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Molecular dynamics simulations of vibrated granular gases
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We present molecular dynamics simulations of monodisperse or bidisperse inelastic granular gases driven by
vibrating walls, in two dimensiongwithout gravity). Because of the energy injection at the boundaries, a
situation often met experimentally, density and temperature fields display heterogeneous profiles in the direc-
tion perpendicular to the walls. A general equation of state for an arbitrary mixture of fluidized inelastic hard
spheres is derived and successfully tested against numerical data. Single-particle velocity distribution functions
with non-Gaussian features are also obtained, and the influence of various pardimel@stcity coefficients,
density, etg. are analyzed. The validity of a recently proposed random restitution coefficient model is assessed
through the study of projected collisions onto the direction perpendicular to that of energy injection. For the
binary mixture, the nonequipartition of translational kinetic energy is studied and compared both to experi-
mental data and to the case of homogeneous energy injétsimthastic thermostay” The rescaled velocity
distribution functions are found to be very similar for both species.
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[. INTRODUCTION comparisons with two-dimension&D) experimental data
[6—9]. As in the experiments, the energy loss due to inelastic
Due to the intrinsic dissipative character of interparticlecollisions is compensated for by an energy injection by vi-
collisions, an energy supply is requested to fluidize a granubrating or thermal walls, which leads to heterogeneous den-
lar gas. This is often achieved by a vibrating boundary, andity and temperature profiles. The various profiles and veloc-
the resulting vibrofluidized beds provide nontrivial realiza-ity distribution functions are studied and compared with
tions of nonequilibrium steady states. The understanding ofXperiments whenever possible. Moreover, projecting the dy-
such far from equilibrium systems requires a correct descripfamics onto the direction perpendicular to that of energy
tion of the energy exchange between the vibrating piston anthjection allows one to assess the validity of the random
the granular medium, as well as a macroscopic continuurféstitution coefficient model proposed in Reff$0,11. The
theory to describe the evolution of the relevant coarseinfluence of various parameters on the nonequipartition of
grained field§1—3] (density, temperature, elcin particular, ~€nergy in a binary mixture is studied in Sec. IV, and com-
the derivation of an accurate equation of state is a key step iparison with experimental data and with the case of homo-
the hydrodynamic approach. geneous energy injection is performed. In this latter case, the
A simple, fair, and much studied theoretical framework toVvelocity distribution functions are analyzed and shown to be
capture the inelastic nature of grain-grain collisions in avery similar for the two species. Conclusions are finally pre-
rapid granular flow is provided by the inelastic hard spheresented in Sec. V.
model[4,5]. In this paper, we present the results of extensive
molecular dynamics(MD) simulations of inelastic hard
spheres driven by an energy injection at the boundaries, for !l THE MODEL—COMPUTATION OF AN EQUATION
both a one-component fluitmonodisperse casand a bi- OF STATE
nary mixture(bidisperse situation We analyze in detail the

effectg of tsel?/eral'tr;])aram?terls that rrr:ay_be d![fglcult tfol tun imensiond, with diameterso; and massesn;, where 1
experimentaily, with a particular emphasis on the profiles ol; - - A pinary collision between grains of specieand

the hydrodynamic fields. | is momentum conserving and dissipates kinetic energy. In

theTnggp:;('js doer?agliendeas ]:tl'lngso.f Igt;(éc%olrl’ ;\r’]egbe.tsr(;?the simplest version of the model, the collisief is charac-
v quati a¥erized by one inelasticity parameter: the coefficient of nor-

(Tol)r;ilrji[)eutci’z)an(iarlla\slitlecwhi;dpseepoerrrﬁisr;gg?alggu?aet);o?\?/dt?oe d;(/j:;rln?caﬁlal restitutione;; . Accordingly, the precollisional velocities
. ; ; . (vj,v;) are transformed into the postcollisional couple

tests. The equation of state obtained is a natural generahzt ARgH

tion of its standard counterpart for elastic hard spheres. Th pivj), such that

following two sectiongSecs. Ill and 1V are then devoted to

molecular dynamics simulations for one-component systems

We consider a mixture aolVy species of hard spheres in

) . . m; - R
and for binary mixtures. In both cases, we restrict ourselves vi=vi— L1+ ajj)(o-vjj) o, 1)
to two-dimensional simulations, both for simplicity and for m; +m;
*Electronic address: Alain.Barrat@th.u-psud.fr v =pv + M (1+a;) (o vij) o, 2
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wherev;;=v;—v; and o is the center-to-center unit vector three dimensionsand they;; are the pair correlation func-
from particlei to particlej. Note thata;;= a;; to ensure the tions at contact. The lattéunknown quantities may be ap-
conservation of total linear momentumuv; +m;v; . proximated by their elastic counterpattsee Ref[24] for a
We also considered an extension of the previous modeyeneral procedure to infer reliable pair correlation functions
allowing for rotations, introducing a coefficient of tangential in @ multicomponend-dimensional hard-sphere fluid from
restitution (afj) e[—1;1] [12], see Appendix A: the colli- the equation of state of the monodisperse systdm the
sion law for smooth sphered), (2) is then recovered for following analysis, it will turn sufficient to include only the
aj;=—1, while complete reversal of the tangential compo-'OW'd?”S'ty behawor,X_idj:Il, to improve upon the ideal
nent of the relative velocity is obtained fef;=1. Valuesin ~ equation of stateP=P™**=3;p;T;, that holds forp—0
between correspond to a decrease of the absolute value of tR8ly. We emphasize that no approximation has been made on
tangential relative velocity, with reversal fae!, >0 and the single-particle velocity distribution in the derivation of
’ i . . . . .
without for al;<0. Eq. (A_f) (the key assumption is that the two-body dlstrlputlon
Irrespective of the value of the tangential restitution coef-fUnction factorizes at contact in a product of the single-

ficient o', the linear-momentum change for partidlén a partlgle_dlstr|bqt|or{25]). . _
collisioni-j reads It is instructive to check the validity of our equation of

state by considering the elastic limit wheag,=1 andT;
m;m; . ~ =T. A straightforward calculatiofunder the reasonable and
op=—dpj=— (1t ay)(ovje. (3)  often made assumption that;= x;;) shows that the mass
b ratio simplifies and expressidd) may be cast in the form
In Appendix B, we use this relation to compute an equation
of state for the homogeneous isotropic mixture, invoking the
virial theorem (the pressure is defined kinetically from the a1 ij
momentum transfer and does not follow from a statistical p_T:1+ 72 .2,: XiXJEXiJ ' ®)
mechanics derivationThe total density is denoted yand '
the partial densities by;=x;p (the number fractions; are

such thatix;=1). The temperature of speciess T;, de-  \hjch is the correct resulsee, e.g., Ref26]). In particular,
fined from the mean kinetic energy of subpopulatiorT; for the single-speciegmonodisperseproblem, we recover
=(mp?)/d. Only for an elastic system is the energy equi-the virial relationP/(pT)=1+ 29" 15y. Note that Eq.(5)
partition T;=T,Vi recovered6,13-23. It is found in Ap-  corresponds to the equation of state put forward in [,

d

pendix B that the pressure in dimensidmeads which thus neglects the inelasticity of the collisions and the
g associated breakdown of kinetic energy equipartition. On the
_ d-1 m; Ui other hand, our approach fully incorporates these two fea-
P—Ei piTitpn2 ; Xinmiij(lﬁL aij)Ti<a__d>Xij , tures.
(4) We finally generalize Eq4) to the situation of a continu-

ous size distribution, with a probability density distribution
independent  of ozi‘j ., where o= (0i+0)/2, (0% W(o) (normalized to 1 so thate") = [ ¢"W); the tempera-
=3x;o¥, 7 is the packing fractior(e.g. 7= mp(c)/6 in  ture is, in general, a continuous functidifo) of size and

P 7 m, (c+o')d
;ZJ'W(O')T(O')dO"FEf dodo'W(o)W(o')—————(1+ ay, ) T(0) Xoo! - (6)

ma.+ mo.r <(Td>

In the following sections, the above equation of state will becollisions is compensated by an energy injection by two
used to test hydrodynamic predictions for a monodispersevalls situated ay=0 andy=L (we consider the amplitude

system and for a binary mixture. of motion of the walls to be small so that their positions are
considered as fixefll], which avoids the complication of
lll. MOLECULAR DYNAMICS SIMULATIONS FOR THE heat pulses propagating through the sysfesi). We wil
ONE-COMPONENT SYSTEM refer to they direction as the “vertical” one, although we are

interested in regimes for which gravity can be negle¢t@d

(i.e., when the shaking is violent enoygfhe energy can be
We have implemented molecular dynamics simulationgnjected in two ways:

with an event-driven algorithm fax spherical particles in a (1) By thermal wallsthat impose a given temperature of

two-dimensionalL X L box. Periodic boundary conditions orderT, [29]. When a particle collides with the wall, its new

are enforced in the direction, while the energy loss due to vertical (alongy) velocity is extracted at random from the

A. Introduction

051303-2



MOLECULAR DYNAMICS SIMULATIONS OF VIBRATED. .. PHYSICAL REVIEW E66, 051303 (2002

FAERN

15 / AN

/ \
o =
£ &
= .
e e
— = 11,=0.015, 0=0.8 =
) ® 11,=0.015, 0=0.9 N,
0.5 —-— 1,=0.04, 0=0.8 &

/ — n,=0.04, 0=0.9 AN
0 : : : : 0 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
y/L y/L

FIG. 1. Density profiles for two normal inelasticities and two  FIG. 2. Density profilesy(y)/ 5, (upward curvesand tempera-
densities. In all cases, the number of particle is500. The sym-  ture profiles(downward curvesfor a given normal restitution co-
bols correspond to the smallest dengitye mean packing fraction  efficient «=0.9 and different tangential restitutionsl€ 500 par-
averaged over the whole systenvjg=0.015) and the lines are for ticles, mean packing fractiom,=0.015). The temperature is the
a higher density ,=0.04). The ration(y)/ 7, is also the ratio  total one(including horizontal and vertical degrees of freedpin
p(y)/po of local density normalized by the mean one. is expressed in arbitrary units but all curves correspond to the same

- o ) velocity of the vibrating piston. From top to bottom for the tem-
probability distribution  functionv/\To exd —v(2yTo)], peratureT(y) and from bottom to top for the density, the curves

whereas, is unaffected. S _ correspond, respectively, ta'=—-1, a'=-0.8, a'=-0.5, and
(2) By vibrating walls For simplicity, we consider walls 4t=0.2.

of infinite mass moving in a sawtooth manner; all particles
colliding with a wall find it with the same velocity,>0 at
y=0, —vg aty=L. The particle-wall collisions are consid-
ered elastic. A particle of velocity with v, <0 colliding
with the bottom wall aty=0 (respectivelyp,>0 at the up-
per wal) experiences its velocity change #¢ according to

vy=2vo—vy (respectivelyvy=—2vo—vy), whereas the  ,s0q by a thermal wall or to the square of the velogigpf
component is unaffectedrf=v,). __ the vibrating boundary, while a changeTg or v, does not

In both cases, energy is injected in the vertical d"eCt'Or‘change the density profikaot shown. As the mean density
only, and transferred to the other degrees of freedom through,-reases ora decreases, the profiles get more heteroge-
interparticle collisions. The vibrating walls being the situa- neous; as:' is increased, more energy is transferred to rota-
tion closer to the experimental one, most of our results willio a1 degrees of freedom, so that the temperature decreases,

be presented in this case, and the effect of injection modegpjle the density profiles become slightly more peaked
will be briefly discussed. ﬁFig' 2).

In this section, we consider the monodisperse case. Al
particles have the same mas$=1), diametero, and res-
- o 1 ) X
titution _coeff|C|entSa ar_1d a'. Most of the _S|mulat|ons are anisotropic, i.e.,(v§)¢<u§>, with T,>T>T,. The anisot-
done withN=500 particles, and some witN=1000 par-

. ) i ) . ropy A(y)=(T,—T,)/(2T) is larger at the boundaries,
ticles (low enough to avoid clustering or inelastic °°”aps.e where energy is fed into the vertical direction, decreases due

For our two-dimensional system, _the_ local _packing fraCt'Oh‘to interparticle collisions, and reaches a plateau in the middle
at heighty, whzere the local density ip(y), is defined as e gjap. The plateau value decreases for increasing num-
77(y)=77'p(.y)0' /4.LThe global(mean packing fraction is  po. particles or increasing densitiésot shown, as in
denotedro; 70=/g7(y)dy/L. experiment$8]; the global anisotropy profile and the plateau

Starting from a random configuration of the particles,ajyes are comparable to experimental valigis
(with the constraint of no overlapwe let the system evolve

until a steady state is reached. Data on density and tempera-
ture profiles as well as on velocity distributions are moni-
tored as time averages; the various quantities are averaged The equation of state derived in Sec. Il reduces, in the
along thex direction since the system remains homogeneou§ase of a two dimensional one-component homogeneous sys-
in this direction. tem, to the relation

near the walls, where the temperature is higher as expected
since energy is injected at the walls and dissipated in the
bulk of the systeni30]. The profiles are qualitatively similar

for thermal or vibrating boundaries. Moreover, the whole
temperature profile is proportional to the temperafliyém-

Figure 3 clearly shows another feature resulting from the
energy injection into the vertical direction: the temperature is

C. Equation of state and hydrodynamics

B. Density and temperature profiles P=pTl1+(1+a)nx], )

The first observations concern the density and tempera-
ture profiles: Figures 1 and 2 show that the density is lowewherey, the pair correlation function at contact, depends on
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AR ! The comparison with hydrodynamics may be improved as
follows. The pressure tensd? is diagonal in the present
no-flow situation, but has differentx andyy components,
and the homogeneity along thedirection implies that the
condition of vanishing flow fieldv - P=0 reduces ta),P,,
=0. We therefore check in Fig() that they-y component

of the pressure tensor, given by the equation of g@tavith

the total temperatur@=(T,+T,)/2 replaced by its vertical
componenf,, is uniform in the whole system. With Enskog
correction, the corresponding profiles are remarkably flat.
This result could be tested in experimental situations in
which bothT, and T, are measured. Such an analysis vali-

0 . . . ‘ dates both the hydrodynamic picture and the equation of
0 0.2 0.4 0.6 0.8 1 state proposed by automatically sampling several densities in
y/L a single run.

At low densities, assuming the ideal gas equation of state
to hold, the hydrodynamic study of RéfL] (recalled in Ap-
pendix Q, leads to the following analytical prediction for the
temperature profile:

FIG. 3. Temperature profile fag=0.9 andny=4%. The hori-
zontal temperaturd,, vertical tempraturél,, and the total tem-
peratureT = (T,+T,)/2 are shown. The inset shows the anisotropy
factor A=(T,—T,)/(2T) as a function of height.

the packing fraction_n. We will use the form y=(1 y  &+sinhécosié,—€)
—77/16)/(1— 7)?, which has been shown to be accurate for L= £ Fsinte ,
elastic hard-disk liquid$31]. m m
The hydrodynamic equationsee Appendix C and Ref.
[1]) lead tod,P=0 in the absence of a flow field. We check Em T Em
in Fig. 4@ the constancy oP with y by plotting the ideal &= 7iCOSh1( T, COShZ—), (8)

gas contributionp(y) T(y) (lines) andP(y) given by Eq.(7)
(i.e., ideal gas contribution plus Enskog correctioWhile,
at small enough densitig€aot shown, p(y)T(y) is constant where T, is the temperature at the boundaries ahpdis

in the bulk (y[0.2,0.8_]), the Enskog correction is nec- proportional to the total number of particles. The correspond-
essary for the densities used in Fig(nbte that the density ing fits of the temperature profiles are shown in Fig. 5; a
can be quite larger in the middle of the system than at thgood agreement is obtained, especially at lower densities as
boundaries We also note that the inelasticity term<{1) is  expectedsince the ideal gas equation of state is a crucial
relevant, although small at the densities presefiieel pro-  ingredient in the derivation of Eq8)]. We use one fitting
files of pT(1+27y), not shown, display a less uniform parameteg, to obtainT/T, [32]. Figure 4 showed that con-
shape withy, the effect being stronger at larger densitiés ~ sideration of the “vertical” pressureP,, led to a better

all cases, boundary layery<0.2L andy>0.8L) are ob- agreement with hydrodynamic predictions than the total
served 1] in which the pressure decreases. This discrepanc®«x+ Pyy. A similar conclusion is incorrect for the tempera-
can be related to the anisotropy described in the precedinigire profiles: the transport equation for the temperature is
section(pressure and temperature are most anisotropic ne&calarfsee Eq(C2)], and Eq.(8) holds for the totall, not for

the wallg. the verticalT,, .
06 f g 0.8 [ AR
++++“""‘+ Ty
| Lo, | | ]
§ 0.4 &/\“—_—_:‘__\OOO 0.4 m\/’ﬁ%
it e
803 M- o2
&
A 02 | © 0=0.9 vibrating walls * 02 |
) + 0=0.9 thermal walls ’
01 & @) * a=0.8 vibrating walls ] ®)
0 : : : : 0 ‘ : ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
y/L y/L

FIG. 4. Pressure given by the equation of st&e (a) The symbols correspond = p(y)T(y)[1+ (1+ a) 7(y) x(y)] (see text, where
T is the total temperature. The lines immediately below a given set of symbols show the ideal gas consity)fig¢n) only. For the three
situations investigated, the mean density is the same=0.04). (b) Same figure with the vertical temperatufg instead ofT inserted in
the equation of state, yielding therefore te component of the pressure tensor.
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FIG. 5. Fits of the temperature profiles measured in MD with  FIG. 6. Probability distribution function of the vertical velocity
the analytical expressiof8). The fits are shown with continuous componentcy:vy/\/T—y for different heights. By definition(c)z,)
curves while the symbols stand for the MD measures. For clarity=1, whatever the altitudg. Here, 7,=0.04, N=500, «=0.9, and
the fits are restricted to heightg2<y=<0.8L. a'=0.

D. Velocity distributions pendence with the parameters.

Because of the energy injection through the walls, the As density or inelasticity are further increased, clustering
velocity distributions are anisotropic, aadpriori depend on  phenomena may occur, leading to heterogeneities along the
the distance to the walls. The vertical velocity distribution direction, with the coexistence of colder, denser regions with
also depends on the nature of the walls as shown in Fig. 6. Rotter, less dense ones. The average ovex thigection then
smooth distribution is obtained in the vicinity of a thermal leads to artificially broadP(c,).
wall, while the incoming and outcoming particles yield two  Finally, as a general rule, thermal walls lead to slightly

separated peaks for vibrating walksee also Refl1]). broader velocity distributions than vibrating walls.
On the other hand, theescaledhorizontal velocity distri-
bution P(c,) (with c,=v,/\T,) is remarkably independent E. Effective restitution coefficients

of the distance from the wall®utside the boundary layers
even if the temperature changes wjtrat small enough den-
sities (this result was also obtained in R¢R9]). At larger
densities,P(c,) becomes slightly dependent gn as also
seen in recent similar MD simulatioh83]. Figure 7 shows
clearly non-Gaussian features similar to the experimentall
observed one$7,13,34, with in particular overpopulated
both small-velocity and high-velocity regions. A slight de-
pendence on the parameters is obtairfe(t,) broadens if Uiy

the inelasticity increasedse., if « decreasesif o' increases, ag=—", (9)
or if mg or N increase. Experimentally, the dependence on V12x

density or material properties is weak and difficult to mea-

sure[7] but seems to exist, in particular as farMss varied may be either smaller or larger than(¢ee Ref[3] for a
[9]. The angular velocity distributions, also displayed in Fig.related discussion

7, share a similar non-Gaussian character and the same de-Values ofa,4 have been experimentally measuféciL1]

We now turn to the study of the effective inelasticities
introduced in the context of a random restitution coefficient
(RRC) model[10,11]: even if the restitution coefficient is
constant, the energy is injected in the vertical direction and
transferred to other degrees of freedom through collisions, so
X¥hat the effective restitution coefficient for collisions pro-
jected onto the direction,

10° - - FIG. 7. (a) Probability distri-
bution function of the rescaled

10" horizontal velocity component,
=v,/\Ty, on a linear-log plot.

107 Here 5,=0.015,N=500, «=0.9

:8: (pluses, 0.8 (starg, and a'=0.
A 107 The solid line is the Gaussian with
unit variance, the circles corre-

10 spond to experimental dafa,9]
for steel beadgb) Probability dis-
- tribution function of the angular

velocities for the same param-
eters.
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10° | ‘ ' ' ] 10’
107 10"
5 8
E’_ Q
107 107
10° L 107
102 10-2 102
FIG. 8. Probability distribution function of effective one- FIG. 10. Probability distribution function of energy restitution

dimensional restitution coefficients,y. The MD results are com- coefficientsg. Various tangential restitution coefficient$ are con-
pared to the experimental measures of Feitosa and ME#joan sidered fora=0.9 and#ny=1.5%. The circles represent the experi-
steel and glass samplé®r which the nominal restitution coeffi- mental data for steel grairf9].

cient may be considered close to 0.9).

Finally, theenergyrestitution coefficient
and shown to display a broad probability distributj@tc4)

very similar for various materials and densities. We have v
measuredy,4 for many collisions and thus obtained its dis- =
tribution, displayed in Fig. 8 together with experimental data

for steel and glass beads. A remarkable agreement is founglay also be viewed as a random variable that can take values
[35], with a broad range of possible values f@fy. Our |arger than unity due to energy transfers between rotational
study shows, in particular, that(a;q) displays aa;{ tail  and translational degrees of freedd@11]. Figure 10 dis-
for a,4>1, irrespective ofx, o', and density. plays the probability distribution functiofPDF) p(8) ob-

The importance of the correlations betweep, and the tained in the MD simulations for various values @f, to-
relative velocityg=v1,/2T of the colliding particles has gether with the experimental data of Ref8,11] for steel
been emphasized in Réfl1] and is revealed by the compu- beads.p(B8) becomes wider a&' is increased, but the ex-
tation of u(@14/gy), the distribution ofa,y4 being condi- perimental distribution is broader, which may be traced back
tioned by a given value of,; although no precise experi- to the fact that in the experiments mentioned above, the
mental determination of the conditional @14/g,) could be beads can rotate in three dimensions, whereas our simula-
achieved in Ref[11], strong evidences for a sharp cutoff tions are limited to 2D rotations.

«1/g, at large values ofr;4 were provided and the form The evolution with the parameters of the distributions
w(aglg) < exd —(aqg)¥R] at large a4 has been pro- p, and of the velocity PDRP(c,) are clearly linked in our
posed. The conditionak(a14|gx) oObtained in the present simulations: broader conditional(ay4|g,) corresponds to
MD simulations confirm the above picture; they are dis-broader velocity distributions; for instance, both broager
played in Fig. 9 and show an gxp(a,40,)%/R] decrease for and P(c,) are obtained ifo decreases, or, at fixed param-
the case of vibrating wall&closer to the experimental situa- eters, if vibrating walls are replaced by thermal walls. This
tion), and a broader form ekp (a149)/R’ ] for thermal walls.  connection is in agreement with the phenomenology put for-
Moreover, althoughu(a,4) is not sensitive to the various ward in the context of the effective RRC modél,11. In
parameters, the cutofR increases|i.e., leads to broader the RRC approach, thd-dimensional system with energy

(10

B |U12|

w(ayglay)] if « decreases, and ' or 7, increases. injection along a preferential direction is replaced by a
10° . : . 107
-- a=0.8 (x:=—0.5 tifermc.zl walls
Cal S oy ‘;Z:ZZZ; wals - FIG. 9. (@ Conditional PDF
of a4 for a given valueg, of
—~ 102 -~ order unity. Note the different
o 26 4g° shapes for thermal and vibrating
~
8310“3 5 walls. (b) Same, but as a func-
X = tion of (aq00% (and gy
10 107 ¢ =0.2,0.5,1.0,1.5,2.0,3.0,4.0,5.0)
(b) for vibrated walls with «=0.9,
- . ‘ . = . a'=0, and#,=0.015.
10 0 5 10 15 20 10 0 20 5 40
a]d (ajdgx)
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FIG. 11. () The symbols show the pressure calculated from the complete equation of state for a binary ¢hitimeluding Enskog
correction, while the lines immediately below display the ideal gas contribptioy) T,(y) + p2(y) To(y) to the pressure. The three sets of
curves correspond taipper set 7,=0.015, «;;=0.9, @1,=0.8, a»,=0.7, m;=5m,; middle set 7,=0.04, a1,=0.9, @1,=0.8, ay»
=0.7, m;=3m,; lower set 7,=0.04, a1,=0.7, a1,=0.8, a»»=0.9, m;=3m,. (b) Same curves, where the temperatures are the vertical
ones {T; ) instead of the total’;=(T; «+ T; y)/2, yielding therefore thg'y component of the pressure tensor.

(d—1)-dimensional projectedffectivesystem in which the ~ As in the monodisperse case, we measure density
restitution coefficient is a random variablé0] correlated @nd temperature profiles, velocity distributions, as well
with the relative velocities of the colliding particlgs1]. In @S _the temperature ratiosy(y) =Ta(y)/Ti(y), »x(Y)

the present situatiord=2 and the effective model is one = T2x(¥)/T1x(¥), ¥y(Y)=Toy(y)/T1y(y). Some compari-
dimensional. Although the real projected collisions are no$0n With experimental dafé,9] will be proposed whenever
stochastic, one effectively injects at each collision a restituPossible.

tion coefficient randomly chosen from the distribution )

w(ayglgy). Taking u as an input for the model, close to the A. Equation of state

experimental data, one obtains velocity distributions as out- \\e first test the equation of staté) in Fig. 11. As in the
put, in good agreement with the experimental ones. The linknonodisperse case, the Enskog correction is clearly relevant,
betweenu andP(c,) can be studiedl11], and broader con- even at low global densities, since the density profiles reach
ditional distributions u(a14|g,) Yyield broaderP(c,) (at  relatively high values foy=L/2. It is, however, sufficient to
largec, , compared to the Gaussjams in our more realistic truncate the equation of state at second virial order, which

simulations. amounts to taking the low-density limiting valyg;=1 for
the pair correlation functions at contact:
IV. MOLECULAR DYNAMICS SIMULATIONS FOR THE 2
BINARY MIXTURE P Tot Tt — O 14 2m.T
prltiTp2l2 2(m,+m,) [(1+a1)pim,Ty

In this section, we investigate the properties of vibrated
binary mixtures; such systems have recently attracted much +(1+ a1 prpo(MTo+myT)+(1+ azz)pgmsz].
attention, both on the experimen{#l, 13,14 and theoretical (11)
sides[15-23,36,37. In particular, the breakdown of energy
equipartition between the two constituents of the mixture hagloreover, the boundary layer in which the anisotropy is
been thoroughly investigated. strong is still apparent if the global temperatufigsand T,

The main difference with previous studies consists here irare used, while use of the vertical onds ( andT,,), sug-
the realistic character of both MD simulatio(@s opposed to gested by the anisotropy of temperatures and pressure as in
Monte Carlo methodsand the energy injection mechanism the monodisperse case, leads to a unifgryrcomponent of
at the boundaries; the setup is the same as in the precedifige pressure tensor in the whole system. The functional de-
section, with, however, two types of particles, with massegpendence of pressure upon densities is therefore accurately
m;, m,, and sizesr;, o,. The three normal restitution co- reproduced by the equation of stafe).
efficients(corresponding to the three possible types of colli-  Although we have not extended the hydrodynamic ap-
siong are ay;, a1p=ay;, ay. In the context of a forcing proach of Breyet al. [1] to binary mixtures(it would be
mechanism through a random external fof26,38, it has  possible making use of the Navier-Stokes-like equations de-
been shown that the influence of size ratio on the temperaived in Ref.[36] where only the overall temperature asso-
ture ratio measuring the energy nonequipartition was rathegiated with both species serves as a hydrodynamic field, but
weak [17] compared to that of inelasticity parameters orwhere the transport coefficients explicitly depend on tem-
mass ratio. We shall consequently limit our study to identicalperature ratiy we see in Fig. 12 that the temperature profiles
sizeso; =0, in two dimensions, which corresponds to the can be fitted, at low density, by the for(@). We emphasize
experimental situation we will refer 16,9]. For simplicity,  that there is no fundamental reason for the agreement. The
the tangential restitution coefficieméj are also taken equal. quality of the fit is much better for the less massive particles
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o T, n;=0.01 0,=0.9.0.80.7
0 T, 1,=0.01 0,=0.9 0.8 0.7
+T, =001 0,=0.70.80.9
0.85 I x T, 1,=0.01 0,,=0.7 0.8 0.9

T(y), T(y)

O

0.45

] 0.2 0.4 0.6 0.8 1
y/L y/L
FIG. 12. Temperature profiles for an equimolar granular mix- ) ) . -
ture, driven by vibrating walls. The symbols show the MD mea- . FIG. 14. _Den_sny profiles and temperature ratio profllemary
sures, and the lines are fits to the analytical expression derived fgPiXture, vibrating walls.  The lines correspond ~toa

the single-component case. In all cases, the parti¢teelheaviegt .=0.7;(.).E.3;.0.9, W_here.as t.he symbols are associated withé;reverse”
has massm,=3m,; its temperatureT; corresponds to the two inelasticities «;;=0.9;0.8;0.7. The other parameters are=0,
lower sets. my=3mM,, 710= 720, and 7,=27;,=0.015. The upper flatter

curves(dashed line and starshow the temperature ratio. As in Fig.
13, the density of heavy particlgs (thick continuous curve and
circles is more peaked and denser in the middle of the cell than that
of light grains(thin continuous curve and squayes

whose density is more homogeneous across the sy&ean
the following). For simplicity, we have used the shorthand
notation «;;=0.7;0.8;0.9 for the situation where,,=0.7,
a12=0.8, anda22=0.9.
inelasticities of the particles are different. It decreases if the
mass ratio increaséfig. 13, but displays only a very weak
(but strikingly similar to experimental dgtaensitivity on the
The density and temperature profiles are displayed foglobal density(Fig. 15 as well as on the relative densities of
various values of the parameters in Figs. 13 and 14. Thbeeavy and light particles; moreovey, may increase or de-
more massive particledabeled 1, which display a more crease asy; o/ 7, is increasedsee Fig. 16 depending on
heterogeneous profile and are denser in the middle of ththe relative inelasticities.
cell, have typically larger kinetic energies than the lighter The anisotropy in the temperatures yield an anisotrepic
ones; genericallyy=T,/T, is smaller than 1, as in homo- we obtain,y,>y>1y,, as in experiment§], also with dif-
geneous mixturegl6,17). The study of they dependence of ferent shapesy, decreases from the walls to the center while
y shows thaty increases from the boundaries to the center ofy andy, increasgFig. 15. All these results are in very good
the system, and is constant across a wide rangeesen if  agreement with the existing experimental results for two-
T, andT, vary significantly. As also experimentally shown dimensional vibrated mixture$6,9]. We summarize in
in Ref. [6], y is very close to 1 ifm;=m,, even if the Tables | and Il some of the effects reported here.

B. Nonequipartition of translational kinetic energy

1 . . . T 1

o O,Qg.omed'o-owo-evoe.g\o\o o
0.8 -C/)// Y NG 0.8 _o 00 0Q0900000099000A000, , |
> - ~2%o
06 0.6
04 04
0.2 ¥ 02¢ T~ TT— T 7
e
o (a) o (b) 2
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
yIL y/L

FIG. 13. (a) Vertical profiles for a binary mixture withm;=3m,, 79=0.015, ;;=0.85, N=500, and equal mean densitieg o
=1, (excitation by vibrating walls From bottom to top: temperature profiles of both species, density profjég)/(27,) and
m(y)/(270). Sinceo,= o, the packing fractiony; is proportional to the local density; of specied. The upper dashed curve shows the
temperature ratioy=T,/T; as a function of height, and the circles show the same quantity for a nonequimolar mixture mhere
=817,,. (b) Same with a higher mass ratio, =5m,.
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0.9

Expt.
2 [pmtt g
o2 et .
+ 04
08 | . : N
* +
o 0 " i
= 2508 | Py 0 05 1
W
0.7 1 +++++++++++++++
+n,=0.04
(b) * 0,=0.015
0.6 : : : : 0.7 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
y/L y/L

FIG. 15. Effect of density on the temperature ratio fior=3m,, «;;=0.9;0.8;0.7(vibrating wallg. (a) shows the total ratid, /T, and
(b) shows the ratio of horizontal temperatui®s, /T, . In both cases, the corresponding experimental measures are shown in the insets for
a steel-glass mixtur@t different densities, but with a density ratio of 2, close to that of the MD simulations 0.04#02085 The purpose
is to show that the changes induced by density in MD are qualitatively the same as in the experiments.

When rotations are includethnd thusa'>—1), v de-
creases. Moreover, the ratio of rotational kinetic energies
can then be measured. As shown in Tables | ang,ltakes
values of the same order @s This quantity may also be

boundarieslead to different values of. Even if the energy
injection by vibrating walls is reasonably realistic, such a
sensitivity of y renders its precise numerical prediction elu-
sive.

computed from experimental data, although measures of ro- Nonetheless, theualitative very good agreement, even

tational velocities area priori more difficult than that of
translational ones.

for subtle effectysee, e.g., Fig. 15 between numerics and
experiment, and the possibility to change the various param-

The measured values of are of the same order as the eters in the simulations allow us to make some predictions
experimental data. We do not however try to obtain a precisgn the effect of various parameters. For example, increasing

numerical agreement for the following reasons:

the mass ratio should yield smaller values yf(Fig. 13.

(i) In the experiments of Ref6], the beads can rotate in \oreover, Fig. 14 makes it clear that the valueyofat given
three dimensions, whereas the simulated spheres rotate jRass ratio, is smaller for inelasticities; =0.9;0.8;0.7 than

two dimensions only. Since' has a strong effect of, we

with “reverse” inelasticities ;;=0.7,0.8;0.9. This effect

suspect that this difference between experiments and simulgygg already noted in RefL7] and has the following intuitive

tions may affecty. Moreover, the experimental value @f is

interpretation: when the more massive particles are more in-

not known, and the precise validity of the inelastic hard-e|astic, they lose more energy, their temperature decreases,
sphere model with a tangential restitution coefficient shouldyhich results in a highey. We therefore predict that in the

be assessed
(ii) Different energy injection mechanisnthermal vs vi-

context of the experiments reported in R], a mixture of
steel and aluminum dgieer~0.9,05~0.83Mgieer=3My))

brating walls, homogeneous driving vs injection at thegpoyig yield a smaller value of than the brass-glass mix-

1

9800%
0.8 ¢ o e
----'_':.-_'—- ——— T - mmy
06 _41‘3__:{!-_H.++++++H+H+++++-l+++"+++4-+++l—_;.+_|_+;__r+:_”_
> 7 — 0 =070809,N=N, m=3m, >
04| * 0,=0.7 0.8 0.9, N,=8N, m,=3m,
-- ¢,=090.80.7,N,=N, m=3m,
® 0,=0.9 0.8 0.7, N;=8N, m;=3m,
02 - =090807,N=N, m=5m,
+ ,=0.9 0.8 0.7, N,=8N, m,=5m,
o 1 1 1 1
0 0.2 04 0.6 0.8 1
y/L

FIG. 16. Influence of number fraction on the temperature ratio

T,/T4. The total number of particles id=N;+ N,=500 (vibrat-
ing walls. Given thato;=0,, N;/N,=8 corresponds tom;
=872,

ture (aprass™0-8/agiass™0.9My 455~ 3My 559 for which the
measuredy is close to 0.6—0.7. The dependenceyofipon
number fractionx;=p;/p may, on the other hand, be coun-
terintuitive: at a given mean densipg, an increase of the
relative fractionx, of heavy particles leads to an increase of
v when the heavy particles are the more elagae Fig. 16

TABLE I. Values of y, vy, v, in the middle of the system for
N=500, a;;=0.85, 710= 17,0, M=3m, (first three liney and
m;=5m, (last three lines

t

o Y x Yr
-1 0.88 0.92
-0.5 0.825 0.89 0.83
0 0.79 0.86 0.8
-1 0.79 0.845
—-0.5 0.7 0.78 0.69
0 0.65 0.74 0.66
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TABLE II. Values of y, y,, 7, in the middle of the system for V. CONCLUSION
N=500, @;;=0.9,0.8,0.7(first three liney and «;;=0.7,0.8,0.9 . ) )
(last three line m;=3mM,, 71 0= 70. In. this study, we havg gonS|dered V|brate_q granular gases
’ ' outside the Boltzmann limit ofvery) low densities. The mo-
ot y Ve ¥, lecular dynamics simulations performed are free of the ap-
proximations underlying the usual kinetic theory or hydrody-
-1 0.735 0.775 namic approaches. Taking due account of the first correction
—05 0.69 0.735 0.735 to the ideal gas contribution in the equation of st@econd
0 0.665 0.72 0.72 virial orden, we, however, found a remarkable constgmgt
-1 0.95 1.0 component of the pressure tensor over the whole cell, for
~05 0.89 0.99 0.84 monodisperse or bidisperse systems, despite the strong den-
0 0.85 0.96 0.81 sity and temperature heterogeneities due to the realistic en-

ergy injection mechanism.
The study of the velocity distributions along the horizon-

. tal direction (perpendicular to the energy injectiohas re-
This effect was also clearly observed for the homogeneouslyejeq non-Gaussian features similar to experiments, which

heated mixturg17]. On the other hand, an increasexaf  gepend weakly on the various parameters involved in the
leads to a relatively weak decrease pfwhen the heavier mgdel.

particles are the less elastic, whereas the opp(aiteit also The projection of the dynamics onto the horizontal direc-
quite weak trend could be observed in R¢fL7]. tion has allowed us to gain insight into the correlations be-
tween the effective restitution coefficienty and the relative
velocitiesg, of colliding particles. The measured conditional
C. Velocity distributions probability distributionsu(a14|g,) are in agreement with
As in the monodisperse case, we have measured tHe forms proposed in Refl1l], based upon partial experi-
single-particle velocity distributions, which are anisotropic Mental data. The link between(a14|g,) and the velocity
as expected. The vertical velocity distributions are similar tgProbability distribution function$11] has been confirmed.

those shown in Fig. 6, and the horizontal velocity distribu- N the case of binary mixtures we have analyzed the ratio

tions show strong non-Gaussian features, as in the monodig-f granular temperatures as a f“”‘?“o.” of the various param-
ers, and found a very good qualitative agreement with ex-

perse case. Moreover, it appears in Fig. 17 that the rescaled”. A
velocity distributions Py(c,) and P,(c,) are very close periments. The velocity distributions of the_ two components
1 X 2\ X have, moreover, been shown to be very similar.

(even if not equal, see also R¢23)) for both types of par-
ticles. The differences betwed™ (c,) and P,(c,) increase
if the inelasticities or the mass ratio increaBg(c,) depend
slightly on the various parameters, in the same way as the We would like to thank K. Feitosa and N. Menon for
velocity distributions of the monodisperse situation; this de-providing us with valuable unpublished data.

pendence would probably be very difficult to measure in an

experiment, which would probably lead to the conclusion APPENDIX A: INCLUSION OF A TANGENTIAL

that P;(cy) ~P5(c,) . RESTITUTION COEFFICIENT

ACKNOWLEDGMENTS

In this appendix we give the collision rules when a tan-
gential restitution coefficient is introduce@ee also Ref.
[12]). The two colliding particles labeled (1) and (2) have
massesm;, diameters o;, and moment of inertial;
=m;qa?/4 (with g=1/2 for disks and 2/5 for sphereshe
precolliding velocities are;,w;, and postcolliding veloci-
ties are denoted with primes.

The normal unit vector is defined as

N S
= . (A1)
[ri—r
The relative velocity of the contact point,
g1 (0] ~
g=v,—V,— 7w1+7w2 X o, (A2)

FIG. 17. Probability distribution functions of the rescaled hori-
zontal velocity components ,=v; ,/\T; ,, for an equimolar mix- .n ,
ture. Squares are fdP, (heavy grainsand circles forP, (ight ~ @S normal componery,=(g- o) o and tangential compo-
graing. Here ,=0.015,N=500, a;;=0.9,0.8,0.7m;=3m,, and  nent g;=g—g, (this defines the tangential unit vector
a'=0. The solid line is the Gaussian with variance 1. =g/|gl.
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The postcollisional velocities can be expressed simply in 1 1 1
terms of the precollisional velocities through the introduction O =0 +AP ey | R a)’ (A11)
of the linear momentum change of partile), v
AP=my (v}~ 1) = —My(v}—1,). (A3)  WhereAP=(AP-Dt. Finally,
: 1+at
Indeed, the change of angular momentum is _ MM
AP mm (1 a)gn+ 1+1/qgt . (A12)
2l;
—(w wl)——aXAP (A4)

APPENDIX B: EQUATION OF STATE FOR A
POLYDISPERSE INELASTIC MIXTURE

One obtains
In this appendix, we adopt a kinetic definition of the total
o =v.+ A_P (A5) pressure and compute this quantity for an arbitrary homoge-
1P my neous mixture of specids with number fractionx;=p;/p.
Invoking the virial theorem, the excess pressi®&=P
, AP —Ppided=p_x.,T, is related to the collisional transfer of
U= U2 m_2 (AB) linear momentum: the partial excess pressure of spécies
reads(see, e.g., Ref.39)])
(o]
@O oXAP. (A7) P&X= I|mil > rij - op; (B1)

tawdv t j,collisional partner of i
The normal and tangential componentsAd? are then com-

puted using the definition of the normal and tangential coef- 11
ficients of restitution: = I|m— - 1+
LAVt collisional partneroflm +m; ( a”)
grg: —agy, (A8) n
X(o-vii)o;, Where o= 7T (B2)
g=—a'g. (A9) e 2

In these equations, it is understood that the summation runs

over all the collision events involving a particle of typand

- an arbitrary partney, in a large volume of measuM The

(1+ a)(v;—vy)- 0. (A10) collisional transfer appearing in E(B2) is readily computed
within Enskog-Boltzmann kinetic theory, where the velocity

Using the definition ofg,, and withl;=m;qo?/4, one also distribution functionsp;(v) obey the set of nonlinear equa-

obtains tions,

Sinceg,=[(v,— v2)-(}]a‘, the first relation leads to

AP = — 10
T mm,

N, 1
atQDi(Ulvt):Zl Xijo Jdvzj do® (0 v1) (0 v1) 2 — ¢i(v])ej(v3)—@i(v1) @j(vy) |, (B3)
i

where ® denotes the Heaviside distribution andi(v%) are the precollisional velocities converted into, (v,) by the
collision rules(1) and(2). Equation(B2) may be rewritten as

N,

1 S
2 Xiio fdvldsz doO(o vy (0o v12)<P.(v1)<pJ(vz) (1+a|,)(0 V1)) 0jj - (B4)

ex_
Pi 2d

Summing the contributions of all species, the total excess pressure follows:

ex 1 d m;m
P 2 oy (L a) [ dudo [ 4500505010001 02 )

J'd0'®(0' v12) (0 V1) }f dv,dvy(vi+v3)ei(v1)¢j(v2), (B6)

S xyoinm o (1+
- odnin: a,
2d “ Xijgijhi ]ml |]
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wheref;lz is the unit vector alon@,,, and where the con- P=PI, (C3
tribution from the dot producb - v, vanishes by symmetry

in the last integral. The integral over the solid ang}teis

related to the volum&/4 of a sphere with diameter 1: q=—«xVT—uVp, (C4)

d/2

A ~ - ~ o~ T _od-1 whereP is the ideal gas pressufe=pT. The explicit ex-
f do®(o-v)(o-v1)) drdn) 297y,

pressions of the heat conductiviky the transport coefficient
(B7)  w, and cooling rate€ may be found in Ref{1]. The impor-

tant ingredient is thaj is proportional toT®?%p and « to
whereT is the Euler function and it is understood that VT, while £« p/\T, with coefficients depending on the in-
denotes an arbitrary unit vector in E@7). The volumev,  €lasticity .

is itself related to the packing fraction; through 7 The system is considered homogeneous inttigection,
—pV4(c9. From the definition of kinetic temperatures so that only gradients along thedirection are taken into
[v2¢;(v)dv=dT, /m;, we get account. We emphasize that the ideal gas equation of state
' b (P=pT) is assumed, and this simplification is an important
g ingredient in the following derivation. The previous equa-
m;m; Ti T\ o tions then reduce to
PEX: 2d—2 "X'X'; 1+ o _I+_l)i,
pn IZJ Xij&i Jmi+mj( a'”) m . m, <O’d>
(B8) JP
—=0, (CH)
from which we deduce the equation of sté. In this last ay

step, no approximatioiée.g., Gaussian, ejcis made con-
cerningg; . On the other hand, the computation of any other

moment lez)p than p=2 requires the detailed knowl- 2A(a) i
edge of the velocity distribution5]. It is also noteworthy dp dy
that the decoupling of velocities; andv, in Eq. (B6) is a
specific property of the momentum transfer, which signifi-
cantly simplifies the calculation.

JoT
(ﬁ@)—wﬁo. (C6)

In order to simplify the equation on the temperature, it is
convenient to introduce a new varialde defined by

APPENDIX C: HYDRODYNAMICS

In this appendix, we recall the hydrodynamical approach dé=va(a) ﬂzC(rdflx/a(a)p(y)dy, (C7
considered by Breyet al. [1], and adapt it to the case of AY)
energy injection at both boundarigs-0 andy=L. The situ-
ation investigated in Refl] is that of a vibrating wall ay
=0 and a reflecting wall ay=L, so that the temperature
and density gradients vanish at&L. In our no-flow con-
figuration with two vibrating walls, the gradients vanish by
symmetry in the middle of the cely&L/2), so that restrict-
ing to ye[0,L/2] allows us to use directly the expressions 72
derived in Ref[1] (which amounts to the formal identifica- —\T=1T. (C8)
tion y—2y andN—2N). For completeness and clarity, we 9&*
will, however, adapt the argument to our geometry.

In the case of a stationary system without macroscopic

where A (y)=[Co% !p(y)] ™! is the mean free pathQ
=22 for d=2), anda(a) includes all the dependence in
a. Equation(C6) now reads

velocity flow, the hydrodynamic equations reduce to The variable takes values between O arg,, with &y
«N. Then\T=A exp(—&+Bexp@), whereA andB depend
V.P=0 (1) on the boundary conditions. In the case of two vibrating

walls, the solution is symmetric with respectye=L/2 (or
E=¢,/2). With T(0)=T(&,,) =T, One obtains

2
p_dV -q+T¢=0. (C2
T(O)=— [sinh(£,— &)+ sinhel?.  (CY
Here P is the pressure tensay, is the heat flux, and the sinkfé, "

cooling rate due to the collisional energy dissipation. In the

Navier-Stokes approximation for a low-density gas described

by the Boltzmann equation modified to account for the in-It is possible to integratedé=Cao% *\a(a)n(y)dy
elastic nature of collisiong40], =Co% 1\a(a)pdy/T(y) to obtainy(¢) andP:
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To

ZCad_le/a(a)cosf??m

P=

(émtsinhéy), (C10

y ¢&+sinhgcoshién,—§)
L Emtsinhép,

(C1)

Those equations are the same as for the case of one vibrating

wall [1], but with £,—2¢,, andL— 2L, as expected on the

PHYSICAL REVIEW E66, 051303 (2002

basis on the symmetry argument proposed above. It is pos-
sible to invertT (&) and therefore to obtain the profilg$§T)
(two symmetric branches

&= % + cosh‘l( \/Tjo cosh%) : (C12
y_ &+sinhé cosi &, — €) (C13
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