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Passive scalar mixing in fully chaotic flows is usually explained in terms of Lyapunov exponents, i.e., rates
of particle pair separations. We present a unified review of this approalith encapsulates also other
nonchaotic flows and investigate its limitations. During the final stage of mixing, when the scalar variance
decays exponentially, Lyapunov exponents can fail to describe the mixing process. The failure occurs when
another mixing mechanism, first introduced by Feredaxl. [Phys. Rev. E65, 035301(2002], leads to a
slower decay than the mechanism based on Lyapunov exponents. Here we show that this mechanism is
governed by the large-scale nonuniformities of the flow which are different from the small scale stretching
properties of the flow that are captured by the Lyapunov exponents. However, during the initial stage of
mixing, i.e., the stage when most of the scalar variance decays, Lyapunov exponents describe well the mixing
process. We develop our theory for the incompressible and diffusive baker map, a simple example of a chaotic
flow. Nevertheless, our results should be applicable to all chaotic flows.
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[. INTRODUCTION convenience of exposition, but also because AFOG96 have
limited their own exposition to two-dimensional flows. How-
The mixing of a diffusive passive scalar quantidy ad-  ever, nothing prevents us, in principle, from extending this
vected by a fluid flow can be characterized by the decaptatement and the following heuristic argumentation to in-
properties of the scalar field's varianc&=/dx®2?  compressible three-dimensional flows. . _
— (S dx ®)2 when no source of scalar is used to replenish the Particle pair separations and scalar field gradients.
variance lost through mixingno scalar forcing In fully AFOG96 effectively consider, on the one hand, the localized
chaotic incompressible flows, where the term “fully” refers gradients of a scalar fiel®(x,t), and on the other hand
to the absence of Kolmogorov-Arnold-Moser surfagéy  vectors connecting the individual particles of particle pairs
effectively all trajectories are chaotic and no regions existParticle pair vectors A flow can accelerate the decay of the
where trajectories are integrable. Such flows exhibit an exscalar field variance by causing the scalar field gradients to
ponential scalar variance decay in the long time lifgit5]. grow. In the long-time limit, after the gradients have orien-
Pierrehumbertz] also Conjectured that the decay rate be_tated themselves Orthogonal to the direction of fastest grow-
comes independent of molecular scalar diffusivity in theing particle separation, incompressibility implies that the in-
limit of very small diffusivities. Antonsen, Fan, Ott, and Verse length scale defined by the local scalar gradient, i.e.,
Garcia-Lope#5] (in the following AFOG96 have identified |(1/©)V®| has the same time dependence as the locally
and explained one mechanism that generates such an exg@stest growing particle pair separation. We denote this fast-
nential long-time variance decdgee also Ref[6]). In this €St growing separation b¥, (x,t) and note that it poten-
introduction, it is motivating to summarize and generalizetially has different growth rates in different positiors In
their train of thought, which even though heuristic is, never-straining or chaotic flows, where the particle pair separation
theless, instructive. In the main part of this paper we identifyA + grows on average exponentially with time, the propor-
in turn, a long-time variance decay mechanism that is contionality constant of gradient growth depends like
ceptually different from AFOG96 and shows the limitations |(1/@)V®|x=singA . on the initial angle¢+ 0,7 between
of their argument. the local gradient and the direction of the locally fastest
Separation of particle paits Incompressible two- growing particle separatidisee Eqs(13)—(17) in AFOG96.
dimensional flows are such that, at any point and any timeln shearing or vortical flows, however, where the particle
there is a direction along which velocity gradients causepair separatiom . grows on average linearly with time, the
particlé’ pairs to separate faster than in any other directionjnitial condition is forgotten for long enough times and hence
and another direction along which particle pairs either conthe growth rate does not depend on the initial angte
tract (as in straining flowsor simply do not separate nor * /2. Dimensional considerations force us to write
contract at all(as in shearing flows We make this well-
known statement in the context of two-dimensional flows for

Lve A 1
il o -t
o VO s(®) (1)
Yn this paper “particle” is used to mean “fluid element.” where a, is some conserved characteristic area. The func-
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tions s(¢) anda, express the dependence on initial condi- Lagrangian analysis of particle pair histories is enough to
tions for different types of flow. For straining or chaotic determine the rate of decay of the scalar variariéecon-
flows s(¢) =sin(¢), and for shearing or vortical flons( ¢) ceptually similar yet very different formula in terms of
is constant. The particle separation also behaves differentlgropagators has been given in the context of statistical fluid
in different types of flow. AFOG96 only consider the case ofmechanics by Durbiii7] for the calculation of scalar vari-
fully chaotic flows whereh is a Lyapunov exponent and ance profiles in space and/or their time dependegntiee
A, =Aqe™ for sufficiently long times. However, it is very second reason is that, despite the imperfect nature of its heu-
instructive not to limit ourselves to chaotic flows at this stageristic derivation, the star equation leads to right answers not
and see how far we can go without specifying a particulaonly in some instances and regimes of two-dimensional in-
type of particle separation. compressible and fully chaotic flow$] but also when the
Gradients and variance decayFrom the advection- flow is a two-dimensional incompressible steady or slightly
diffusion equation D/Dt)® = V20, where O/Dt) is the  unsteady vortexs,9].

material(or hydrodynamigderivative andk is the molecular Variance decay in chaotic flow#n the case of fully cha-
diffusivity of the scalar®, we deduce that otic flows, AFOG96 have assumed that the anglesre
51 randomly distributed and independent &f and that the
oL, 2 S AYE integration over space in the star equation can be replaced by
Dt 2® =~ «|VO*+«V-(0V0), @ an integration over the Lyapunov exponehtand angless
leading to
which leads to
D Ai 27Td¢
—02=—2ks*($)— 02+ 2kV-(OVO), ©) E(t)=E(0)f th(h,t)f —
Dt a2 0o 2m

where we have absorbed a dimensionless constant of propor-
tionality insidea,. In the case where the length scale of the
flow is much larger than the length scales of scalar fluctua-
tions, it might be assumed that the scalar length scales vary
slowly in space and, therefore, that gradients of terms involvwhereP(h,t) is the probability density function fdr, where
ing gradients of® are negligible. On this bas®€ - (OVO) use has been made sf¢)=sin¢ andA, =Aye", i.e., as-
can be neglected in the last two equations leaving us with suming a history with constant strain for each particle pair
separation, and finally wheteis a characteristic length scale
D ., 5 2 ) of the initial scalar field such thaty=LA,. The point that
ﬁ(@ ~—2ks (‘75)?@ : (4 AFOG96 make, which allows them to identify a mechanism
0 for exponential long-time variance decay, is that in the long-
A Lagrangian integration along a particle path starting at dime limit, [exp(z)—1}/h is very large and the dominant
point x gives contribution to the integral comes from small values oféin
Hence, AFOG96 argue that in the case of fully chaotic flows,
the dominant long-time contribution to the decay of scalar
» ®  variance comes from gradients orientated close to the direc-
tion of largest positive Lyapunov exponené € 0,7) be-
where the time integral is along the history of a particle paircause these gradients are the last ones to survive molecular
i.e., a particle and the particle pair vector on this particle diffusion. A straightforward expansion arour=0 and ¢

(6)

X ex;{ - KL‘Zsinzq&—exqzm) - 1} ,

h

2(x,t)=®g(x)ex;{—2Ka0252(¢>)ftd7-A2+
0

Note that bothg andA , are functions oi. Hence, assum- =7 followed by the ¢ integration does indeed lead to an
ing without loss of generality thgtdx ® =0, the scalar vari- €xponential decay oE(t). AFOG96 go on to estimate
anceE(t)=[dx ®2—(fdx ®)? takes the form P(h,t) and find quantitative agreement between the expo-
nential long-time decay predicted by their theory and the
0%(x) exponential long-time decay found in a computer simulation
E(t):E(O)f dx E(0) of a case of fully chaotic scalar advection and diffusion.

Variance decay in vortical flowsn the case of steady
. vortical flows, as in the case of any steady shear flow, the
- () particle separations grow linearly for sufficiently long times
(Lht=>Ay), i.e., A, ~Lht, where the local shear rateis
Star equationLet us mark this equation by a star to dis- given by h=Q4g(x), 4 being the angular velocity of the
tinguish it from all other equations in this paper and let usvortex at a distance from its center and) is an appropriate
refer to it as the star equation. The reason why this equatiodimensionless function of space. Chooslngo be a length
attracts our interest is twofold. The first reason is conceptualscale characterizing the position of the initial scalar patch
this equation directly relates the decay of the scalar variancayith respect to the vortex, inserting this type of particle pair
which is a measure of mixing, to the growth of particle pairseparation in the star equation witlg=_L?2 and considering
separations, which is a measure of stirring. It implies that &(¢)=const, the star equation becomes

X exr{ —2kay %s%(¢) ftdrAi(x, 7)
0
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2
E(t)= E(O)f dx E‘E(OX)) exp[ - %Pe‘lgz(x)(ﬂot)3},

(@)

where Pe=QyL2k 1. This equation is effectively the same ' \
as Eq.(2.12 in Ref.[8] except that these authors use nondi- —

mensionalized space and time variables, polar coordinate: g™
for their spatial integration, and an azimuthal Fourier series.yL . . 0 h .
One can follow a nearly identical argumentation as that of — o0 @

Ref. [8] between their equation®.12 and(2.19 to obtain

the right decay law FIG. 1. lllustration of the incompressible baker map. The unit
square is divided horizontally at a height The resulting lower
rectangle is horizontally compressed by the faetoand vertically
stretched by k. Similarly, the upper rectangle is horizontally com-
pressed byB and vertically stretched by &/ Finally, the upper

in terms of the Kolmogorov capacit’ (fractal codimen- rectangle is moved down to the right to join the lower rectangle
sion,D’<1) of the spiral gradient structure imposed on thesuch that a unit square is regained.

scalar field by the two-dimensional vortex. This algebraic

decay law of the scalar variance in a steady two-dimensional oytjine of the paperThe model and its scalar decay prop-
vortex is valid in the time range 4Qot<P€”. It has al-  erties are given in Sec. II. In Sec. lll we successfully apply
ready been obtained by a direct asymptotic analysis of thgye siar equation to calculate the early time decay of the
advection-diffusion equation without recourse to the Stalscalar variance. The vast majority of the variance is in fact

equation and has also been computationally veriig:€l]. lost in these early stages. Following the early time decay, the

. Limitations of the star equa_t|onThe star equation pro- .scalar variance decay is exponential in time and governed by
vides, therefore, good results in two extreme and diametri-

cally opposed cases of incompressible flow: fully chaotic? mechanism first introduced in Refl0]. We study this

flows and steady vortices. Nevertheless, the extent of app“c_iecay mechanism in Secs. IV and V and explain it in terms

cability of this equation and of the Lagrangian approach thaPf large-scale nonuniformities of the map. Issues to do with

it encapsulates remains unclear. In this paper we show thélplversallty are also addressed in these sections. We con-
the star equation can also be applied successfully to the earfjide in Sec. V.

time behavior of scalar variance decay in fully chaotic flow.

However, we identify a mechanism that is conceptually dif-

ferent from the Lagrangian one of AFOG96 and which also Il. THE INCOMPRESSIBLE AND DIFFUSIVE

leads to long-time exponential variance decay in fully cha- BAKER MAP

otic flow. This mechanism is governed by the contracting

directions of negative Lyapunov exponents and is not incor- Advection of baker maprhe incompressible baker map
porated in the star equation. In fact, the AFOG96 argumenti1] is an idealized model for advection by an incompress-
based on the star equation predicts that there is no residugjle fully chaotic two-dimensional flow. It is a time-discrete
mixing in the contracting directions in the long-time limit. stretch and fold mechanism, which separates most initially
There must therefore be situations in cases of fully (?haOt"Fleighboring particle pairs exponentially. Exponential separa-
flow and perhaps other flows too, where the Lagrangian ajon of particles is the key signature of chaotic advection.

proach of the star equation cannot predict the right mixing,mpressible or area preserving means that one region is

properties and scalar variance decay. Generally, howevelrna ed onto another region of equal area. This is in contrast
both mechanisms should be expected to coexist. Dependi bp 9 q :

o - . : rWith the classical baker map, which is contractive, i.e., one
on initial conditions and relative strength, i.e., decay rates, of __. . .

. . : region gets mapped onto a smaller region. The classical
both mechanisms, one or the other might prevail and deterBaker map therefore exhibits a strange attralctdf, whereas
mine mixing. We leave this issue for future study and con- P 9 '

centrate here specifically on the non-Lagrangian mechanisﬁli1e |n(jcom[)|re33|ple tl)akerr] map pr?duEes e:]qucg filling ad-
of scalar variance decay. vected scalar as is also the case of other chaotic incompress-

Our model In this paper we focus our attention on the ible flows [12]. It. is nqteworthy t_hat there is a _difference
incompressible baker map to which we add molecular diffu2€tween a two-dimensional chaotic flow and the incompress-
sion for the study of mixing. This map is a good model of theible baker map: The baker map is a discontinuous function of
stretch and fold mechanism that is at the heart of chaoti€Pace, producing large scalar field gradients that generally do
advection. The entire paper is devoted to the effect of théot exist in two-dimensional flows. However this is not sig-
baker map on a scalar field which is so orientated that onlyificant for the following discussion because our focus will
the contracting direction of the map acts on it. This is exactlybe on the effect of large-scale nonuniformities of the scalar
the situation for which the star equation predicts faster scaldiield rather than small-scale steep scalar gradients. Figure 1
variance decay than exponential in the long-time limit. Nev-shows the baker map acting on the unit square.
ertheless the model yields exponential long-time behavior. =~ The stretch and fold mechanism translates into the map

E(0)—E(t)(Pe 10t3)1 P’ (8)
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r @Xn < i2mwnx
1| yoc[0a] ®(X)_n;w 0,e'2™, (13
X, ;yn
( )e 9 Each Fourier coefficien®, is characterized by its mode
Yn BXnta numbern which is related to a wave number lxe=27n.
1 . Ynela,l]. The Fourier coefficients can be calculated from the scalar
g~ @ field using
The parametergy and g describe the degree of straining @n:jldx®(x)e—i2vnx_ (14)
under this map. Due to incompressibility;+ 3=1. We as- 0

sume in this paper without loss of generality that 8. The

action of the incompressible baker map on a scalar field e incompressible baker mapl) with diffusion (12) is a
0O(x,y) is simply given by linear map and can therefore be written as a matrix acting on

the Fourier coefficients
O(Xn,Yn) = O(Xnt1,Yn+1)- (10 o
As we want to study the scalar variance decay in a situation On(1+1)= m;_m Mom® (1), (15)
where the decay mechanism from AFOG96 does not occur,
we consider a scalar field which is homogeneous inythe with @, (1) being the Fourier coefficients at time step

direction, the direction of the positive Lyapunov exponent.=|T. The matrixM,,,, which we call theransfer matrixin
Then the map simplifies to a one-dimensional mapping of thehe following, reads

scalar field,
X Mnm:e_4772KTn2—i7TanSir(7Tan) (B_a)m
) m  (m—an)(m-gn)
@(a) XE[O,a] o
@(X)—» B (11)
a)i xela,l]. for 0<a=<0.5. If the denominator of a particular matrix el-
A ement has a resonance, i.e., eitmer an=0 or m—gn

) . ) ) =0, the nondiffusive part of this transfer matrix element has
This one-dimensional map represents the advection contribyne valuea or g, respectively; all other matrix elements with
tion of our model, the incompressible and diffusive bakerihe samen vanish. In the case wheee=0.5. both factors in
map. the denominator vanish simultaneously, the resonances coin-

Diffusion In order to study mixing processes, we alsocjde and hence the nondiffusive part of the transfer matrix is
have to consider diffusion of the scalar field. The diffusion is(, 4 g) 5= 5, .. The transfer matrix conserves the re-

modeled by carrying out a diffusion step after each advection i, of an advected field by fulfillingM =M
step of the baker map. The diffusion step is described by thﬁ, y y gV —n.—m
diffusion equation, with diffusivityx,

*
n,m:

hereby* denotes the complex conjugate. In the nondiffu-
sive casex=0, the transfer matrix furthermore conserves
the variance of the field, i.e5 M , M _ _ = 8. Finally,

we express the scalar varianc&(l)=/dx®2(x,)
—[fdx®(x,1)]? at time step in terms of the Fourier com-
ponents® (1),

d B 92
E@(X,t)—xﬁﬁ)(x,t), (12

acting on the scalar fiel@ for a certain timeT. Note that we .

consider a scalar field which is homogenous in yhdirec-

tion, and therefore diffusion occurs only in tkelirection. At E(l)zzzfl O] 17

the boundaries of the unit interval, we assume periodic

boundary conditions. The combination of the advection step Analytical solutions In the two special cases;=0 and
and a subsequent diffusion step yields the incompressiblg=1 it is relatively straightforward to find an analytical
and diffusive baker map, which we study in this paper. Thissolution for the evolution of the Fourier coefficients and an
map has already been studied in other contexts, e.g., in dymalytical form for the scalar variance decay. When0, no
namo theory[13,14. straining occurs and we are therefore left with pure diffusion

Fourier representationFor analytical and numerical rea- of the initial modes. Assuming a sin-wave with period 1 as
sons it proves useful to describe the incompressible, diffuijtial condition, i.e., all®,=0 except® .= Fi/2, we find

sive baker map in Fourier space. Numerically, it is easy toan exponential scalar variance decay

control the scalar diffusivity in the Fourier representation.

The Fourier representation also helps to understand the sca- E(1)|,—o=E(0)exp —8m2kTI). (18)

lar variance decay in terms of transport of modes through

Fourier space, the so-called interscale transfer. We write th&/hen =3, the number of modes does not increase under
periodic scalar field as a Fourier series subsequent mappings. Instead, there is only one mode with
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| &—= dispersive |
1 ¥k--% non dispersive

increasing wave numbek(l)=272'. The decay of this '
mode with amplitude 1 yields a superexponential decay of 1 -
the scalar variance

32
E(D)]qeo5= E<0>exp( - S TE@-1)]. (19

In comparison with the decay fer=0, the above decay for gz 96

a=1% is much faster, which is due to the exponential trans-

port of modes to higher wave numbers where they can decay

very fast.(This superexponential decay is also observed in

related dynamo models, see, for example, Eqg. 3.1.8 in Ref.

[15]) 0.2 |
Numerical solutionsFor 0<a<3, it proves difficult to

find an analytical solution of the incompressible diffusive

baker map. Nevertheless we can find numerical solutions of 0

Eq. (15 and gain an insight into the mechanisms responsible , I ¢

for scalar variance decay. The numerical solutions are calcu- 10"

lated from a truncated transfer matrix. The diffusive contri-

bution expt-472«Tr?) of the transfer matrix16) makes all

modes with|n|>ny negligible? where 102

|
|
i
|
i
:
i
\
i
i
i
|
i
|

| o—= dispersive
R, | kooknon dispersive

1
_277\/ﬁ

is a diffusive cutoff. It is therefore sufficient to consider only
transfer matrix elements up t with N>ny. The truncated 107
matrix approximates well the behavior of the transfer matrix.
We have checked that with increasing truncation number, the
results of matrix iterations quickly converge. Our simulation
employed up to 2048 Fourier modes, which allowed diffu-
sivities as small agT=10"8. Figures 2 and 3 show, respec- 10
tively, the short- and long-time behaviors of the numerically 0
obtained variance decay. For short times, 1.€l in Fig. 2 b) !

(the crossover timé. is determined in Sec. ll] we observe N ) ) ) o
that, initially, the variance decays hardly at all, but then FIG. 2. Initial translent of the |ncompres_5|ble and @f‘fuswe
within only only a few iterations almost all the variance is Paker map. Scalar variandedecay under the 'nCOTpreSS',ble and
very quickly lost. AFOG96 referred to this decay range asd_n‘fus_we baker ”?ap@ dispersive and thea/s map (* nondisper-
the initial transient. The initial transient is followed by the Sive) 'ntf%duced n .Sec' IV. BOt.h maps hgve parametemOA and
final decay range where, see Fig. 3, the remaining few per'—<T=10 - (8) The incompressible and diffusive b.ake.r map il
cent of the variance decay exponentially on averf@] map have the same decay as Ior?g%iisc, wherel is givenin Eq.
with superimposed oscillatiorf]. For small enough diffu- (28): (b) For|>l_c, the sca_\Iar variance deca)./s exponer_ltlally under
sivities, the average value ofl{dl)In E does not appear to theer;r)w(cgr:;:gzﬁlbluenzzf tﬂgfusrlxz baker map; however it decays su-
significantly depend on diffusivity, see Fig(a3. Further- perexp Y p map-

more, we observe that the larget i.e., the more nonuni- ) ] )

form the map, the slower the variance decays, see Fi. 3 the variance decay using the star equation from Seq. | and
These last three observations are investigated in more det@fsuming constant strain history in the case of the incom-

Ny (20

107
E

107 -

10 15

o
[$]

in Secs. IV and V. pressible and diffusive baker map.
Variance decay and Lyapunov exponefitse successful
IIl. THE INITIAL TRANSIENT applications of the star equation (*) in Sec. | for long-time

variance decay in fully chaotic and vortical flows motivate us
In this section we discuss the initial transient of the scalato investigate its applicability in the context of the initial

variance decay. Note that the properties of the scalar spetransient decay in fully chaotic flows. In our model, the angle
trum during the initial transient were extensively discusseds between the scalar gradients and the direction of the fast-
in AFOG96. Here we derive an analytical approximation toest growing particle separation ¢g= /2. Assuming, simi-

larly to the derivation of Eq(6), a constant strain history for

all particle pairs, the integration over space in (*) can be

The only exception is the case=3 where the high wave- replaced by an integration over the distributi®h,l) of

number modes are the sole contribution to the variance. finite time Lyapunov exponents(see AFOG96 for a defini-
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10° . , : = % 472 kT
o—o KT=10 - E(I)=E(0)J th(h,l)exp(——(ezh'—l) .
e—=a KT=10 0
—axT=10 "° (22)
— kT=10
» :g:g __; AFOG96 have used the star equation to derive scalar vari-
0 r 1 ance decay in the long-time limit. Here we use E2{) that
is derived from the star equation with an assumption of con-
E stant strain history to calculate the variance decay in the
initial transient.
o | | Analytical approximation to the variance decdp order
to estimate the variance decay from Eg1), we introduce
the cutoff diffusion approximation and also use a Gaussian
approximation for the distribution of Lyapunov exponents.
The expressior(21) for the variance decay can be greatly
107 , . . \ simplified by the cutoff diffusion approximation. If the argu-
0 10 20 30 40 50 ment 42« T exp(2hl)/h of the first exponential in Eq21) is
2) ! much smaller thar}, the value of this exponential is very
10° : , close to one. However if the argument is much larger than
e the exponential vanisheéNote that we have assumed"
A a=0.30 >1, which is reasonable for sufficiently smalT.) The ratio
v =035 E(1)/E(O) is therefore approximately equal to the integral of
N T 0=040 the distribution of finite time Lyapunov exponents over a
10° ¢ M, g o4 range bounded from above by a cutoff valyewhere this
- exponential abruptly jumps from one to zero. The value of
E this cutoff can be estimated by setting the argument of the
RN exponential equal t¢ and approximating the f/contribu-
o L tion of the argument by the average valuen2/¢ hy), where
h,=—Ina andhz=—In g are the Lyapunov exponents cor-
responding to uniform straining by and 8 respectively:
A 1 h,+h
ho(l) = = In——2 (22)
15 , \ . % A 2
L 10 20 30 40 50 2l 16mT

b) ! Now we turn to approximating the distribution of finite time

FIG. 3. Semilogarithmic plot of scalar varianEeas a function ~LYaPUnov exponents. For the incompressible baker map, this
of time-iterationl. () «=0.3; six different diffusivities«T ranging distribution is given by 16]
from 1078 to 102 (number of Fourier modeb!=2048); decay I
according to the largest modulus eigenval@6) of the truncated P(h,1)= E

I n
I=npn
S| h—h,+—(h,—hg)|.
transfer matrix N=256) is indicated by the thick solid line. Note =0 (n) a B ( “ (ha=hp)

that the average value otl{dl)In E, corresponding to the average (23
slope of the plots, appears independent of diffusivity for small o _

enough diffusivities. A more detailed investigation of diffusivity In the vicinity of the maximum

dependence in Fig. 6 reveals that the decay factor depends at most

: 5 0 I Nmax=3(ho+hg) —3(h,—hg)? (29
like In T on the diffusivity. Note also that the average decay factor max— 2\ta "1/ allla 1ig

is well described by the largest eigenvalue modulus of the truncated S . . -
transfer matrix. (b)) «T=10"% (number of Fourier modesN Of the distribution, the binomial coefficient
=512); six different parameters ranging from 0.2 to 0.45. Note |

that the larger the value af, the faster is the decay. This means (
that the decay is slower when the map is less uniform. In both

graphs, the averaged decay rate is overlaid with oscillations. Refer non . )
to Sec. IV for an explanation in terms of the pair of complex con-Multiplied by ' ~"3" can be approximated by a normal dis-

jugate eigenvalues. tribution
2

| . P(h,|)~\/2—|exp[—2|<m)
We make fora, the same choice as AFOG96, that &, W(ha_hﬂ)z h,—hg
=LA, where we chosé to be 1/2r (this choice ensures the
correct result for a plane wave scalar field with period 1Note that this is a valid approximation during the initial tran-
subject to uniform and constant strain, which is a referencsient because, as we determine below, the initial transient is
case for our initial condition The star equation becomes  the range of times where the scalar variance decay is deter-

n

tion of finite time Lyapunov exponentat time-iterationl. (25)
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‘ ' (22) is smaller than the smallest Lyapunov exponapt
Therefore for iteration$>I., where

| 1 h,+hg 29
= —_— n —_—,
¢ 2hg 16m%T
which is derived fromhz=h(l.), the approximatiori26) to
the variance decay is not valid any longer. We have verified
numerically in a variety of caseaglifferent values ofa and
xT) thatl is indeed the crossover time in Fig. 2 and that Eq.
(26) is a good approximation fdg(l) in the initial transient
range that is bounded from above by a time of oldeThe
logarithmic dependence of a critical mixing time suchl as
" has already been noted in previous studies, e.g., [R&[.)
06 s 4 6 s ° 00 Dependence on diffusivityWhen the diffusivity «T
! changes, the time dependence of the variance changes in two
) . . ) ways. For smalleT, the time around which most of the
FIG. 4. Comparison of full direct numerical calculation of the \,5riance suddenly decays increases, but very slowly, in fact
variance decay under the incompressible and diffusive baker maﬁroportionally to—In «T. This follows, for example, from
with the approximatior{26). The scaling with diffusivityxT of the q. (28). The number of time iterations required for this
time needed for most of the decay to occur, and of the tempora udden decay to happen also increases with decreading

width of the decay region, are indicated by solid arrows. Interme- t even more slowly. A quick calculation based on E2§)
diate approximations such as the Lagrangian approach based on tRE - A4 . .
shows that the width of the decay region scales like

star equation and Lyapunov exponefithich assumes a constant o . )
strain history leading to Eq.(21), the cutoff diffusion approxima- V[N «T. The initial transient decay regime of a scalar ad-

tion that uses E¢(22) and the full approximatiof26) that also uses  Vected by a fully chaotic flow appears, therefore, to be a case
the Gaussian form of the distribution of Lyapunov exponents arévhere the dissipation rate is not independent of diffusivity
also given. The parameters of the simulation affe=10"° and but where this dependence is extremely weak, in fact loga-
=0.4, yieldingl =9, i.e., the approximations are valid up to itera- rithmic.

tion 9.

05

&~ — < numerical solution
OG-8 constant strain approx.

G - - © cut-off diffusion approx.
——— full approximation

. . o IV. THE LONG-TIME EXPONENTIAL DECAY
mined by the Lyapunov exponents in the vicinity of the

maximum rather than the tails of the distribution of finite  In this section we begin with reviewing the explanation of

time Lyapunov exponents. Integrating(h,l) as given by long-time exponential variance decay in terms of eigenvalues

Eg. (25 over h in cutoff diffusion approximation22), we  of the transfer matrix and dispersion of modd®]. This

obtain the estimate explanation serves as a foundation for the remainder of this
paper, where we explain the variance decay in terms of large-
scale nonuniformities of the map.

(26) Exponential decay for long-timedn the final decay
range,|>|., the variance decay cannot be captured by a

for the decay of scalar variance during the initial transientPurély Lagrangian description based on the star equation and

E(l)= E(O)erf[ Val mi]l)%:max
a 1B

where Lyapunov exponents. Calculating the long-time decay from
the star equation in the guise of EQ1) with Eq. (23), we

1 (x 2 find a superexponential variance decay. This calculation ob-

erf(x)= _f dy exr{ — _> (27)  Viously disagrees with the numerical results of Sec. II, which
27l = 2 suggest an exponential variance decay when0.5 in the

long-time limit, see Fig. 3. As discussed in Sec. |, it is the

is the error function. additional integration over different orientations of the scalar

Discussion of approximatiorFigure 4 shows a compari- gradient in the star equation that produces the exponential
son of E(l) obtained by a full numerical solution of the decay obtained by AFOG96. However, we have deliberately
incompressible and diffusive baker map and the approximaghosen the initial conditions such that all scalar gradients are
tion (26). We observe satisfactory agreement between thaligned with the inward straining and therefore no such av-
numerical solution and our analytical approximation suggesteraging effect applies in our case.
ing that it is sufficient to know the Lyapunov exponents, a Final decay in terms of eigenvectors and valukest us
Lagrangian property of the chaotic flow, for a satisfactoryfirst explain the observed long-time exponential variance de-
description of the variance decay during the initial transientcay and its oscillations in terms of eigenvectors and eigen-
The approximatior(26) is valid as long as most of the vari- values of the truncated transfer matiik6), see also Ref.
ance has not yet decayed, see Sec. IV. Most of the varian¢&0]. For each eigenvalua with eigenvectore, the trun-
has decayed when the cutoff for the Lyapunov exponentsated transfer matrix also has the complex conjugate eigen-
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FIG. 6. Variation of the decay fact¢x |2 with diffusivity T in

FIG. 5. Convergence of the largest eigenvalue modiNlisvith  the casen=0.475 that is the case whelre|? varies the most with
increasing truncatiomN for different . |\| is calculated from a diffusivity. The decay factor varies witk T slightly less steeply
numerical eigenvalue analysis of the truncated transfer matrix. It ishan In«T.
compared with the largest eigenvalue modulus reference yajiie
that is calculated from a direct numerical solution of the variance

decay, i.e., thé)| are the square roots of the decay rates in Tablefor small values ofN is important because it implies that it is

I. We observe that even for small valuesM{particularly whena .nOt the disc;ontinuitieg in .the scalar field generated by t.he

is smal), the largest eigenvalue modullis| comes close to the incompressible a_md diffusive bake_r map thgt are re§p0n3|ble

reference valuéh,|. for the exponential decay. Such discontinuities require many
wave numbers to be resolved, more than a truncation with

N=5 or 10 would permit in most of our cases where the

diffusivity is very small.

Parameter dependence of decéy Fig. Ja we observe

value \* with eigenvecto%n:e’in. This is a consequence
of the conservation of realithl _, -, =M ,, of the trans-

fer matrix. After a few iterations, the eigenvectors with the y, . tor small enough diffusivities, the time derivative of the
largest modulus eigenvalues provide the largest Contr'bumﬂ)garithm ofE(I) seems to become independent of diffusiv-
to the scalar field and therefore control the scalar field decaMy_ A more detailed investigation in Fig. 6 reveals that the
in the long term. At every iteration stdp the eigenvectors averaged decay factor depends at most likeThon diffu-
are multiplied by thei'r corresponding eigenvalues leading tc%ivity. The average decay factors for differentre given by
the long-time approximation the “diamonds” ¢ in Fig. 7 and in Table I. We observe that
the largera, i.e., the more nonuniform the map, the smaller
the decay factor.

Although this simple analysis in terms of eigenvalues can
predict the exponential long-time decay of the variance, it
nevertheless fails to explain why a Lagrangian description
based on the star equation fails and why the decay factors are
so weakly dependent on diffusivity. The remainder of this

0,(H~Ne,+1*"e,, (29)

where X and A\* now symbolize the two largest modulus

eigenvalues and, , €, their respective eigenvectors. We cal-
culate the variance decay using Ed7) and find an expo-
nential decay superimposed on a potentially oscillatory con

tribution: section addresses this issue.
N Dispersion causes exponential decade Lagrangian de-
E(N a2+ > RezZee_,), (30) scription of va_riance_ decay fails beca_use it does not take into
n=1 account the dispersion of modes during the mapping process

which becomes very important after the initial transient. By
where Re gives the real part of its argument. The averagegispersiod we mean that the transfer matr,,,, does not
decay factorE(1+1)/E(1) is therefore given by\|* (after  simply map a scalar mode, characterized by its mode number
oscillations have been averaged Jodthe oscillations stem m to a single other moda as a description in terms of
from the projection of the powers of the complex eigenvalue
onto the real axis and can be observed in Fig. 3. They are net———

only present in the incompressible and diffusive baker map, 3\ote that this concept of dispersion must not be confused with a
but also in other chaotic flowg]. Furthermore, the averaged (istribution of finite time Lyapunov exponents, which may also
decay factor does indeed appear to be well approximated Byause a transfer of variance from one mode to several other modes.
the modulus of the largest modulus eigenvalues of the trunmn the case of finite time Lyapunov exponents, the “dispersion” of
cated transfer matrix even for rather small values of the trunmodes is caused by a local spatial average whereas our definition of
cationN, see Fig. 5. The fact that this agreement occurs evedispersion considers the entire flow.
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R(m>=2n§1 LY (31)

0.8
Figure 9 shows the remnance of the incompressible and dif-

fusive baker map for different. We observe that the rem-
nance scales lik(m)«<m~1 for largem, which can also be
verified analytically. Due to this scaling, the remnance is
only important for the lowest modésThis suggests that at
every iteration step, there exists a fraction of variance that
o remains at the lowest modes. It is this remnant fraction of
0.4 ] variance that causes the exponential variance decay, i.e., the
lowest modes control the exponential variance decay. This
remnant fraction must be equal [to|?> because the variance
02 , . . decay occurs by multiples dh|? [see Eq.(30) with aver-
“0.1 0.2 0.3 0.4 05 aged out oscillatiorls The remaining fraction 4|\|? of
a variance, originally contained in the lowest modes, gets at
each iteration step transported to larger wave numbers. So it
i.e., square root of the averaged decay fadid?, for different finaIIy_re_aches high gnough wave numbers where diffusion
straining ratesv. ¢ , Eigenvalues obtained by a numerical solution €N €liminate the variance. o _ _
of the incompressible and diffusive baker map with diffusivity Decay factor independent of diffusivityhe dispersion
=107; solid line, analytical solutiori44) for the eigenvalue inthe ~(rémnancg decay mechanism also explains qualitatively
Gaussian description without boundary corrections, see Sec. V B. IWhy the decay factor becomes nearly independent of or at
both cases, the eigenvalues decrease with increasitdowever,  least extremely weakly dependent on diffusivity when diffu-
the decay behaviors are different because the corresponding mag#/ity is small enough. This mechanism operates only at the
have different large-scale nonuniformities, see Secs. IV and V. Théargest scales of the flow. A small diffusivity, however, only
eigenvalues are also given in Table I. acts at much smaller scales and can therefore not influence
the decay factor very much.

Lyapunov exponents would suggest, but instead maps mode |yapunov exponents fail because of lacking scale separa-
monto an entire distribution of modes. See, for inStance, Flg’ﬂon Considering that the exponentia| variance decay is con-
8 for a schematic illustration of the Concept of dispersion anCir()”ed by the |argest scales of the flow, it is not Surprising
an example of dispersion for the incompressible and diffuthat the Lagrangian description based on the star equation
sive baker map. Generally most of the variance contained ignd Lyapunov exponents fails to describe the exponential
the initial modem is transported to larger mode numbers. yvariance decay. As we have pointed out in Sec. I, this ap-
However, dispersion may cause a small fraction of the initiabroach based on particle pair separation can predict variance
variance to be transferred to the same or even lower modgecay when the spatial scales over which the flow varies are
numbers thamm. This remnant amount of variance can be much larger than the scales over which the scalar field varies.
quantified by the remnandg(m), which is defined as the This condition ceases to be fulfilled for the incompressible
sum of contributions to the variance, which end up at theand diffusive baker map in the long-time limit beyond the
same or lower mode numbers after one iteration: initial transient.

a8 map To emphasize the role of mode dispersion, let us
investigate fully chaotic maps without mode dispersion. As a
first example, consider the incompressible and diffusive

M 0.6

FIG. 7. Modulus of scalar field largest modulus eigenvalje

TABLE |. Square root of the averaged decay fact@scillation
averaged oyt i.e., eigenvalue moduli, for the incompressible and

iffusi k he diffusi k in th - - . . -
diffusive baker map g and the diffusive baker map in the Gauss baker map fow=0.5. The transfer matrigl6) in this case is

ian description without boundary correctioNksauss S€€ Eq(44). . ) . .
The values of the incompressible and diffusive baker map are ob'jond'SperS'Ve and therefore produces superexponential vari-

tained by an exponential fit to the numerically calculated decay forance_ decay19). We obtairj a second example of a non_di;-
«T=10"5. persive map by constructing a map with the same straining

properties as the incompressible and diffusive baker map but
no mode dispersion. Analyzing the transfer matii6), we

a )\|std )\|Gauss . . .

see that it has resonances, i.e., comparatively large values
0.45 0.44 0.51 wheneverm—an~0 or m—g8n~0. If a resonance condi-
0.40 0.52 0.52 tion is met exactly, the corresponding matrix element takes
0.35 0.59 0.55 the valuea or B, respectively. These resonances lead to a
0.30 0.66 0.58
0.25 0.72 0.63
0.20 0.79 0.68 “The importance of the lowest modes can also be inferred from
0.15 0.83 0.76 the first few elements of the transfer matrix. The eigenvalues of the
0.10 0.89 0.82 truncated transfer matrix quickly converge towards the measured

value of variance decay, see Fig. 5.
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FIG. 8. Dispersion of modega) Schematic illustration of dispersion with wave numbers oftrend intensity on thg axis. A sharp
distribution of wave numberéndicated by the vertical arrowis mapped onto a broad distribution of modexlicated by dotted line (b)
Dispersion of the baker map: Modulus of transfer matrix elementsyfe0.3 and vanishing diffusivity. A mode with mode numbmar
=3 is mapped onto a broad distribution of modes, indicated by dotted lines.

transport of modes to higher wave numbers, i.e., a mode witder the incompressible and diffusive baker map andatfBe
wave numbek and amplitudeA is mapped approximately to map. As long as the majority of modes is not transported
two modes with wave numbekga andk/B and amplitudes beyond the diffusive cutoff, i.el<I., both maps evolve

aA and BA, respectively. When the resonance condition isalmost identically. However for>1, the incompressible and

not met precisely, the resonance is smeared out and therefogfysive baker map and theB map evolve differently. The

the transport of modes is dispersive. A simplified version ofizcompressible and diffusive baker map develops an expo-
the incompressible and diffusive baker map is therefore obpenig) decay but the 8 map decays superexponentially. We
tained by assuming that the transfer matrix has only sharg, et these results because the incompressible and diffusive

resonances, i.e., nondispersive transport of modes. In the foﬂ)'aker map is dispersive whereas th@ map is not. Note
lowing we refer to this nondispersive baker map as dfte that the @8 map is very similar to the Lagrangian decay

?V%?ulgaog#g&? sn((;joe?tltﬂgzl;;]na%dies céllsvt élr?tg;@(k), the description(21) in terms of Lyapunov exponents derived
from the star equation. The sole difference between the two
P(k)—D(K)[ aP(ak)+ BP(BK)], (32)  descriptions is that the 8 map does not require the assump-
tion of constant strain. Therefore the variance decay calcu-
where the diffusive factoD (k) models diffusion. From the |ated with thea38 map in Fig. 2 agrees even better with the
diffusive term exp-4#°«Tr?) in Eq. (16), we infer D(k)  full numerical solution than the decay according to the
=exp(—«TK?). Figure 2 compares scalar variance decay uniyapunov descriptior{21) in Fig. 4.

Dispersion and large-scale nonuniformity of the straining
field. Having established that dispersion causes the exponen-
tial variance decay of the incompressible and diffusive baker
map in the first place, we now argue that dispersion itself is
caused by the nonuniformity of the advecting flow or map. In
the case wherexr=0.5 the straining of the map is uniform
and produces a uniform scalar field. This is also the one case
where the incompressible and diffusive baker map is not dis-
persive. However, aa decreases away from 0.5, the strain-
ing field of the map becomes increasingly nonuniform and
hence the map also because increasingly dispersive, as mea-
sured by the remnance which increases with decreasing
Clearly, dispersion and nonuniformity appear to be correlated
in the case of the incompressible and diffusive baker map.
But could there be a causal relation between the two which

, might be valid quite generally over a wide class of flows? We
1 10 100 1000 investigate this question by comparing maps that have the
" same straining properties but are differently organized in

FIG. 9. Double-logarithmic plot of remnan&over mode num-  Space. The dispersion by such maps can be analyzed by
bermfor «=0.2, 0.3, 0.4, and 0.45. The dashed line indicates 1/ means of the Fourier transforms of the scalar fields that they
scaling. The remnance is larger for smabieat anym, and for large ~ produce. Figure 10 shows two examples of scalar fields that
m the remnance decays likend/ are produced by maps with identical straining properties so
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FIG. 10. Scalar field made up
of ten sine waves with wave num-
o T ber 27x20 and 20 sine waves
“ V U v u U with wave number 2x40. (a)
- - -1 The waves are arranged such that
0 02 04 0.6 [+X-] 1 0 0.2 04 08 0.8 1 .
a) x b) x they are uniform on a large scale,
0.4 . . . . 04 - . . . (b) the waves are arranged such
that they are nonuniform on a
large scalec) Fourier transform
08 1 o8 of (@), (d) Fourier transform of
(b). The more nonuniform field
902] (b) has a more dispersive spec-
trum.
o1
o | 1
0 20 40 60 80 100
c) "

that both scalar fields have the same subfield components eht large-scale nonuniformities but the same distribution of
truncated sine waves. However the spatial arrangement dinite time Lyapunov exponents. Changing the large-scale
subfield components is different for both maps. The field innonuniformities while keeping the distribution of Lyapunov
Fig. 10 is more uniform than the field in Fig. U9 be- exponents is the key advantage of the Gaussian description
cause all large scale sections(a) are comparable, whereas and the reason why we introduce it in this section. Note that
in (b) different kinds of large-scale sections can be foundwe do not introduce the Gaussian description to provide an
The Fourier representation of fie{d), see(c), is less disper- improved algorithm to simulate advection-diffusion pro-
sive, i.e., has narrower peaks around the maxima, than theesses. The Gaussian description is not well suited for this
Fourier components of fielth); see(d). Indeed our example task. First, its memory requirements grow exponentially with
of Fig. 10 suggests that there is a general causal relatiosimulation time. Second, it is only applicable for one-
between spatial nonuniformity of a mdpnd consequently dimensional chaotic maps. Nevertheless, the ability of the
that of its advected fie)dand dispersion of interscale trans- Gaussian description to describe chaotic maps with different
fer. Note that Pedrizetti and Vassilicp$8] have described large-scale nonuniformities but identical distributions of
scalar interscale transfer in vortical flows in terms of a transLyapunov exponents allows us to show that the large-scale
fer matrix, which is also dispersive, and have found a similamonuniformities have a significant influence on the rate of
relation between the dispersion caused by the transfer matrixariance decay.

and the spatial nonuniformity of the shear field in the vortex.

A. Introduction of Gaussian description and application to the

V. GAUSSIAN DESCRIPTION OF CHAOTIC MAPS incompressible and diffusive baker map

Definition of Gaussian descriptionWe introduce the
Gaussian descriptionf a chaotic map by studying the com-
ined effect of strain and diffusion on a Gaussian scalar field

The large-scale nonuniformities of a chaotic map influ-
ence the long-time variance decay of the map. To illustrat
this point further, we introduce the Gaussian description o

the incompressible and diffusive baker map. Using the X2
Gaussian description, we can show that two chaotic maps gg(x):ex;{ — _) (33
with, for the intents and purposes of this paper, identical 40°

distributions of finite time Lyapunov exponents but different

large-scale nonuniformities have different long-time varianceAny Gaussian remains a Gaussian under uniform strain and
decay rates. The first map, the Gausian description of thdiffusion. Even if the Gaussian is subject to nonuniform
incompressible and diffusive baker map of the previous secstrain, it quickly returns to its initial shape under the influ-
tions, is discussed in Sec. V A. We show that the Gaussiarnce of diffusion.(We have verified that the bell-shaped
description reproduces the variance decay. In Sec. V B, weurves in Fig. 1{c) are well fitted by GaussiansTherefore
proceed by introducing a second map which, in comparisoisaussians are convenient for the study of chaotic maps. As
with the incompressible and diffusive baker map, has differ-an example, we study the incompressible and diffusive baker
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map(1l) and(12) in the Gaussian representation. Assume an
incompressible and diffusive baker map with a Gaussian ini-
tial condition

@(noy=A$@U$xx—x$b—§T (34)

Our initial condition is characterized by the amplitudl§’,
by the Width()'(lo) (which shall be much smaller than 1, the
size of the mapped intervaland by the peak cented”
(which shall be well inside the mapped unit intejvalhe

mean g is subtracted to obtain a field with vanishing
averag€. We assume that this specific initial condition has
no influence on the character of the long-time decay.
Uniform Gaussian descriptionConsider the application
of one iteration step of the incompressible and diffusive
baker map and assume, for the time being, that the Gaussian
remains well inside the mapped interval. First, one peak is
mapped on two peaks: one peak resulting from a compres-
sion with @ and the other from a compression wjgh Then,
diffusion acts for a timel and the peaks become wider and
lower. Hence, at every iteration, one Gaussian is mapped on
two new Gaussians with modified amplitudes, widths, and
centers. Because the problem is linear, the scalar field lafter
iterations can be written as a superposition of Gaussians,

ol

O(xh=| X A(n”g,,gxx—x(n”))—g. (35

n=1

In the Gaussian description, the field is fully characterized by
the set of parameters(, o, andx{’. From the defini-
tions (11) and(12) of the incompressible and diffusive baker
map, the evolution of the parameters follows, see the Appen-
dix,

I+1)_ |
’ [xﬁ+ )= ax{)
x{—

36
a0, @
—12
K
Al (aon’) 37
n -1
(1+1)_ (1) e
Az = 1+(Baﬂ>>2) '
0 0'§1|+1):\/KT+(C¥()'“U)2
oy’ — (38
n 0'(2||:i)= KT+ (Boy )2.

Studying the long-time evolution of the parameters, we find
that the widthso approach values between

kT q kT (39
.= and oz=\/——.
1-a? N1 p2

FIG. 11. Evolution of Gaussians in the vicinity of the boundary. °In Sec. V B, we describe and discuss an alternative method to

Field ® plotted against positior.

obtain a field with vanishing average.
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The minimal widtho, is given by a Gaussian which is sub- 0.8 — ‘ . . . 0.8
ject to purea strain. Similarly, the maximal widthr is ﬁ\*\‘\\
given by a Gaussian subject to pygestrain. When the peaks 07 E 407
have reached their final range of widths, the amplitude evo-
lution becomes relatively insensitive to the precise value of 06 1 06
the width. For each iteration step, the amplitude reduction
factor is then comparable to the corresponding strain rates 2N
or B. If a Gaussian is subject to a single strain rate, this is¥ 0.5 - 1087
indeed the exact solution.

Large-scale nonuniformities and boundary conditiohs 04} 0.4
the straining properties of the incompressible and diffusive
baker map were completely uniform or if the nonuniform 0a | 0.3
straining at the boundaries of the unit interval could be ne- ™
glected, the field evolution and variance decay would be
given by Eqs.(36)—(38). However for the standard incom- 023 ) - o ] > 5 02
pressible and diffusive baker map, where: 8, this is not d

the case. At the boundaries of the unit interval, regions with _ o ) ) )
different straining properties come to neighbor each other FIG. 12. Evolution of Gaussians in nonuniform strain for differ-
directly because of the periodicity of the flow domain Theent strain rates. The three solid curves give the evolution of Gaus-
boundaries thus feel the effect of the large-scale nonimiforg'ians in the strain-diffusive situation described in Fig. 11 for

it d thereby infl th te of I : d a=0.4; *: «=0.3; +: «=0.2. The Gaussian’s amplitude reduc-
MIties an ereby influence the rate ot scalar variance decay,, ¢ .o v for each iteration is plotted against the Gaussian’s

Below, we fIrSt.stUdy In some detail the. influence .Of t.hedistanced from the borderline between the regions with different
boundary condltlo_ns of the |nc0mpre_SS|bIe and d'ﬁus'vestrain. The distance is measured in multiples of the Gaussian’s
baker map. Then, in Sec. V B, we modify the boundary conyigth -, Negative values refer to the left-hand side of the boundary,
ditions and show that they have a significant influence on thggsitive values to the right-hand side. Fixed points of the evolution

variance decay. . . are indicated by dotted circles with horizontal lines, from bottom to
Boundary conditionsLet us now investigate the effect of top corresponding tae=0.4, 0.3, 0.2.

the boundary conditions on the evolution of a Gaussian. If a

peak center comes within about a peak width of the left- ofbution by the stronges straining. The peak widths and cen-
right-hand boundary of the mapped unit interval, the Gaussters also deviate from the uniform values.

ian becomes subject to strain, which is nonuniform across Systematic study of boundary conditions for different
the width of the Gaussian. The evolution of the Gaussian'straining rates For other combinations of straining rates
amplitude, width, and center is then different from the uni-and 8, we find similar behavior. In particular, after the dif-
form case above. We study the case of nonuniform straifusion step, all peaks return to the Gaussian shape, even
numerically. Figure 11 depicts an example of a Gaussiamhough they have been subjected to nonuniform strain. Fig-
coming close to the boundary, where it can experience thare 12 quantifies the effect of the Gaussian’s distance from
effect of nonuniform strain. Figure 18 shows a Gaussian the boundary on its amplitude evolution for different combi-
which, under subsequeptstretchings, has come close to the nations of straining rates. Consider the example of the in-
right-hand boundary of the unit interval at=1. Due to its compressible and diffusive baker map with=0.4 and 3
finite width, a fraction of the field is now outside the mapped=0.6. Let us follow the evolution of a Gaussian close to the
interval. As a consequence of the periodicity of the flowright-hand boundary of the mapped unit interval. The ampli-
domain, this fraction returns to the left-hand boundaxy ( tude reduction factor for one iteration of the Gaussian is
=0). The result of the stretch step of the incompressible andiven by diamonds in Fig. 12. Initially, the Gaussian is po-
diffusive baker map is plotted in Fig. (. The peak section sijtioned three widthg- away from the boundary. The reduc-
at the right-hand boundary is mapped on two new peak segion factor atd= — 3 can be read off Fig. 12=0.6. This is
tions. One is strained witjp=0.6 and moved byr=0.4. It  the uniform result because the peak is far enough from the
therefore remains at the right-hand boundary. The other isoundary. However at the next iteration step it has moved
strained witha and hence moves directly left &=0.4. The  within 1.8 widths from the boundary and we begin to ob-
peak section at the left-hand boundary is also mapped on tweerve a slight reduction in the amplitude reduction factor. In
new peak sections. One strained with at the left-hand the following iterations the peak gets ever closer to the
boundary and the other strained wigh directly right ofx  boundary and the amplitude reduction factor decreases. Fi-
=0.4. Finally, diffusionx acts for a timeT, see Fig. 1(c). nally it reaches a stable distance of about 0.4 widths away
All cut and pasted peak sections again approach the Gaussiflom the boundary. At this fixed point the amplitude reduc-
shape. The peak at~0.4 has a lower amplitude than the tion factor is y=0.52. With the same incompressible and
peaks at the boundary because most of it was subject tdiffusive baker map, we can also study the evolution of a
greater strain. However its amplitude is slightly larger thanGaussian at the left-hand boundary of the unit interval. Three
0.4, the amplitude that corresponds to the case of unifornwidths away from the boundary, we find again the uniform
strain with «=0.4. Similarly, the peak at the boundary is value for the amplitude reduction factat+ 3,y=0.4). With
slightly smaller than in the uniform case due to some contrisubsequent iterations, the amplitude reduction factor in-
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FIG. 13. Comparison of variance decay in Gaussian description

with and without boundary corrections far=0.3. Solid line: De- FIG. 14. Comparison of scalar field solutions. Solid ligper

cay without boundary correction. Dotted line: Decay with boundarygraph: Numerical solution of the standard incompressible and dif-

correction; asymptotic decay rates are indicated by straight soligusive baker map obtained in Fourier space and transformed to real

lines. The final range of the solution without boundary correctionsspace. Dotted linélower graph: Numerical solution of the incom-

decays like 0.68 according to Eq(44). In contrast, the final range pressible and diffusive baker map in Gaussian description with

of the standard incompressible and diffusive baker map decays liksoundary corrections. Both solutions are calculatedafer0.3 and

0.58, see Fig. 7. Note that the numerical simulation of the GaussT=10"¢ (they are rescaled and slightly displaced to allow easy

ian description is limited to a small number of iterations because thgomparisoh We observe that both solutions have very similar

memory requirements of the simulation grow exponentially. structure. All spikes, whose positions can be obtained by mapping
the spike at the right-hand boundary with E86), have comparable
positions and amplitudes.

creases, as more and more of the peak gets subject to weaker

B strain. The peak center even crosses the boundary anger, it should be noted that it is generally not useful to
reaches the same fixed point. For other valuez @nd 3,  calculate decay factors in Gaussian approximation. The
similar behavior can be observed in Fig. 12. memory required to keep track of all the Gaussians grows

Comparison with numerical solutionWe are now in a exponentially with the number of iterations and hence
position to compare the solutions of the incompressible anguickly reaches extremely large values. The main advantage
diffusive baker map obtained by Fourier decomposition withof the Gaussian description is that it enables us to change the
solutions using Gaussian description, i.e., E§6)—(38) and  behavior of the map at the boundary and therefore the effect
boundary corrections from Fig. 12. We determine the timepf the large-scale nonuniformities.
dependence of the variance decay in Gaussian description by
superimposing all Gaussians in real space and then calculat-
ing the variance of the resulting fields. We observe good
agreement between the variance decay in Gaussian descrip-
tion and the variance decay calculated from numerical solu- Variation of boundary conditionsinstead of using the
tions of the incompressible and diffusive baker map usingcurves in Fig. 12 to describe the behavior at the boundary of
Fourier decomposition, see Fig. 1@he decay without the incompressible and diffusive baker map in the Gaussian
boundary corrections in the figure may be omijteeurther-  description, we could imagine infinitely many different
more, we find by comparing the scalar fields themselves thaturves and therefore equally many different Gaussian de-
the fields in Gaussian description are very similar to, andscriptions with different boundary corrections. All these
share the same features as, the fields calculated from th@aussian descriptions have the same small-scale stretching
Fourier modes, see Fig. 14. properties(with the exception of a tiny region around the

In summary, we have shown that if the following three boundaries Although the Lyapunov exponents of all those
conditions are fulfilledsee paragraph “Definition of Gauss- maps are the same, the decay factors are different as we
ian description’), the Gaussian description allows us to de-show now. In particular, we study one example of such
scribe the evolution of the incompressible and diffusivemodified boundary conditions, namely the map where all
baker mapi) the diffusion«T is small enough so that the Gaussians evolve according to the uniform evolutidé)—
Gaussian widths are small in comparison with the mapped38) and no additional corrections are considered. The ad-
unit interval; (ii) the long-time decay does not depend on thevantage of this particular example is that it is analytically
initial condition; (iii) Gaussians under nonuniform strain cantractable. Note that there is no real space physical model that
be sufficiently well approximated by the Gaussians. How-has these particular boundary corrections. The Gaussian de-

B. Decay factor of Gaussian description
without boundary conditions
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scription is therefore a method for changing the boundarycompressible and diffusive baker map contain at least an
conditions and hence the effects of large-scale nonuniformimnfinitely small contribution of the slowest decaying eigen-
ties of the incompressible and diffusive baker map. mode. This contribution dominates the decay in the long run

Simplified Gaussian descriptiohe uniform evolution and ensures that the long-time variance decay is identical for
(36)—(38) can be further simplified by assuming a weightedalmost all initial conditions and thus insensitive to the spe-
width o= ao,+ Bo for all Gaussians, where the minimal cific choice for the initial condition. Consider now one of the
and maximal widthso,,; are given by Eq(39). This ap- 2" Gaussians aftdriterations. It is characterized by its am-
proximation turns out to be a very good approximation agplitude A} and centex{. From Eq.(42), it follows that the
long as all widths are comparable, which is the casexfapt ~ amplitude can be related to the binary notation of its index
too small. The uniform evolution is then given by the evolu-for example
tions of the center$36) and the approximated evolution of

the amplitudes n=001011---1,

AlFD = oAD An=0? o B2 o® B* B* .- B (49
(+1)_ pall) (40) . . . -
Aoy =BAY . Each 0 in the binary notation corresponds to a multiplica-
tion with o, and each 1 corresponds t¢84 multiplier. The
Now we employ a different method to construct a field with |ast multiplier to be applied is on the left-hand end of the
vanishing mean. We use an initial condition of two closelypinary series. After one further iteration, we havé2Gaus-
neighboring Gaussiart83) whose amplitudes have the same sjans in total. At the position of our previous Gaussian, we
modulus but opposite signs. The Gaussians’ centers shall Bd a new Gaussian with amplitud®,32. The direct left-
only a small distance apart, in fact much smaller than theygng neighbor of this Gaussian has an amplitge:?. In
width of the peaks. We call this combination of two Gauss-the final decay range, the distance between any neighboring

AV

ians adouble Gaussian Gaussians is much smaller than the width of the Gaussians.
) We can therefore combine two Gaussians to one combined

d(x)zxexp( _T) (41) Gaussian by adding their amplitudes. We then obtain the

452" same scalar field when adding up the combined Gaussians.

The combined Gaussian has an amplitudd+ 8%)A,,, and
The double Gaussian and all its mappings obviously havave may locate it at the positiax, of the previous Gaussian.
vanishing mean. Previously, we have ensured vanishin§arrying out this procedure for all the neighboring pairs of
mean by simply subtracting the mean of the mapped Gaus$aussians, we find a set of Gaussians very similar to the set
ians. The previous method has the advantage of being rel@f Gaussians aftdriterations, the only difference being that
tively insensitive to the correct positioning of the scalar fieldall amplitudes are reduced by a factef+ 2. The field in
because all Gaussians have positive amplitude and therefotiee final decay range is hence in an eigenstate with an eigen-
only interfere constructively. Without boundary corrections,value
the peak positions are known exactly. The double Gaussian
representation is then advantageous because the double

Gaussians amplitude corresponds directly to the amplitude af, . - . . -
the scalar field. It is easy to show that the double Gaussian(’)lsthls prediction for the decay factor in Gaussian description

amplitude decreases by a factor approximately equat?o without boundary corrections can be verified by a compari-

A e 1 - son with the numerical simulations. Figure 13 shows one
underea strain with subsequent diffusion step, and, similarly, . . S
; 5 T example of the numerical evolution which indeed matches
by a factor approximately equal 8= under 8 strain with

AP ; o ! . the prediction.
diffusion. This modifies the evolution of amplitudé£0) to Discussion Comparing the decay factors of the standard

A=a’+ 2. (44)

Al+D = 2a0) incompressible and diffusive baker map with our solution
AD_, ?|+1) ) ”l (42)  (44) for Gaussian description without boundary corrections,
Ay =B /-\51)- see Fig. 7, we find a remarkable difference between both

decay factors. This difference must be due to the different
Analytical solution We now derive an analytical solution boundary corrections, because both maps are otherwise iden-
for the long-time decay factor by comparing the scalar fieldgical. As pointed out above, by modifying boundary condi-
for subsequent iterations. We use a special initial conditiontions one can modify the quantitative effect of the large-scale
where the first double Gaussian’s center isxfﬁf:l. This  nonuniformities of the map. In an incompressible one-
initial condition ensures that, after one iteration, half of thedimensional map, boundaries are in fact the only place where
Gaussians fall on positions previously occupied by Gaussthe nonuniformities of the map can be introduced because it
ians. Although we use a special initial condition to derive theis here that regions with different uniform straining proper-
decay factor, we expect our results for the Gaussian descripies join. In conclusion, our investigation has revealed that
tion to be independent of this specific initial condition. This the large-scale nonuniformities rather than small-scale strain-
expectation is motivated by the fact that the final range decaing properties determine the variance decay of a chaotic flow
of the incompressible and diffusive baker map is insensitivavhen the AFOG96 mechanism is not relevant. Also, the
to initial conditions. Almost all initial conditions of the in- large-scale nonuniformities are responsible for the influence
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of the boundary conditions on the rate of scalar varianc&he Gaussian’s meafdx ® is in this notation given by its
decay and therefore for the nonuniversal value of this rate.amplitude paramete¥l. In the following, we use this solu-
tion to describe the evolution of any Gaussian,

VI. CONCLUSION

incompressible and diffusive baker map as an example of (A2)

mixing in chaotic flows and maps. We have shown that the
variance decay during the initial transient, i.e., the range of
times when most of the variance decays’ can be well de\l\/lth amplltudeA and widtho under the combined effect of
scribed by a general relation (*) between the scalar variancétrain and diffusion.
decay and the particle pair separations. Using the star equa- Let us first consider the effect of a strain The strain
tion, we have even obtained an analytical approximation fotransforms the space coordinate accordingtex/a, the
the variance decay in this range of times. We have als@mplitude is not affected by the straining process. The Gaus-
shown that the general relation (*) explains both spiral mix-Sian’s evolution, expressed in parametérand o, is then
ing in a vortex and early time chaotic mixing as two different given by
manifestations of the same general process.

Despite its success during the initial transient, in the final A—A, (A3)
range of variance decay the star equation fails to describe the
decay, at least in our model. Previously, AFOG96 used (*)
successfully to explain exponential scalar variance decay in a o—ao. (Ad)
different chaotic flow. However, for the incompressible and

diffusive baker map, the star equation predicts SUPErexpo- agqme now that the Gaussian is subject to diffusion for a

ner)t|al va(\jrlance_lfjheca)f/ rather rtlhan j[ge q?sgrved eﬁponent@_ﬂe T. We can easily calculate the Gaussian’s width and
variance decay. Therefore we have identified a mechanism mplitude after the diffusion process by writing it in terms of

variance decay based on dispersion/remnance, i.e., the fagl oo tion(A1) of the diffusion equation. If the parameters
that at each iteration of the map a certain amount of variancgs the solution are chosen as

from a mode with wave number remains at the same or

smaller wave numbers. Studying two examples, we have

. . X2
We have studied the decay of scalar variance under the gg,A(x)erxp< _ _2)
g

confirmed that without dispersion/remnance, the incompress- M= \4maA, (A5)
ible and diffusive baker map has indeed superexponential

variance decay as predicted by the star equation. The o2

dispersion/remnance controlled variance decay also explains t=—, (AB)
why the decay becomes independent of small enough diffu- K

sivity. Generally, our mechanism and the mechanism of
AFOGO96 coexist. The mechanism that leads to the slowef,e solution has amplitudd and width o. The Gaussian

decay ultimately determines the variance decay in a giVeizier the diffusion process is then simply obtained by calcu-

chaotic flow. _lating the solution fott+T,
Dispersion itself is caused by the large-scale nonuniformi-

ties of the flow. Introducing the Gaussian description of the

incompressible and diffusive baker map, we can change the _ VamaA x?
boundary conditions and thereby the effect of the large-scale O(xt+T)= > exp — o2 '
nonuniformities of the map. Hence by changing the bound- T A| —+T

- e p Ak +T P
ary conditions we obtain different variance decay factors for K

the same straining properties of the map. The rate of variance (A7)

decay is therefore nonuniversal.
Comparing Eq(A7) with the initial Gaussian, the diffusion

APPENDIX: EVOLUTION OF A GAUSSIAN UNDER process, expressed in parameters, reads
STRAIN AND DIFFUSION

In this appendix, we study the evolution of Gaussians g
| o : . A ——A (A8)
under strain and diffusion and derive the parameter evolution Jo?+ kT

in Gaussian descriptio(87) and (38).

A well-known solution of the one-dimensional diffusion
equation(12) is a Gaussian with width increasing propor- o—o?+ kT, (A9)
tional to \/xt:

2 Combining the straining proces45), (A6) with the diffu-
ex;{ _ X_) _ (A1) sion process$A8), (A9) yields the evolution of the Gaussians
4kt in the Gaussian descriptidi37) and (38).

O(x,t)=

M
Va4kt
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