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Random energy model for dynamics in supercooled liquids:N dependence
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The random energy model~REM! for the critical points~saddles and minima! of the potential energy
landscape of liquids is further developed. While thermodynamic properties may be calculated from the uncon-
ditional distribution of statesG(E), dynamics requires the distributionGc(E8;E) of energiesE8 of neighbors
connected to a state with energyE. Previously it was shown@T. Keyes, Phys. Rev. E62, 7905~2000!# that an
uncorrelated REM,Gc(E8;E)5G(E8), is badly behaved in the thermodynamic limitN→`. In the following,
a simple expression is obtained forGc(E8;E), which leads to reasonableN dependences. Results are obtained
for the fraction f u of imaginary-frequency instantaneous normal modes, the configuration entropySc , the
distributions of the different-order critical points, and the rateR of escape from a state. Simulation data on
f u(T) and the density of minimar0(E) in Lennard-Jones and CS2 are fit with the theory, allowing a determi-
nation of some model parameters. A universal scaling form forf u , and a consequent scheme for calculating the
mode-coupling temperatureTc consistently among different materials, is demonstrated. The dependence of the
self-diffusion constantD upon R and f u is discussed, with the conclusion thatD} f u in deeply supercooled
states. The phenomenology of fragile supercooled liquids is interpreted. It is shown that the REM need not
have a Kauzmann transition in the relevant temperature range, i.e., above the glass transition.

DOI: 10.1103/PhysRevE.66.051110 PACS number~s!: 46.65.1g, 64.70.Pf, 66.10.Cb
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I. INTRODUCTION

Classical thermodynamics and dynamics is ultimat
governed by the potential energy surface, or landscape,
fined in the 3N-dimensional configuration space of all th
atomic coordinates. With the number of atomsN diverging in
the thermodynamic limit, the landscape is extremely com
cated, difficult or impossible to visualize by extrapolatin
intuition from lower-dimensional surfaces. Random ene
models@1# ~REM! offer an attractive simplification for liq-
uids and macromolecules. In 1993@2#, we suggested that th
protein REM of Bryngelson and Wolynes@3# ~BW! could be
adapted to liquids. In that model, an amino acid—the ba
unit of the system—has one ground state andn excited
states. The ground state single-unit energy is fixed and
excited state energies are random. Nearby units have a
interaction if they are both in the ground state, and a rand
interaction otherwise. In this manner the states of the en
system, and their energies, are built up from local contri
tions.

Currently there is considerable interest@4–8# in using the
critical points or extrema of the landscape to define state
liquids. The critical points are characterized by the orderK,
the number of imaginary frequencies~directions of down-
ward curvature!, so thatK50 is a local minimum,K51 a
first order saddle, etc. The neighbors of a given state ma
reached by moving a small number of particles, i.e., they
nearby in the configuration space; neighbor minima are c
nected by reaction coordinates crossing first-order sadd
etc. Transitions among neighbor states play an important
in landscape theories of dynamics. By contrast,a priori the
REM states do not possess an order or a connectivity.
connected the states differing by a change in a single am
acid—interconvertable by a single transition—and identifi
a local minimum as a state having all its connected neighb
higher in energy. We@2# proposed, in a straightforward ex
1063-651X/2002/66~5!/051110~11!/$20.00 66 0511
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tension, that aKth-order saddle is a state having exactlyK
connected neighbors with lower energy. From this persp
tive, the states are identified as all the critical points. A RE
may also be formulated for the minima alone@9#.

The analogy to liquids is made@2# by replacing amino
acids with weakly interacting local regions, possibly corr
sponding to the ‘‘cooperatively rearranging regions’’
Adam and Gibbs@10#. We denote their numberNr;O(N),
whereN is the total number of particles. A region contain
z5N/Nr;O(1) particles. The number of local ‘‘excited
statesn;O(1); n is an intensive quantity, but it may be ver
large. Following the BW model, each state of the entire s
tem would be connected tonNr neighbors, the numbe
reachable by a change in a single region. However, since
all pairs of states in a local region need to be connected,
let the number of connected neighbors, denoted asNcn ,
equal cnNr , anticipating that the connectivity fractionc
,1. Both Nr and n are temperature-independent consta
but, since Adam and Gibbs’@10# main point was to associat
super-ArrheniusT dependence of relaxation times with
growing cooperativity at lowT, it may be necessary to mak
them T dependent in future work. At constant density, t
condition for most simulations, anyT dependent cooperativ
ity should be weak relative to constant pressure.

Away from the critical point, or possibly the glass trans
tion, liquids have short-ranged correlations. It would be
bad idea to convert the theory of liquids from a few-body
anN-body problem. This is avoided with the recognition th
the landscape is really a composite@2# whose building blocks
are the landscapes of the local regions. Thus the simplifi
tion afforded by the REM is precisely that needed to keep
landscape approach on physically sensible grounds.

The central limit theorem suggests that the REM dens
of states is Gaussian, and we will employ a Gaussian dis
bution in the following. The normalized, unconditional di
tribution of all the states is
©2002 The American Physical Society10-1
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G~E!5
1

DA2p
e2(E2Ē)2/(2D2), ~1!

with the center of the distribution,Ē, and the square of the
width, D2, both O(Nr). The unnormalized density of state
is r(E)5VG(E), and the total number of states isV
;O(eNr). BW give explicit expressions for these quantitie
which can be adapted to liquids. They also introduce an
der parameterr, the fraction of regions in their ground sta
@it is hoped that the BW parameterr, which we mention for
completeness but do not use, will not be confused with
density of statesr(E)]. The distribution is then not Gauss
ian, but a weighted superposition of terms like Eq.~1! for
eachr. The order parameter provides the capability to p
dict T dependences different from those usually associa
with a REM. We will defer exploitation of this generaliza
tion, suppressing ther dependences for now. When nece
sary, we will assumer50, a simple nonparametrized Gaus
ian REM; then, in particular,V5nNr.

In fact, the number of liquidlike states does not really f
off as a Gaussian or superposition of Gaussians at the lo
energies, exhibiting instead an abrupt cutoff, and this
consequences at very low temperature. There is no con
diction with a REM; the Gaussian approximation to a sum
random energies breaks down in the vicinity of the low
possible energy, unless the ‘‘steps’’ in the sum themselves
Gaussian distributed. We will also defer discussion of t
point, and so the results presented below must be vie
skeptically in the vicinity of the glass transition temperatu
Tg . However, we will be quite pleased to obtain a theo
valid down to the ‘‘mode-coupling’’ temperatureTc.Tg ,
where the self-diffusion constantD extrapolates to zero from
above, and the dynamical crossover from high-T to low-T
dynamics is well established.

A K8th order critical point hasK of its Ncn connected
neighbors with lower energy andNcn2K with higher. Thus,
a connection is established between the REM and the ins
taneous normal modes~INM ! approach@11# to the dynamics.
The crucial quantity in INM theory of diffusion@11# is the
fraction of imaginary-frequency or unstable modes, deno
f u , which in this case is equivalent to the averaged fractio
saddle order,f u5^K&/Ncn[^k&. In liquids, f u.^k&, but ^k&
may be regarded as a cleaned up or ‘‘diffusive’’ version off u
with the contributions of nondiffusive anharmonicities r
moved@5–8#. A growing body of evidence@5–8,11–16# in-
dicates thatD is determined by the number of unstable d
fusive modes; thus a dynamical quantity is expressed
terms of an equilibrium property, the goal of nonequilibriu
statistical mechanics. The saddle fraction is intimately t
@2# to the distribution of states, but not the uncondition
distribution,

f u~E!5pc
,~E!5E

2`

E

dE8Gc~E8;E!; ~2!

at energyE, f u is just the probabilitypc
,(E) that a connected

neighbor state has a lower energy, andGc(E8;E) is the nor-
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malized distribution inE8 of states connected to a state wi
energy E. The conditional, connected density of states
rc(E8;E)5NcnGc(E8;E).

In a recent paper@17#, we worked out some consequenc
of the REM/INM theory. We obtained the relation found v
simulation by La Naveet al. in water@14,15# and silica@16#
that ln(fu) is proportional to the configuration entropySc ,
and found further@11# confirmation that the escape rate fro
a state,R, is proportional tof u . The latter result is particu-
larly transparent for transitions to states with lower ener
since then the Boltzmann factor equals unity and the rat
just proportional to the number of destination states, prop
tional to pc

, or f u @Eq ~2!#.
However, Ref.@17# had a glaring difficulty. BW formu-

lated an uncorrelated REM withGc(E8;E)5G(E8). Since
the width D is O(ANr), and the thermal average energ
E* (T)5Ē2D2/T lies O(Nr) below the center of the distri
bution, essentially all the connected neighbors of a ther
state areO(Nr) higher in energy. By contrast, with state
defined in computer simulation as minima via the inher
structure mapping@4# or as all the critical points via the
saddle mapping@5–8,18#, state-to-state transitions unque
tionably involve energy changes;O(1). This is because
only a few particles change position. Consequently, in
uncorrelated model, bothR and f u;O(e2Nr), an incorrect
result in the thermodynamic limit, although relations amo
the badly behaved quantities are@17# reasonable and infor
mative. Even so artifacts appeared, e.g.,R has a contribution
; f u

2 , which should obviously be linear.
In the following, we propose a simple approximation f

Gc(E8,E) which properly keeps the connected neighbors
a state within anO(1) energy separation. Properties of, a
relations among, minima, saddles,f u , Sc , and R result
which are well behaved in the thermodynamic limit; we w
highlight the order inNr of calculated quantities. The REM
INM theory collapses simulation results forf u(T) in unit-
density Lennard-Jones~LJ! and seven densities of CS2 on a
master curve, allowing a consistent estimate of the mo
coupling temperatureTc , and represents the density o
minima r0(E) in LJ. The fits yield the model parameter
The dependence ofR upon f u , and the more complicated
dependence ofD upon R, are discussed. Several aspects
the characteristicT-dependent behavior@19–21# of super-
cooled liquids are reproduced.

II. THE DISTRIBUTION OF CONNECTED
NEIGHBOR STATES

The liquid analogy to the BW model has random excit
state energies in a region and random pair interacti
among excited states in adjacent regions. By imagining
interaction energy to be shared between the members o
pair, the energy can be written as a sum of local contri
tions,E5( i 51

Nr e i . Eache i;O(1) is a step in a random walk
in energy, which terminates at the system energyE
;O(Nr). Equation~1! will be obtained if the normalized
distribution of local region energies,g(e), is
0-2



ith

es

d
nt
e

e

-

n

a
, b

in

on
p-
with
t

-
i-

Eq.

gu-

M

la-

e
to

-

hes
here

he

RANDOM ENERGY MODEL FOR DYNAMICS IN . . . PHYSICAL REVIEW E66, 051110 ~2002!
g~e!5
1

dA2p
e2(e2 ē)2/(2d2), ~3!

where the parametersd5D/ANr and ē5Ē/Nr are both
;O(1). Wewill use Eq.~3! in the following, but for future
reference, recall that non-Gaussiang(e) can also yield the
GaussianG(E) for most of theE range, as well as a low-E
cutoff.

The unconditional distribution is obtained as usual w
an integral over alle i ~denoted by$e%) of the product of
local distributions for each region and ad function constrain-
ing their sum toE; this amounts to a sum over trajectori
leading toE,

G~E!5E d$e%F)
i 51

Nr

g~e i !GdS E2(
j 51

Nr

e j D . ~4!

Now considerGc(E8;E). BW suggest that the connecte
states differ by a change in one region, and this is emine
reasonable for liquids; then the energies differ by a chang
a singlee i;O(1). To generate the states withE8 connected
to a state withE, start with a trajectory$e% in the integrand
of Eq. ~4!. Replacing anye i with a random numbere such
that e5(E82E)1e i will yield the indicated state, and th
distribution ofe is g(e); thus the joint probability distribu-
tion of finding connected states withE andE8 is

Gc~E8,E!5
1

Nr
(
n51

Nr E d$e%F)
i 51

Nr

g~e i !G
3dS E2(

j 51

Nr

e j D g~E82E1en!. ~5!

Recognizing that all terms in the sum overn are equivalent,
an instructive rewriting is possible,

Gc~E8,E!5E deg~E82E1e!h~e,E!, ~6!

whereh(e,E) is the joint distribution for finding a trajectory
leading toE and a local stepe in that trajectory; its expres
sion follows from a comparison of Eqs.~5! and ~6!.

The desired normalized conditional distributio
Gc(E8;E) is obtained from the joint distribution by
Gc(E8;E)5Gc(E8,E)/G(E). Alternatively, it follows from
Eq. ~6!, with h(e,E) replaced byh(e;E)5h(e,E)/G(E).
With connectivity fractionc,1, not all states generated by
change in one region are connected to the original state
that only affects the normalizationNcn of the conditional
density of states,rc(E8;E)5NcnGc(E8;E).

For Gaussian local distributions, the integrals in Eq.~5!
can be evaluated with the standard technique of introduc
the representation of the Diracd function d(x)
5(1/2p)*djei jx; thus

Gc~E8;E!5
1

2dAp
e2[(E82E)1(E/Nr )2 ē] 2/(4d2). ~7!
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While E andE8 areO(Nr), Eq. ~7! will constrain their dif-
ference toO(1), asrequired. The presence of energy/regi
e5E/Nr;O(1), in the argument ensures the essential pro
erty that as the energy of a state becomes more negative
decreasingT, its neighbors lie with increasing probability a
higher energy. It is also easy to show that

h~e;E!5
1

dA2p
e2[ e2(E/Nr )]

2/(2d2); ~8!

in an Nr-step trajectory leading toE, the mean step is obvi
ously E/Nr , and the width is unchanged from the uncond
tional distribution. We now explore the consequences of
~7! for supercooled liquids.

III. EQUILIBRIUM PROPERTIES OF THE MODEL

The thermal average energy/region is

e* 5 ē2d2/T. ~9!

The REM has a characteristic energy at which the confi
ration entropySc vanishes,emin5 ē2dA2 ln(n) ~for Ref. @3#,
r50), and so

Tmin5d/A2 ln~n!. ~10!

Discussion of lower temperatures is@1,3# possible with the
recognition that the states in a given realization of the RE
are no longer continuously distributed. AtT,Tmin @1,3#, a
typical realization is trapped in a state withe'emin , andSc
remains'0. In liquids, Tmin is naturally identified as the
Kauzmann temperature, which is determined by extrapo
tion to lie below the glass transition temperatureTg . Tem-
peratures belowTg are not accessible, so we will adopt th
point of view that observable behavior must correspond
T.Tmin .

1. The fraction of imaginary frequencies

Equations~2! and ~7! yield

f u~e!5
1

2 F12erfS ~ ē2e!

2d D G . ~11!

With the well-behavedGc(E8;E), as opposed@17# to the
uncorrelated model,f u(T)5 f u„e* (T)… as usual, and

f u~T!5
1

2 F12erfS d

2TD G ⇒
T→0 T

dA2p
e2d2/(4T2). ~12!

SinceT>Tmin , the low-T limit is not strictly reachable, but
Eq. ~12! demonstrates that in the REM,f u posesses super
Arrhenius behavior with activation energyEact5d2/4T. At
high T, f u→1/2, because then the thermal energy approac
the center of the symmetric Gaussian density of states w
p,5p.51/2. The averaged saddle order^K& equalsNcnf u .
The maximum possible order of an individual saddle isNcn ,
while the maximum of the thermal average isNcn/2. In a
liquid, the maximum possible order is the dimension of t
0-3
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configuration space, 3N, but Ncn53N(cn/3z)<3N. Thus
the REM incorporates a coarse graining, expressed by
factor (cn/3z), in that only directions that lead to new stat
are kept. Equivalently, the nondiffusive anharmonicities t
enter f u in liquids, corresponding to false transition stat
that do not contribute to diffusion, are absent.

The mode-coupling temperatureTc is the temperature
where D(T) extrapolates to zero from above via a pow
law. Sciortino and Tartaglia@12# showed thatTc could also
be obtained by extrapolating the fraction of diffusiv
‘‘double-well’’ INM, those exhibiting a double-well potentia
energy profile along the eigenfunction, to zero in water
has been demonstrated@5–8# that ^k(T)& serves as well for
atomic systems. Since any scheme for eliminating the n
diffusive anharmonicities makes a liquid more REM-like, w
expect that all well-conceived diffusivef u(T) in liquids—
including the saddle order itself—will be proportional to th
REM ^k(T)&.

It is straightforward to make a power-law fit,f u5a(T
2Tc)

b, to data generated from Eq.~12!. Such fits are ex-
tremely sensitive to the temperature range employed. Ph
cally, Tc is the temperature whereD would vanish if the
upper supercooled dynamical mechanism only were op
tive; thus data from too high or too lowT must be excluded
The natural temperature unit of the REM isd, and in the
following, dimensionless temperatures are understood to
dicateT/d. Starting from a lowerTL of 0.25 or higher, the
estimatedTc rises and the exponentb falls as the upper limit
for the fit,TU , increases. By contrast, forTL50.05–0.15,Tc
rises gently to a maximum and then declines slightly;Tc and
b are remarkably independent ofTU and TL , with b'1.50
and Tc /d'0.24 at the maximum. Intermediate behavior
seen atTL50.20, whereTc first rises withTU but appears to
be reaching a plateau ofTc /d'0.28. From these observa
tions we estimate

Tc'0.26d, ~13!

which should be adequate for the semiquantitative discus
to follow. The correspondingb51.50 was also found by
simulation@22# in water, and is typical of the values foun
for other liquids.

We have@8# previously obtained̂K(T)& via simulation in
supercooled unit-density LJ,N5108, and also@13# the dif-
fusive center-of-massf u

cm(T) in supercooled CS2, N5108,
at seven densities 1.55 g/cc>r>1.42 g/cc, including the
normal freezing density 1.46 g/cc. Equation~12! and subse-
quent discussion suggest that plotting^K&/Ncn vs T/d will
allow data on different materials to be represented b
single master curve;d andNcn are determined by fitting the
number of Im2v to Ncn times Eq.~12!. Figure 1 demon-
strates the master plot for LJ and CS2, essentially perfect
aboveTc . The calculated parameters are given in Table
With increasing density across the available range in CS2, d
increases from 236 K to 486 K. The maximum saddle or
or number of connected neighbors is remarkably cons
~no rotational contributions tof u

cm) between the two materi
als and among the different densities. Correspondingly,
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‘‘coarse-graining factor’’cn/3z5cnNr /3N equals to 0.21 for
LJ and 0.23–0.22 for CS2; about 20% of directions lead to
new states.

The table also includesTc from Eq.~13!. For unit-density
LJ, the valueTc50.41 is in reasonable agreement with wh
we have published@8#, i.e., 0.47, but somewhat lower. Fo
CS2, 1.46 g/cc, at 78 K is very close to our estimate@23# of
75 K. However, note that the data that gave the originalTc
are represented very accurately by Eq.~12!. Equation~13! is
based on making the power law fit to a dataset genera
from Eq.~12!. Differences inTc calculated from the origina
data and Eq.~13! arise only from the different temperatur
ranges employed for the fits, and to a lesser extent from
different spacing of the points. The higher~vs 0.41! Tc of
0.47 for LJ in Ref.@8# is a consequence primarily of startin
the fit at a higherTL and using also a higherTU . Fitting
simulation data to Eq.~12! and then takingTc from Eq. ~13!
insures that equivalent fit ranges are used in all studies, s
Eq. ~13! resulted from a single fit to Eq.~12!. We suggest
that our procedure is a good way to obtain consistentTc on
different materials, from simulations covering different tem
perature ranges and densities.

2. Imaginary frequencies and the configuration entropy

In the uncorrelated REM, a linear relation exists@17# be-
tween the totalSc;O(Nr) and the badly behaved ln(fu),
which is also O(Nr). The essential observation is th
Sc(E)5 ln(V)2(E2Ē)2/(2D2), and the E-dependent term

FIG. 1. Natural log–linear REM/INM master curve of fraction
saddle order̂K&/Ncn vs dimensionless temperatureT/d and simu-
lation data,N5108, unit-density LJ~solid triangles!, and seven
densities of CS2. Arrow denotesTc .

TABLE I. Parameters for master plot. All systems areN
5108, and the densities are in parentheses.

Liquid d Ncn cn/3z Tc

LJ(1s23) 1.59e 66 0.21 0.41e
CS2(1.420g/cc) 236 K 74 0.23 61 K
CS2(1.440 g/cc) 265 K 71 0.22 69 K
CS2(1.460 g/cc) 300 K 71 0.22 78 K
CS2(1.485 g/cc) 343 K 71 0.22 89 K
CS2(1.51 g/cc) 394 K 71 0.22 102 K
CS2(1.534 g/cc) 448 K 71 0.22 116 K
CS2(1.551 g/cc) 486 K 71 0.22 126 K
0-4
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RANDOM ENERGY MODEL FOR DYNAMICS IN . . . PHYSICAL REVIEW E66, 051110 ~2002!
may be expressed with ln(fu), according to the asymptoti
expansion of the error function. In the uncorrelated mo
the argument of erf is (E2Ē)/(A2D);O(ANr) instead of
the O(1) quantity in Eq.~11!.

In the current model, using the asymptotic expansion
erf and taking a thermal average by replacinge by e* ,

Sc~T!5 ln~V!12Nr@ ln~ f u~T!2const#, ~14!

where const includes terms proportional to ln(T). Now, inten-
sive entropies are reported on a per atom or per mole
basis; division byN ~not Nr) will yield a factor of 1/z in
front of ln(fu). Rearranging to conform@14–16# to the work
of La Naveet al., we have

ln@ f u~T!#5
z

2
@Sc~T!/N#2const8, ~15!

opening the possibility that the slope of a ln(fu) vs Sc /N plot
may yield the size of the cooperative region.

Available simulations do not probe extremely lowT
where the asymptotic expansion must hold, and the REM
limited to T.Tmin , so further analysis is required. The que
tion is, can ln@fu(T)# represent the exponent ofg(e* ) @which,
multiplied by 2Nr , gives theT-dependent part of the expo
nent ofG(E* )] at the availableT? Figure 2 shows the resu
of fitting the exponent tom@ ln(fu)#1b, varyingm andb, over
a temperature range typical for simulation. The represe
tion is excellent; with best fit parametersm50.77 andb
50.89, the slope is not terribly different from its asympto
value of unity, and the answer to the question is affirmati
The final result forr50 is

ln@ f u~T!#50.65z@Sc~T!/N#2@1.1610.65 ln~n!#. ~16!

Both Sc and f u are functions of the dimensionless variab
T/d, sod does not enter Eqs.~14!–~16!.

As with Eq. ~12!, we assume that all diffusivef u are
proportional to each other, and may be used in Eq.~16!;
different multiplicative constants will not change the es
mate ofz. Plots of diffusive ln(fu) vs Sc /N are linear in water
@14,15# and silica@16#, with slopes of 0.96,z'1.5 and 16.2,
z'25, respectively@24#. The obvious conclusion that silic
is more collective than water is reasonable, but such a s
z is puzzling for fragile water@25#, which should have some

FIG. 2. Exponent ofg(e* ) ~solid! and 0.77 ln@fu(T)#10.89 vs
T/d.
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collectivity. La Naveet al. use double-well modes for wate
Perhaps all diffusive modes are not equivalent; there is so
evidence@8# of this below Tc in unit-density LJ. Another
consideration is that water is a molecule with~for a rigid
model! six, not three, degrees of freedom/particle. Indeed
better Gc may be indicated, but at least we know how
begin interpreting the ‘‘La Nave plots.’’

3. Minima and saddles

The densities of statesrK(E) for K8th-order critical
points follow from Eqs.~1! and~2!, and our proposal@2# for
defining a saddle in the REM,

rK~E!5VG~E!PK~E!, ~17!

PK~E!5CK
NcneNcn†(12k)ln[12 f u(e)] 1kln[ f u(e)] ‡, ~18!

wherePK is the probability that a state is ofK8th order and
C is the binomial coefficient. At lowT, f u is small and ln(1
2fu)→2fu . The high-T limit of f u is 1/2, and ln(12fu)
→ln(1/2)520.69. The expansion of the log is no long
valid but its smallf u form nonetheless yields20.50, which
is not too far from the true value. Thus we can use the
pansion for the full range off u in estimating properties o
minima and saddles.

The case ofK50 ~minima! is of particular interest,

P0~E!'e2Ncnf u(e). ~19!

Since even at lowe the smallness off u remainsO(1), P0
vanishes asO(e2Nr) in the thermodynamic limit. Integrating
r0(E) approximately by making a cummulant expansion
P0(E) yields the number of minima,

V0'Ve2Ncn/2. ~20!

One should note that, because the total number of state
creases exponentially withNr , r0 may attain a positive en
tropy ;O(Nr) for some energies; nevertheless, the minim
remain thermodynamically negligible. By perfect contrast,
the uncorrelated model@17#, all thermally accessible state
are minima. The caveat is that belowemin , some low-lying
states@1,3# will attain finite occupation probability withP0
Þ0, f u50. Such a transition in the occupation of th
minima has been discussed@5–8# as occurring atTc , where
^k(T)& extrapolates to zero, but it would seem that t
minimum-saddle transition temperature is really the unrea
ableTmin in this REM.

While we claim to have a well-behaved theory in the th
modynamic limit, the absence of minima, the essential co
ponents of much contemporary thinking, is surely controv
sial. A better approximation toGc might lead to a different
conclusion. On the other hand, Kivelson and Tarjus@26# have
argued that all points~except the global minimum! on the
landscape with the same potential energy are connecte
an ‘‘equipotential ribbon’’ in the thermodynamic limit; then
there are no minima.

The two arguments might seem to be quite different,
there is also some similarity. Kivelson and Tarjus consid
0-5
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that, as the number of directions in the configuration sp
diverges, it will always be possible to find a path that do
not change the energy. In the REM, asNcn diverges, and
with neighbors having energy seperations;O(1), it will
always be possible to find a connected neighbor with low
energy. So both arguments depend on having a diverg
number of choices for moving away from a configuration
state. It seems significant that two independent approa
point to the vanishing of the minima in the thermodynam
limit.

Figure 3 shows 100 times the density of minima and
full r(E) for a representative small system where minim
still survive. AsNr is increased, the scaling factor would al
have to increase exponentially to maintain the visibility
the minima. The abrupt the vanishing ofr0 on the low-e side
is caused by the ‘‘entropy cutoff’’~exponent less than unity!.

Multiplying rK(E) by the Boltzmann factor and maximiz
ing the exponent yields an equation for theK-dependent ther-
mal energies,

~eK* 2 ē !/d21cnGc~EK* ;EK* !F ~12k!2
k

f u~eK* !
G1

1

T
50.

~21!

A quick approximation is to replaceGc(EK* ;EK* ) by
Gc(Nre* ;Nre* ) and f u(eK* ) by f u(e* ), and to use the low-
T approximation tof u , yielding

eK* 5 ē2
d2

2T
@cn~12k! f u~T!1~12cnk!#. ~22!

One expects@5# that EK11* 2EK* is comparable to the activa
tion energy; this difference of;O(Nr) energies must be
;O(1). We immediately obtain@recall k5K/(cnNr)]

EK11* 2EK* 5
d2

2T
@11 f u~T!#. ~23!

At low T( f u!1), the REM has a super-Arrhenius activatio
energy;d2/2T, a simple consequence of the energy spac
of the critical points of adjacent order, in agreement with
T dependence off u , Eq. ~12!.

FIG. 3. Density of all states~peaked at zero! and 100 times
density of minima vs dimensionless energy/region,e/d, for Nr

55, n55, c50.4, ē50; emin521.79.
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IV. DIFFUSION AND THE ESCAPE RATE

The states of the model are all the critical points. Th
there are no barrier crossings—such a process is represe
by a sequenceK→K11→K. Transitions out of a state with
E to connected neighbors withE8 naturally divide into those
with E8,E and those withE8.E. Cavagna@5# has dis-
cussed these as distinct mechanisms ‘‘B’’ and ‘‘ A, ’’ respec-
tively. BW adopt a simple Metropolis dynamical schem
with a B transition having rateR0, an A transition
R0e2(E82E)/T. It is important to note that what might b
regarded as the REM—the unconditional and conditio
densities of states—can be combined withany dynamical
model, yielding different predictions forR andD. Nothing in
the previous sections depends on the dynamical model,
erything in this section does.

1. The escape rateR

The averaged total rate of downward transitions is, w
no approximation,

RB~T!5NcnR0f u~T!, ~24!

sincef u5pc
, and every connected neighbor contributes. T

is the simplest possible demonstration of why rates are n
rally expressed byf u .

The averaged total rate of upward transitions is

RA~T!5NcnR0E
2`

`

dEG~E!e2E/T

3E
E

`

dE8e2(E82E)/TGc~E8;E!/q~T!, ~25!

where

q~T!5E
2`

`

dEG~E!e2E/T. ~26!

The factor G(E)e2E/T in Eq. ~25! is strongly peaked a
E* (T), which normally means that the integral is dominat
by E;E* (T). The uncorrelated model@17# was not normal
because of the unphysically strongNr ~and henceE8) depen-
dence ofGc . Now, evaluation ofRA is straightforward. The
discussion in Sec. II shows howGc @Eqs.~3! and~7!# keeps
(E82E);O(1), so thesecond Boltzmann factor is;O(1)
and

RA~T!5
1

2
NcnR0e2d2/4T2

, ~27!

R~T!5NcnR0F f u~T!1
1

2
e2d2/4T2G

⇒
T→0

NcnR0f u~T!S 11Ap
d

TD . ~28!

Both mechanisms make equal contributions at highT,
where f u→1/2 and Boltzmann factors approach unit
0-6
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MechanismA dominates at lowT, where the lower-energy
states required by mechanismB become unavailable, thoug
only by a factor of (d/T). For T<Tmin , with a typical rep-
resentation of the REM trapped in a minimum, presuma
f u[0, mechanismB shuts off strongly, and only activate
mechanismA operates.

The above description captures some features of C
gna’s@5# ‘‘saddles ruled scenario.’’ One difference is that
suggests that a rapid onset of strong super-Arrhenius c
arise when the mechanismB turns off at a temperature wher
the activation energy for mechanismA is already large.
While the REM does have mechanismB stop atTmin , both
mechanisms have similarT dependences aboveTmin .
MechanismB does not require activation for a downwa
transition, but the number of states withE8,E are vanishing
in super-Arrhenius fashion.

2. The relation of diffusion toR and fu

The essence of Eq.~28! is R} f u . The next step is to
relate the observableD to R, and thence tof u . This essential
link has been the subject of much of our prior work, usi
both INM theory@11,13# and more direct methods@27#.

If the motion among the states~defined either as domain
of all the critical points or of the minima! in the liquid con-
figuration space is a random walk, with no correlation amo
transition vectors, thenD5^(dR)2&^v tot&/(6N) ~Ref. @27#!.
Here ^(dR)2&;O(1) is the mean-square separation of su
cessive states and̂v tot&;O(Nr) is the average total trans
tion rate. Because a transition in any local region changes
state of the entire system,^v tot& and R are bothO(Nr),
makingD;O(1),

In general,̂ v tot& is different from the escape rateR. The
total rate is governed by the states in which the system w
the longest, and̂v tot&51/̂ t&, where ^t& is the averaged
waiting time in a state. In one dimension, 1/^t&ÞR. How-
ever, equality holds for high dimensionality, specifically
Ncn is large, as is so in the thermodynamic limit of the RE
Assuming that each escape pathway to statej with rate v j i
from statei with energye i contributes an independent, e
ponential distribution of waiting timesv j i e

2v j i t, the prob-
ability of waiting for time t, and then escaping is express
as a sum of contributions from all the connected neighb
The average over waiting times in statei—not the thermal
average—iŝ t i&51/( jv j i . If there are enough terms in th
sum it is ‘‘self-averaging’’ and equal toR(e i); then, given
the dominance of the thermodynamic energy,^v tot&51/̂ t&
5R(T) andD(T)5^(dR)2&R(T)/(6N).

In unit-density LJ,̂ (dR)2& ~for minima! is only weaklyT
dependent@27#. The REM does not have a length scale, b
assuming that it behaves like LJ in this regard, we have

D~T!}R~T!/Nr} f u~T! ~29!

for a Markov process of state-to-state transitions. Unco
lated transitions are expected in a hopping mechanism w
waiting times are long enough for the system to lo
memory. ThusT<Tc is indicated, and we have verified@27#
that the process of minimum-to-minimum transitions th
approaches a random walk in unit-density LJ. In gene
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‘‘back and forth’’ motions in two-level systems or groups
states in deep valleys can@28# lead to correlation even below
Tc . The simplicity of the dynamics depends upon an inte
gent choice of states. If motion among the microscopic sta
is correlated, it may be a Markov process among appro
ately chosen groups of states. As discussed above, the R
already includes a coarse graining. Further groupings ma
made with a hierarchical REM@29#, which has recently been
applied to liquids by Sasai@30#.

Despite these warnings, a Markov approximation in t
configuration space is a reasonable approximation at the
est available temperatures. It is also likely that the strong
T dependence ofD is carried byf u , and that a study cover
ing many decades in a deeply supercooled liquid descri
by this simple REM@3# would findD} f u . However, various
relations or fits of formD} f u

a , with a>1, have been dis-
cussed@13,15,16,30# in the literature. What are the implica
tions of nonlinear relations betweenD and f u? What new
physical information, or information about the validity of th
REM, do they convey?

We believe that deviations fromD} f u are mostly ex-
plained by deviations of true dynamics from that of the c
rent REM. ~1! With a state-to-state transition model facto
of T related to the velocities, significant at higher tempe
tures, are difficult to treat.~2!. Describing the escape rate t
higher energy with a Boltzmann factor alone ignores
complexities of motion along a ‘‘reaction coordinate’’ give
by, e.g., Kramers theory. Recall also thatf u5^k(T)& in the
REM, but INM calculations use various schemes to obt
diffusive Im2v, and some may be better than others.

Perhaps the most obvious point is thatD}T at high tem-
perature and constant density, whilef u reaches a constan
value. Normal liquid dynamics is not our interest, but
influence is still felt in upper supercooled data; simulatio
cannot probe the deeply supercooled states where it is
ligible. Under such conditions onemustcompareD/T, not
D, with ^k(T)& or another diffusive version off u(T). A
power law fit@13,30# of D(T) to ^k(T)&a in unit-density LJ
would yield a.1, but in fact,@8# D/T is linear in ^k(T)&
and the physically uninteresting interpretation would be t
a factor ofT was being represented parametrically in ter
of ^k(T)&.

Contributions of the kinetic energy are treated properly
Zwanzig’s theory@31#, whereD is calculated from the veloc
ity correlation function assuming that escape from
minimum—defined as a structure in a local region—is wh
randomizes the correlation. The zero-time value of the vel
ity correlation isT in our units, and the result@11# is D
5T^vmin

22 &(R/Nr) at low T, where ^vmin
22 & is the averaged

inverse-squared frequency at the minima. Consistency w
the random walk picture requires that (T^vmin

22 &), which is
something like the harmonic approximation to the mea
square displacement along a coordinate in a minimum,
proportional to the multidimensional mean-square separa
of successive states,^(dR)2&. This may be true, but a carefu
rationalization of the two approaches has not been achie

The Zwanzig theory is well behaved at highT. Combined
with an INM approximation@32# to R, it does a reasonable
0-7
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job of predictingD from Tc up to T520 in unit-density LJ.
The change inD(T)/T from sharply increasing at lowT to a
plateau@32# is already beginning in the upper supercool
regimeT;1.6. In terms of the chain of transitions amon
the states, the theory is properly handling the correlati
that are important at finiteT. Thus expressingD/T instead of
D with f u is to some extent accounting for correlated tran
tions, which@27# causeD to increase more slowly thanR.

Second,R can be much more complex than the simp
Metropolis anzatz. INM-plus-Kramers theory@11,13# has
been used to relate the escape rate from the minima tof u .
The transition-state theory limit gives

Rtst5
Ncn^vu& f u

2p~ f u
mx2 f u!

, ~30!

while the low-friction limit @13# is

Rlow5
Ncn^vu&Eactz f u

^vmin&~ f u
mx2 f u!T

, ~31!

where ^vu& is the averaged unstable frequency,f u
mx is the

maximum high-T value ~1/2 in the REM!, andz is the mi-
croscopic friction. The REM states are all the critical poin
not just the minima, and Eqs.~30! and~31! apply toRA only.
Nonetheless, it is seen that textbook theories of activa
dynamics yield expressions forR containing T-dependent
quantities, which are not even defined in the current REM

In Ref. @13#, we argued that the low-friction limit applied
in deeply supercooled liquids, and that that the most imp
tantT dependence of Eq.~31! wasR}^vu& f u /T. The low-T
limit of Zwanzig’s @31# theory then givesD}^vu& f u , if the
T dependence of̂vmin

22 & is negligible. For the seven densitie
and eight temperatures@13# of supercooled CS2 used in Fig.
1, a fit D5a(^vu

cm& f u
cm)a gavea within 1% of unity for the

three lowest densities, and close to 0.90 for the four high
In fact, D5^vu

cm& f u
cm was very accurate for all 56 states (a

close to unity also!, supporting the proposition that th
center-of-mass modes, free of rotational anharmonicity,
good diffusive modes. On the other hand, at the lowest d
sity, a fit D5a( f u)a yieldsa51.41. Thisa.1 results from
ignoring the factor̂ vu

cm&. It indicates the need for a bette
dynamical model, not a better description of the states
supercooled liquids.

Besides our work on LJ@8# and CS2 @13#, Ribeiro and
Madden@33# foundD} f u in molten salts and La Naveet al.
~using their diffusive modes, Sec. III 2! have D/T} f u

1.3 in
SiO2 @16# and @15# D} f u

2 in water. All these could be ex
plained with different dynamical schemes, retaining t
simple REM energy distributions. Perhaps in the case of
ter, aT-dependent connectivity, expressed with a hierarch
REM as explained by Sasai@30#, is also playing a role.

V. THE REM AND THE PHENOMENOLOGY OF
SUPERCOOLED LIQUIDS

An extensive literature@19–21# attempts to characteriz
the T-dependent properties of supercooled liquids. Perh
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the most obvious connection to the REM is viad, the width
of the local density of states. A larged increases the configu
rational heat capacityCV /Nr5de* /dT5d2/T2, correspond-
ing @19# to greater fragility. The configurational entropy do
not vanish aboveTg , but an extrapolatedTmin,Tg can be
identified. The ratioTg /Tmin is closest to unity in fragile
liquids @34#, again connecting larged to fragility, asSc drops
more strongly to vanish at a higherTmin . The d-fragility
association is not unreasonable, although Sastry@9#, consid-
ering minima only, has shown that the ‘‘vibrational free e
ergy’’ of the statesFv ib(T,e) must also be considered. The
is no Fv ib in the current REM.

It must also be noted thatd is the natural temperatur
unit, so in many ways changingd simply rescales the tem
perature and varying the states/region,n, is more important.
Equations~10! and ~13! indicate thatTmin depends on the
number of states per region,n, while Tc does not. They are
equal atn51630, and

Tc.Tmin , n.1630, ~32!

Tc,Tmin , n,1630. ~33!

The complex dynamics@19–21# of fragile liquids, including
the super-ArrheniusT dependence, is most pronounced b
low Tc and, of course, aboveTmin5TK ; a necessary condi
tion for the REM to describe a fragile liquid, then, isn
.1630.

Strong @19# or ‘‘nonfragile’’ @25# liquids exhibit Arrhen-
ius, and otherwise simple, behavior all the way down to
glass transition. It is still possible to calculateTc for a strong
liquid, but it may not be very interesting, soTc,Tmin might
be acceptable. However the only hope for obtainingany
ArrheniusT dependence is to haveT,Tmin , with the system
confined for long periods in low-lying states withe'emin ,
andTmin must be considered inaccessible. Thus, the sim
REM is fundamentally a model for fragile liquids, and wi
describe more and more of the interesting temperature ra
asn andTmin increase above 1630 and decrease belowTc ,
respectively. Fortunately, a large number of states is a kno
@20,21# attribute of fragile systems.

Any discussion on the dynamics must recognize that
activation energy is irrelevant ifT.Eact . Fragile behavior is
often associated with higher and more irregular barriers
lower T. If the accessible landscape changes over a temp
ture range whereT.Eact , however, there will be minima
consequences. DefiningTact such that forT,Tact , activa-
tion is required, i.e.,Eact.T, we have@discussion following
Eq. ~12!# Tact50.5d; activation sets in at just below twic
Tc . The condition for activation atTmin is n>e2'7. A sys-
tem with fewer than seven states/regions, if such exi
would exhibit ‘‘high-T dynamics’’ for all availableT @which
would only ~vide infra! span a small dynamic range#.

Above Tmin , the viscosityh should obey

@h~T!/h re f#'ed2/4T2
, ~34!

whereh re f is a reference normal liquid value, and so
0-8
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@h~Tmin!/h re f#'An. ~35!

One definition of the glass transition@34# is @h(Tg)/h re f#
51016. It follows that the REMwill not have a Kauzmann
transition above Tg , if n>1032. It is often stated that the
REM must have a Kauzmann transition, which is true,
one occurring belowTg is quite a different matter. The REM
will then give a reasonable representation of a fragile liq
for all T>Tg , with Tg50.082d. Angell @22# estimated
Tc /Tg'1.2 in fragile materials. Our result is much highe
indicating a need to refine the model.

The predictions of the REM depend crucially uponn. Its
estimation, and that of the other REM parameters, is of fi
importance. There are several possible approaches. F
consider that the total number of states~assumingr50) is

V5eNr ln(n)5e[ ln(n)/z]N. ~36!

The number of distinct minima in several systems has b
found to obey the relationV05eaN @35–37#, with estimates
of a ~unfortunatelya has already been used to denote
power inD} f u

a but we hope the power law in question w
be clear from the context.! ranging from 0.019~lower bound,
general arguments! @35# to 0.8 ~data on various simple sys
tems! @37#, to 13.14 ~thermodynamic data on very fragil
OTP! @36#. As part of an ongoing mapping of the landsca
of unit-density LJ,N532, we have a preliminary distribu
tion r0(E) with V058780 liquidlike minima corresponding
to a50.28. The position of LJ on the fragility scale has be
unclear. With ana of 0.28 vs 13.4 for OTP, it certainly
appears nonfragile~fewer states! compared to OTP, consis
tent with the arguments of Ferreret al. @25#.

If the REM states were minima, Eq.~36! would imply
ln(n)/z5a, and the condition to avoid a Kauzmann transiti
would be z>2.303(32/a). Then the minimalz is 6 for a
513.14, 92 fora50.8, 264 fora50.28, and 3878 fora
50.019. However, the states are all the critical points,
just the minima. For unit-density LJ,N532, fitting ^k(T)&
@8# to Eq.~12! yieldsNcn518.8 andd51.54~encouragingly
identical to 1.59,N5108); Eq.~20! then yieldsV/V051.2
3104. Even if the vanishing of the minima in the thermod
namic limit found here is an artifact, there are in gene
more states than minima. If the largea of OTP is typical of
fragile liquids, it is evident that they satisfyTmin,Tg count-
ing minima alone and are perfect candidates for an R
description. Even nonfragile liquids with fewer states a
smallera could meet the condition with reasonable values
z, although the REM would not treat their ArrheniusT de-
pendence properly. Nonetheless, Eq.~12! gave a good repre
sentation of^k(T)& for LJ. The data were well aboveTc ,
where exponentialT dependence in LJ is weak@25#, and we
have some hope for a description of less fragile systems
der such conditions.

Second, fittingf u(T) with Eq. ~12! yields cnNr , and an
estimate ofz5N/Nr allows determination ofcn. We sug-
gested@18# that 3z could be identified with the participatio
ratio of the vector connecting successive local minima
which the system is mapped@4#. For unit-density LJ,N
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5108, this yields z'7—cooperative regions of seve
atoms—orNr515.4,cn54.3. However,c andn remain un-
known.

Third, the theory of r0 contains the parameter
Nr ,n,D,c, andĒ, and one can try to determine them by a fi
The relationD2/d25Nr , with d estimated from Eq.~12!,
provides another route toNr or z. A five-parameter fit to our
preliminaryr0 for unit-density LJ,N532, gives representa
tions of similar quality for widely different parameter set
and is not useful. The number of free parameters may
reduced to three. Thus we holdcnNr518.8 fixed and use
Nr5D2/1.542 while varying n, D, and Ē. The result is
shown in Fig. 4, with n530.69, D53.390 and Ē5
2196.3. It follows that Nr54.84, z56.61 in excellent
agreement with our other estimate of'7, andc50.12. With
n, z and V0 in hand we may calculateV/V05e7.0, com-
pared toe9.4 from Eq. ~20!. Note thatĒ, the center of the
distribution of all the states, is calculated to lie well abo
the peak in the distribution of minima.

Unit-density LJ then hasTmin50.38d.Tc , or 0.58 in LJ
units. It is not an ideal system for a REM description, b
most of our supercooled data do fall in theT.Tmin range.
The representation of^k(T)& and the internally consistent fi
to r0(E) indicate that the REM is performing better than o
might hope in a nonfragile system.

VI. SUMMARY AND DISCUSSION

Our prior attempts to combine the INM approach with t
REM @2#, and to apply@17# the resulting theory to liquids
suffered from the unphysicalNr dependences of the unco
related model. In this paper, with a simple approximation
the connected distribution of statesGc(E8;E), we have ob-
tained a well-behaved REM/INM theory that incorporat
some of the important phenomenology of fragile supercoo
liquids. With fits to simulation data, a beginning has be
made at estimating model parameters for several materia
the number of states/regions,n, is sufficiently large, the
Kauzmann transition is avoided and the REM exhibits sup
Arrhenius behavior down toTg50.082d; d sets the tempera
ture scale. The mode-coupling temperatureTc is '0.26d. In
contrast to the uncorrelated model where all states
minima in the thermodynamic limit, the probabilityP0 that a

FIG. 4. REM theory and simulation data~irregular curve! for
density of minima,r0, vs energyE ~LJ units!, unit-density LJ, and
N532.
0-9
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state is a minimum is now seen to vanish in the limit. Th
finding is consistent with the arguments of Kivelson and T
jus @26#.

The REM expression forf u(T), which we consider com-
parable to the fraction of diffusive Im2v INM in liquids,
suggests that data for different materials can be plotted
the same master curve by introducing the reduced temp
ture T/d. Using the master curve also allows a consist
determination ofTc from different studies on different sys
tems. The method is demonstrated for unit-density LJ
seven densities of CS2.

A good fit is obtained to the density of minima,r0(E), in
unit-density LJ, confirming our prior estimate@27# of seven
atoms in a local region and yielding a value of'30 states/
regions. Consequently,Tmin50.58 LJ units, and the REM
description does not extend to the deeply supercooled
gime, but works surprisingly well at higher temperatur
Perhaps this is because LJ, while nonfragile, has w
ArrheniusT dependence@25#, with an activation energy les
than the melting temperature. The REM could not possi
reproduce strong Arrhenius behavior.

The slope of ln(fu) vs Sc /N is somewhat greater thanz/2
for T*Tc . Comparing with the work of La Naveet al. @14–
16,24# givesz'25 in SiO2 andz'1.5 in water. The former
is reasonable while the latter may point to deficiencies in
theory.

The escape rate from a state,R, naturally divides into an
activated ~mechanism@5# A) contribution RA for upward
transitions and nonactivatedRB for transitions to lower en-
ergies. Even so the two mechanisms have similarT depen-
dences, since the number of states with lower energy con
uting to RB decreases strongly with decreasingT. The total
rateR is proportional tof u .

In deeply supercooled liquids, the model predicts, w
plausible assumptions,D}R} f u . Some simulations
@13,15,16# show D} f u

a , with a.1. It was argued that the
cause is probably the presence of factors with relativ
weak ~compared to a Boltzmann factor! T dependence, aris
ing from dynamical details not included in the REM. Su
factors are important when fitting over the limited rang
available to computer simulation. Replacing the simple B
@3# Metropolis anzatz with something more correct for li
F
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uids is an essential improvement. Here it should be poss
to borrow what has already been done@11,13# for INM
theory. In water, the relatively largea52 and the small
value ofz from Eq. ~16! may indicate the need for a bette
REM.

While the master curve and the representation ofr0
clearly show that the REM can be a valuable tool in t
theory of liquids, the work has only begun. The idea of
viding a liquid into independent local regions is still vagu
despite having been discussed at least since Adam and G
@10#, and must be implemented quantitatively. Fitting sim
lated properties of the landscape to the model for more s
stances should make an important contribution to this ta
determining the parameters and their possibleT depen-
dences. Use of the order parameterr @3# will add new flex-
ibility to the theory. For example, while currentlyCV /Nr
5d2/T2, more generally

CV /Nr52
d

dT
@d2~^r~T!&!/T#, ~37!

which need not have the parabolic form commonly asso
ated with the REM.

Our proposedGc(E8;E) is physically motivated and fixes
the obvious shortcomings of the uncorrelated model. Ho
ever, even given our assumptions it is approximate. A Gau
ian distribution of local energies is a simplification whic
cannot describe all systems—e.g., one suspects, water—
more work is required to represent liquids in detail. The s
tus of the minima remains unclear. The uncorrelated mo
and the current model represent two extremes, with
minima and no minima, respectively, in the thermodynam
limit. Nonwithstanding the arguments of Kivelson and Tarj
@26#, it may be that the current theory goes too far in elim
nating the bias of the neighbor distribution towardsĒ.
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