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Random energy model for dynamics in supercooled liquidsN dependence
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The random energy modéREM) for the critical points(saddles and minimaof the potential energy
landscape of liquids is further developed. While thermodynamic properties may be calculated from the uncon-
ditional distribution of state&(E), dynamics requires the distributi@.(E’;E) of energiesE’ of neighbors
connected to a state with enerBy Previously it was showfil. Keyes, Phys. Rev. B2, 7905(2000] that an
uncorrelated REMG.(E";E)=G(E"), is badly behaved in the thermodynamic lihit-c. In the following,

a simple expression is obtained f6¢(E’;E), which leads to reasonabidependences. Results are obtained

for the fractionf, of imaginary-frequency instantaneous normal modes, the configuration ersgopthe
distributions of the different-order critical points, and the rRtef escape from a state. Simulation data on
fu(T) and the density of minimay(E) in Lennard-Jones and G&re fit with the theory, allowing a determi-
nation of some model parameters. A universal scaling fornfi forand a consequent scheme for calculating the
mode-coupling temperatuii, consistently among different materials, is demonstrated. The dependence of the
self-diffusion constanD uponR and f, is discussed, with the conclusion tHat:f, in deeply supercooled
states. The phenomenology of fragile supercooled liquids is interpreted. It is shown that the REM need not
have a Kauzmann transition in the relevant temperature range, i.e., above the glass transition.
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. INTRODUCTION tension, that &th-order saddle is a state having exadfly
connected neighbors with lower energy. From this perspec-
Classical thermodynamics and dynamics is ultimatelytive, the states are identified as all the critical points. A REM
governed by the potential energy surface, or landscape, deaay also be formulated for the minima alof#.
fined in the -dimensional configuration space of all the  The analogy to liquids is madg2] by replacing amino
atomic coordinates. With the number of atobdiverging in  acids with weakly interacting local regions, possibly corre-
the thermodynamic limit, the landscape is extremely complisponding to the “cooperatively rearranging regions” of
cated, difficult or impossible to visualize by extrapolating Adam and Gibbg10]. We denote their numbed, ~O(N),
intuition from lower-dimensional surfaces. Random energywhereN is the total number of particles. A region contains
models[1] (REM) offer an attractive simplification for lig- z=N/N,~O(1) particles. The number of local “excited”
uids and macromolecules. In 1908, we suggested that the statesv~O(1); v is an intensive quantity, but it may be very
protein REM of Bryngelson and Wolyné¢8] (BW) could be large. Following the BW model, each state of the entire sys-
adapted to liquids. In that model, an amino acid—the basitem would be connected t@N, neighbors, the number
unit of the system—has one ground state andexcited reachable by a change in a single region. However, since not
states. The ground state single-unit energy is fixed and thall pairs of states in a local region need to be connected, we
excited state energies are random. Nearby units have a fixdet the number of connected neighbors, denoted\gs,
interaction if they are both in the ground state, and a randonequal cvN,, anticipating that the connectivity fractioa
interaction otherwise. In this manner the states of the entire1. Both N, and » are temperature-independent constants
system, and their energies, are built up from local contribubut, since Adam and Gibbg10] main point was to associate
tions. super-ArrheniusT dependence of relaxation times with a
Currently there is considerable interg$t-8] in using the  growing cooperativity at lovl, it may be necessary to make
critical points or extrema of the landscape to define states achem T dependent in future work. At constant density, the
liquids. The critical points are characterized by the ofider condition for most simulations, anly dependent cooperativ-
the number of imaginary frequenciédirections of down- ity should be weak relative to constant pressure.
ward curvaturg so thatK=0 is a local minimumK=1 a Away from the critical point, or possibly the glass transi-
first order saddle, etc. The neighbors of a given state may bgon, liquids have short-ranged correlations. It would be a
reached by moving a small number of particles, i.e., they ardad idea to convert the theory of liquids from a few-body to
nearby in the configuration space; neighbor minima are conanN-body problem. This is avoided with the recognition that
nected by reaction coordinates crossing first-order saddlethe landscape is really a compodigg whose building blocks
etc. Transitions among neighbor states play an important rolare the landscapes of the local regions. Thus the simplifica-
in landscape theories of dynamics. By contraspriori the  tion afforded by the REM is precisely that needed to keep the
REM states do not possess an order or a connectivity. BVlandscape approach on physically sensible grounds.
connected the states differing by a change in a single amino The central limit theorem suggests that the REM density
acid—interconvertable by a single transition—and identifiedof states is Gaussian, and we will employ a Gaussian distri-
a local minimum as a state having all its connected neighborbution in the following. The normalized, unconditional dis-
higher in energy. Wé2] proposed, in a straightforward ex- tribution of all the states is
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1 - malized distribution irE’" of states connected to a state with
G(E)= e (E-B)Y(@a%) (1)  energyE. The conditional, connected density of states is
b Pe(EE)=NenGo(E';E).

. In a recent papdrl7], we worked out some consequences
with the center of the distributiork, and the square of the of the REM/INM theory. We obtained the relation found via
width, A2, both O(N,). The unnormalized density of states simulation by La Naveet al. in water[14,15 and silica[16]
is p(E)=QG(E), and the total number of states {3  that In(f,) is proportional to the configuration entrof,
~0(e'r). BW give explicit expressions for these quantities, and found furthef11] confirmation that the escape rate from
which can be adapted to liquids. They also introduce an ora state R, is proportional tof ;. The latter result is particu-
der parametep, the fraction of regions in their ground state |arly transparent for transitions to states with lower energy,
[it is hoped that the BW parametgr which we mention for  since then the Boltzmann factor equals unity and the rate is
completeness but do not use, will not be confused with thg,st proportional to the number of destination states, propor-
density of statep(E)]. The distribution is then not Gauss- {ional to s or f, [Eq(2)].
lan, but a weighted superposition. of terms like E‘JJ) for HoweV(car, Ref[17] had a glaring difficulty. BW formu-
eachp. The order parameter provides the capability to pre-lﬁited an uncorrelated REM witG (E':E)=G(E'). Since

dict T dependences different from those usually associate : . B
with a REM. We will defer exploitation of this generaliza- € Wldth_A 'i O(, Nr), and the thermal average e-ner.gy
E*(T)=E—A“/T lies O(N,) below the center of the distri-

tion, suppressing the dependences for now. When neces-— \ ! :
sary, we will assumg=0, a simple nonparametrized Gauss- bution, essentlally all the connected neighbors o_f a thermal
ian REM; then, in particula) = v, sta’ge argO(Nr) h|gher_|n energy. By _cpntras_t, W|th.states
In fact, the number of liquidlike states does not really fall 4€fined in computer simulation as minima via the inherent
off as a Gaussian or superposition of Gaussians at the loweSructure mappind4] or as all the critical points via the
energies, exhibiting instead an abrupt cutoff, and this hasaddle mappind5-8,18, state-to-state transitions unques-
consequences at very low temperature. There is no contrdonably involve energy changes O(1). This is because
diction with a REM; the Gaussian approximation to a sum ofo"ly @ few particles change position. _CNonsequ_entIy, in the
random energies breaks down in the vicinity of the lowest!nNcorrelated model, botR and f,~O(e "), an incorrect
possible energy, unless the “steps” in the sum themselves af&sult in the thermodynamic limit, although relations among
Gaussian distributed. We will also defer discussion of thidhe badly behaved quantities &re7] reasonable and infor-
point, and so the results presented below must be vieweﬂ‘ag've- Even so artifacts appeared, efghas a contribution
skeptically in the vicinity of the glass transition temperature™ fu» Which should obviously be linear. o
Ty. However, we will be quite pleased to obtain a theory In the following, we propose a simple approximation for
valid down to the “mode-coupling” temperaturé.>T,, G(E ,E)'W'hICh properly keeps the c'onnected ngghbors of
where the self-diffusion constaBtextrapolates to zero from & state within arO(1) energy separation. Properties of, and

above, and the dynamical crossover from highe low-T ~ relations among, minima, saddle§,, S;, and R result
dynamics is well established. which are well behaved in the thermodynamic limit; we will

neighbors with lower energy ard.,— K with higher. Thus, INM theory collapses simulation results féf(T) in unit-

a connection is established between the REM and the instaflensity Lennard-Jone$.J) and seven densities of ¢$n a
taneous normal modéENM ) approact11] to the dynamics. master curve, allowing a consistent estimate of the mode-
The crucial quantity in INM theory of diffusiofill] is the — coupling temperatureT., and represents the density of
fraction of imaginary-frequency or unstable modes, denotedninima po(E) in LJ. The fits yield the model parameters.
f,, which in this case is equivalent to the averaged fractional he dependence d® uponf,, and the more complicated
saddle orderf ;= (K)/Ng,=(k). In liquids, f,>(k), but(k) ~ dependence ob uponR, are discussed. Several aspects of
may be regarded as a cleaned up or “diffusive” versiorf of the characteristicT-dependent behavidrl9-21 of super-
with the contributions of nondiffusive anharmonicities re- cooled liquids are reproduced.

moved[5-8]. A growing body of evidenc§5—-8,11-16 in-

dicates thaD is determined by the number of unstable dif-

fusive modes; thus a dynamical quantity is expressed in [l. THE DISTRIBUTION OF CONNECTED

terms of an equilibrium property, the goal of nonequilibrium NEIGHBOR STATES

statistical mechanics. The saddle fraction is intimately tied
[2] to the distribution of states, but not the unconditional
distribution,

The liquid analogy to the BW model has random excited
state energies in a region and random pair interactions
among excited states in adjacent regions. By imagining the
. interaction energy to be shared between the members of the

fu(E)pr(E)ZJ dE'G.(E":E); 2) pair, the erglergy can be written as a sum of local contribu-

- tions,E=X," €. Eache;~O(1) is a step in a random walk
in energy, which terminates at the system enefgy

at energyE, f, is just the probabilityp; (E) that a connected ~O(N,). Equation(1) will be obtained if the normalized
neighbor state has a lower energy, &dE’;E) is the nor-  distribution of local region energieg(€), is
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_ While E andE’ areO(N,), Eqg. (7) will constrain their dif-
g(e)= g (=925 (3)  ference toO(1), asrequired. The presence of energy/region
o\2m e=E/N,~0O(1), in the agument ensures the essential prop-
_ erty that as the energy of a state becomes more negative with
where the parameters=A/N, and e=E/N, are both decreasing, its neighbors lie with increasing probability at
~0(1). Wewill use Eq.(3) in the following, but for future higher energy. It is also easy to show that
reference, recall that non-Gaussigfe) can also yield the
GaussianG(E) for most of theE range, as well as a lo&-
cutoff. h(e;E)=
The unconditional distribution is obtained as usual with
an integral over alle; (denoted by{e}) of the product of
local distributions for each region andsdunction constrain-
ing their sum toE; this amounts to a sum over trajectories
leading toE,

—[e—(EIN.)]%(258%).
e r ; (8
o2

in an N,-step trajectory leading t&, the mean step is obvi-
ously E/N,, and the width is unchanged from the uncondi-
tional distribution. We now explore the consequences of Eq.
(7) for supercooled liquids.

NT Nf
T g(e) 5( E-> EJ.)_ (4) ll. EQUILIBRIUM PROPERTIES OF THE MODEL
=1 =1

G(E)If d{e}
The thermal average energy/region is
Now considerG.(E’;E). BW suggest that the connected
states differ by a change in one region, and this is eminently
reasonable for liquids; then the energies differ by a change i
a singlee;~O(1). Togenerate the states wili connected
to a state withE, start with a trajectoryfe} in the integrand

e =e—8IT. 9

"he REM has a characteristic energy at which the configu-
ration entropyS, vanishesg,in=€— 62 In(v) (for Ref.[3],

of Eg. (4). Replacing any; with a random numbee such p=0), and so

that e=(E' —E) + ¢; will yield the indicated state, and the T =52 10
distribution of € is g(€); thus the joint probability distribu- min (). (10
tion of finding connected states withandE' is Discussion of lower temperatures [is,3] possible with the

N recognition that the states in a given realization of the REM
. T are no longer continuously distributed. AT, [1,3], @
G(E".B)= N, i=1 d{E}[iUl 9(6')} typical realization is trapped in a state wigh- €,,,;,,, andS;

remains~0. In liquids, T,,;, is naturally identified as the
N, o -

, Kauzmann temperature, which is determined by extrapola-

E_]Zl € |9(E'—E+e€pn). ) tion to lie below the glass transition temperatdig. Tem-
peratures below, are not accessible, so we will adopt the
Recognizing that all terms in the sum owveare equivalent, Point of view that observable behavior must correspond to

Ny

X6

an instructive rewriting is possible, T>Thin-
1. The fraction of imaginary frequencies
’ — r_ +
G(E".E) J deg(E'~E+e)h(eB), © Equations(2) and (7) yield
whereh(e,E) is the joint distribution for finding a trajectory 1 (e—e)
leading toE and a local steg in that trajectory; its expres- fu(e)= 2 1-erf 25 (1D

sion follows from a comparison of Eq&) and (6).

The desired normalized conditional distribution With the well-behavedG.(E’;E), as opposed17] to the
G.(E';E) is obtained from the joint distribution by uncorrelated modef,(T)=f,(e*(T)) as usual, and
G.(E";E)=G.(E',E)/G(E). Alternatively, it follows from
Eq. (6), with h(e,E) replaced byh(e;E)=h(e,E)/G(E).

With connectivity fractionc<<1, not all states generated by a fu(M =3
change in one region are connected to the original state, but

that only affects the normalizatioN., of the conditional
density of statesp.(E’;E)=N.,G(E";E).

For Gaussian local distributions, the integrals in Es).
can be evaluated with the standard technique of introducin
the representation of the Diracs function &(x)
=(1/27) [d&ée'®; thus

( S ”T%O T
l-effi=|| = ——
2T S\N2m

SinceT=T,,,, the low-T limit is not strictly reachable, but
Eqg. (12 demonstrates that in the REM, posesses super-
Arrhenius behavior with activation enerdy, ;= 62/4T. At

ﬂigh T, f,—1/2, because then the thermal energy approaches
the center of the symmetric Gaussian density of states where
p==p~ =1/2. The averaged saddle ord&r) equalsN.,f, .

1 - The maximum possible order of an individual saddldljs,
GJ(E":E)= e~ [(E'—E)+(E/IN) ~ e ?/(45%) 7) \{vhll_e the maximum of thg thermal _average_Ngnlz_. In a

26\ liquid, the maximum possible order is the dimension of the

e T (12)
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configuration space, 8, but N.,=3N(cv/3z)<3N. Thus

the REM incorporates a coarse graining, expressed by the
factor (cv/3z), in that only directions that lead to new states
are kept. Equivalently, the nondiffusive anharmonicities that
enter f,, in liquids, corresponding to false transition states
that do not contribute to diffusion, are absent.

The mode-coupling temperaturg, is the temperature
where D(T) extrapolates to zero from above via a power
law. Sciortino and Tartagli@l2] showed thafl, could also -8 L ' L L
be obtained by extrapolating the fraction of diffusive 02 05 075 1 1.25
“double-well” INM, those exhibiting a double-well potential /5

energy profile along the eigenfunction, to zero in water. It ¢ 1 Nagural log—linear REM/INM master curve of fractional
has been demonstrat€s—§] that (k(T)) serves as well for  qaqqje ordefk)/N,, vs dimensionless temperatufés and simu-

atomic systems. Since any scheme for eliminating the NoNgion data,N=108, unit-density LJ(solid triangles, and seven
diffusive anharmonicities makes a liquid more REM-like, we gensities of CS Arrow denotesT, .

expect that all well-conceived diffusivi,(T) in liquids—
including the saddle order itself—will be proportional to the “coarse-graining factor’cv/3z=cvN,/3N equals to 0.21 for

<K>/Ngp,

REM (k(T)). LJ and 0.23-0.22 for GS about 20% of directions lead to
It is straightforward to make a power-law fif,=a(T new states.
—T)P, to data generated from E@L2). Such fits are ex- The table also includeE, from Eq.(13). For unit-density

tremely sensitive to the temperature range employed. Physi-J, the valueT .= 0.41 is in reasonable agreement with what
cally, T. is the temperature wher® would vanish if the we have published8], i.e., 0.47, but somewhat lower. For
upper supercooled dynamical mechanism only were operas,, 1.46 glcc, at 78 K is very close to our estim§2g] of
tive; thus data from too high or too loWmust be excluded. 75 K. However, note that the data that gave the origihal
The natural temperature unit of the REM & and in the  are represented very accurately by Ftp). Equation(13) is
following, dimensionless temperatures are understood to inbased on making the power law fit to a dataset generated
dicateT/s. Starting from a lowefT of 0.25 or higher, the from Eq.(12). Differences inT, calculated from the original
estimatedT . rises and the exponehbtfalls as the upper limit  data and Eq(13) arise only from the different temperature
for the fit, Ty, increases. By contrast, fd =0.05-0.15T;  ranges employed for the fits, and to a lesser extent from the
rises gently to a maximum and then declines slighflyand  different spacing of the points. The highers 0.41 T, of
b are remarkably independent ®f, and T, with b~1.50  0.47 for LJ in Ref[8] is a consequence primarily of starting
andT./6~0.24 at the maximum. Intermediate behavior isthe fit at a higherT, and using also a higheF . Fitting
seen afl =0.20, whereT, first rises withT, but appears to  simulation data to Eq.12) and then takind from Eq. (13)
be reaching a plateau df./6~0.28. From these observa- insures that equivalent fit ranges are used in all studies, since
tions we estimate Eqg. (13 resulted from a single fit to Eq12). We suggest
that our procedure is a good way to obtain consisienvn
T.~0.265, (13)  different materials, from simulations covering different tem-
perature ranges and densities.

which should be adequate for the semiquantitative discussion 5 |maginary frequencies and the configuration entropy
to follow. The correspondindb=1.50 was also found by _ _ _
simulation[22] in water, and is typical of the values found N the uncorrelated REM, a linear relation exigis] be-
for other liquids. twgen Fhe totalS.~O(N,) and the_badly beha_ved _m,
We have 8] previously obtainedK (T)) via simulation in which is also O(N_r). The essential observation is that
supercooled unit-density LIy=108, and als¢13] the dif-  Sc(E)=In(Q)—(E-E)%(2A%, and the E-dependent term
fusive center-of-mas§;"(T) in supercooled C§ N=108,
at seven densities 1.55 gfep=1.42 g/cc, including the
normal freezing density 1.46 g/cc. Equatiti®?) and subse-
quent discussion suggest that plottiti§)/N., vs T/ will

TABLE |. Parameters for master plot. All systems ake
=108, and the densities are in parentheses.

allow data on different materials to be represented by a Hiquid 0 Nen cvisz Te
single master curve§ andN,, are determined by fitting the LJ(1573) 1.5% 66 0.21 0.4%
number of Im-w to N, times Eq.(12). Figure 1 demon- CS,(1.420g/cc) 236 K 74 0.23 61 K
strates the master plot for LJ and £Sssentially perfect CS,(1.440 g/cc) 265 K 71 0.22 69 K
aboveT,. The calculated parameters are given in Table 1.CS,(1.460 g/cc) 300 K 71 0.22 78 K
With increasing density across the available range in,G5  CS,(1.485 g/cc) 343 K 71 0.22 89 K
increases from 236 K to 486 K. The maximum saddle ordeis,(1.51 g/cc) 394 K 71 0.22 102 K
or number of connected neighbors is remarkably constants,(1.534 gicc) 448 K 71 0.22 116 K
(no rotational contributions té;™) between the two materi- cs,(1.551 glcc) 486 K 71 0.22 126 K

als and among the different densities. Correspondingly, the
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collectivity. La Naveet al. use double-well modes for water.
Perhaps all diffusive modes are not equivalent; there is some
evidence[8] of this below T. in unit-density LJ. Another
consideration is that water is a molecule wiflor a rigid
mode) six, not three, degrees of freedom/particle. Indeed, a
better G, may be indicated, but at least we know how to
begin interpreting the “La Nave plots.”

exponent

3. Minima and saddles
0.25 0.75 1.25

s The densities of stategx(E) for K'th-order critical
_ points follow from Egs(1) and(2), and our proposdl] for
FIG. 2. Exponent ofg(e*) (solid) and 0.77If(T)]+0.89 vs  defining a saddle in the REM,

T/6.
p(E)=QG(E)P(E), 17
may be expressed with i, according to the asymptotic
expansion of the error function. In the uncorrelated model pK(E):CzcneNm[(lfk)lnllffu(e)]+kln[fu(e)]], (18)
the argument of erf isE—E)/(y2A)~O(yN,) instead of
the O(1) quantity in Eq.(11). wherePy is the probability that a state is &' th order and
In the current model, using the asymptotic expansion ofC is the binomial coefficient. At lowl, f, is small and In(1
erf and taking a thermal average by replacingy €*, —fy)——"f,. The highT limit of f, is 1/2, and In(%f)
—In(1/2)=—0.69. The expansion of the log is no longer
Se(T)=In(€2) +2N,[In(f,(T) —const, (14 valid but its smallf,, form nonetheless yields 0.50, which

) ) i is not too far from the true value. Thus we can use the ex-
where const includes terms proportional tolnMNow, inten-  yansion for the full range of,, in estimating properties of
sive entropies are reported on a per atom or per moleculginima and saddles.

basis; division byN (not N,) will yield a factor of 1%z in The case oK =0 (minima) is of particular interest,
front of In(f,). Rearranging to conforrfil4—1§ to the work
of La Naveet al, we have Po(E)~e Nenful), (19
_Zz B Since even at love the smallness of , remainsO(1), P
Infu(T)]= 5 LS(T)/N] ~ const, 15 Vanishes a®(e ") in the thermodynamic limit. Integrating

po(E) approximately by making a cummulant expansion on
opening the possibility that the slope of afij(vs S;/N plot  P,(E) yields the number of minima,
may yield the size of the cooperative region.
Available simulations do not probe extremely low Qo~Qe Ner'2, (20
where the asymptotic expansion must hold, and the REM is
limited to T>T i, SO further analysis is required. The ques-One should note that, because the total number of states in-
tion is, can Ifif (T)] represent the exponent ge*) [which,  creases exponentially witN, , po may attain a positive en-
multiplied by 2N, , gives theT-dependent part of the expo- tropy ~O(N;) for some energies; nevertheless, the minima
nent of G(E*)] at the availablél? Figure 2 shows the result remain thermodynamically negligible. By perfect contrast, in
of fitting the exponent tan[ In(f,)]+b, varyingmandb, over ~ the uncorrelated mod¢lL7], all thermally accessible states
a temperature range typical for simulation. The representzare minima. The caveat is that belagy,;,, some low-lying
tion is excellent; with best fit parameters=0.77 andb  states1,3] will attain finite occupation probability with,
=0.89, the slope is not terribly different from its asymptotic #0, f,=0. Such a transition in the occupation of the
value of unity, and the answer to the question is affirmativeminima has been discussgsl-8] as occurring af;, where
The final result forp=0 is (k(T)) extrapolates to zero, but it would seem that the
minimum-saddle transition temperature is really the unreach-
IN[f,(T)]=0.65[S.(T)/N]—[1.16+0.65Inv)]. (16)  ableT,,, in this REM.
While we claim to have a well-behaved theory in the ther-
Both S; and f, are functions of the dimensionless variable modynamic limit, the absence of minima, the essential com-
T/ 68, so & does not enter Eq$14)—(16). ponents of much contemporary thinking, is surely controver-
As with Eq. (12), we assume that all diffusivé, are sial. A better approximation t&, might lead to a different
proportional to each other, and may be used in Bd); conclusion. On the other hand, Kivelson and TafR&] have
different multiplicative constants will not change the esti-argued that all pointsexcept the global minimujmon the
mate ofz. Plots of diffusive In{,) vs S./N are linear in water landscape with the same potential energy are connected by
[14,15 and silica[16], with slopes of 0.96z~1.5 and 16.2, an “equipotential ribbon” in the thermodynamic limit; then,
z~25, respectivel\f24]. The obvious conclusion that silica there are no minima.
is more collective than water is reasonable, but such a small The two arguments might seem to be quite different, but
zis puzzling for fragile watef25], which should have some there is also some similarity. Kivelson and Tarjus consider
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3000 T T T IV. DIFFUSION AND THE ESCAPE RATE
The states of the model are all the critical points. Thus
2000 - 4 there are no barrier crossings—such a process is represented
= by a sequenc& — K+ 1—K. Transitions out of a state with
& E to connected neighbors with’ naturally divide into those
1000 . with E'<E and those withE’>E. Cavagnal[5] has dis-
cussed these as distinct mechanisrds and “ A,” respec-
o : . tively. BW adopt a simple Metropolis dynamical scheme,

15 1 05 0 with a B transition having rateR,;, an A transition

/5 Roe E'"BVT |t is important to note that what might be
regarded as the REM—the unconditional and conditional
FIG. 3. Density of all stategpeaked at zejoand 100 times densities of states—can be combined wéhy dynamical
density of minima vs dimensionless energy/regians, for N, model, yielding different predictions f& andD. Nothing in
=5, v=5,¢=0.4, €=0; €nip=—1.79. the previous sections depends on the dynamical model, ev-

erything in this section does.
that, as the number of directions in the configuration space

diverges, it will always be possible to find a path that does 1. The escape rat®

not cha_nge the energy. In the REM, EI%” d|verge_s, "?‘”d The averaged total rate of downward transitions is, with
with neighbors having energy seperatior€©(1), it will no approximation

always be possible to find a connected neighbor with lower '
energy. So both arguments depend on having a diverging Re(T)=N¢Rof (T), (24)
number of choices for moving away from a configuration or

state. It seems significant that two independent approachesncef,=p: and every connected neighbor contributes. This
point to the vanishing of the minima in the thermodynamicis the simplest possible demonstration of why rates are natu-

limit. _ _ o rally expressed by,,.
Figure 3 shows 100 times the density of minima and the The averaged total rate of upward transitions is

full p(E) for a representative small system where minima

still survive. AsN, is increased, the scaling factor would also

have to increase exponentially to maintain the visibility of

the minima. The abrupt the vanishingmf on the lowe side

is caused by the “entropy cutofflexponent less than unity
Multiplying px(E) by the Boltzmann factor and maximiz-

ing the exponent yields an equation for tkelependent ther-

mal energies, where

RA(T)chnRof dEG(E)e F/T

« fE dE'e € BTG (EE)q(T), (25

k

+i,. q(T)=fx dEG(E)e &/, (26)
fu(fﬁ) o

(ef =€)l 8%+ cvG (EL ;EX)| (1—k) — =

2 The factor G(E)e ¥'T in Eq. (25) is strongly peaked at

E* (T), which normally means that the integral is dominated
by E~E*(T). The uncorrelated modél7] was not normal
because of the unphysically stroNg (and hencé&") depen-
dence ofG.. Now, evaluation oR, is straightforward. The

A quick approximation is to replaceG.(Ey ;EX) by
G¢(N,e*;N,€*) andf (eg) by f,(e*), and to use the low-
T approximation tof ,, yielding

5 discussion in Sec. Il shows ho@&, [Egs.(3) and(7)] keeps
e =e— —[cu(1—K)f(T)+(1—crk)]. (22) (E'=E)~0(1), so thesecond Boltzmann factor is O(1)

2T and
One expect$5] that Ef , ; — Ex is comparable to the activa- Ra(T) = EN R - PAT? 27)
tion energy; this difference of~-O(N,) energies must be AVTIT g Ten0 ’
~0(1). Weimmediately obtairfrecallk=K/(cvN,)]

1
2 R(T)= NCHRO{ fu(T)+ 5 7T
Ko1m Ek=or[1+1(M)]. (23
T—0 S

At low T(f,<1), the REM has a super-Arrhenius activation = NenRofu(T)| 1+ ‘/; T/ (28)

energy~ 6°/2T, a simple consequence of the energy spacing
of the critical points of adjacent order, in agreement with the Both mechanisms make equal contributions at high
T dependence of,, Eq.(12). where f,—1/2 and Boltzmann factors approach unity.
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MechanismA dominates at lowTl, where the lower-energy “back and forth” motions in two-level systems or groups of
states required by mechaniddrbecome unavailable, though states in deep valleys cé@8] lead to correlation even below
only by a factor of ¢/T). For T<T;,, with a typical rep- T.. The simplicity of the dynamics depends upon an intelli-
resentation of the REM trapped in a minimum, presumablyyent choice of states. If motion among the microscopic states
fu=0, mechanisnB shuts off strongly, and only activated is correlated, it may be a Markov process among appropri-
mechanismA operates. ately chosen groups of states. As discussed above, the REM
The above description captures some features of Cavggready includes a coarse graining. Further groupings may be

gna's[5] “saddles ruled scenario.” One difference is that he yj,5de with a hierarchical RENR9], which has recently been
suggests that a rapid onset of strong super-Arrhenius COU'QppIied to liquids by Sas4B0].

arise when the mechanisiturns off at a temperature where Despite these warnings, a Markov approximation in the

mi_laiﬂvagoé‘Me;ergyh for mecpan'_;;l{s alrteTady Igr?ﬁ " configuration space is a reasonable approximation at the low-
e the 0€s have mechan OP allmin, DO est available temperatures. It is also likely that the strongest

mechanisms have similal dependences abové .;,. . .
MechanismB does not require activation for a downward _Tdependence dD is carried byf,, and that a study cover

transition, but the number of states wiEh<<E are vanishing ing many decades in a deep_ly supercooled liquid dgscribed
in super-Arrhenius fashion. by thIS S|mplg REM 3] would flnd.Docfu. However, various
relations or fits of formDof 7, with =1, have been dis-

2. The relation of diffusion toR and f, cussed 13,15,16,30in the literature. What are the implica-
tions of nonlinear relations betwedn and f,? What new
physical information, or information about the validity of the
REM, do they convey?

We believe that deviations frorDocf, are mostly ex-
plained by deviations of true dynamics from that of the cur-
rent REM. (1) With a state-to-state transition model factors

f T related to the velocities, significant at higher tempera-
ures, are difficult to treai2). Describing the escape rate to
higher energy with a Boltzmann factor alone ignores the
complexities of motion along a “reaction coordinate” given

, e.g., Kramers theory. Recall also thgt=(k(T)) in the

EM, but INM calculations use various schemes to obtain
diffusive Im— w, and some may be better than others.

In general{wy,) is different from the escape raRe The Perhaps the most obvious point is tliak T at high tem-

total rate is governed by the states in which the system Waitgerature and constant density, whilg reaches a constant

the longest, and uie) =14, where () is the averaged % PRI, TS PESEKE B 10 G B Haions
waiting time in a state. In one dimension({4y#R. How- PP b ’

ever, equality holds for high dimensionality, specifically if cannot probe the deeply supercooled states where it is neg-

N¢n Is large, as is so in the thermodynamic limit of the REM. ligible. Under such conditions onustcompareD/T, not

. o D, with (k(T)) or another diffusive version of ,(T). A
Assuming that each escape pathway to statéh rate w; . e Lo U
from statei with energye; contributes an independent, ex- power law fit[13,30 of D(T) to (k(T))* in unit-density LJ

ponental disrbuton of waitng imese 1, the prov- U0 YO 2o, but b ST s newr mk(D)
ability of waiting for timet, and then escaping is expressed Py y 9 P

as a sum of contributions from all the connected neighborsa factor of T was being represented parametrically in terms

The average over waiting times in state-not the thermal o <CI‘,((SI'L)r?l.)utions of the kinetic energy are treated properly in
average—ig 7j) = 1/Zw;; . If there are enough terms in the gy properly

sum it is “self-averaging” and equal t&(e;); then, given Zwanzig's theoryf31], whereD is calculated from the veloc-

. . ity correlation function assuming that escape from a
the dominance of the thermodynamic ener@y,q;) = 1K 1) - o ; NN
—R(T) andD(T)=((R)DR(T)/(6N). minimum—defined as a structure in a local region—is what

In unit-density LJ{(8R)2) (for minima) is only weaklyT randomizes the correlation. The zero-time value of the veloc-

dependenf27]. The REM does not have a length scale, but'iy_&or[ezlf(t ::(; /nN ')S -;tlr;o%u'rl' UVQEZ’rea?d,tzhf isretshue[ﬂal\]/elrsaDe q
assuming that it behaves like LJ in this regard, we have . \“ r : ©min 9

The essence of Eq28) is Rxf,. The next step is to
relate the observabe to R, and thence td, . This essential
link has been the subject of much of our prior work, using
both INM theory[11,13 and more direct method27].

If the motion among the statédefined either as domains
of all the critical points or of the miniman the liquid con-
figuration space is a random walk, with no correlation amon
transition vectors, the® = ((SR)?){ wo:)/ (6N) (Ref.[27]).
Here ((SR)?)~0(1) is the mean-square separation of suc-
cessive states anv,,;)~O(N,) is the average total transi-
tion rate. Because a transition in any local region changes t
state of the entire systenfw,;) and R are bothO(N,),
makingD~0O(1),

min.
inverse-squared frequency at the minima. Consistency with
D(T)cR(T)/N,xf,(T) (299  the random walk picture requires thak(w.,,%)), which is
something like the harmonic approximation to the mean-
for a Markov process of state-to-state transitions. Uncorresquare displacement along a coordinate in a minimum, be
lated transitions are expected in a hopping mechanism wheggoportional to the multidimensional mean-square separation
waiting times are long enough for the system to loseof successive state§,sR)?). This may be true, but a careful
memory. ThusT<T. is indicated, and we have verifi¢d7] rationalization of the two approaches has not been achieved.
that the process of minimum-to-minimum transitions then The Zwanzig theory is well behaved at highCombined
approaches a random walk in unit-density LJ. In generalwith an INM approximation32] to R, it does a reasonable
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job of predictingD from T, up to T=20 in unit-density LJ. the most obvious connection to the REM is Viathe width
The change iD(T)/T from sharply increasing at lowto a  of the local density of states. A largeincreases the configu-
plateau[32] is already beginning in the upper supercooledrational heat capacit¢, /N, =de*/dT= §%/T2, correspond-
regimeT~1.6. In terms of the chain of transitions among ing [19] to greater fragility. The configurational entropy does
the states, the theory is properly handling the correlationsiot vanish abovél g, but an extrapolated,;,<T4 can be
that are important at finit€. Thus expressin®/T instead of identified. The ratioT, /T, is closest to unity in fragile
D with f is to some extent accounting for correlated transi-liquids [34], again connecting largé to fragility, asS. drops
tions, which[27] causeD to increase more slowly thaR. more strongly to vanish at a highdr,;,. The S-fragility
Second,R can be much more complex than the simpleassociation is not unreasonable, although Sd8fyconsid-
Metropolis anzatz. INM-plus-Kramers theofy11,13 has ering minima only, has shown that the “vibrational free en-
been used to relate the escape rate from the mininfg to ergy” of the stated=,;,(T,€e) must also be considered. There

The transition-state theory limit gives is N0 F;y in the current REM.
It must also be noted that is the natural temperature
st Nen{ o) fy (30 unit, so in many ways changing simply rescales the tem-

perature and varying the states/regionjs more important.
Equations(10) and (13) indicate thatT,,;, depends on the
while the low-friction limit [13] is number of states per region, while T. does not. They are
equal atv=1630, and

2m(fM™—f,)’

Rlow_ Nen{wu)Eacil fu
(omin(f* = )T ,

where(w,) is the averaged unstable frequenty* is the Te<Tmin, »<1630. (33
maximum highT value (1/2 in the REM, and{ is the mi-
croscopic friction. The REM states are all the critical points, The complex dynamicE19-21 of fragile liquids, including
not just the minima, and Eqé30) and(31) apply toR, only. the super-Arrheniu§ dependence, is most pronounced be-
Nonetheless, it is seen that textbook theories of activatetpw T and, of course, abovéy;,=Tg; a necessary condi-
dynamics yield expressions fdR containing T-dependent tion for the REM to describe a fragile liquid, then, is
quantities, which are not even defined in the current REM. >1630.

In Ref.[13], we argued that the low-friction limit applied ~ Strong[19] or “nonfragile” [25] liquids exhibit Arrhen-
in deeply supercooled liquids, and that that the most imporius, and otherwise simple, behavior all the way down to the
tantT dependence of Eq31) wasR(w,)f,/T. The lowT  glass transition. It is still possible to calculdlg for a strong
limit of Zwanzig’s [31] theory then give®(w,)f,, if the  liquid, but it may not be very interesting, <Tp;, might
T dependence dfw,,2) is negligible. For the seven densities be acceptable. However the only hope for obtainargy
and eight temperaturé43] of supercooled CSused in Fig. ArrheniusT dependence is to hale<Tp,, with the system
1, a fitD=a((wS™fE™* gavea within 1% of unity for the confined for long peno_ds in Iqw—lylng states witr €mins
three lowest densities, and close to 0.90 for the four highes@nd Tmin Must be considered inaccessible. Thus, the simple
In fact, D=(w®™f°™ was very accurate for all 56 states ( REM is fundamentally a model _for frag_ﬂe liquids, and will
close to unity alsp supporting the proposition that the describe more and more of the interesting temperature range

center-of-mass modes, free of rotational anharmonicity, ar@S ? @nd Tmin increase above 1630 and decrease befew

good diffusive modes. On the other hand, at the lowest de respectively. Fortunately, a large number of states is a known

sity, a fitD=a(f,)“ yields «=1.41. Thisa>1 results from ZOAZJJ thribute_ of frag[irl]e zystem_s. ; 76 that th
ignoring the factof w{™. It indicates the need for a better Ny discussion on the dynamics must recognize that the

dynamical model, not a better description of the states Ofalctivation energy is.irrelgvant‘lrf>Eact. Frag”e behavior s
supercooled quuiés often associated with higher and more irregular barriers at

Seses ou'vork on LI and CS (13, Rbero ang 94" .1 e accesbe ndscape changes ver s trpere
Madden[33] found D« f, in molten salts and La Nawet al. 9 _—ach ’ .
(using their diffusive modes, Sec. Ilj have D/T«fl2 in qons_equenpez. !Defmm'ga%t sucr;] thatdf.orT<'I.'act} ’CIIICt'V.a'
. S : tion is required, i.e.E,.>T, we havegdiscussion followin
SiO, [16] and[15] D=2 in water. All these could be ex- q Fact d g

lained with  diff 4 ical sch e h Eq. (12)] T,.=0.56; activation sets in at just below twice
plained with different dynamical schemes, retaining t eTc. The condition for activation &F,;, is v=e?~7. A sys-

simple REM energy distributions. Perhaps in the case of wa}—

o . . “fem with fewer than seven states/regions, if such exists,
ter, aT-dependent connectivity, expressed with a hlerarchlcawOuld exhibit “high-T dynamics” for all availableT [which
REM as explained by Sasg80], is also playing a role.

would only (vide infra) span a small dynamic ranpge
Above T in, the viscosityn should obey

(31 Te>Tmin, v>1630, (32

V. THE REM AND THE PHENOMENOLOGY OF

SUPERCOOLED LIQUIDS 2472
Q [n(T) rer]~ 24T (34)

An extensive literaturg¢19—21 attempts to characterize
the T-dependent properties of supercooled liquids. Perhap&here 7,.¢ is a reference normal liquid value, and so
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[7(Tomin)! el = v (35) 1000 |- ' ' ' '

One definition of the glass transitidi®4] is [ 7(Tg)/ 7re1]
=10, It follows that the REMwill not have a Kauzmann
transition above T, if »=10°% It is often stated that the
REM must have a Kauzmann transition, which is true, but
one occurring belowl, is quite a different matter. The REM
will then give a reasonable representation of a fragile liquid
for all T=T,, with T;=0.0825. Angell [22] estimated 0
T./Ty~1.2 in fragile materials. Our result is much higher,

indicating a need to refine the model.

The predictions of the REM depend crucially upoenlts FIG. 4. REM theory and simulation dataregular curvg for
estimation, and that of the other REM parameters, is of firstlensity of minimapg, vs energyE (LJ unit9, unit-density LJ, and
importance. There are several possible approaches. Fird{=32.
consider that the total number of statessumingo=0) is

Po(E)

500 .

1 [l 1
212 -208 -204 -200 -196
E

=108, this yields z~7—cooperative regions of seven
Q= eNiIn() = glin(»)/zIN_ (36) atoms—om\, =15.4,cv=4.3. Howevergc and v remain un-
known.

The number of distinct minima in several systems has been Third, the _theory of po contains the parameter§
found to obey the relatiof,=eN [35—37, with estimates N, ,v,A,c, andE, and one can try to determine them by a fit.

of @ (unfortunatelya has already been used to denote thelhe _relat|onA2/52=Nr, with & estimated from Eq(12),
power inDe< % but we hope the power law in question will proyldgs another rogte e, orz Aflve-pare}meter fit to our
be clear from the contextranging from 0.019lower bound, ~ Preliminary po for unit-density LJN=32, gives representa-
general argument$35] to 0.8 (data on various simple sys- tions of similar quality for widely different parameter sets,
temg [37], to 13.14 (thermodynamic data on very fragile and is not useful. The number of free parf'imeters may be
OTP) [36]. As part of an ongoing mapping of the Iandscapereduced to three. Thus we hotbN,=18.8 fixed and use
of unit-density LJ,N=32, we have a preliminary distribu- N,=A?/1.54 while varying », A, and E. The result is
tion po(E) with Q,=28780 liquidlike minima corresponding shown in Fig. 4, with v=30.69, A=3.390 and E=

to «=0.28. The position of LJ on the fragility scale has been—196.3. It follows thatN,=4.84, z=6.61 in excellent
unclear. With ana of 0.28 vs 13.4 for OTP, it certainly agreement with our other estimate-ef7, andc=0.12. With
appears nonfragiléfewer statescompared to OTP, consis- », z and ), in hand we may calculat€/Q,=e’°, com-

tent with the arguments of Ferret al. [25]. _ pared toe®* from Eq. (20). Note thatE, the center of the

If the REM states were minima, E¢36) would imply gistribution of all the states, is calculated to lie well above
In(v)/z=ca, and the condition to avoid a Kauzmann transitionhe peak in the distribution of minima.
would be z=2.303(32&). Then the minimalz is 6 for « Unit-density LJ then hag,,;,=0.385>T., or 0.58 in LJ
=13.14, 92 fora=0.8, 264 fora=0.28, and 3878 for  ypits. It is not an ideal system for a REM description, but
=0.019. However, the states are all the critical points, nOfnost of our supercooled data do fall in tfie> T, range.
just the minima. For unit-density LN=32, fitting (k(T))  The representation dk(T)) and the internally consistent fit

[8] to Eq.(12) yields N¢,=18.8 ando=1.54(encouragingly o p(E) indicate that the REM is performing better than one
identical to 159N:108), Eq(ZO) then y|e|d3§)/00: 1.2 m|ght hope in a nonfrag"e System_

X 10*. Even if the vanishing of the minima in the thermody-
namic limit found here is an artifact, there are in general
more states than minima. If the largeof OTP is typical of
fragile liquids, it is evident that they satisfiy,;,<T4 count- Our prior attempts to combine the INM approach with the
ing minima alone and are perfect candidates for an REMREM [2], and to apply{17] the resulting theory to liquids,
description. Even nonfragile liquids with fewer states andsuffered from the unphysical, dependences of the uncor-
smallera could meet the condition with reasonable values ofrelated model. In this paper, with a simple approximation to
z, although the REM would not treat their Arrhenilisde-  the connected distribution of stat€s(E';E), we have ob-
pendence properly. Nonetheless, Etp) gave a good repre- tained a well-behaved REM/INM theory that incorporates
sentation of(k(T)) for LJ. The data were well abovE., some of the important phenomenology of fragile supercooled
where exponential dependence in LJ is wedR5], and we  liquids. With fits to simulation data, a beginning has been
have some hope for a description of less fragile systems urmade at estimating model parameters for several materials. If
der such conditions. the number of states/regions, is sufficiently large, the
Second, fittingf ,(T) with Eq. (12) yieldscvN,, and an  Kauzmann transition is avoided and the REM exhibits super-
estimate ofz=N/N, allows determination otv. We sug-  Arrhenius behavior down td,=0.0825; J sets the tempera-
gested 18] that 3z could be identified with the participation ture scale. The mode-coupling temperatligds ~0.265. In
ratio of the vector connecting successive local minima tocontrast to the uncorrelated model where all states are
which the system is mappefd]. For unit-density LJ,N minima in the thermodynamic limit, the probabiliBy that a

VI. SUMMARY AND DISCUSSION
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state is a minimum is now seen to vanish in the limit. Thisuids is an essential improvement. Here it should be possible
finding is consistent with the arguments of Kivelson and Tarto borrow what has already been dofl,13 for INM
jus [26]. theory. In water, the relatively largeg=2 and the small
The REM expression fof,(T), which we consider com- value ofz from Eq. (16) may indicate the need for a better
parable to the fraction of diffusive Imw INM in liquids, REM.
suggests that data for different materials can be plotted on While the master curve and the representationpgf
the same master curve by introducing the reduced temperatearly show that the REM can be a valuable tool in the
ture T/§. Using the master curve also allows a consistentheory of liquids, the work has only begun. The idea of di-
determination ofT. from different studies on different sys- viding a liquid into independent local regions is still vague,
tems. The method is demonstrated for unit-density LJ andespite having been discussed at least since Adam and Gibbs
seven densities of GS [10], and must be implemented quantitatively. Fitting simu-
A good fit is obtained to the density of minimay(E), in  lated properties of the landscape to the model for more sub-
unit-density LJ, confirming our prior estimaf@7] of seven  stances should make an important contribution to this task,
atoms in a local region and yielding a value 830 states/ determining the parameters and their possibledepen-
regions. Consequently},i,=0.58 LJ units, and the REM dences. Use of the order parametel3] will add new flex-
description does not extend to the deeply supercooled rdbility to the theory. For example, while currenti@, /N,
gime, but works surprisingly well at higher temperatures.= 6°/T2, more generally
Perhaps this is because LJ, while nonfragile, has weak g
ArrheniusT dependencg25], with an activation energy less
than the melting temperature. The REM could not possibly Cv/Np=- ﬁ[‘sz((p(T»)/T]' (37)
reproduce strong Arrhenius behavior.
The slope of Inf) vs S./N is somewhat greater thaa®2  which need not have the parabolic form commonly associ-
for T=T.. Comparing with the work of La Navet al.[14—  ated with the REM.
16,24 givesz~25 in Si0Q, andz~1.5 in water. The former Our proposeds (E';E) is physically motivated and fixes
is reasonable while the latter may point to deficiencies in thehe obvious shortcomings of the uncorrelated model. How-
theory. ever, even given our assumptions it is approximate. A Gauss-
The escape rate from a stai, naturally divides into an ian distribution of local energies is a simplification which
activated (mechanism[5] A) contribution R, for upward cannot describe all systems—e.g., one suspects, water—and
transitions and nonactivatd®y for transitions to lower en- more work is required to represent liquids in detail. The sta-
ergies. Even so the two mechanisms have simiilalepen-  tus of the minima remains unclear. The uncorrelated model
dences, since the number of states with lower energy contritend the current model represent two extremes, with all
uting to Rg decreases strongly with decreasingThe total minima and no minima, respectively, in the thermodynamic
rate R is proportional tof,. limit. Nonwithstanding the arguments of Kivelson and Tarjus
In deeply supercooled liquids, the model predicts, with[26], it may be that the current theory goes too far in elimi-
plausible ~assumptions,DxRef,. Some simulations nating the bias of the neighbor distribution towafls
[13,15,1 show D« f{, with a>1. It was argued that the
cause is probably the presence of factors with relatively ACKNOWLEDGMENTS
weak (compared to a Boltzmann facjof dependence, aris-
ing from dynamical details not included in the REM. Such  This work was supported by the NSF through Grant No.
factors are important when fitting over the limited rangesCHE0090975. We thank Dr. Emilia La Nave for use of her
available to computer simulation. Replacing the simple BWdata on configuration entropy and imaginary-frequency
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