of mu
tifront branches, which become unstable at different val
of the shear rate.

~4! An oscillating domain, for small shear rates, when t
single front branch loses its stability.

Ruling out the unphysical decreasing branch, the pict
is thus quite similar to Fig. 9~without the effective wall slip
in branch 1 due to the finite wall fluidity there!.

C. Comment on the oscillations

Oscillating response under steady driving has rece
been numerically observed in a model for shear-thicken
materials@35#, which in contrast to the present one describ
the homogeneous behavior of a system~no spatial heteroge
neity in the formalism!, and the oscillations were shear-ra
oscillations at fixed stress. Formally there are some simil
ties as in both cases a continuous~and thus infinite! set of
variables evolves through coupled differential equations w
nonmonotonic functions involved, and driven by a glob
integral constraint. However, in contrast to the situation
@35# where all the variables were involved in the oscillatio
here only a limited set of variables are~corresponding to a
spatially localized oscillating layer!.

In principle a finite number of variables is enough to g
an oscillating rheological response~limit cycles! under
steady driving@36#, so it is no surprise that oscillations sho
up here given the complexity of the set of equations~11!,~12!
and the number of variables involved. One may even exp
more complex dynamical behavior such as some form
chaotic response@36#, but we found none within the set o
parameters numerically explored. Clearly, a truly thre
dimensional version of this model, with the correspondi
nonlinear convective terms, should increase the likelines
chaotic behavior~even in the absence of inertia@37#!.

VI. DISCUSSION

In the present paper we used an extension of a mo
previously introduced to account for the rheology and ag
in pasty systems, in which the steady-state local flow curv
nonmonotonic so that heterogeneous flows can be gene
at steady state. The key ingredient of the model is a coup
between the mechanical variables, namely, shear stres
shear rate, and local relaxation within the fluid, characteri

s
d

1-10
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SIMPLE MODEL FOR HETEROGENEOUS FLOWS OF . . . PHYSICAL REVIEW E 66, 051501 ~2002!
by a fluidity. Although analytically very simple, the mod
yields a rather rich macroscopic phenomenology.

~1! Under controlled stressS, the steady-state behavior
schematized in Fig. 7. The fluid undergoes a hysteretic p
nomenon if the stress is increased or decreased progress
The effective yield stress is shown to depend on the fl
history and on the wall conditions. In addition, no banding
observed and there is a discontinuity in shear rateĠ which
occurs at specific values of the stress.

In this case, we have shown that the dynamics reduce
the minimization of a free energy function. This is gener
izable to any functionf ,g describing aging and fluidization
and to more complex diffusion termsD(a). Note that the
dynamics was not built as a free energy relaxation but n
rally appears this way~see the related discussions in@13#!.
This gives some generality to the qualitative results, bey
the specific model studied here.

As no noise term was included, the equivalent of hom
geneous nucleation in thermodynamics problem was s
pressed and boundary conditions play a crucial role in de
bilization processes. Hence, the values of the thresh
depend on the boundary conditions. However, the qualita
behavior~hysteretic loop! is rather insensitive to the specifi
type of boundary condition chosen.

~2! At fixed global shear rateĠ, the macroscopic behavio
is schematized in Fig. 9: banding solutions show up, sepa
ing a frozen region from a fluidized region. The shear r
within the fluidized band is hardly dependent on the impo
global shear rate, and fixed only by characteristics of
material. Within the banding domain, the thickness of
fluidized region increases~nearly! linearly with the global
shear rateĠ to eventually fill the full shear cell.

At small ~total! shear rate, an oscillating behavior of th
stressS is observed, with features very reminiscent of
classical stick-slip behavior. The system is globally in a f
zen state, and fluidizes periodically within a thin layer. Su
a behavior compares well with the fracturing and heal
process observed by Chenet al. @6# and Pignonet al. @10#.
These localized oscillations are to be contrasted with ho
geneous oscillations obtained in other models for differ
systems~e.g.,@35#!.

Our observations result from numerical simulations a
the influence of the specificity of the modelization of t
fluidization and aging remains to be understood. Again,
different thresholds depend on the boundary conditions,
the qualitative behaviors described are robust to change
the types of boundary conditions. Extension of the pres
model to a fully three-dimensional description could, ho
ever, yield a more complex dynamical behavior.

In conclusion, we suggest that analyzing yield stress
ids close to the yield stress at both constant stress and
stant shear rate could provide interesting information.
could also be informative to check the sensitivity of the
sults to the nature of the surfaces bounding the fluid.

APPENDIX: STATIONARY SOLUTIONS OF EQ. „6…

In this appendix, we detail the steady-state solutions
Eq. ~6! recalled here:
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a~z!S5ġ~z!,

2 f ~a~z!!1a~z!h~a~z!!S21D]zz
2 a~z!50,

auz50,H5aw or ]zauz50,H50. ~A1!

For clarity, the potentialWS(a) is introduced asWS(a)
52*0

ada8@ f (a8)2a8h(a8)S2#. Note thatWS52VS as de-
fined in Eq.~8!. Hence for a givenS we look for a solution
a(z) such that

2]aWS~a!5D]zz
2 a~z!,

auz50,H5aw or ]zauz50,H50. ~A2!

The local shear rate is then immediately deduced:ġ(z)
5a(z)S.

Equation~A2! can be interpreted as the classical equat
of motion of a particle of massD and positiona in the
potential WS where z plays the role of time. The energ
Em5 1

2 (]za)21WS(a) is conserved during the motion.
With this interpretation, the boundary conditions impo

initial and final positions (aw imposed at the walls! or ve-
locities (]za50 imposed at the walls!.

FIG. 13. ~a! PotentialWS . S51.44, r 51, r 850.01. ~b! Fluid-
ity profile for a fluidized bulk.aw51, H515.
1-11
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PICARD et al. PHYSICAL REVIEW E 66, 051501 ~2002!
We choose to detail here the case of an imposedaw at the
wall, and the stressS is chosens i.S.sd ~see Sec. IV!.

The potentialWS is represented in Fig. 13. The extrem
values of the mechanical energyEm are WS(aw) and
WS(a2). From the analysis of these solutions, it is possi
to progress further in answering a few questions.

~1! What is the fluidity profile on the frozen and fluidiz
branches of Figs. 7 and 9?For a given thicknessH, Em is
set so thatauz50,H5aw with ]zauz50.0. With the mechani-
cal analogy, this amounts to fixing the mechanical energy
initial velocity for the particle to leave positionaw , reach a
maximumam with ]zauam50, and go back to its initial po-
sition within a timeH.

The fluidity profile is represented in Fig. 13. Note th
Em5WS(a2) corresponds to a fluidized bulk, with an infinit
thicknessH;`.

With ]zauz50.0, a profile with a bulk of fluidity higher
thanaw is described.

Symmetrically, a profile on the frozen branch, that is, w
a bulk fluidity smaller thanaw is described by fixing
]zauz50,0, and following the same procedure.

~2! What is the limit of existence for the fluidized bu
solution s i? s i(H,aw) was defined in Sec. IV as the stre
beyond which a profile with a frozen bulk can not be o
served.
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For H;`, s i(`,aw) is defined byWs i
(aw)50. With

the mechanical analogy, the mechanical energyEm is set to
0, that is, the particle leaves its positionaw with a velocity
]zauz50;0, and spends an infinite time at the positionam

50.
For s.s i ,Ws(aw).0, and for a,aw ,Ws(a)

,Ws(aw). With the mechanical analogy, the particle cann
leave the positionaw with a negative velocity and come bac
to it after a timeH. There is no solution with a frozen bulk

For a finite H, a frozen bulk requiresEm&0; therefore
s i(H,aw) is slightly smaller thans i(`,aw), by an amount
that scales asH23.

The situation is symmetric for the definition o
sd(H,aw), which is found to be slightly larger than
sd(`,aw).

~3! How can one calculate the fluidity profile for a solu
tion with several bands?The mechanical energyEm is now
decreased from min@WS(0),WS(a2)# to WS(aw) to find
banded stationary solutions: a frozen bulk solution w
thicknessh1 and, a fluidized bulk solution with thicknessh2
~both with the same energyEm) such thath11h25H form
together a single interface solution. The same process is
rived to find multibanded solutions. Solutions of Fig. 1
were calculated numerically with this method.
ys.
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