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Brownian motion in dynamically disordered media
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The motion of Brownian test particles in a model random potential with time dependent correlations is
investigated using four methods: renormalized perturbation, perturbation using Martin, Siggia, and Rose func-
tional formalism(MSR), the Edwards variational method on the MSR functional, and renormalization group
with the MSR function. The disorder averaged one-particle propagators determined by the renormalized per-
turbation expansion and MSR perturbation expansion are identical to the second and possibly higher order, and
the two-particle propagators determined by these perturbation methods are identical at the first and possibly
higher order. The one-particle propagator determined by the Edwards method is identical to the perturbation
expansions at the first order, but the second-order analogue of the Edwards method has a more complex
expression, which reduces to the second-order perturbation expression with additional higher-order terms. The
diffusion constant and two-particle correlations are calculated from these propagators and are used to deter-
mine the effects of the random potential on the Brownian particles. Generally, the diffusion rate decreases with
the disorder strength and increases with the temporal decay rate. The two competing mechanisms result in an
enhancement of the diffusion constant for weak potentials with fast temporal fluctuations. The system exhibits
two-particle correlations that are inherently non-Gaussian and indicate clustering behavior. The diffusion
constant is also determined from a simple one-loop renormalization group calculation. In the static limit, the
diffusion constant calculated by the renormalization group recovers the results of Deem and Civiniller
Deem and D. Chandler, J. Stat. Phy$§, 911 (1994)].
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I. INTRODUCTION 1. Glasses

Several experiments in glasses demonstrate the effect of
Many stochastic problems can be modeled by the diffiuthe heterogeneous fluctuating environments on molecules,

: . . . : - _including video microscopy, neutron scattering, NMR, and
;;)ln[ﬁf Elrt?]\é)vglintﬁz:gcifz 'r?]t:Cr?OCg:g }’Z't:();;aldn%rguzoéici_single-molecuIe tracking16,17,19—-2]. These experiments
) 9 P 9 re particularly interesting because of the many single-

ronment, the mesoscopic heterogeneity caused by 10Cq},,1ecyle experiments performed on glassy systems. The sys-

environments often plays the centrall role of determining hoWg s exhibit regions of varying relaxation dynamics as well
the system behaves even on long-time and length sE&les 45 collective behaviors, which lead to deviations from Gauss-

Several references have treated random media problems balfy, pehavior [17,18,22-26 Kirkpatrick et al. attributes
analytica”y and numerica”y to find modifications to the dif- these Varying dynamics to the constant formation and de-
fusion constant to capture long-time behavior. An interestingstruction of glassy clusterg27]. Experiments on colloidal
issue that is not always examined are the deviations from theystems by Weeket al. and members of the Rice group
Gaussian behavior expected in the intermediate time scalghow strong spatio-temporal correlations in the system. Par-
of these random media problerfts-13). ticles in these colloidals system move collectively resulting
New single molecule experiments examine these mesosna long-time correlation$18,22,28,29 Measurements of the
copic time-scale and length scale deviations from Gaussiarptational diffusion constants of colloidal spheres in glassy
behavior[14—16. On these length scales, the random fluc-Systems show similar strong spatio-temporal correlations
tuations of the solvent that influence the motion of the mol-{30,31.
ecule cannot be modeled with the assumption that they are
locally correlated in time and space since some large-scale
motions of the solvent are on the time scale of the experi- Diffusion in supercritical fluids is another interesting ex-
ment. A result of these nonlocal correlations is deviation@mple of dynamics in heterogeneous environments. The den-
from Gaussian behavior on intermediate time scales, whicfity of supecritical fluids has long length and time-scale cor-
are measured in several experimefii4,15,17,18 relations, which lead to several_ anomalous expe_rlmental
The heterogeneity on mesoscopic length and time Sca|J§sults[32—3Ej. Although r_esults d.|ffer,_ several experiments
has physical significance that is observable in experiment."s.Eport drar_ngtm chgnges in the diffusion constant of s_,olutes
and simulations of many systems including systems ne in supercritical fluids[36,37. These density fluctuations

L o : ave been observed in MD simulations and persist for long-
phase transitions such as glasses and supercritical fluids. time scaleg34.38,39.

These experiments and simulations show that there are
intermediate length and time-scale environmental fluctua-
*Electronic address: jianshu@mit.edu tions in several interesting systems, which motivates our

2. Supercritical fluids
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study of a stochastic potential with intermediate scale correAll other moments are either zero or can be expressed as a
lations. Because two different stochastic processes, simpligolynomial of y. This assumption eases computation, but
diffusion and the random potential, determine the movementigher order cummulants can be incorporated using the
of our Brownian particle, we expect significant deviationsmethods below. Most of the equations in this paper are valid
from the Gaussian form predicted by Einstein’s equationfor arbitrary y, but the explicit calculations used to generate
These deviations have been observed and quantified in sethe figures will correspond to three dimensions wjttde-

eral simulations and theori¢$8]. Several references showed fined by

that the simple assumption of fluctuating regions of two dif-

ferent diffusion constants, one for a cluster and another for 013/2)(0 |x|2
free diffusion, results in significant changes in the diffusion x(Ix],[t})= (a+)\|t|)3’2ex sk 1.3

constant and deviations from Gaussian behavior on interme-
diate time scale$40—42. Mode coupling theory also pre- . . . L .
dicts significant deviations from the expected Gaussian be‘[h|s potential-potential correlation is chosen because it has

nar, especialy for gaSSf2.29,43-45 Simultons by _ S0 0 1 ecutes xpectad for & e ptente) o i
Donati et al. support these theoretical predictions of non- Y ' P

Gaussian behavior at intermediate times for glasses. Similol\lg'r?onu's-l;vgghg: T:s 'LnS%%rt% ng;?\?eeigse (grtergi,sp?fr?gﬁg;es t?ﬁe
to the arguments of Kirkpatriclet al. they attribute these d '

deviations to the formation of clustdi@5—27. Motivated by equiyalence betwe(_en them ‘F?md idea that the potential can
the observations of Donati and others we examine a simplerm?d'ate the clusterlng beklawor_of the system.
model that exhibits similar clustering behavior. The constantyo=x(|x|=0, t=0), corresponds to the
strength of the large-scale interactions and is our perturbation
expansion parameter. The choice of a Gaussian form allows
A. The diffusion model us to omit a cutoff frequency that separates the small-scale

In order to address this Brownian motion problem analyti-motions that we approximate as simple diffusion from those
cally, we do not explicitly include the solvent. Instead, wethat we treat as the stochastic potentigh is the length
develop a phenomenological model that captures the interagcale of the heterogeneity of the system, which can be
tions of the solvent molecules with the Brownian particleviewed as the size of wells in the potential energy surface.
without explicitly including them. In this paper, the micro- We refer toa®? as the size of the cluster to make contact
scopic time-scale fluctuations are still approximated agvith previous experiments and simulatiofs7,24. We in-
simple diffusion, but we extract the larger time-scale motionscorporate decay of spatial correlation into our model by in-
and write them as a fluctuating potential with a time andcluding the|t| term. The 1/§|t|) dependence is chosen to
spatial dependence. The approach follows the work of Deergive an exponential time dependence in Fourier space. This
and Chandler and has been discussed by Bouchaud aif@mulation corresponds to smaller-scale fluctuations or clus-
Georges but is generalized to allow a time dependent poteriers decaying faster than larger-scale ones, a property pre-
tial [2,9]. This type of diffusion process is governed by the scribed by Trajus and Kielsd@6]. In analogy with several
equation references, we refer th as the hopping rate, but we also

emphasize the power-law dependence of our potential corre-

daG(x,t) 2 lation function does not have a well-defined rate and, even
a DoVG(x,1) +BDoV - (G(x,)VV(x.1)), for a strong disorder, the hopping fluctuations in the potential
(1.2 may not be associated with hopping of the Brownian particle
since the particle has inertial mass1,47,48.
with

B. Summary and outline

G(x,0)=48(x), In the examination of the random media problem, a self-

consistent equation for the one-particle Green’s function that
is accurate to second order in the disorder strength can be
determined by a perturbation expansion of Eql) directly

where G(x,t) is the Green’s functionDy is the diffusion
constant modeling the short-time-scale interactighss the

Inverse temperature a.““’(x't? IS t_he random potent|a_| [4-7]. But many papers calculated the Green’s function and
[2,9,10. The difficulty in dealing with the random media e gifusion constant by using the classical field formalism
problem is attempting to avera@¥ x,t) over the disorder of eveloped by Martin, Siggia, and RoseMSR)

V(x,1), even though we assume we know the moments 0?1,2,11,12,49 To show the consistency of our perturbation
V(x,1) [9]. In this paper, we will make a Gaussian assUMp-method with the field theoretic methods of MSR, we solve

tion for the random potential with for the Green’s function using both methods and derive equa-
tions that are identical up to second order in the disorder

(V(x,t))=0 strength. This result should not be surprising since both

methods attempt to describe the dynamics by a Dyson and

and Schwinger equation with self-energy. To make contact with
previous work, we also solve the equations with an Edwards

(V(Xp,t)V(Xo,t2)) = x(|X3— X4, |t1— 15[ ) #0. (1.2)  type of variational method that circumvents the Dyson and
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Schwinger equationg,1]. The variational method yields re- 9 ) (BDg)

sults that are similar to the our perturbation expansions, as - G(k,t)= —DolKk|*G(k, t)— dJ dh{k-(k—h)
well as previous work but slightly more complex than per- (2)

turbation. In the static limit the equations are identical to X(G(h,t)V(k—h,t)}, (2.1)

those derived by Deem and Chand#2,10,11,49,5D
The paper also contains a first order equation for the twowith
particle propagator determined by both the MSR and direct
perturbation methods. Hydrodynamic and excluded volume G(k,00=1.
interactions are not considered in this paper since the two-
particle propagator is intended to measure variation in differThe integration oveh runs from —«<|h|<o. We define
ent particle trajectories caused by the potential. As seen from,+ Dy|k|? as G, *(k,t), and Go(k,t) as our usual funda-
Egs.(2.4) and(5.12 below these results are identical to first- mental solution for free diffusion,
order. As a final result, we use the MSR method to determine
a first order renormalization groufiRG) calculation of the Go=exp — Dot|k|?).
diffusion constant, which compares well with our perturba-
tion equations and reduces to previous RG calculations in théVith this definition ofGy(k,t) the propagator for a specific

static limit[2,11]. realization of disorder is
Our results are organized into six sections. Renormalized
perturbation and numerical results are presented in Secs. (BDo)

[I-IV followed by the conclusions in Sec. VII. Readers in- G(k,)=Go(k,t) —

5 df dhdr{k-(k—h)V(k—h,7)
terested in a more detailed discussion of MSR and RG are )

referred to Secs. V and VI. X Go(k,t—7)G(h,7)}, (2.2
Il. DETERMINATION OF THE GREEN’S FUNCTION wherer has a range from O tb Repetitively substituting the
FROM DIRECT PERTURBATION right-hand side of Eq(2.2) for G(k,t) in the right hand side
_ of the Eq. (2.2 produces a perturbation expansion for
A. One-particle propagator G(k,t) in terms ofV(k,t) andGg(k,t). SinceGy(k,t) has

To begin our analysis, we perform a direct perturbationno dependence on the random potenék,t), we are able
and resummation of the Green’s function equation to get &0 average ovei(Kk,t) in this expression using Gaussian
second-order self-consistent equation, which we comparfactorization. We resum terms so that the equation is accurate
with our field theoretic results. The renormalized perturbato various powers of the disorder strength and express
tion expansion is analogous to the direct interaction approxithese terms as self-consistent equation&6k,t). The re-
mation used to describe turbulent floy8,10,51,52 Fou- summation procedure corresponds to evaluating the self-
rier transforming the spatial variablex-¢k) gives the energy in the Dyson expansion. The resulting second-order
equation expression is

(,3 0)?

(G(k,1))=Gq(k,t)— thdTldTZ{k (k=h)h-(k=h) x(|k=hl[,| 71— 72]) Go(k,t = 71)(G(h, 71— 2) ){(G(K,72))}

4
((i 0) J’dhlthdTldedTSdTll{k k—h )h2 (k h )hl (k hl)(k hl) (k h1+h2)X |k hll |Tl T3|

X x(|hi=hgl,| 72— 74| ) Go(k,t— 7)(G(hy, 71— ) )(G(hy, 7o — 73) )(G(k— hy+ hy, 73— 74) (G (K, 74))}, (2.3

where the second term is the first-order correction and theolution, we are not guaranteed that the sum of any
third term is the second order correction. The integrations irsubsequence also converges. This lack of convergence may
this expression are fot>r,>...>7,>0 and —o<|h;| plague the second-order expression, since the graphs
< and the(- - -) represents the average over the disordercaptured by this term are predominantly positive. The
The origin of the self-consistent equation can be easily demdifficulty may also be purely numerical in nature due to
onstrated with a Feynman diagrammatic expansion and repproximations made in evaluating the second-order
summation used in QE[B3]. In these diagrams, we replace expression. In either case, adeaapproximation was used in
the propagator for photons with the propagator foand  the numerical calculations to aid in convergence of the solu-
only use graphs that do not violate causality. tion. The specifics of these approximations are discussed in
Although the sum of all graphs should converge to theSec. IIl A 2.
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B. Two-particle propagator are single-particle propagators with no mulitplication by

Single-particle motion is not sufficient to resolve the exmk-,r] and (G(k,t)) corresponds to the single-particle
spatio-temporal correlations built into our model. The Eqs.Gréen’s function in Eq(2.3). This equation can also be rep-
(2.3 show that the Green’s function deviates from thef€Sented by a Feynman diagrammatic expansion and resum-
Gaussian form predicted by the free propagator, but th&hation[53].
amount of the deviation is difficult to determine from exam-
ining the Green’s function for the motions of a single par- lll. DERIVATION OF IMPORTANT STATISTICAL
ticle. To overcome this difficulty we determine a perturbation QUANTITIES FROM THE GREEN'S FUNCTIONS

expansion for a two-particle propagator. Section VB 2 . . . R 3
shows the same calculation using the MSR perturbation Th_e precedmg_ section outI_mes the de,rlvat|on_of the Self
onsistent equations for various Green’s functions, which

method. This propagator measures the movement of two par- . : . .
ticles initially separated by a distance The correlation of corretsp_(ln_ﬂd to d|ffe_rent tpossmle smg![ejmolecult_a elxperl—t_
these two particles determines the deviations from the beha\g.TJen s. 1hese dexp_err]lmen_s mea:csuhre <l:3er ain numengal\ qu;m -
ior of two independent particles, which allows us to examine. <> associated with motions o t e Brownian particies but
the spatial effects of the stochastic potential. As mentione(ﬁhey do not measure the Green's functions directly. In this

above, we are not considering any interactions between th%ecuon we outline methods of extracting some measurable

Although numerical studies demonstrate the importance o,ltl?On of t%e two-particle Green's function from the UNCorre-
both excluded volume and long-range hydrodynamic interac: P

fons betvieen partles in many processes includng ST eI o 0 THSPETACT, b e LI 0
glass transition, we are concerned with the roles of the het- d ' y

erogeneity of the solvent on the correlations between papﬁgaf‘g;ﬁzzg:yir%?:;gin;fr;hezgs?azngzgsv\ze dizsecrl?ésszvfer\?/l
ticles [54]. We are also not considering the effects of the P

particles on the solvent. The correlations we examine aréhat are easily determined from experimefi8,23,25,26

strictly mediated through the potential and can be viewed as
a demonstration of the deviations of different realizations of A. Diffusion constant
the path of the particle due to the potential if the particle was
placed at different locations. ] . ] ) ]
The perturbation calculation for the two-particle propaga- AS discussed in the introduction, macroscopic effects of
tor starts from the expansion of the original Green’s function™esoscopic disorder led to many studies that determine the
equation. We do not average over the random potentigfiffusion constant from self-consistent equations similar
and all terms are present. The propagator is centered at ti{gose derived abovg2,10,11,49,50 Most of these refer-
origin and is denoted b®®(k,,t;)=G(ky,t;), where the €nces address static disorder, but these methods can be gen-
superscript(1) denotes the particle label. We introduce a€ralized for the dynamic case. Our analysis parallels several
propagator for the second particle that is displaced from th€f these approaches. The methods require numerical compu-
origin by a vectorr and it is denotedG®(k,,t,) tation of the solution from a suitable basis ¢} Before
—exfdik, r]-G(ky,t,). Like the propagator centered at the mtrodl_Jcmg these rigorous methods, we perform a S|_mple
origin, we iteratively expand the equation and do not averag@nalytic calculation based on a simple Ansatz that the single-
the single-particle propagator over the random potential. W@article Green's function maintains a Gaussian form, but the
multiply the two propagators together and then average ovéfiffusion constant is modified.
the potential using Gaussian factorization. After resumma- )
tion, the resulting first-order self-consistent equation has a (G(k,t))~exd —Dt[k|"]. 3.1

form that is similar to the equation for the single-particle . . .
propagator. For weak disorder, the Gaussian form is exact and the

approximation should determine the correct initial slope of
GEA(ky,t;=t,k,,t,=t) the diffusion constant. The diffusion constant can be ex-
1 ) pressed in terms of the Laplacian of the Green’s function.
=(GW(ky,1)GP(ky,t))

1. A simple Ansatz

w2
—(GO(k; )Gk 1) jm— |, (3.2
(BDO)® [t [t o -
- d f dhj d’le d'TZ
(2m) 0 0 The Gaussian form allows analytic evaluation of the first-

order expression with the Gaussian form of the potential cor-
X{kyq- (ky—h)ky- (ky—h) x(|ky—h[,[ 71— 72|) relation functions,y in Eq. (1.3), which results in an alge-
X(G(Kq,t— )W G(Ky,t—75)) braic expression for the diffusion constant

X GAA(h, 7y ki +kp—h, 7)) 24 DD -M) AXo

Do o 3 (3.3

Two of the propagators are not labeled because they 0
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The equation has no explicit dependence on the clustesecond-order expression are predominately positive, which
size because it is the intrinsic scale of the problem, whichmay prevent convergence since we are only summing some
determines the magnitude of the other quantities. The equapaphs. The extra higher-order terms in the Gaussian refer-
tion exhibits the expected behavior from intuition. As theence calculation in Eq5.14 may also alleviate this sensi-
disorder strengthy, increases, the diffusion constant will tivity, as would including higher-order terms in the perturba-
decrease, and as the hopping ratencreases, the diffusion tion expansion. Numerically, both the second-order Gaussian
constant will increase, but this increase is dependent on theference calculation and including higher-order perturbation
disorder strength. Ik > D, the equation suggests an increaseexpansion terms would be difficult and is not performed
in the diffusion constant. This result is not surprising in thehere. A detailed discussion of the results for the calculations
weak disorder limit since the forces on the particle increasgerformed in this paper is presented in Sec. IV.
displacements, but there is no trapping because the potential
rearranges quickly and is weak. The solution of this equation
as a function of3?y,/3 and\ is plotted in Figure (a). The
RG result is also plotted as a function Bfy,/3 and\ in In order to analyze the non-Gaussian nature of the model,
Fig. 1(b). A derivation of the RG result and a more detailed we need to define quantities that measure the deviations from
comparison of these results are discussed in Secs. VI and Iyncorrelated behavior. Experimentally determining devia-

B. Non-Gaussian indicators

respectiviey. tions from Gaussian behavior is difficult with a single par-
ticle, so we analyze the model for two particles that is devel-
2. Numerical determination of the diffusion constant oped in Sec. IIB. The indicators should demonstrate

collective motions like clustering because of structures in the

In order to go beyond the simple assumption of a Gausséystem that prevents two particles from moving indepen-

ian form, we need to implement a numerical approxmaﬂondemly_ Both of these effects are observed in experiments and

method for determining the Green’s function and SUbse'simulations of real systems like glasgdd,18,22,24,25 48

qguently the diffusion constant. The numerical solutions are Two correlations that are measured in several single-
calculated in Laplace space using a basis set approach, whiﬁtlw

A olecule experiments are the dot product of the displace-
Erfingtﬁré?.eaiﬁpsrgggz d?;r325210|322n§huas?g§£ i‘g'func[nent vectors of two-particles initially separated by a distance
tion basis set were determined as functionsf8j,/3 for ;’Rf?ﬁ?’g‘sié’ 5 an_lt_jh theb sq_uarel bOfI ;he d_|s|p lace dmt;nts,
ND=0.0,0.4,1.2. These results are presented in Figs, 3 1 9R; [55,56. The subscripts label the particle and the

3(b), and 3c) for A/Dy=0.0,0.4,1.2, respectively. These fig- denotes the displacement from the initial position. The equa-

. . ion for the two-particle propagator is difficult to manipulate
ures also compare the RG calculation and the simple seli- . . . . ,
ecause it requires the solution for the one-particle Green’s

consistent result, Eq3.3). . A . X
The basis set equations are complicated non-linear intefynctlon. To simplify the analysis, we perform an asymptotic

gral equations that are difficult to solve analytically or nu- expansion of the equations and only evaluate the nonrenor-

. . . . 4 malized terms. To normalize the function, we divide this
merically. Several numerical approximations used in evalu-

. 2 . .
ating these expressions introduce errors other than the choiddantity by 3" xo- The two corrrelation functions are

of the basis set. To aid in convergence with these numerical (SRy(1)- SR, (1)) (SRy(1)- SR,(1))
approximations, a RE approximation is introduced. This Cy(r,t)=—+ ST , (3.5
approximation has the correct 1st and 2nd order terms, but (Bx0){|8R[?)  (B*x0)(2dDot)
also includes additional higher order terms that may aid in
convergence. This approximation combines our first- and 2 o N2
second-order correction terms in Eg.3). Co(r,t)= {aR1(VF ORAB)[*) — (| 9RI%)
(B2xo)(|oR[?)?
(first-order expression 5 ) oo
1 (second-order expressipn 34 %<|5Rl(t)| 2|5R2(t)| >_<2| oRI% (3.6)
(first-order expression (B“Xx0)(2dDgt)

The errors introduced in determining the numerical resultsTo first order these can be written in Fourier space as
are higher than second order in terms of disorder strength so
the equation is still accurate at second order. These approxi- 2
mations are not necessary for the-0 limi i- (Do)

y for the-0 limit, and a compatri
son of the numerical solutions with and without thed®a  (B82xo)(2dDgt)(27)
approximation in this limit shqws good agreement at moder- .
ate disorder strengths. The dea approximation prevents XJ drofKy- (Ki—h)Ko: (Ky—h) x(|ky—h|,| 71— 72])
higher-order terms contained in the first and second renor- 0
malized expressions from strongly influencing the fit, which
makes our calculation less sensitive to other approximations
necessary to numerically calculate the diffusion constant.
This is especially important since the terms captured by the ~ Xexi(ky+k,—h)-r]Go(ky+ kz—h,Tz)}). 3.7

t
del-sz( exr[—ikzr]f dhjodrl

X Go(Ky,t—71)Go(Kz,t—75)Go(h, 771)
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A Dc.

ﬁ?‘g _?3
(b) 0

FIG. 1. Contour plot of the diffusion constant as a function of
and B%x,/3 as determined by E@3.3) in (a) and the renormaliza-

tion group result of Sec. VI irtb).

(BDg)?
(B2x0)(2dDgt) (2m)% ¢

t
X fodTZ{kl'(kl_ h)ky- (ky—h) x([ky—h|,[ 71— 75|)

X Go(Ky,t—71)Go(Kp,t—7—2)Gp(h,7y)

XeXF[i(k1+ kz_ h)r]Go(k1+ kz_h,’Tz)}>. (38)

t
V2 Vi (exq—ik’-r]f dhf dry
1 2 0
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FIG. 2. (a) shows the behavior of the diffusion constant pre-
dicted by the renormalization group calculation over large range of
disorder strengths fax/Dy=0.0,0.4, and 1.2(b) is a log-log plot
of the diffusion constant versus the disorder strength for large dis-
order forn/Dy=0.4 and 1.2. The static limit is not plotted because
it is an exponential. The straight line with nearly unity slope shows
the power-law dependence of disorder for moderate valuas of

The first correlationC, contains both angular and radial
information, while C, contains only radial information.
These quantities are useful in microrheological experiments
[55,56. Because the integral is Gaussian for our model po-
tential, these expressions can be integrated analytically re-
sulting in complex expressions that are omitted. The two
correlation functions behave similarly so we only present the
features ofC, in Figs. 4 and 5. These figures are analyzed in
Sec. IV.

IV. ANALYSIS OF RESULTS

In the previous section, Sec. lll, the diffusion constant and
non-Gaussian indicators are defined and determined by
renormalized perturbation for the random potential presented
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in Eg. (1.9. In this section we present a detailed discussion L0
of the properties of the solutions to compare these results to
previous models and demonstrate some of the unusual prop-
erties of this model. 0.8 '\.‘
L%
o 8T~
A. Diffusion constant 0.6 ™ ""--.._h_‘

Section Il presents several approximations for determin- §_ s ® “'“'u.,__
ing the diffusion constant, and Sec. VI presents a RG ap- — it '““'x..._“_
proximation of the diffusion constant. Due to the technical ' i
nature of the RG calculation, we compare the results of the — 1st order self-consistent {L/Dy=0.0)
perturbation and RG calculation in this section before dis- O 1st order basis set (A/Dy=0.0)
cussing the details of the RG calculation in Sec. VI. The @ 2nd order basis set (MVDy=0.0)
analysis begins by defininge as our length scale ané/D,, — Fenarmplizstion group (/DA )
as our time scale. With the redefinition of our length scales, 0.0

0.0 0.2 0.4 0.6 0.8 10

x in Eq. (1.3 is uniquely determined by two dimensionless
quantities?yo/3 and\/D,. All figures and discussions of (@
the effects of the hopping rateand the disorder strengjhy L
are in terms of these dimensionless quantities and the diffu-
sion constant is also made dimensionless by dividin@phy

Figure 1 presents a contour plot of the solution that is 0.8
generated from Eq.3.3 and the RG calculation in Sec. VI.
Both plots appear similar for weak disorder strength because
they capture the correct first-order response of the diffusion o6
constant. In the weak disorder regime, the diffusion constant -
is dominated by the disorder strength because the hopping=
rate’s effect on the diffusion constant is proportional to the 0.4
disorder strength. For moderate hopping rakeshe two

B3

— 1st order self—consistent (4/1),=0.4)

figures agree up to stronger disorder strengths because the O Ist order hasis set (W/D,=0.4)
two equations yield similar results, as longBsstays close 0.2 ® 2nd order basis set (J/D,=0.4)
to Dg. == renormalization group (LTh=0.4)
For strong disorder strengths, the two equations show
markedly different characteristics. For a small hopping rate, ”-"“_[, 0 L0 L5 20
the perturbation solution, E¢3.3), predicts that the particle ) B3

becomes trapped for moderate disorder. Becay$k0) is
Gaussian, it can never be large and trapping should not occur
[57]. The trapping predicted by perturbation expansions is 14
common in disordered media problems because the effect of
the disorder is over emphasiz¢d0]. For larger hopping L2
rates, the perturbation result predicts that the diffusion con-
stant approaches the hopping rate, which suggests that the '-“W
particle is trapped in a well that is moving at the hopping -
rate. As mentioned previously, a well-defined time constant £ o -
for the hopping is not defined so this result is as unphysical
as the trapping predicted for a small hopping rate.

Unlike the perturbation result, the RG calculation, never

/D,

D

— st order self—consistent (A/1,=1.2)
O 1st order hasis set (A/1D,=1.2)

predicts trapping. The solution remains above the solution : ® 2nd order basis set (WD,=12)

determined by Dean and by Deem, which is above the lower . | —. renormalization group (A/1),=1.2)

bound determined by Masgt al. [2,11,57. In fact, in the

A—0 limit, the results of Dean and of Deem are recovered

[2,11]. For any value of the hopping rate, the diffusion con- 0.0 0.5 LR 1.5 20
stant approaches zero in the strong disorder limit so the con- (¢! B,

tour lines of Fig. 1b) never become parallel with the?y,/3
axis. ForA>0, the diffusion constant approaches zero as a FIG. 3. Comparison of the first-ordefempty circleg and

power law, see Fig. 2. Except for small the exponent is second-orde(filled circles numerical solutions derived from the
weakly dependent oR and close to unity. basis set approach outlined in Sec. Ill A2 and the results of Eq.

The numerical solutions are more computationally inten<(3-3) (solid line), and the renormalization grouRG) (dashed ling
sive than the simple self-consistent equation, &), and ~ forA/Do=0.0in FIG.(@), A/D¢=0.4 in(b), and\/Do=1.2 in FIG.
the RG result so these equations are used to determine tie-
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FIG. 4. Time dependence of the non-Gaussian indio@tor(a) FIG. 5. (a) shows the maximum value &, as a function of
shows the behavior df, as a function of time for several values of jnitial separatior for several values of. (b) shows the time of the

initial separation witth/Do=0.4. (b) shows the behavior &€, as  maximum. From the figures it is apparent thatioes not qualita-
a function of time for several values afwith r=\/a. tively affect the shape of these graphs.

that the diffusion constant initially increases as discussed

diffusion constant for specific values of the hopping rate’above Because of the power-law time dependence of the
NDy=0.0,0.4,1.2. These results are compared against the : P P

results of Eq.(3.3) and the RG calculation in Fig. 3. All of poofcgﬁtluﬁ{reizgﬁ?g tcr):;e rﬁ)éﬁi(r:]tsoit:ﬁgge;r(t:iigzrizruzti;engath
the different techniques agree in the small disorder limit, buf Y e partic 9
. . : : . decrease in the rate of diffusion. These intuitive arguments
the numerical calculations predict trapping of the paticle for . . .
L agree with the numerical calculations and the RG result and
finite disorder strength for all values af The second-order .
: . : . show that these results capture the physical aspects of the
numerical solution agrees with the RG solution for larger e . LI ) .
. : . . roblem. Diffusion initially increases with increasing disor-
disorder strengths than the first-order numerical solution. Thg . ) .
._der strength but it eventually decreases in the strong disorder
better agreement between the RG and second order solutlops.
e O ; T imit.
for diffusion problems in the static limit has been demon-
strated in several papers, and numerical simulations in the
static limit suggest that the RG calculation may be correct up
to larger disorder strengths than would be expected from a Determining the diffusion constant for disordered media
first-order RG resulf50,58. Because of these previous stud- is important in many industrial processes like chromatogra-
ies, the static disorder results are not surprising, and our R@Ghy, but single-molecule experiments do not study macro-
calculation is a reasonable extension of these previous calcgeopic diffusion. The experiments study deviations from
lations. simple diffusion on intermediate time scales. Although more
The A/Dy=1.2 case demonstrates interesting behaviodetailed calculations can be performed, the simple first-order
because nonrenormalized perturbation expansion predict®onrenormalized calculation demonstrates several of the in-

B. Non-Gaussian indicators
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teresting features of this model, including an apparent clusteime before becoming negative. In the long-time limit, all
size and the effect of the dynamics of the random potentialgorrelations become positive and decay as power l&wys,
\ [which can be shown from th@, calculation in Eq(4.1) ot~ ! and C,xt %2 The power-law behavior comes from
below]. We defined two non-Gaussian indicators in Sec. lll Bthe normalization of the correlation functions, but it demon-
in order to capture the angular and radial dependence of costrates that the correlations between the two particles remains
relations involving two Brownian particles separated by ansignificant even at large times.
initial distancer. Unlike the strong qualitative effect of the initial separa-
The C, correlation function contains information that can tion, the time dependence gf only affects the quantitative
be interpreted as clustering. Clustering of the two particlegeatures of the correlation functions. The qualitative shapes
would correspond to the particles having a tendency to movef the correlations do not change, but the height and posi-
together resulting in a decrease in the distance between thetions of the maxima changes aschanges. The time and
as compared to the motions of independent particles. As height of the maxima ofC, as a function ofr for several
result, (|R;— R,)|?) would be less than the value predicted values of\ are presented in Fig. 5, which demonstates the

for independent particles. Becauge 5R1)=(r- R, =0, qualitative effects of and the quantitative effects af.
) ) The strong positive correlations between particles sepa-
(|R1=Ro|*)=([|6R1—r1— 6R,|*) rated by small distances suggest that the model does exhibit
= (| 6Ry|2) + (| 5R,|2 clustering behavior. The particles that are withiBie diffuse
([6Rq[%) +(| 6R,[%) usterin
with similar speeds and have a tendency to move closer to-
+|r|2=2(SR;- 5Ry). (4.1  gether than expected if they are uncorrelated. This behavior

is similar to what is expected for particles in the “same clus-

, , ) ter.” If the particles are farther apart than the length of a
From this expression we see that a positivg means that cluster, they are in two “different clusters,” which have a

particles have a tendency to move closer together than Prandency to diffuse away from each other, leading to nega-
dicted by independent motion and a negatisecorresponds  tive correlation inC,.

to the opposite behavior.

The C, correlation function is a measure of correlations
of the rates of diffusion for the two particles as compared to V. MSR FIELD THEORY
independent particles. We concentrate our analysisCen
because the two functions share similar characteristics wit
only minor quantitative differences which will be discussed
below. Since there are only small differences, the graphs i

The perturbation expansion equations can be derived us-
n1g the MSR formalisn{59—-61]. But most applications of
MSR to diffusion problems have been centered around RG
Ralculations and reference systef@9,11]. These efforts are
stimulated by the quenched disorder problems where the
. . ; ) Green’s function instead of the generating function should be
tion and all quantities are proportional to the d'sorderaveraged over quenched disor@ie}. As stated in the Intro-
strength. Similar to the diffusion constant, the natural lengtfy,tion, sec. 1, the nontrivial terms for this particular prob-
scale 'S\/E_ and the natural t|me2 scale i&/Do. Because of  |gm are the same regardless of averaging over the generating
these relationshipsy, Do, andB“xo/3 are set to unity. The fynction or the Green’s function so we examine the pertur-
important parameters that have a qualitative effect on thggaion expansion of this problem, as well as a reference and
non-Gaussian indicators is the initial separation of the twaxg calculation. This equivalence between the different aver-
particles,r, and the dynamics of the potential, aging techniques for certain dynamic problems has been dis-

The effect of the initial separation is stronger than thecyssed elsewhere, and should not be surprising since the sys-
dynamics of the potential since the time dependent factor igsy will always be diffusive[1,2,57,62—6% For a more

also dependent on the spatial factor, [expp|?/(a+\[t)].  detailed discussion of MSR we refer readers to several ref-
For short times, the temporal decay of the spatial correlationgrenceq1,2,59-63,65-7]1

is not large and the correlations are completely dominated by
the spatial separation. The strong dependence israppar-

ent by examining Figs. 4 and 5. For small initial separations,
the system shows strong positive correlations for bGth To write the random media problem into the field theo-
andC,, resulting in a high positive peak. For larger values ofretic formalism we note that the diffusion equation is also the
r the strength of the correlations decrease and kittand  equation for the change in the probability density at a point
C, show anticorrelations in the short time behavior for somein space. With this idea we can write a replica generating
values ofr. The C, correlation shows only a simple inver- function in a form that is similar to a Feynman path intgral.
sion forr>/6a. As discussed above, negative correlationsDefining

in C, correspond to a larger increase in the distance between ~

the two particles than would be expected for independent Go'(1,2)=68(1- 2)(dy,+ Dolkal?)

particles. TheC, correlation shows a more complex inverse
response. For 1.9w>r>4\a the correlation function
shows an intial inverse behavior, but for some values of
>4./a the correlation is intially positive for a short period of and

A. The generating function

=8(1=2)(—a, +Dolky|?) (5.1
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- (BDg)? . A 2InZ[& ]
(1,2,3.4)= S(ty—t,) 8(ts—ta) S(Kq— Kot Ks—Ky) Y= Gy(15) = S ELtsiEi] _
y (2m0 T2 dlta ) dlka it ke Tk (p(Dp(2)))=G2(1,2) 8&(1)6&,(2) f=F-0
XKy (kg—ko)kgz (k3= kg) x(|ky—kal,|t; —t3]) (5.3

This quantity is the response function and it represents the
creation of density at the wave vect&p at time t, and
R R L subsequently measuring the density at the wave végtat
ZN[ & ,§i]=f D[pi]D[pi]eX[{—Go1(1,2)pi(1)pi(2) time t;, which is similar to the definition of the Green’s
function defined in Eq(1.1), except that the density creation
is defined in Fourier space.

the generating function is

1 . . . -
+57(12340i(Dpi(2)p;i(3p;(4)
B. MSR perturbation theory

+§i(1>pi<1>+%i(1>;3i<1>}, (5.2 1 One-partcle propagator

The perturbation method follows the derivation of Jensen
where we integrate over repeated arguments and sum ovkf1l- We explicitly construct Schwinger and Dyson equations
indicesi andj [2,61]. The notation we use in Eq5.2) is  from Z[£,£] instead of evaluating IA[{,£]. N=1 and we are
consistent with Jensen’s work. The variables[k,,t;] and  not introducing the unphysical replica trick. We also intro-
2=[k,,t,] stand for all variable parameters, like space andduce the Legendre transform variafile
time and the components of these variables are denoted with N X N A
a subscript, 1 or 2. This generating function introduces [G1,G1]=InZ[£,6]-£(1)G1(1) — €(1) G4 (D), 5.4

conjugate variable(1), which acts as an infinitesimal den- \yherej andi refer top(i) andp(i), respectively. When the
sity creation operator. Differentiation of Eawith respect to variable is eithep(i) or p(i) it appears as. The Legendre

&(1) and & (1) determines the desired statistical quantities transform formally closes the Dyson’s equation. Note that

For the_ perturbation expansion we _taI =1 since we are fhe Green’s functions generated By, £] are already aver-
averaging over the generating function. In the reference cal:

culation, where the Green’s function is averaged, ke 0 aged over the Lagdgm poEelnEe}l and (.he~) 'S .om_|tted - We
limit is taken in the replica action, which eliminates several@SSume thaf5(1,2)= —G, *(1,2). This equality is not nec-

terms that are present in té=1 limit. It may appear that essarily strict but it allows simple manipulation of the equa-

the two different limits cannot both be correct, but the addi-ions: The equations derived by MSR allow us to use pertur-
tional terms in the perturbation expansion that are eliminate@@tion theory to systematically expand and evaluate the self-
in the N—0 limit are noncausal and evaluate to zero asSnNerdy, as demonstrated by Deké5—67. The resulting set

discussed abovis2,63. This result gives us confidence that Of guation are

our MSR perturbation, where we do not take e 0 limit, T ' an AT DA
does not fail to properly average over the disoi@r The 7 Ga(1,1)=Go(1, 19+ Go(1, 1) 7(1,2.3,4)
is the Jacobian which depends on discretization and can be X[G,(2,5)G(3,6)G,(4,7)G,(1",8)
assumed to be constant.
The action in Egs(5.2) is very similar to the actions in XT 4(5,6,7,8)+G»(2,3)G,(4,1")], (5.5

other references on diffusion in random media

[2,9,10,50,58 Our derivation is for the general case of dy- T',(1',1")=—-G, }(1',1")= -G, *(1',1") + ¢(1",2,3,4)
namic disorder and our equations simplify to these previous

results in the static limit. Because we consider dynamics, we 2 A 5 25,
must integrate over time or frequency, which can often be X| G2(2.5)G2(3,6),G2(4,7)T'4(5,6,7.1')
omitted in the static casg2]. Some slight differences also

come from our definition ofp, which is equal to—ip in &~ A T
several referencel2,12,13,72 The largest contrast comes +i:§‘6% G2(2,5)G2(3,6)G2(4,1)G(9,10)
from our action being defined in Fourier space so the signs of ~ .
some of the arguments, lik are reversed. Because of the XT'3(9,j(#1),k(#i,j))'5(10,1',i)
domain of definition, the Fourier transform pfcorresponds
to density created at a specific wave vector instead of a spe- + > Gy()G,(j(#1),5)Go(K(#i,j).6)
cific point in space. i=2,34

The generating function gives us all of the desired statis- s A . A
tical quantities by differentiating I8[&,&] with respect to XT'3(5,6,1") |+ ¥(1",1",3,4)[G,(3,4)
the generating variableg and¢;. The replica trick that we
use in qur .Gausmar:\l reference calculatloln replacgs the +G1(3)G(H]+9(1",2,31)[Gx(2,3)
In Z[ £,&] with limy_,o(ZY—1)/N, but we are still evaluating A
the same quantities. The Green’s function is defined by +G1(2)G1(3)], (5.6
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51“2(1’,1") labeledl to the introduction of density at coordindeso the
I'3(1,1"1") = ———=—, (5.7 zeros of the system are still arbitrary. The step function,
9G4(17) 0(t), enforces causality and th&function enforces transla-
tions invariance. To recover the usual Green’s function with
the creation event centered at the origin in real space at time

1 An am Fivy _ 8ry(1.1") t=0, we sett,=0 and integrate ovek,. The variables of
F4(1 11 11 11 )_ ~ (58) ~ . ~ .
8G1(17),8G(1Y) the formi must be integrated over both argumentsndi,
R but many of the terms that they represent are zero. The result
with Gg(1,2) defined as is similar to Deker’s result for a cubic field at the second

order[65]. For the second-order expression, we evalliate

~ to first order.I', has two terms to first order.
Go(1,2)= 6(t;—tp) 8(ky—ko)exp — Do|ty —to][ky— kol ],

The MSRGO above 'diff'ers from its analogpg in the d_irect T,(1,17,17 3V = y(1", 17,1V, 1) + y(1",27,1v,1).
perturbation calculation in Sec. Il, because it is a function on

two different sets of coordinates. The MSR Green’s functionWe substitute this expression fdt, in Eq. (5.5 and G,
is a measure of the response of the system at the coordinabecomes

G,(1,1")=Gy(1',1") + Go(1',1) ¥(1,2,3,4)G,(2,3)G(4,1") + Go(1',1) y(1,2,3,4) G,(2,5)G,(3,6)

X Go(4,7)G5(1",8)1(5,6,7,8)+ Go(1',1) ¥(1,2,3,4)G,(2,5)G(3,6)G,(4,7)G(1",8) y(5,8,7,6).
(5.9

The last term is zero because it violates causality and it would be zero in the replica action becausdl-efGHamit.
Integrating oveik,» and setting,»=0 results in the second-order expression, which is identical tqZ§).

BDg)?

G(k,t):Go(k,t) f dthlde{k (k h)h (k h)X(“( h| |T1 7'2|)G0(k t— T]_)G(h T1— T2)G(k 7'2)}

(,3D )4
+ : fdhldh2d71d72d7'3d74{k (k—hphy-(k—hphy- (k—hy)(k—hy)- (k—hy+hy) x(|k—hy|,| 71— 73))

XX(|h1_ hal,| 72— 74])Go(k,t = 71)G(hy, 71— 75) G(hy, 7~ 73) G(k—hy+hy, 73— 74) G (K, 74) }. (5.10

The average 06 (k,t) over disorder is implied. The per- scripts have a similar meaning as Sec. Il B, 6% does not
turbation expansion of the second-order term has a simpleontain expik-r]. We also define a two-particle connected
graphical expression that follows the notation used by DekeiGreen’s function as
As can be seen from the Dyson series above Ej$H—

(5.8), the MSR perturbation method expresses the Green's
function in terms of a self-energy term, which explains the

equivalence between the directly renormalized perturbation . . SMZ[& &
and the MSR results. Gu(1',2',3,4') = — —
081(1') 681(2') 685(3') 685(4')
2. Two particle propagator (5.11

The first-order perturbation result with MSR is obtained

from a simpler procedure than the direct perturbation resultSimilar to the one-particle propagator, we must add the ini-
but we do not determine a self-consistent equation. A selftial conditions by settingt,,=t,,=0, multiplying by
consistent equation can be calculated with some complexitgxdik, -r] and integrating ovek, and k,.. Finally, we

but the definition of a two-particle propagat@®’? is a  remove the primes on the labels and change the labe] wf
natural result of the vertex functions. We start by setfihg k, to recover the first correction to the two-particle propaga-
=2 in the replica generating function and defining the twotor which is captured in the expansion of the self-consistent
one-particle propagator$GY) and G, where the super- equation, Eq(2.4),
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G(l'z)(kl,t1=t,k2,t2=t) wards variational method. In the Gaussian reference tech-
nique the full action is fit with a different action that only

=G (ky,1)GP(Ky, hexriky 1] contains a quadradic term, but the term is not necessarily

(BD,)? Gaussian. The technique avoids the Dyson equation and the

t t . . . . .
f dhj dTlf drofky- (Ky—h)Ky: (Ky—h) vertex renormall_zanon uged in Sec. V B._ Wlth the time de-

0 0 pendent generating function f@"[0,0] derived in Eq.(5.2)
the Gaussian reference technique follows the same procedure
as several references except that it is necessary to integrate

(2m)¢
X x([ky=h|,| 71— 7)) GW(ky ,t—71) G (ky,t—75)

X GW(h, 71)G®(ky+ko—h, 7,) over the time or frequency variable as well as the spatial
variables[2,9,10. The results of this technique are a time
xexfdi(k;+k,—h)-r]}. (5.12  dependent analog of the results in these references and re-
duce to these previous results in the static disorder limit. For
C. MSR with replica trick and Gaussian reference system first order we get the first two terms derived in E§.9)

The MSR perturbation is an asymptotic expansion, which G, (1’1" =G,(1’,1")
may not have good accuracy at large disorder strengths. To

overcome the difficulties of asymptotic expansions, several +Go(1,1)9(1,2,3,4)G,(2,3)G,(4,1"),
references introduce a variational technique that attempts to 51
minimize the errors. These variational methods are referred (513

to in the literature as the Gaussian reference technique
[2,10,72,73. To first order these techniques resemble the Edbut the second-order expression is more complex

2Go(1',1")=3G,(1',1")— G»(1',1)Gy (1,2)G(2,1") + 4Go(1',1) 1(1,2,3,4)G,(2,3)G,(4,1")
—2G,(1',1)1(1,2,3,4)G,(2,3)G»(4,1") — G»(1',1) ¥(1,2,3,4)G,(2,5) G, 1(5,6)G,(6,3) G»(4,1")
—Go(1',1)¥(1,2,3,4)G,(2,3)G(4,5) ¥(5,6,7,8)G,(6,7)G,(8,1")
—Go(1',1)7(1,2,3,4)G»(2,5) 7(5,6,7,8)G,(6,7)G»(8,3)G,(4,1")
—Go(1',1)7(1,2,3,4)G,(2,5)G»(3,6)G,(4,7)G,(1",8) v(5,6,7,8). (5.14

Expanding terms that contai@,* or no G, demonstrates VI. RENORMALIZATION GROUP RESULT

that this expression is the second-order perturbative term, 1q f,rther demonstrate the consistency of our results with
Eg. (5.9, with additional third- and higher-order terms. other MSR methods, we perform a simple first-order renor-
These additional terms may improve the fit but they genermajization group calculation to determine the effective dif-
ally make numerically solving the self-consistent equationsysion constant. The calculation parallels several other one-
difficult by adding complexity to the equations. Because ofioop approachef2,58]. More sophisticated renormalization
this difficulty, we do not solve the second-order referencegroup calculations on the action in E.2) have been used
system calculation in this article. to determine the diffusion constant in static random media
The equality at second order is not unexpected becaugeoblems in several references as W}&R,13. Our approach
there is only one second-order graph that is not contained iis not general, but it allows the incorporation of dynamic
the graphical expansion of the first-order self-consistentlisorder and the spirit of these calculations can be imple-
equation. The Gaussian reference method has many termented for other forms of disorder. This approach also re-
that appear redundant. At second order the terms cancel baovers the general form suggested by Dean and by Deem in
they do not necessarily cancel at higher order. As a resulthe static limit,A—0 [2,11].
this method over counts some graphs and subtracts graphs The calculation begins by Fourier transforming the time
that should be added. The expansion is also much more comariable,t—  so thatl=[k;, ;] andG,*=iw+ D|k|? in
plicated and does not allow systematic diagrammatic analyeur generating function. Since the calculation is to first order
sis. Determining additional graphs to include in the expanwe can take the number of replicas to be one. We introduce
sion is difficult so expanding beyond second-order requiresin artificial cutoff frequency in the spatial transform variable
one to start from the third-order variational expression andk, denotedk., and define a momentum shell composed of
reevaluate the higher-order terms. frequencies that we eventually integrate ovég/p<|K|
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=<Kk.) with b>1. To first order we can replaq}(i)p(j) with integrating the terms withk|>k./b for all p andf). This
kil ,[kj|>kc /b with 8(i—j)(iw;+D|k{? 1 With these term only changes the normalization and will be omitted in

substitutions the action in our functional is further calculations.
Up to this point the random potential correlation function,
— Gy H(1,2)p(1)p(2)+ 9(1,1',1",2)Go(1',1) p(1) p(2) x has been general. Now we introduce the three-dimensional

L x in Eq. (1.3 and evaluate the integrals over and k’.
A ~ Integrating overw' is done in a straightforward manner, but
+57(1,2.34p(1)p(2)p(3)p(4) +const, 6.1 the ?(’ int?agral has some difficultyg.] Since the final form
should resemble a free diffusion propagator, we will perform
where thel’ is integrated fork./b<|k’|<k., the otherk  a Taylor expansion of the integral in termskafup to second
variables are integrated fdk|<k./b, and all frequencies order and assume the other terms are small. The new action
are integrated from- o to «. The constant term comes from is

D 2
<2a>3’2xO(§+;fdr[

D- 2—ar?-

i(,!)2+

r? eXF[—arz]] ) |kal? ﬁ(l)p(Z)]

—fdldz[ 8(1-2) 5

4
327

1/ BD
2 ( (2m)?

2
) f d1d2d3d48(1—2+3— 4)| Kq- (k1= ko) ks (Kg—kg)2(27)%%(2a) ¥ o) [k1— k|2
exd — alk;—ky| 7]
M|k =Kol *+ (01— @)

2ﬁ<1>p<2>2>(3>p<4>] 6.2

with k./b<r=|k|<k. and |k|<k./b. To get this result, a term of the forfiw+(D+\)r?]"! is replaced with[(D
+2)r?]~ 1 sincer is large and the major contribution from is for w~0. Rescaling by b, w by b? and the field variables,

p andp, by b~ results in an action with the same form as our original and the proper limits of integration.

H 4 3/2 (ﬁD)Z 2 2 2 2~
_fdldz 8(1-2)| iw,+ D—3\/E(2a) Xomf dri|2—ar “oxlf exgd —ar?]; | |ky?|p(D)p(2)
+i( AD )Zf d1d2d3d48(1—2+3—4){ kq- (ki—ko)ks- (k= k) 2(2m)%3(2a)%?x o\
2b% | (277)2 1" (K17 K2R3 (R3™ R4 0
exr{—aé|k1—k2|2]
ky— kol p(1)p(2)p(3)p(4 6.3
X ki kol )\2|k1—k2|4+(w1—w2)2p( )p(2)p(3)p(4) (6.3

u is a new scale factor that modulates {k¢? term in the 4 (BD)>?

exponential. Before the first iteration of the renormalization D'—D— ———(2a)¥%, J dr
_ . . . L 327 D+A

group,u=1. From this equation we determine the relation

ship between the old parameters and the new parameters,

denoted with a prime. X

2—aur?— rzexp{—aﬂrz]].

D+X

By rescalingy, by (D/D’)? we replace theD? in the
Mmoo, quartic term with D’)2. Choosingb=exdA{] with A{~0
allows us to write approximate equations for the changes in
these variables. These approximations will become accurate
2 in the limy,_o.

Ap——u2A7,
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8 (8D)? This expression can also be derived by substitubirg D
Axo— — x0o3AL+ x5 (2a)3? DX in Eqg. (3.3 and shows that the expression has the correct
3V2m initial slope. The expression also recovers the static disorder
N limt (A—0) reported in  several references
X 2—aﬂk§—m kgexq—a,ukg]}Ag, [2,10,11,49,50,58
2
, D D:Doexp[—ﬁs)(o} 6.7)
AD—— ——(2a)¥p o |
3V2m D+A A discussion of the comparison between the RG results
N and the perturbation results was presented in Sec. IV and are
X{|2— apk?— —— kgexr[—a,ukg]}Ag. plotted in several figures, (), 2(a), 2(b), 3(a), 3(b), and
D+A\ 3(c). As discussed in Sec. IV A, the RG calculation presented

_ _ here gives the correct first-order perturbation result and ex-
The second term in the flow expression fgy can be made  amination of the flow equation, E¢6.5), demonstrates that
arbitrarily small by choosing a large enough cutoff frequencythe solution does not go to zero for finite disorder strength.
kc. This assumption fails when the becomes extremely As a result, the particle avoids trapping. As mentioned in
small, but xo can be arbitrarily small at the point of the Sec. |V A, the particle should exhibit this nontrapping be-
failure, which allows us to neglect this term. This argumenthavior. The solution to this equation for the dynamic poten-
depends on the decay g} being faster than the decay @f  tjal remains above exp- 8%xy/3], the static disorder solution
From the first two equationg, and x, have a simple expo- in Eq. (6.7), which is also above the lower bound predicted
nential form in terms of =NA{, whereN is the number of by Masiet al.[2,57].
iterations of the RG calculation.

w=exd —2¢], VII. DISCUSSION OF RESULTS

Xo=[xo0lz=0eXd —3¢]. In this paper, we have extended previous MSR results for

diffusion to a random potential with both spatial and tempo-

Substituting these expressions into the expressiobfeads  ral correlations. We perform a Dyson expansion to develop
to the expression renormalized propagators for one- and two-particle systems.
dD 4 (BD)? These propagators determine the characteristics of the sys-

—=———2a)* xol;co=1]|2—a exgf —2¢]k?  tem including the diffusion constant and non-Gaussian indi-
d¢ 3V27 D+A cators. Most of the results are general for arbitrary dynamic

N potential correlation functioly or can be generalized by fol-
—— k3 exd — 371 exd — aexd — 271k2 ’ 6.4 lowing the spirit of these calculations.

D+AJe A-sced A-2dicl]. 64 The field theoretic method developed by Martin, Siggia,

. . . . and Rose is shown to be consistent with the direct Dyson
The new diffusion constant is the value of the solution to th'sexpansion. A perturbation expansion using the MSR method
equation a =< with D=Dy (the free diffusion valugat  yie|qs the same single-particle propagator to second order
¢=0. The equation simplifies further by introducing a newsnq the same first-order expression for the two-particle
variable of integratiork=— /ak. ex{ —¢], and defining di-  propagator. The field theoretic method of MSR can also be

mensionless quantitie®’=D/Dy and N"=\/Do. In the  ysed to determine an Edwards type of variational fit of the
limit as the cutoff frequency goes to infinity, the initial con- propagator, which has the same first-order expression as per-
ditions areD’=1 atk=—c, and the solution iD" atk  tyrbation but a more complicated second-order expression.
=0. With these substitutions the equation Bt is straight-  The variational approach is also consistent with previous

forward in form. static calculationg2]. The diffusion constant is also deter-
dD’ K2D'2 \ mined from a renormalization group calculation. These re-
——=—0 2—k?— ) exd —k?] sults are consistent with previous work in the static limit and
dk D'+’ D'+’ give a reasonable generalization to dynamic disof8gi].
(6.9 The renormalized perturbation expansion used to deter-

mine the diffusion constant demonstrates the expected be-

havior of a perturbation expansion. The results match the

8 nonrenormalized expansion for small values of disorder

o= _\/—(ﬁz[)(o]g:o)- strength but eventually they deviate from reasonable behav-
3V ior and predict trapping. The dynamics of the potential cor-
relation functions,\, increased the diffusion constant be-
cause any barriers to diffusion would eventually rearrange,
allowing the particle to move, but the renormalized pertur-
(Do—N\) By bation expansion st!ll predicts trapping fpr fin_ite disorder
D=Dy— Dgo— r Ao (6.6)  strength. A renormalization group calculation with the MSR
(Do+\)? 3 formalism shows more reasonable behavior with the diffu-

with

For D~Dy, the equation is just an integral and the result is
the first-order nonrenormalized perturbation result
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sion constant decreasing as an exponential with respect to the Although the model was chosen for computational conve-
disorder strength in the static limit, which is consistent withnience, the correlations exhibit behaviors that are similar to
previous calculations and simulations, and as a power laweal systems like glasses and supercritical fluids. This study
for a system with nonzera [2]. also demonstates that the anayltical and computational meth-
The correlations functions determined by the perturbatiorbds used in this paper can be applied to the diffusion of a
expansions for the two-particle Green’s functions exhibit col-spjute in real systems with a potential-potential correlation
lective behaviors that can be interpreted as clustering in thignction determined for these systems.
model. Particles that originate near each other have a ten-
dency to diffuse with similar rates and move closer together.
This behavior results in long lived correlations that are ap-
parent even in the nonrenormalized expressions. Since per-

turbation expansions have a tendency to over emphasize the _ . .
effects of the potential, we expect that the renormalized NS research is supported by the AT&T Research Fund

propagator will demonstrate even stronger correlations befward and the NSF Career AwatGrant No. Che-0093210
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