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Brownian motion in dynamically disordered media
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The motion of Brownian test particles in a model random potential with time dependent correlations is
investigated using four methods: renormalized perturbation, perturbation using Martin, Siggia, and Rose func-
tional formalism~MSR!, the Edwards variational method on the MSR functional, and renormalization group
with the MSR function. The disorder averaged one-particle propagators determined by the renormalized per-
turbation expansion and MSR perturbation expansion are identical to the second and possibly higher order, and
the two-particle propagators determined by these perturbation methods are identical at the first and possibly
higher order. The one-particle propagator determined by the Edwards method is identical to the perturbation
expansions at the first order, but the second-order analogue of the Edwards method has a more complex
expression, which reduces to the second-order perturbation expression with additional higher-order terms. The
diffusion constant and two-particle correlations are calculated from these propagators and are used to deter-
mine the effects of the random potential on the Brownian particles. Generally, the diffusion rate decreases with
the disorder strength and increases with the temporal decay rate. The two competing mechanisms result in an
enhancement of the diffusion constant for weak potentials with fast temporal fluctuations. The system exhibits
two-particle correlations that are inherently non-Gaussian and indicate clustering behavior. The diffusion
constant is also determined from a simple one-loop renormalization group calculation. In the static limit, the
diffusion constant calculated by the renormalization group recovers the results of Deem and Chandler@M.W.
Deem and D. Chandler, J. Stat. Phys.76, 911 ~1994!#.

DOI: 10.1103/PhysRevE.66.051111 PACS number~s!: 05.40.2a, 61.41.1e, 64.70.Pf
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I. INTRODUCTION

Many stochastic problems can be modeled by the di
sion of Brownian particles interacting with a random pote
tial @1#. Although there is a macroscopic homogeneous en
ronment, the mesoscopic heterogeneity caused by l
environments often plays the central role of determining h
the system behaves even on long-time and length scales@2#.
Several references have treated random media problems
analytically and numerically to find modifications to the d
fusion constant to capture long-time behavior. An interest
issue that is not always examined are the deviations from
Gaussian behavior expected in the intermediate time sc
of these random media problems@1–13#.

New single molecule experiments examine these me
copic time-scale and length scale deviations from Gaus
behavior@14–16#. On these length scales, the random flu
tuations of the solvent that influence the motion of the m
ecule cannot be modeled with the assumption that they
locally correlated in time and space since some large-s
motions of the solvent are on the time scale of the exp
ment. A result of these nonlocal correlations is deviat
from Gaussian behavior on intermediate time scales, wh
are measured in several experiments@14,15,17,18#.

The heterogeneity on mesoscopic length and time sc
has physical significance that is observable in experime
and simulations of many systems including systems n
phase transitions such as glasses and supercritical fluids
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1. Glasses

Several experiments in glasses demonstrate the effec
the heterogeneous fluctuating environments on molecu
including video microscopy, neutron scattering, NMR, a
single-molecule tracking@16,17,19–21#. These experiments
are particularly interesting because of the many sing
molecule experiments performed on glassy systems. The
tems exhibit regions of varying relaxation dynamics as w
as collective behaviors, which lead to deviations from Gau
ian behavior @17,18,22–26#. Kirkpatrick et al. attributes
these varying dynamics to the constant formation and
struction of glassy clusters@27#. Experiments on colloidal
systems by Weekset al. and members of the Rice grou
show strong spatio-temporal correlations in the system. P
ticles in these colloidals system move collectively resulti
in long-time correlations@18,22,28,29#. Measurements of the
rotational diffusion constants of colloidal spheres in glas
systems show similar strong spatio-temporal correlati
@30,31#.

2. Supercritical fluids

Diffusion in supercritical fluids is another interesting e
ample of dynamics in heterogeneous environments. The d
sity of supecritical fluids has long length and time-scale c
relations, which lead to several anomalous experime
results@32–35#. Although results differ, several experimen
report dramatic changes in the diffusion constant of solu
in supercritical fluids@36,37#. These density fluctuation
have been observed in MD simulations and persist for lo
time scales@34,38,39#.

These experiments and simulations show that there
intermediate length and time-scale environmental fluct
tions in several interesting systems, which motivates
©2002 The American Physical Society11-1
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study of a stochastic potential with intermediate scale co
lations. Because two different stochastic processes, sim
diffusion and the random potential, determine the movem
of our Brownian particle, we expect significant deviatio
from the Gaussian form predicted by Einstein’s equati
These deviations have been observed and quantified in
eral simulations and theories@18#. Several references showe
that the simple assumption of fluctuating regions of two d
ferent diffusion constants, one for a cluster and another
free diffusion, results in significant changes in the diffusi
constant and deviations from Gaussian behavior on inter
diate time scales@40–42#. Mode coupling theory also pre
dicts significant deviations from the expected Gaussian
havior, especially for glasses@22,29,43–45#. Simulations by
Donati et al. support these theoretical predictions of no
Gaussian behavior at intermediate times for glasses. Sim
to the arguments of Kirkpatricket al. they attribute these
deviations to the formation of clusters@25–27#. Motivated by
the observations of Donati and others we examine a sim
model that exhibits similar clustering behavior.

A. The diffusion model

In order to address this Brownian motion problem analy
cally, we do not explicitly include the solvent. Instead, w
develop a phenomenological model that captures the inte
tions of the solvent molecules with the Brownian partic
without explicitly including them. In this paper, the micro
scopic time-scale fluctuations are still approximated
simple diffusion, but we extract the larger time-scale motio
and write them as a fluctuating potential with a time a
spatial dependence. The approach follows the work of De
and Chandler and has been discussed by Bouchaud
Georges but is generalized to allow a time dependent po
tial @2,9#. This type of diffusion process is governed by t
equation

]G~x,t !

]t
5D0¹2G~x,t !1bD0“•„G~x,t !“V~x,t !…,

~1.1!

with

G~x,0!5d~x!,

where G(x,t) is the Green’s function,D0 is the diffusion
constant modeling the short-time-scale interactions,b is the
inverse temperature andV(x,t) is the random potentia
@2,9,10#. The difficulty in dealing with the random medi
problem is attempting to averageG(x,t) over the disorder of
V(x,t), even though we assume we know the moments
V(x,t) @9#. In this paper, we will make a Gaussian assum
tion for the random potential with

^V~x,t !&50

and

^V~x1,t1!V~x2 ,t2!&5x~ ux12x2u,ut12t2u!Þ0. ~1.2!
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All other moments are either zero or can be expressed
polynomial of x. This assumption eases computation, b
higher order cummulants can be incorporated using
methods below. Most of the equations in this paper are v
for arbitraryx, but the explicit calculations used to genera
the figures will correspond to three dimensions withx de-
fined by

x~ uxu,utu!5
a3/2x0

~a1lutu!3/2
expF2

uxu2

4~a1lutu!G . ~1.3!

This potential-potential correlation is chosen because it
some of the features expected for a real potential of a flu
like system, but it is a model that also allows easier com
tation. Two of the important aspects of this paper are
various techniques used to derive the Green’s functions,
equivalence between them and idea that the potential
mediate the clustering behavior of the system.

The constantx05x(uxu50, t50), corresponds to the
strength of the large-scale interactions and is our perturba
expansion parameter. The choice of a Gaussian form all
us to omit a cutoff frequency that separates the small-s
motions that we approximate as simple diffusion from tho
that we treat as the stochastic potential.Aa is the length
scale of the heterogeneity of the system, which can
viewed as the size of wells in the potential energy surfa
We refer toad/2 as the size of the cluster to make conta
with previous experiments and simulations@17,24#. We in-
corporate decay of spatial correlation into our model by
cluding thelutu term. The 1/(lutu) dependence is chosen t
give an exponential time dependence in Fourier space. T
formulation corresponds to smaller-scale fluctuations or c
ters decaying faster than larger-scale ones, a property
scribed by Trajus and Kielson@46#. In analogy with several
references, we refer tol as the hopping rate, but we als
emphasize the power-law dependence of our potential co
lation function does not have a well-defined rate and, e
for a strong disorder, the hopping fluctuations in the poten
may not be associated with hopping of the Brownian parti
since the particle has inertial mass@24,47,48#.

B. Summary and outline

In the examination of the random media problem, a se
consistent equation for the one-particle Green’s function t
is accurate to second order in the disorder strength can
determined by a perturbation expansion of Eq.~1.1! directly
@4–7#. But many papers calculated the Green’s function a
the diffusion constant by using the classical field formalis
developed by Martin, Siggia, and Rose~MSR!
@1,2,11,12,49#. To show the consistency of our perturbatio
method with the field theoretic methods of MSR, we sol
for the Green’s function using both methods and derive eq
tions that are identical up to second order in the disor
strength. This result should not be surprising since b
methods attempt to describe the dynamics by a Dyson
Schwinger equation with self-energy. To make contact w
previous work, we also solve the equations with an Edwa
type of variational method that circumvents the Dyson a
1-2
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Schwinger equations@2,1#. The variational method yields re
sults that are similar to the our perturbation expansions
well as previous work but slightly more complex than pe
turbation. In the static limit the equations are identical
those derived by Deem and Chandler@1,2,10,11,49,50#.

The paper also contains a first order equation for the t
particle propagator determined by both the MSR and dir
perturbation methods. Hydrodynamic and excluded volu
interactions are not considered in this paper since the t
particle propagator is intended to measure variation in dif
ent particle trajectories caused by the potential. As seen f
Eqs.~2.4! and~5.12! below these results are identical to firs
order. As a final result, we use the MSR method to determ
a first order renormalization group~RG! calculation of the
diffusion constant, which compares well with our perturb
tion equations and reduces to previous RG calculations in
static limit @2,11#.

Our results are organized into six sections. Renormali
perturbation and numerical results are presented in S
II–IV followed by the conclusions in Sec. VII. Readers i
terested in a more detailed discussion of MSR and RG
referred to Secs. V and VI.

II. DETERMINATION OF THE GREEN’S FUNCTION
FROM DIRECT PERTURBATION

A. One-particle propagator

To begin our analysis, we perform a direct perturbat
and resummation of the Green’s function equation to ge
second-order self-consistent equation, which we comp
with our field theoretic results. The renormalized perturb
tion expansion is analogous to the direct interaction appr
mation used to describe turbulent flows@3,8,10,51,52#. Fou-
rier transforming the spatial variables (x→k) gives the
equation
th
s

e
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r
e
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]t
G~k,t !52D0uku2G~k,t !2

~bD0!

~2p!dE dh$k•~k2h!

3~G~h,t !V~k2h,t !!%, ~2.1!

with

G~k,0!51.

The integration overh runs from2`,uhu,`. We define
] t1D0uku2 as G0

21(k,t), and G0(k,t) as our usual funda-
mental solution for free diffusion,

G05exp~2D0tuku2!.

With this definition ofG0(k,t) the propagator for a specifi
realization of disorder is

G~k,t !5G0~k,t !2
~bD0!

~2p!dE dhdt$k•~k2h!V~k2h,t!

3G0~k,t2t!G~h,t!%, ~2.2!

wheret has a range from 0 tot. Repetitively substituting the
right-hand side of Eq.~2.2! for G(k,t) in the right hand side
of the Eq. ~2.2! produces a perturbation expansion f
G(k,t) in terms ofV(k,t) andG0(k,t). SinceG0(k,t) has
no dependence on the random potentialV(k,t), we are able
to average overV(k,t) in this expression using Gaussia
factorization. We resum terms so that the equation is accu
to various powers of the disorder strengthx0 and express
these terms as self-consistent equations ofG(k,t). The re-
summation procedure corresponds to evaluating the s
energy in the Dyson expansion. The resulting second-o
expression is
^G~k,t !&5G0~k,t !2
~bD0!2

~2p!d E dhdt1dt2$k•~k2h!h•~k2h!x~ uk2hu,ut12t2u!G0~k,t2t1!^G~h,t12t2!&^G~k,t2!&%

1
~bD0!4

~2p!2dE dh1dh2dt1dt2dt3dt4$k•~k2h1!h2•~k2h1!h1•~k2h1!~k2h1!•~k2h11h2!x~ uk2h1u, ut12t3u!

3x~ uh12h2u,ut22t4u!G0~k,t2t1!^G~h1 ,t12t2!&^G~h2 ,t22t3!&^G~k2h11h2 ,t32t4!&^G~k,t4!&%, ~2.3!
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where the second term is the first-order correction and
third term is the second order correction. The integration
this expression are fort.t1.•••.tn.0 and 2`,uhiu
,` and the^•••& represents the average over the disord
The origin of the self-consistent equation can be easily d
onstrated with a Feynman diagrammatic expansion and
summation used in QED@53#. In these diagrams, we replac
the propagator for photons with the propagator forx and
only use graphs that do not violate causality.

Although the sum of all graphs should converge to
e
in

r.
-

e-

e

solution, we are not guaranteed that the sum of a
subsequence also converges. This lack of convergence
plague the second-order expression, since the gra
captured by this term are predominantly positive. T
difficulty may also be purely numerical in nature due
approximations made in evaluating the second-or
expression. In either case, a Pa´de approximation was used i
the numerical calculations to aid in convergence of the so
tion. The specifics of these approximations are discusse
Sec. III A 2.
1-3
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B. Two-particle propagator

Single-particle motion is not sufficient to resolve th
spatio-temporal correlations built into our model. The E
~2.3! show that the Green’s function deviates from t
Gaussian form predicted by the free propagator, but
amount of the deviation is difficult to determine from exam
ining the Green’s function for the motions of a single pa
ticle. To overcome this difficulty we determine a perturbati
expansion for a two-particle propagator. Section V B
shows the same calculation using the MSR perturba
method. This propagator measures the movement of two
ticles initially separated by a distancer. The correlation of
these two particles determines the deviations from the be
ior of two independent particles, which allows us to exam
the spatial effects of the stochastic potential. As mentio
above, we are not considering any interactions between
particles, like excluded volume and hydrodynamic effec
Although numerical studies demonstrate the importance
both excluded volume and long-range hydrodynamic inter
tions between particles in many processes, including
glass transition, we are concerned with the roles of the
erogeneity of the solvent on the correlations between p
ticles @54#. We are also not considering the effects of t
particles on the solvent. The correlations we examine
strictly mediated through the potential and can be viewed
a demonstration of the deviations of different realizations
the path of the particle due to the potential if the particle w
placed at different locations.

The perturbation calculation for the two-particle propag
tor starts from the expansion of the original Green’s funct
equation. We do not average over the random poten
and all terms are present. The propagator is centered a
origin and is denoted byG(1)(k1 ,t1)5G(k1 ,t1), where the
superscript~1! denotes the particle label. We introduce
propagator for the second particle that is displaced from
origin by a vector r and it is denotedG(2)(k2 ,t2)
5exp@ik2•r #•G(k2 ,t2). Like the propagator centered at th
origin, we iteratively expand the equation and do not aver
the single-particle propagator over the random potential.
multiply the two propagators together and then average o
the potential using Gaussian factorization. After resumm
tion, the resulting first-order self-consistent equation ha
form that is similar to the equation for the single-partic
propagator.

G(1,2)~k1 ,t15t,k2 ,t25t !

5^G(1)~k1 ,t !G(2)~k2 ,t !&

5^G(1)~k1 ,t !&^G(2)~k2 ,t !&

2
~bD0!2

~2p!d E dhE
0

t

dt1E
0

t

dt2

3$k1•~k12h!k2•~k12h!x~ uk12hu,ut12t2u!

3^G~k1 ,t2t1!&^G~k2 ,t2t2!&

3G(1,2)~h,t1 ,k11k22h,t2!%. ~2.4!

Two of the propagators are not labeled because t
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are single-particle propagators with no mulitplication
exp@ik•r # and ^G(k,t)& corresponds to the single-partic
Green’s function in Eq.~2.3!. This equation can also be rep
resented by a Feynman diagrammatic expansion and res
mation @53#.

III. DERIVATION OF IMPORTANT STATISTICAL
QUANTITIES FROM THE GREEN’S FUNCTIONS

The preceding section outlines the derivation of the s
consistent equations for various Green’s functions, wh
correspond to different possible single-molecule expe
ments. These experiments measure certain numerical qu
ties associated with motions of the Brownian particles
they do not measure the Green’s functions directly. In t
section we outline methods of extracting some measura
quantities from the self-consistent equations derived abo
including the diffusion constant and indicators of the dev
tion of the two-particle Green’s function from the uncorr
lated motion of two independent particles. We will refer
these quantities as non-Gaussian indicators, but the syste
not necessarily Gaussian if these quantities are zero. Se
non-Gaussian indicators are possible and we discuss a
that are easily determined from experiments@18,23,25,26#.

A. Diffusion constant

1. A simple Ansatz

As discussed in the introduction, macroscopic effects
mesoscopic disorder led to many studies that determine
diffusion constant from self-consistent equations simi
those derived above@2,10,11,49,50#. Most of these refer-
ences address static disorder, but these methods can be
eralized for the dynamic case. Our analysis parallels sev
of these approaches. The methods require numerical com
tation of the solution from a suitable basis set@2#. Before
introducing these rigorous methods, we perform a sim
analytic calculation based on a simple Ansatz that the sin
particle Green’s function maintains a Gaussian form, but
diffusion constant is modified.

^G~k,t !&'exp@2Dtuku2#. ~3.1!

For weak disorder, the Gaussian form is exact and
approximation should determine the correct initial slope
the diffusion constant. The diffusion constant can be
pressed in terms of the Laplacian of the Green’s function

lim
t→`

2¹k
2G~k,t !

2dt
U

k50

5D. ~3.2!

The Gaussian form allows analytic evaluation of the fir
order expression with the Gaussian form of the potential c
relation functions,x in Eq. ~1.3!, which results in an alge-
braic expression for the diffusion constant

D5D02
D0

2~D2l!

~D1l!2

b2x0

3
. ~3.3!
1-4
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The equation has no explicit dependence on the clu
size because it is the intrinsic scale of the problem, wh
determines the magnitude of the other quantities. The eq
tion exhibits the expected behavior from intuition. As t
disorder strengthx0 increases, the diffusion constant w
decrease, and as the hopping ratel increases, the diffusion
constant will increase, but this increase is dependent on
disorder strength. Ifl.D0 the equation suggests an increa
in the diffusion constant. This result is not surprising in t
weak disorder limit since the forces on the particle incre
displacements, but there is no trapping because the pote
rearranges quickly and is weak. The solution of this equa
as a function ofb2x0/3 andl is plotted in Figure 1~a!. The
RG result is also plotted as a function ofb2x0/3 andl in
Fig. 1~b!. A derivation of the RG result and a more detail
comparison of these results are discussed in Secs. VI an
respectivley.

2. Numerical determination of the diffusion constant

In order to go beyond the simple assumption of a Gau
ian form, we need to implement a numerical approximat
method for determining the Green’s function and sub
quently the diffusion constant. The numerical solutions
calculated in Laplace space using a basis set approach, w
is similar to the approach of Deem and Chandler@2#. Ap-
proximate first- and second-order solutions using a 16 fu
tion basis set were determined as functions ofb2x0/3 for
l/D050.0,0.4,1.2. These results are presented in Figs. 3~a!,
3~b!, and 3~c! for l/D050.0,0.4,1.2, respectively. These fig
ures also compare the RG calculation and the simple s
consistent result, Eq.~3.3!.

The basis set equations are complicated non-linear i
gral equations that are difficult to solve analytically or n
merically. Several numerical approximations used in eva
ating these expressions introduce errors other than the ch
of the basis set. To aid in convergence with these numer
approximations, a Pa´de approximation is introduced. Thi
approximation has the correct 1st and 2nd order terms,
also includes additional higher order terms that may aid
convergence. This approximation combines our first- a
second-order correction terms in Eq.~2.3!.

~first-order expression!

12
~second-order expression!

~first-order expression!

. ~3.4!

The errors introduced in determining the numerical res
are higher than second order in terms of disorder strengt
the equation is still accurate at second order. These app
mations are not necessary for thel→0 limit, and a compari-
son of the numerical solutions with and without the Pa´de
approximation in this limit shows good agreement at mod
ate disorder strengths. The Pa´de approximation prevent
higher-order terms contained in the first and second re
malized expressions from strongly influencing the fit, whi
makes our calculation less sensitive to other approximat
necessary to numerically calculate the diffusion consta
This is especially important since the terms captured by
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second-order expression are predominately positive, wh
may prevent convergence since we are only summing s
graphs. The extra higher-order terms in the Gaussian re
ence calculation in Eq.~5.14! may also alleviate this sens
tivity, as would including higher-order terms in the perturb
tion expansion. Numerically, both the second-order Gaus
reference calculation and including higher-order perturbat
expansion terms would be difficult and is not perform
here. A detailed discussion of the results for the calculati
performed in this paper is presented in Sec. IV.

B. Non-Gaussian indicators

In order to analyze the non-Gaussian nature of the mo
we need to define quantities that measure the deviations f
uncorrelated behavior. Experimentally determining dev
tions from Gaussian behavior is difficult with a single pa
ticle, so we analyze the model for two particles that is dev
oped in Sec. II B. The indicators should demonstr
collective motions like clustering because of structures in
system that prevents two particles from moving indep
dently. Both of these effects are observed in experiments
simulations of real systems like glasses@14,18,22,24,25,48#.

Two correlations that are measured in several sing
molecule experiments are the dot product of the displa
ment vectors of two-particles initially separated by a distan
r, dR1•dR2, and the square of the displacemen
dR1

2
•dR2

2 @55,56#. The subscripts label the particle and thed
denotes the displacement from the initial position. The eq
tion for the two-particle propagator is difficult to manipula
because it requires the solution for the one-particle Gree
function. To simplify the analysis, we perform an asympto
expansion of the equations and only evaluate the nonre
malized terms. To normalize the function, we divide th
quantity byb2x0. The two corrrelation functions are

C1~r ,t !5
^dR1~ t !•dR2~ t !&

~b2x0!^udRu2&
'

^dR1~ t !•dR2~ t !&

~b2x0!~2dD0t !
, ~3.5!

C2~r ,t !5
^udR1~ t !u2udR2~ t !u2&2^udRu2&2

~b2x0!^udRu2&2

'
^udR1~ t !u2udR2~ t !u2&2^udRu2&2

~b2x0!~2dD0t !2
. ~3.6!

To first order these can be written in Fourier space as

~bD0!2

~b2x0!~2dD0t !~2p!d
¹k1

•¹k2S exp@2 ik2•r #E dhE
0

t

dt1

3E
0

t

dt2$k1•~k12h!k2•~k12h!x~ uk12hu,ut12t2u!

3G0~k1 ,t2t1!G0~k2 ,t2t2!G0~h,t1!

3exp@ i ~k11k22h!•r #G0~k11k22h,t2!% D , ~3.7!
1-5
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~bD0!2

~b2x0!~2dD0t !~2p!d
¹k1

2 ¹k2

2 S exp@2 ik8•r #E dhE
0

t

dt1

3E
0

t

dt2$k1•~k12h!k2•~k12h!x~ uk12hu,ut12t2u!

3G0~k1 ,t2t1!G0~k2 ,t2t22!G0~h,t1!

3exp@ i ~k11k22h!•r #G0~k11k22h,t2!% D . ~3.8!

FIG. 1. Contour plot of the diffusion constant as a function ofl
andb2x0/3 as determined by Eq.~3.3! in ~a! and the renormaliza-
tion group result of Sec. VI in~b!.
05111
The first correlationC1 contains both angular and radia
information, while C2 contains only radial information
These quantities are useful in microrheological experime
@55,56#. Because the integral is Gaussian for our model
tential, these expressions can be integrated analytically
sulting in complex expressions that are omitted. The t
correlation functions behave similarly so we only present
features ofC2 in Figs. 4 and 5. These figures are analyzed
Sec. IV.

IV. ANALYSIS OF RESULTS

In the previous section, Sec. III, the diffusion constant a
non-Gaussian indicators are defined and determined
renormalized perturbation for the random potential presen

FIG. 2. ~a! shows the behavior of the diffusion constant pr
dicted by the renormalization group calculation over large range
disorder strengths forl/D050.0,0.4, and 1.2.~b! is a log-log plot
of the diffusion constant versus the disorder strength for large
order forl/D050.4 and 1.2. The static limit is not plotted becau
it is an exponential. The straight line with nearly unity slope sho
the power-law dependence of disorder for moderate values ofl
1-6
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in Eq. ~1.3!. In this section we present a detailed discuss
of the properties of the solutions to compare these result
previous models and demonstrate some of the unusual p
erties of this model.

A. Diffusion constant

Section III presents several approximations for determ
ing the diffusion constant, and Sec. VI presents a RG
proximation of the diffusion constant. Due to the technic
nature of the RG calculation, we compare the results of
perturbation and RG calculation in this section before d
cussing the details of the RG calculation in Sec. VI. T
analysis begins by definingAa as our length scale anda/D0
as our time scale. With the redefinition of our length sca
x in Eq. ~1.3! is uniquely determined by two dimensionle
quantitiesb2x0/3 andl/D0. All figures and discussions o
the effects of the hopping ratel and the disorder strengthx0
are in terms of these dimensionless quantities and the d
sion constant is also made dimensionless by dividing byD0.

Figure 1 presents a contour plot of the solution that
generated from Eq.~3.3! and the RG calculation in Sec. V
Both plots appear similar for weak disorder strength beca
they capture the correct first-order response of the diffus
constant. In the weak disorder regime, the diffusion cons
is dominated by the disorder strength because the hop
rate’s effect on the diffusion constant is proportional to t
disorder strength. For moderate hopping ratesl the two
figures agree up to stronger disorder strengths because
two equations yield similar results, as long asD stays close
to D0.

For strong disorder strengths, the two equations sh
markedly different characteristics. For a small hopping ra
the perturbation solution, Eq.~3.3!, predicts that the particle
becomes trapped for moderate disorder. Becausex(0,0) is
Gaussian, it can never be large and trapping should not o
@57#. The trapping predicted by perturbation expansions
common in disordered media problems because the effe
the disorder is over emphasized@10#. For larger hopping
rates, the perturbation result predicts that the diffusion c
stant approaches the hopping rate, which suggests tha
particle is trapped in a well that is moving at the hoppi
rate. As mentioned previously, a well-defined time const
for the hopping is not defined so this result is as unphys
as the trapping predicted for a small hopping rate.

Unlike the perturbation result, the RG calculation, nev
predicts trapping. The solution remains above the solu
determined by Dean and by Deem, which is above the lo
bound determined by Masiet al. @2,11,57#. In fact, in the
l→0 limit, the results of Dean and of Deem are recove
@2,11#. For any value of the hopping rate, the diffusion co
stant approaches zero in the strong disorder limit so the c
tour lines of Fig. 1~b! never become parallel with theb2x0/3
axis. Forl@0, the diffusion constant approaches zero a
power law, see Fig. 2. Except for smalll, the exponent is
weakly dependent onl and close to unity.

The numerical solutions are more computationally inte
sive than the simple self-consistent equation, Eq.~3.3!, and
the RG result so these equations are used to determine
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FIG. 3. Comparison of the first-order~empty circles! and
second-order~filled circles! numerical solutions derived from th
basis set approach outlined in Sec. III A 2 and the results of
~3.3! ~solid line!, and the renormalization group~RG! ~dashed line!
for l/D050.0 in FIG.~a!, l/D050.4 in ~b!, andl/D051.2 in FIG.
~c!.
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WITKOSKIE, YANG, AND CAO PHYSICAL REVIEW E 66, 051111 ~2002!
diffusion constant for specific values of the hopping ra
l/D050.0,0.4,1.2. These results are compared against
results of Eq.~3.3! and the RG calculation in Fig. 3. All o
the different techniques agree in the small disorder limit,
the numerical calculations predict trapping of the paticle
finite disorder strength for all values ofl. The second-orde
numerical solution agrees with the RG solution for larg
disorder strengths than the first-order numerical solution.
better agreement between the RG and second order solu
for diffusion problems in the static limit has been demo
strated in several papers, and numerical simulations in
static limit suggest that the RG calculation may be correct
to larger disorder strengths than would be expected fro
first-order RG result@50,58#. Because of these previous stu
ies, the static disorder results are not surprising, and our
calculation is a reasonable extension of these previous ca
lations.

The l/D051.2 case demonstrates interesting behav
because nonrenormalized perturbation expansion pre

FIG. 4. Time dependence of the non-Gaussian indicatorC2. ~a!
shows the behavior ofC2 as a function of time for several values o
initial separation withl/D050.4. ~b! shows the behavior ofC2 as
a function of time for several values ofl with r 5Aa.
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that the diffusion constant initially increases as discus
above. Because of the power-law time dependence of
potential correlations, one expects stronger disorder stre
to eventually restrict the motion of the particle causing
decrease in the rate of diffusion. These intuitive argume
agree with the numerical calculations and the RG result
show that these results capture the physical aspects o
problem. Diffusion initially increases with increasing diso
der strength but it eventually decreases in the strong diso
limit.

B. Non-Gaussian indicators

Determining the diffusion constant for disordered med
is important in many industrial processes like chromatog
phy, but single-molecule experiments do not study mac
scopic diffusion. The experiments study deviations fro
simple diffusion on intermediate time scales. Although mo
detailed calculations can be performed, the simple first-or
nonrenormalized calculation demonstrates several of the

FIG. 5. ~a! shows the maximum value ofC2 as a function of
initial separationr for several values ofl. ~b! shows the time of the
maximum. From the figures it is apparent thatl does not qualita-
tively affect the shape of these graphs.
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teresting features of this model, including an apparent clu
size and the effect of the dynamics of the random poten
l @which can be shown from theC1 calculation in Eq.~4.1!
below#. We defined two non-Gaussian indicators in Sec. II
in order to capture the angular and radial dependence of
relations involving two Brownian particles separated by
initial distancer.

TheC1 correlation function contains information that ca
be interpreted as clustering. Clustering of the two partic
would correspond to the particles having a tendency to m
together resulting in a decrease in the distance between
as compared to the motions of independent particles. A
result, ^uR12R2)u2& would be less than the value predicte
for independent particles. Because^r•dR1&5^r•dR2&50,

^uR12R2u2&5^udR12r2dR2u2&

5^udR1u2&1^udR2u2&

1ur u222^dR1•dR2&. ~4.1!

From this expression we see that a positiveC1 means that
particles have a tendency to move closer together than
dicted by independent motion and a negativeC1 corresponds
to the opposite behavior.

The C2 correlation function is a measure of correlatio
of the rates of diffusion for the two particles as compared
independent particles. We concentrate our analysis onC2
because the two functions share similar characteristics
only minor quantitative differences which will be discuss
below. Since there are only small differences, the graph
Figs. 4 and 5 only correspond to theC2 correlation function.
We are examining the nonrenormalized perturbation calc
tion and all quantities are proportional to the disord
strength. Similar to the diffusion constant, the natural len
scale isAa and the natural time scale isa/D0. Because of
these relationships,a, D0, andb2x0/3 are set to unity. The
important parameters that have a qualitative effect on
non-Gaussian indicators is the initial separation of the t
particles,r, and the dynamics of the potential,l.

The effect of the initial separation is stronger than t
dynamics of the potential since the time dependent facto
also dependent on the spatial factor, exp@2ur u2/(a1lutu)#.
For short times, the temporal decay of the spatial correlati
is not large and the correlations are completely dominated
the spatial separation. The strong dependence onr is appar-
ent by examining Figs. 4 and 5. For small initial separatio
the system shows strong positive correlations for bothC1
andC2, resulting in a high positive peak. For larger values
r the strength of the correlations decrease and bothC1 and
C2 show anticorrelations in the short time behavior for so
values ofr. The C1 correlation shows only a simple inve
sion for r .A6a. As discussed above, negative correlatio
in C1 correspond to a larger increase in the distance betw
the two particles than would be expected for independ
particles. TheC2 correlation shows a more complex inver
response. For 1.9Aa.r .4Aa the correlation function
shows an intial inverse behavior, but for some values or
.4Aa the correlation is intially positive for a short period o
05111
er
l,

r-
n

s
e

em
a

e-

o

th

in

a-
r
h

e
o

is

s
y

,

f

e

s
en
nt

time before becoming negative. In the long-time limit, a
correlations become positive and decay as power laws,C1
}t21 and C2}t23/2. The power-law behavior comes from
the normalization of the correlation functions, but it demo
strates that the correlations between the two particles rem
significant even at large times.

Unlike the strong qualitative effect of the initial separ
tion, the time dependence ofx only affects the quantitative
features of the correlation functions. The qualitative sha
of the correlations do not change, but the height and p
tions of the maxima changes asl changes. The time and
height of the maxima ofC2 as a function ofr for several
values ofl are presented in Fig. 5, which demonstates
qualitative effects ofr and the quantitative effects ofl.

The strong positive correlations between particles se
rated by small distances suggest that the model does ex
clustering behavior. The particles that are withinA6a diffuse
with similar speeds and have a tendency to move closer
gether than expected if they are uncorrelated. This beha
is similar to what is expected for particles in the ‘‘same clu
ter.’’ If the particles are farther apart than the length of
cluster, they are in two ‘‘different clusters,’’ which have
tendency to diffuse away from each other, leading to ne
tive correlation inC1.

V. MSR FIELD THEORY

The perturbation expansion equations can be derived
ing the MSR formalism@59–61#. But most applications of
MSR to diffusion problems have been centered around
calculations and reference systems@2,9,11#. These efforts are
stimulated by the quenched disorder problems where
Green’s function instead of the generating function should
averaged over quenched disorder@9#. As stated in the Intro-
duction, Sec. I, the nontrivial terms for this particular pro
lem are the same regardless of averaging over the gener
function or the Green’s function so we examine the pert
bation expansion of this problem, as well as a reference
RG calculation. This equivalence between the different av
aging techniques for certain dynamic problems has been
cussed elsewhere, and should not be surprising since the
tem will always be diffusive@1,2,57,62–64#. For a more
detailed discussion of MSR we refer readers to several
erences@1,2,59–63,65–71#.

A. The generating function

To write the random media problem into the field the
retic formalism we note that the diffusion equation is also
equation for the change in the probability density at a po
in space. With this idea we can write a replica generat
function in a form that is similar to a Feynman path intgr
Defining

G0
21~ 1̂,2!5d~122!~] t2

1D0uk2u2!

5d~122!~2] t1
1D0uk1u2! ~5.1!

and
1-9
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g~ 1̂,2,3̂,4!5
~bD0!2

~2p!d
d~ t12t2!d~ t32t4!d~k12k21k32k4!

3k1•~k12k2!k3•~k32k4!x~ uk12k2u,ut12t3u!

the generating function is

ZN@j i ,ĵ i #5E D@r i #D@ r̂ i #expF2G0
21~ 1̂,2!r̂ i~1!r i~2!

1
1

2
g~ 1̂,2,3̂,4!r̂ i~1!r i~2!r̂ j~3!r j~4!

1j i~1!r i~1!1 ĵ i~1!r̂ i~1!G , ~5.2!

where we integrate over repeated arguments and sum
indices i and j @2,61#. The notation we use in Eq.~5.2! is
consistent with Jensen’s work. The variables15@k1 ,t1# and
25@k2 ,t2# stand for all variable parameters, like space a
time and the components of these variables are denoted
a subscript, 1 or 2. This generating function introduce
conjugate variabler̂(1), which acts as an infinitesimal den
sity creation operator. Differentiation of lnZ with respect to
j i(1) and ĵ i(1) determines the desired statistical quantiti
For the perturbation expansion we takeN51 since we are
averaging over the generating function. In the reference
culation, where the Green’s function is averaged, theN→0
limit is taken in the replica action, which eliminates seve
terms that are present in theN51 limit. It may appear that
the two different limits cannot both be correct, but the ad
tional terms in the perturbation expansion that are elimina
in the N→0 limit are noncausal and evaluate to zero
discussed above@62,63#. This result gives us confidence th
our MSR perturbation, where we do not take theN→0 limit,
does not fail to properly average over the disorder@9#. Theh
is the Jacobian which depends on discretization and ca
assumed to be constant.

The action in Eqs.~5.2! is very similar to the actions in
other references on diffusion in random med
@2,9,10,50,58#. Our derivation is for the general case of d
namic disorder and our equations simplify to these previ
results in the static limit. Because we consider dynamics,
must integrate over time or frequency, which can often
omitted in the static case@2#. Some slight differences als
come from our definition ofr̂, which is equal to2 i r̂ in
several references@2,12,13,72#. The largest contrast come
from our action being defined in Fourier space so the sign
some of the arguments, like2 are reversed. Because of th
domain of definition, the Fourier transform ofr̂ corresponds
to density created at a specific wave vector instead of a
cific point in space.

The generating function gives us all of the desired sta
tical quantities by differentiating lnZ@ji ,ĵi# with respect to
the generating variablesj i and ĵ i . The replica trick that we
use in our Gaussian reference calculation replaces
ln Z@j,ĵ# with limN→0(ZN21)/N, but we are still evaluating
the same quantities. The Green’s function is defined by
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^^r~1!r̂~2!&&5G2~1,2̂!5
d2 ln Z@j i ,ĵ j #

dj i~1!dĵ j~2!
U

j i5 ĵ j 50

.

~5.3!

This quantity is the response function and it represents
creation of density at the wave vectork2 at time t2 and
subsequently measuring the density at the wave vectork1 at
time t1, which is similar to the definition of the Green’
function defined in Eq.~1.1!, except that the density creatio
is defined in Fourier space.

B. MSR perturbation theory

1. One-particle propagator

The perturbation method follows the derivation of Jens
@61#. We explicitly construct Schwinger and Dyson equatio
from Z@j,ĵ # instead of evaluating lnZ@j,ĵ#. N51 and we are
not introducing the unphysical replica trick. We also intr
duce the Legendre transform variableG,

G@G1 ,Ĝ1#5 ln Z@j,ĵ #2j~1!G1~1!2 ĵ~1!G1~ 1̂!, ~5.4!

wherei and î refer tor( i) and r̂( i), respectively. When the
variable is eitherr( i) or r̂( i) it appears asĩ . The Legendre
transform formally closes the Dyson’s equation. Note th
the Green’s functions generated byZ@j,ĵ # are already aver-
aged over the random potential and the^•••& is omitted . We
assume thatG2(1̃,2̃)5 2G2

21(1̃,2̃). This equality is not nec-
essarily strict but it allows simple manipulation of the equ
tions. The equations derived by MSR allow us to use per
bation theory to systematically expand and evaluate the s
energy, as demonstrated by Deker@65–67#. The resulting set
of equation are

G2~18,1̂9!5G0~18,1̂9!1G0~18,1̂!g~ 1̂,2,3̂,4!

3@G2~2,5̂!G2~ 3̂,6!G2~4,7̂!G2~ 1̂9,8!

3G4~ 5̂,6,7̂,8!1G2~2,3̂!G2~4,1̂9!#, ~5.5!

G2~18,1̂9!52G2
21~18,1̂9!52G0

21~18,1̂9!1g~ 1̂9,2,3̂,4!

3FG2~2,5̂!G2~ 3̂,6!,G2~4,7̂!G4~ 5̂,6,7̂,18!

1 (
i55̂,6,7̂

G2~2,5̂!G2~ 3̂,6!G2~4,7̂!G2~ 9̃,10̃!

3G3„9̃,j ~Þ i!,k~Þ i,j !…G3~10̃,18,i!

1 (
i52,3̂,4

G1~ i!G2„j ~Þ i!,5̃…G2„k~Þ i,j !,6…̃

3G3~ 5̃,6̃,18!G1g~ 1̂9,18,3̂,4!@G2~ 3̂,4!

1G1~ 3̂!G1~4!#1g~ 1̂9,2,3̂,18!@G2~2,3̂!

1G1~2!G1~ 3̂!#, ~5.6!
1-10
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G3~18,1̂9,1̃-!5
dG2~18,1̂9!

dG1~ 1̃-!
, ~5.7!

G4~18,1̂9,1-,1̂iv!5
d2G2~18,1̂9!

dG1~1-!,dG1~ 1̂iv!
, ~5.8!

with G0(1,2̂) defined as

G0~1,2̂!5u~ t12t2!d~k12k2!exp@2D0ut12t2uuk12k2u2#.

The MSRG0 above differs from its analogue in the dire
perturbation calculation in Sec. II, because it is a function
two different sets of coordinates. The MSR Green’s funct
is a measure of the response of the system at the coord
-
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labeled1 to the introduction of density at coordinate2̂ so the
zeros of the system are still arbitrary. The step functi
u(t), enforces causality and thed function enforces transla
tions invariance. To recover the usual Green’s function w
the creation event centered at the origin in real space at
t50, we sett250 and integrate overk2 . The variables of
the form ĩ must be integrated over both argumentsî and i,
but many of the terms that they represent are zero. The re
is similar to Deker’s result for a cubic field at the seco
order @65#. For the second-order expression, we evaluateG4
to first order.G4 has two terms to first order.

G4~18,1̂9,1-,1̂iv!5g~ 1̂9,18,1̂iv,1-!1g~ 1̂9,1-,1̂iv,18!.

We substitute this expression forG4 in Eq. ~5.5! and G2
becomes
G2~18,1̂9!5G0~18,1̂9!1G0~18,1̂!g~ 1̂,2,3̂,4!G2~2,3̂!G2~4,1̂9!1G0~18,1̂!g~1,2,3,4!G2~2,5̂!G2~ 3̂,6!

3G2~4,7̂!G2~ 1̂9,8!g~ 5̂,6,7̂,8!1G0~18,1̂!g~1,2,3,4!G2~2,5̂!G2~ 3̂,6!G2~4,7̂!G2~ 1̂9,8!g~ 5̂,8,7̂,6!.

~5.9!

The last term is zero because it violates causality and it would be zero in the replica action because of theN→0 limit.
Integrating overk19 and settingt1950 results in the second-order expression, which is identical to Eq.~2.3!.

G~k,t !5G0~k,t !2
~bD0!2

~2p!d E dhdt1dt2$k•~k2h!h•~k2h!x~ uk2hu,ut12t2u!G0~k,t2t1!G~h,t12t2!G~k,t2!%

1
~bD0!4

~2p!2dE dh1dh2dt1dt2dt3dt4$k•~k2h1!h2•~k2h1!h1•~k2h1!~k2h1!•~k2h11h2!x~ uk2h1u,ut12t3u!

3x~ uh12h2u,ut22t4u!G0~k,t2t1!G~h1 ,t12t2!G~h2 ,t22t3!G~k2h11h2 ,t32t4!G~k,t4!%. ~5.10!
d

ini-

a-
ent
The average ofG(k,t) over disorder is implied. The per
turbation expansion of the second-order term has a sim
graphical expression that follows the notation used by De
As can be seen from the Dyson series above Eqs.~5.5!–
~5.8!, the MSR perturbation method expresses the Gre
function in terms of a self-energy term, which explains t
equivalence between the directly renormalized perturba
and the MSR results.

2. Two particle propagator

The first-order perturbation result with MSR is obtain
from a simpler procedure than the direct perturbation res
but we do not determine a self-consistent equation. A s
consistent equation can be calculated with some comple
but the definition of a two-particle propagatorG(1,2) is a
natural result of the vertex functions. We start by settingN
52 in the replica generating function and defining the t
one-particle propagators,G(1) and G(2), where the super-
le
r.

’s

n

lt,
f-
ty,

scripts have a similar meaning as Sec. II B, butG(2) does not
contain exp@ik•r #. We also define a two-particle connecte
Green’s function as

G4~18,2̂8,38,4̂8!5
d4Z@j i ,ĵ i #

dj1~18!dj 1̂~28!dj2~38!dj 2̂~48!
.

~5.11!

Similar to the one-particle propagator, we must add the
tial conditions by setting t285t4850, multiplying by
exp@ik48•r # and integrating overk48 and k28 . Finally, we
remove the primes on the labels and change the label ofk3 to
k2 to recover the first correction to the two-particle propag
tor which is captured in the expansion of the self-consist
equation, Eq.~2.4!,
1-11
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G(1,2)~k1 ,t15t,k2 ,t25t !

5G2
(1)~k1 ,t !G2

(2)~k2 ,t !exp@ ik2•r #

2
~bD0!2

~2p!d E dhE
0

t

dt1E
0

t

dt2$k1•~k12h!k2•~k12h!

3x~ uk12hu,ut12t2u!G(1)~k1 ,t2t1!G(2)~k2 ,t2t2!

3G(1)~h,t1!G(2)~k11k22h,t2!

3exp@ i ~k11k22h!•r #%. ~5.12!

C. MSR with replica trick and Gaussian reference system

The MSR perturbation is an asymptotic expansion, wh
may not have good accuracy at large disorder strengths
overcome the difficulties of asymptotic expansions, seve
references introduce a variational technique that attemp
minimize the errors. These variational methods are refe
to in the literature as the Gaussian reference techn
@2,10,72,73#. To first order these techniques resemble the
rm
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wards variational method. In the Gaussian reference te
nique the full action is fit with a different action that onl
contains a quadradic term, but the term is not necessa
Gaussian. The technique avoids the Dyson equation and
vertex renormalization used in Sec. V B. With the time d
pendent generating function forZN@0,0# derived in Eq.~5.2!
the Gaussian reference technique follows the same proce
as several references except that it is necessary to inte
over the time or frequency variable as well as the spa
variables@2,9,10#. The results of this technique are a tim
dependent analog of the results in these references an
duce to these previous results in the static disorder limit.
first order we get the first two terms derived in Eq.~5.9!

G2~18,1̂9!5G0~18,1̂9!

1G0~18,1̂!g~ 1̂,2,3̂,4!G2~2,3̂!G2~4,1̂9!,

~5.13!

but the second-order expression is more complex
2G0~18,1̂9!53G2~18,1̂9!2G2~18,1̂!G0
21~ 1̂,2!G2~2,1̂9!14G0~18,1̂!g~ 1̂,2,3̂,4!G2~2,3̂!G2~4,1̂9!

22G2~18,1̂!g~ 1̂,2,3̂,4!G2~2,3̂!G2~4,1̂9!2G2~18,1̂!g~ 1̂,2,3̂,4!G2~2,5̂!G0
21~ 5̂,6!G2~6,3̂!G2~4,1̂9!

2G0~18,1̂!g~ 1̂,2,3̂,4!G2~2,3̂!G2~4,5̂!g~ 5̂,6,7̂,8!G2~6,7̂!G2~8,1̂9!

2G0~18,1̂!g~ 1̂,2,3̂,4!G2~2,5̂!g~ 5̂,6,7̂,8!G2~6,7̂!G2~8,3̂!G2~4,1̂9!

2G0~18,1̂!g~ 1̂,2,3̂,4!G2~2,5̂!G2~ 3̂,6!G2~4,7̂!G2~ 1̂9,8!g~ 5̂,6,7̂,8!. ~5.14!
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Expanding terms that containG0
21 or no G0 demonstrates

that this expression is the second-order perturbative te
Eq. ~5.9!, with additional third- and higher-order term
These additional terms may improve the fit but they gen
ally make numerically solving the self-consistent equatio
difficult by adding complexity to the equations. Because
this difficulty, we do not solve the second-order referen
system calculation in this article.

The equality at second order is not unexpected beca
there is only one second-order graph that is not containe
the graphical expansion of the first-order self-consist
equation. The Gaussian reference method has many t
that appear redundant. At second order the terms cance
they do not necessarily cancel at higher order. As a res
this method over counts some graphs and subtracts gr
that should be added. The expansion is also much more c
plicated and does not allow systematic diagrammatic an
sis. Determining additional graphs to include in the exp
sion is difficult so expanding beyond second-order requ
one to start from the third-order variational expression a
reevaluate the higher-order terms.
,
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VI. RENORMALIZATION GROUP RESULT

To further demonstrate the consistency of our results w
other MSR methods, we perform a simple first-order ren
malization group calculation to determine the effective d
fusion constant. The calculation parallels several other o
loop approaches@2,58#. More sophisticated renormalizatio
group calculations on the action in Eq.~5.2! have been used
to determine the diffusion constant in static random me
problems in several references as well@12,13#. Our approach
is not general, but it allows the incorporation of dynam
disorder and the spirit of these calculations can be imp
mented for other forms of disorder. This approach also
covers the general form suggested by Dean and by Dee
the static limit,l→0 @2,11#.

The calculation begins by Fourier transforming the tim
variable,t→v so that15@k1 ,v1# andG0

215 iv1Duku2 in
our generating function. Since the calculation is to first ord
we can take the number of replicas to be one. We introd
an artificial cutoff frequency in the spatial transform variab
k, denotedkc , and define a momentum shell composed
frequencies that we eventually integrate over (kc /b<uku
1-12
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<kc) with b.1. To first order we can replacer̂( i)r( j ) with
ukiu ,ukju.kc /b with d( i2 j )( iv i1Dukiu2)21. With these
substitutions the action in our functional is

2G0
21~1,2!r̂~1!r~2!1g~1,18,18,2!G0~18,18!r̂~1!r~2!

1
1

2
g~1,2,3,4!r̂~1!r~2!r̂~3!r~4!1const, ~6.1!

where the18 is integrated forkc /b<uk8u<kc , the otherk
variables are integrated foruku,kc /b, and all frequencies
are integrated from2` to `. The constant term comes from
on
n
te

05111
integrating the terms withuku.kc /b for all r and r̂. This
term only changes the normalization and will be omitted
further calculations.

Up to this point the random potential correlation functio
x has been general. Now we introduce the three-dimensio
x in Eq. ~1.3! and evaluate the integrals overv8 and k8.
Integrating overv8 is done in a straightforward manner, b
the k8 integral has some difficulty. Since the final form
should resemble a free diffusion propagator, we will perfo
a Taylor expansion of the integral in terms ofk2 up to second
order and assume the other terms are small. The new ac
is
,

2E d1d2H d~122!F iv21S D2
4

3A2p
~2a!3/2x0

~bD !2

D1l E drH F22ar 22
l

D1lG r 2 exp@2ar 2#J D uk2u2G r̂~1!r~2!J
1

1

2 S bD

~2p!2D 2E d1d2d3d4d~1221324!H k1•~k12k2!k3•~k32k4!2~2p!3/2~2a!3/2x0luk12k2u2

3
exp@2auk12k2u2#

l2uk12k2u41~v12v2!2
r̂~1!r~2!r̂~3!r~4!J ~6.2!

with kc /b,r 5uku,kc and uku,kc /b. To get this result, a term of the form@ iv1(D1l)r 2#21 is replaced with@(D
1l)r 2#21 sincer is large and the major contribution fromv is for v'0. Rescalingk by b, v by b2 and the field variables
r and r̂, by b27/2 results in an action with the same form as our original and the proper limits of integration.

2E d1d2H d~122!F iv21S D2
4

3A2p
~2a!3/2x0

~bD !2

D1l E drH F22ar 22
l

D1lG r 2 exp@2ar 2#J D uk2u2G r̂~1!r~2!J
1

1

2b3 S bD

~2p!2D 2E d1d2d3d4d~1221324!H k1•~k12k2!k3•~k32k4!2~2p!3/2~2a!3/2x0l

3uk12k2u2
expF2a

m

b2
uk12k2u2G

l2uk12k2u41~v12v2!2
r̂~1!r~2!r̂~3!r~4!J ~6.3!
s in
rate
m is a new scale factor that modulates theuku2 term in the
exponential. Before the first iteration of the renormalizati
group,m51. From this equation we determine the relatio
ship between the old parameters and the new parame
denoted with a prime.

m8→ m

b2
,

x08→
x0

b3 S D

D8
D 2

,

-
rs,

D8→D2
4

3A2p
~2a!3/2x0

~bD !2

D1l E dr

3H F22amr 22
l

D1lG r 2exp@2amr 2#J .

By rescalingx0 by (D/D8)2 we replace theD2 in the
quartic term with (D8)2. Choosingb5exp@Dz# with Dz;0
allows us to write approximate equations for the change
these variables. These approximations will become accu
in the limDz→0.

Dm→2m2Dz,
1-13
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Dx0→2x03Dz1x0
2 8

3A2p
~2a!3/2

~bD !2

D1l

3H F22amkc
22

l

D1lGkc
3exp@2amkc

2#J Dz,

DD→2
4

3A2p
~2a!3/2x0

~bD !2

D1l

3H F22amkc
22

l

D1lGkc
3exp@2amkc

2#J Dz.

The second term in the flow expression forx0 can be made
arbitrarily small by choosing a large enough cutoff frequen
kc . This assumption fails when them becomes extremely
small, but x0 can be arbitrarily small at the point of th
failure, which allows us to neglect this term. This argume
depends on the decay ofx0 being faster than the decay ofm.
From the first two equations,m andx0 have a simple expo
nential form in terms ofz5NDz, whereN is the number of
iterations of the RG calculation.

m5exp@22z#,

x05@x0#z50exp@23z#.

Substituting these expressions into the expression forD leads
to the expression

dD

dz
52

4

3A2p
~2a!3/2@x0#z50

~bD !2

D1l H F22a exp@22z#kc
2

2
l

D1lGkc
3 exp@23z# exp@2aexp@22z#kc

2#J . ~6.4!

The new diffusion constant is the value of the solution to t
equation atz5` with D5D0 ~the free diffusion value! at
z50. The equation simplifies further by introducing a ne
variable of integrationk52Aakc exp@2z#, and defining di-
mensionless quantitiesD85D/D0 and l85l/D0. In the
limit as the cutoff frequency goes to infinity, the initial con
ditions areD851 at k52`, and the solution isD8 at k
50. With these substitutions the equation forD8 is straight-
forward in form.

dD8

dk
52s

k2D82

D81l8
S 22k22

l8

D81l8
D exp@2k2#

~6.5!

with

s5
8

3Ap
~b2@x0#z50!.

For D'D0, the equation is just an integral and the result
the first-order nonrenormalized perturbation result

D5D02D0
2 ~D02l!

~D01l!2

b2x0

3
. ~6.6!
05111
y
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s

This expression can also be derived by substitutingD5D0
in Eq. ~3.3! and shows that the expression has the corr
initial slope. The expression also recovers the static diso
limit ( l→0) reported in several reference
@2,10,11,49,50,58#,

D5D0 expF2
b2x0

3 G . ~6.7!

A discussion of the comparison between the RG res
and the perturbation results was presented in Sec. IV and
plotted in several figures, 1~b!, 2~a!, 2~b!, 3~a!, 3~b!, and
3~c!. As discussed in Sec. IV A, the RG calculation presen
here gives the correct first-order perturbation result and
amination of the flow equation, Eq.~6.5!, demonstrates tha
the solution does not go to zero for finite disorder streng
As a result, the particle avoids trapping. As mentioned
Sec. IV A, the particle should exhibit this nontrapping b
havior. The solution to this equation for the dynamic pote
tial remains above exp@2b2x0/3#, the static disorder solution
in Eq. ~6.7!, which is also above the lower bound predict
by Masi et al. @2,57#.

VII. DISCUSSION OF RESULTS

In this paper, we have extended previous MSR results
diffusion to a random potential with both spatial and temp
ral correlations. We perform a Dyson expansion to deve
renormalized propagators for one- and two-particle syste
These propagators determine the characteristics of the
tem including the diffusion constant and non-Gaussian in
cators. Most of the results are general for arbitrary dynam
potential correlation functionx or can be generalized by fol
lowing the spirit of these calculations.

The field theoretic method developed by Martin, Sigg
and Rose is shown to be consistent with the direct Dy
expansion. A perturbation expansion using the MSR met
yields the same single-particle propagator to second o
and the same first-order expression for the two-part
propagator. The field theoretic method of MSR can also
used to determine an Edwards type of variational fit of
propagator, which has the same first-order expression as
turbation but a more complicated second-order express
The variational approach is also consistent with previo
static calculations@2#. The diffusion constant is also dete
mined from a renormalization group calculation. These
sults are consistent with previous work in the static limit a
give a reasonable generalization to dynamic disorder@2,11#.

The renormalized perturbation expansion used to de
mine the diffusion constant demonstrates the expected
havior of a perturbation expansion. The results match
nonrenormalized expansion for small values of disor
strength but eventually they deviate from reasonable beh
ior and predict trapping. The dynamics of the potential c
relation functions,l, increased the diffusion constant b
cause any barriers to diffusion would eventually rearran
allowing the particle to move, but the renormalized pert
bation expansion still predicts trapping for finite disord
strength. A renormalization group calculation with the MS
formalism shows more reasonable behavior with the dif
1-14
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sion constant decreasing as an exponential with respect t
disorder strength in the static limit, which is consistent w
previous calculations and simulations, and as a power
for a system with nonzerol @2#.

The correlations functions determined by the perturbat
expansions for the two-particle Green’s functions exhibit c
lective behaviors that can be interpreted as clustering in
model. Particles that originate near each other have a
dency to diffuse with similar rates and move closer togeth
This behavior results in long lived correlations that are
parent even in the nonrenormalized expressions. Since
turbation expansions have a tendency to over emphasize
effects of the potential, we expect that the renormaliz
propagator will demonstrate even stronger correlations
tween the particles.
A

05111
the

w

n
-
is
n-
r.
-
er-
the
d
e-

Although the model was chosen for computational con
nience, the correlations exhibit behaviors that are simila
real systems like glasses and supercritical fluids. This st
also demonstates that the anayltical and computational m
ods used in this paper can be applied to the diffusion o
solute in real systems with a potential-potential correlat
function determined for these systems.
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