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Thermodynamics and structure of self-assembled networks
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We study a generic model of self-assembling chains that can branch and form networks with branching
points(junctions of arbitrary functionality. The physical realizations include physical gels, wormlike micelles,
dipolar fluids, and microemulsions. The model maps the partition function of a solution of branched, self-
assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin
components. As for the calculation of thermodynamic properties as well as the scattering structure factor, the
mapping rigorously accounts for all possible cluster configurations, except for closed rings. The model is
solved in the mean-field approximation. It is found that despite the absence of any specific interaction between
the chains, the presence of the junctions induces an effective attraction between the monomers, which in the
case of threefold junctions leads to a first-order reentrant phase separation between a dilute phase consisting
mainly of single chains, and a dense network, or two network phases. The model is then modified to predict the
structural properties at the mean-field level. Independent of the phase separation, we predict a percolation
(connectivity transition at which an infinite network is formed. The percolation transition partially overlaps
with the first-order transition, and is a continuous, nonthermodynamic transition that describes a change in the
topology of the system. Our treatment that predicts both the thermodynamic phase equilibria as well as the
spatial correlations in the system allows us to treat both the phase separation and the percolation threshold
within the same framework. The density-density correlation has the usual Ornstein-Zernicke form at low
monomer densities. At higher densities, a peak emerges in the structure factor, signifying the onset of medium-
range order in the system. Implications of the results for different physical systems are discussed.
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[. INTRODUCTION “closed loop” phase diagrams of dipolar and magnetic fluids
and colloids, and microemulsio8]. Cryoelectron micros-
Networks and branched structures are ubiquitous in botlsopy shows clear evidence of coexisting network phases in
natural and synthetic materials and form under a variety oflilute microemulsiong10]. In many of the systems men-
equilibrium and nonequilibrium conditions. In this paper, wetioned above, the chains themselves are self-assembled in an
present a theory that describes in a unified way the structureguilibrium manner from a large number of monomgref.

and thermodynamic properties of equilibrium networks and48]).

their relation to several soft condensed matter systems, such We focus here on the thermodynamic behavior and struc-

as gels, wormlike micelles, microemulsions, and dipolar lig-ture of systems with thermoreversible crosslinking; this

uids and colloids. In all these systems, the networks consisheans that the crosslinks can break and re-form under the
of crosslinked, elongated objedts.g., polymer chains in the influence of thermal fluctuations. It turns out, however, that
case of a g¢l The study of network phases is of both theo-many of the large scale structural properties of network-
retical and practical interest. From the practical point offorming phases are independent of the precise nature of the
view, gels and sol-gel systems are at the core of many indugrosslinks. In many of the complex systems mentioned
trial, biological, and biomedical applications. Examplesabove, an understanding of the local and large scale correla-
range from novel plastics and food processing to gel chrotions is also of importance. Certain structural transitions can-
matography and tissue implarjts,2]. Despite intensive the- not be detected by examining the thermodynamic properties
oretical and experimental investigations carried out over thalone, but are expressed by the nature of the correlations
past three decades, many features of network-forming syd$etween different components of the system. One example is
tems still remain uncleafRefs. [2,3,48). For example, the percolation transition, at which a network spanning the
whether the gelation transition in physical gels is a first-ordefwhole system is formed, as schematically shown in Fig. 1. It
or a continuous transition, is currently under deb&@e5]. is a continuous transition, unrelated to the thermodynamic

Experiments have not yet provided a clear-cut answer, beproperties of the system. Generally speaking, one would like

cause the gelation transition can be obscured by the van de&s know both the thermodynamic behavior of these systems

Waals interactiori6]. Another example is the transition of a as well as such experimentally measurable quantities as

solution of wormlike micelles to a self-assembled networkdensity-density correlation functions and response functions

that has been suggested to occur on the basis of rheological applied fields such as an electromagnetic field or hydro-
measurements; this has also been discussed theoreticatlynamic flow.

[7,8]. Network formation may also be responsible for the To answer these questions, at least within a mean-field
approach, we study a generic system consisting of self-
assembled chains that can branch and form networks. Each

*Email address: anton.zilman@weizmann.ac.il chain consists of a large number of “monomers.” The chains
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FIG. 1. Schematic illustration of the formation of a connected FIG. 2. Phase diagram of a solution of self-assembling,
network from disconnected clusters upon increase in the monomesranched chains as a function of temperafliie units of the end
density ¢. energye., and the monomer volume fractiof The junction en-

ergy has been chosen to be equakgt. The thick line shows the
are self-avoiding and mutually avoiding but are permitted tophase separation region. The dashed line is the percolation line. To
branch(crosslink. We shall call both the branching points the left of this line the system consists of a solution of disconnected
and the crosslinks “junctions.” The exact physical interpre- (but possibly entanglgdbranched chains; to the right there is an
tation of the “monomers” and “junctions” will differ from infinite connected network. Moving along the lig the actual
system to system. In each particular case, the energy arg¢lation transition will be seen as a continuous nonthermodynamic
other properties of the junctions and the ends can be calctransition, while moving along will result in a first-order thermo-
lated from microscopic considerations, e.g., molecular packdynamic transition. Thus, coexistence of two connected networks is
ing for surfactant systems, or dipolar interaction energies apRossible at high enough temperatures.
plicable to ferrofluids.

In this paper, we present a lattice model that establishes For threefold junctions, the junction-induced attraction is
the equivalence between a solution of branched, selfstrong enough to drive irst-order phase separationvhere
avoiding, self-assembling chains and a Heisenberg magnet the system separates into a low-density and a high-density
the limit of “zero” spin components; we show that their phase. This is a transition whose origin is purely entropic,
partition functions can be mapped onto another. This modebhecause there are no specific interactions between the mono-
known as ‘h=0" model, was proposed by de Gennes tomers. The physical reason for the transition is the higher
study polymer solutions and we have modified it in order toentropy of the junction-dominated high-density phase: al-
include the possibility of branching. The model provides anthough the translational entropy of the chains is lower in the
exact calculation of the thermodynamic properties, includinchigh-density phase, it is overcompensated by the increase of
the density fluctuations and accounts for all possible configuthe entropy of the self-assembled junctions, that are abundant
rations of equilibrium branched cluste¢excluding closed in the high-density phase. In this respect, this entropy-
rings, whose influence is of importance only at very lowinduced transition is similar to the crystallization of rigid
densitieg (cf. also Appendix B. This formulation of the spheres and the isotropic-nematic transition. The transition
problem enables us to explore both the thermodynamic antihe terminates at a critical point. For fourfold and higher
the structural properties of self-assembling branching chainfinctionality junctions, the junction-induced transition is too
in a unified manner. The model is treated in the mean-fieldveak to drive a phase separation. In this case, the junction-
approximation and our major conclusions are summarized iinduced interaction merely renormalizes the excluded vol-
Fig. 2, which shows the phase diagram of the system as @ame interaction between the chains, and drives the system
function of the density and temperature. We find that despiteloser to thed point. The structural percolation transition, of
the absence of any specific interactiobhetween the mono- course, is also present above the critical temperature of the
mers, the presence of the junctions inducestiactive at- first-order phase separation. At very low temperatures and
traction between the monomers. The model can be modifiednonomer densities, the chains are depolymerized and the
to study the topological properties of the system and corresystem consists mainly of separate monomers.
late them with the thermodynamic behavior. As the monomer The nature of the phases in equilibrium depends on the
density is increased or the temperature decreased, the systé@mperature, as well as on the rigidity of the chains and
passes through percolation(connectivity threshold, where details of the junction configurations. In general, there are
a network spanning the entire volume is formed. This tranthree possibilities(i) a phase of dilute chains that coexists
sition is purelytopological and has no thermodynamic sig- with a connected network(ii) two coexisting networks, or
nature. However, the junction-induced attraction doediii) the coexistence of dilute and dense phases of disjointed,
modify the concentration of monomers at which the percolabranched aggregates, although not predicted by our model, is
tion threshold occurs; as the temperature is decreased, tladso possible.
threshold is decreased compared to its value in the limit of Our treatment of the spatial density variations within
infinite temperature, where the interactions are irrelevant. mean-field theory shows that the density-density correlation
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function, relevant for scattering experiments, has a simplé n=0" model with a cubic term in the Hamiltonian in the
Ornstein-Zernicke form for relatively low densities of the context of percolation and focused on the scaling behavior of
self-assembling monomers. For higher densitiespemk the model to study the properties of the gelation-percolation
emerges in the structure factor as a function of the scatteringjansition. However, they did not calculate the thermody-
wave vector; this indicates the emergence of medium ranggamic transitions(such as the phase separation predicted
(|0nger range than the lattice size but not |0ng range O)rder!’]ere or Study the monomer denSity ﬂUCtuationS. andlscatter'
correlations in the system. In the intermediate regime, thdd Structure factor. In our model, however, the junctions are
structure factor is a monotonically increasing function of theNot modeled as pointlike objects, and the treatment of topo-
wave vector. This is expected in any dense system: at higlpgical structure is simpler than that of R¢L5], but is ap-
densities, the system has a low compressibility at long waveRlicable only in the mean-field approximation. The=1
lengths and this suppresses the small wave vector scatteringedel, which also accounts for closed rings, but does not
The absence of a peak the structure factor does not imply properly take into account the self-avoidance, was used by
the absence of thaetwork: there is a region in the phase Ledueux, Elleuch, and Pfeufy] to study the general prop-
diagram beyond the percolation lifehere an infinite net- erties of mmellar_sqluuon; but did not consider the topology
work exist3 where there is indeed no peak in the density-Of the network. Similarly, in the_two—ﬁeld model of R¢fL6],
density correlation function. The precise location andthat also acco.unts for closed rings, correlatlons and structure
strength of the peak depends on the monomer density and tH¢€ not studl_ed and no analytic expression for the free en-
number of junctions present in the system. As discussed iRr9y was obtained. _
Sec. VI, these theoretical predictions may be related to the This paper is organized as follows. In Sec. Il A we review
scattering peak observed experimentally in bicontinuous mithe “n=0" model without junctions. In Sec. || B we extend
croemulsions. the model to include the possibility of junctions and establish

Our predictions of the thermodynamic and structuralthe correspondence between this model and the physics of
properties can be put in the context of previous work on thdhe problem of self-assembled networks: In Sec.. Il we cal-
physics of “living” (self-assembling polymers and net- qulate the f_ree energy and the phase d|agram in the mean-
works; this area has been the focus of extensive experimentfigld approximation. We next extend the mean-field theory to
and theoretical attention over the past two decddésAp- include _spatlal variations (_)f '_[he monomer den_3|ty and in Sec.
pendix B. Most notably, phenomenological, Flory type IV, predict the spatial variations and c_o_rrelatlons. In Sec_. \%
(chains with linkers theories have been employed to model W& Show how the model can be modified at the mean-field
physical gels[4,5]. Another important contribution is the level to enable us to predict the topological properties and
work of Drye and Cates that was motivated by studies ofcorrelate them with the thermodynamic behavior. The ap-
wormlike micelles[11]. However, the predictions of these Proximation employed is at the same level as the classical
various studies regarding the properties of the gelation trarflory-Stockmayer theories of gelation. In particular, in Sec.
sition vary depending on the details of the models that were/ B we discuss the structure and evolution of a single
studied, the assumptions regarding the solvent quality anfranched cluster as a function of monomer density and the
other parameters. This is partially due to the fact that thesiémperature, and the emergence of a connected network.
studieg[4,5] did not emphasize the extreme sensitivity of the S€ction VI describes the extension of our model and its pre-
gelation transition to the functionality of the junctions and dictions to the case of rigid and semiflexible chains. In Sec.
the importance of the competition of the branching pointsV” we discuss the results and t_helr apphca_tlon to pa_rtlcular_
and the free ends. These previous, more heuristic, mean-fieRftysical systems such as physical gels, microemulsions, di-
theories could not be extended in a simple manner to predidolar fluids, and wormlike micelles.
the correlations.

We have therefore focused on the more rigorons=0" Il. ZERO-COMPONENT HEISENBERG MODEL
model, which allows one texactlyevaluate the number of
all possible configurations of branched self-avoiding and mu-
tually avoiding chains on a lattice. Our use of the lattice For systems with no junctions, then=0" model has
approximation models the configurations of the chains onlypeen extensively studied in the context of polymer solutions
approximately at short length scales. However, as long aand micellar systempl13,17-19,21,22,44,45For the sake
one is interested in the behavior of the system on lengtlof completeness we review here the derivation of the model;
scales much larger than the lattice constéire,, thermody- in Sec. | B we extend the model to include junctions. Read-
namicg the choice of the lattice does not influence any of theers familiar with “n=0" model can proceed directly to Sec.
qualitative predictions of the model. Thev=0" model has |l B. We consider a system that comprises a solvent and a
been successfully used to explain the properties of associateollection of self-assembling chains, each consisting of a
ing monomers and has been applied to the polymerization darge number of identical monomer units. The physical na-
sulfur[12] and wormlike micellar solutiongl3]. The exten- ture of the “monomers” can be different. For example, in
sion of the model tan=1 was used to model systems con- physical gels these would be the individual molecular units
sisting of chains and rings in equilibriuni4]. Our model is  that comprise the polymers, in microemulsions these would
similar to the one employed by Isaacson an Luberjdkyto  be surfactant covered ojbr watey domains, and in dipolar
which it can be relatedcf. part A of Appendix B These colloids, the colloidal particlescf. the discussion in Sec.
authors studied the continuum version of the tensoriaVll). The chains are self-avoiding and mutually avoiding,

A. Self-avoiding chains
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that is, they cannot intersect themselves and each other. Weas later refined by equivalent methods by different authors
focus on self-assembling systems where the monomers af@2,23. The calculation ofAV{N,N,) is performed by relat-
relatively weakly associated within a chain; thus, individualing the partition function of Eq(l) to that of a certain spin
monomers can be freely exchanged between the chains. model on a lattice. Consider thecomponent Heisenberg
this case, the equilibrium distribution of chain lengths is notmodel on a three-dimensional lattice whose Hamiltonian is
fixed, but is determined by the values of relevant physicabiven by
parameters, as we discuss later. We consider the system in

the grand-canonical ensemble, in equilibrium with a bath of _ & & _ > 2

monomers of the chemical potential We assume that the H= z IS5, E h-S, @
energy of a monomer at the end of the chaiy, relative to

that of a monomer in the middle of the chain is positieg, where the summation is over aflistinct pairs of nearest
>0. T_his is indeed t_he case fo_r micellar systems ar)d microheighborsi J. Spin§i is ann-component vector normalized at
emulsions, becausén the regime where long chains are g5ch site as

formed the bending energy of the surfactant layer is lower in

the cylindrical part than in the semi-spherical end ci&t8. . n

The same is true for dipolar particles, because the electro- |S|?= E S.Z,,fn,

static energy of a dipole in the middle of the chain, which a=1
has two neighbors, is lower than that of a dipole at the chain h ind th s @& W bitraril
end, where it has only one neighboring dipoleel& 0, the Where a in _exels € _ co_mponer? S C$ - Ve arbitrartly
self-assembling chains will be very short and the solutiorchoose the fieldh to point in the directior(1,0,...,0. _
will mostly consist of individual monomers; this is not the ~ The partition function corresponding to this spin Hamil-
limit that we are interested in. The end energy, taken with thdonian is
opposite sign,— €., can also be interpreted gs,, the

chemical potential conjugate to the number of chains in the

solution, N, . This interpretation is usually adopted in dis- \yhere the trace operator Tr signifies an integration over all
EUSS'O? of r_egtular ?cilr)]/mer solut_log$?,21,_22.deor the Sys- possible directions oéi , divided by a normalization, so that
ems of our interest, the energy is determined from micro- ¢ - - /A of any quantityA is

scopic considerations, be it molecular packing or

Zy=Trexd —H/T*], (3

electrostatics. The number of chains and average molecular

weight are not fixed but determined by physically control- f Hi den)A
lable parameters, namely, the temperature, the totaomer TrA= ,
density¢, ande,. For simplicity, we imagine that the mono- f Hi in(m
mers and the solvent molecules occupy the sites of a three-

dimensional lattice. With the above notation, the grand
canonical partition function of a solution of equilibrium
chains is given by

‘whereQ (" is the n-dimensional solid angle. The “tempera-

ture” T* has no physical meaning and is not related to the

real physical temperature of the system in Eb; we put

T* =1 (another choice off* would amount to a renormal-

Z= >, exgduN/Tlexg —eNo/TIMN,N,), (1) ization of the constantd andh). Expanding the exponential
{N.Ne} in Z,, of Eq. (3) in a power series, we obtain

whereN is the number of monomers in a given realization of 1 o .
the grand-canonical ensemblé, is the total number of free ZH:EK a 1 (3§-S+hs )« (4)
ends, andV(N,N,) is the number of ways to arrandé./2 )

nonintersecting chains of total lenghy on a lattice. Ther-  Each term in Eq(4) has the following form:
modynamic quantities can be obtained from EL). by dif-
ferentiation with respect to the relevant parameter. For ex- TAJ”S:S;...S1S ;™S 1 .S pr 4], (5)

ample, the mean number of monomers and chahaind
Np, respectively, are

m times n times

Note that in the tracing operation in E¢), all sites are
glnz decoupled.

N= P In any realistic system in which the sp§1with n com-
ponents is to have a physical interpretatiok 1 is required;
_ 9Inz n_=1 corresponds_t_o the usgal Ising model. However, quan-
Np= FP tities such as partition function and the cumulant expansion
e

remain mathematically meaningful even wheq 1. In par-
ticular, one can consider the mathematical linmt-0

The direct combinatorial calculation df(N,N,) is a for- 18.241. It can be shown that whem—0 (cf. Appendix
midable task. A way of circumventing the difficulties in- 18,24, (cf. App A,

volved in its calculation was proposed by de Genfr&g. It TrS .S p= 6apbij » (6)
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andall other cumulantsare zero. The spi does not have a ¢al preparation techniqiileThe continuum version of this
physical interpretation in the—0 limit and should be re- model is the basis for t_he application of fleld—theorgtlcal
garded purely as a convenient mathematical device. A preNethods to polymer physi¢22,23,23. The self-assembling
cise mathematical meaning can be given to @.(cf. Ap-  theory can be used to predict the properties of non-self-
pendix A. In particular, Eq(6) implies that in the expansion assembling polymer solutions of long chaissnallhin our
(5), the only nonvanishing terms are those in which everyformulation, because the scaling behavior of such systems is
spin S, appears twice. As can be seen from E4), this universal and independent of the detailed chain properties.
condition is satisfied by terms consisting of the chains of

neighboring bonds: .JSS;JSS; ... . Since every spin must B. Threefold junctions

appear twice for the t_erm to be nonzero, the uncouple(_j SPINS The model presented in the preceding section can be
at the ends of a chainS( andS;, in the above expression o gified to include the possibility of junctions that connect
must be paired with another spin at the same site eithé)by geyeral chains; this allows the formation of a branched struc-
closing a chain on itself or byii) the appearance of the {re and is achieved by introducing an additional term in the
single-spin, “field” term hS. However, in the limit of  pamiionian of Eq.(2). Again, we consider the grand-
n—0, the terms given byi) vanish, due to summation over canonical partition function of an equilibrium solution of
all the componentsvia summation over the index); this  pranched crosslinked polymers with reversible crosslinks.

sum is proportional to the number of componemiswhich  The crosslinkgbranching pointsare in thermal equilibrium
is equal to zero. The terms that contain the field varialtles, and can break and re-form. Similar to the solution of poly-

do not vanish because theterms single oubnecomponent  mer chains discussed above, the grand-canonical partition
with the indexa, parallel to the fielch, namely,S, . Itiseasy  fynction of the system is

to see that such terms consist of products of the form

Trh§ 1S 15,195 1S 1 I$1S.1hS 1 (7) Zs= > exd uN/Tlexd —€Ne/T]

{N.Ne N}
that repeat themselves with differarandr. Any term of the
form of Eq.(7) corresponds to a self-avoiding random walk
on a lattice, starting at siteand ending at site. In other
words, a term containing the factd¥h?* counts all the pos-
sible configurations ok random walks of total bond length
m. Thus, the partition functioil) can be written as

xexf — €N /TIMN,Ng,N;), (©)

wheree; is the energy of a crosslink relative to the energy of
a monomer in the middle of a chaih; is the number of
junctions (crosslinkg and N(N,Ng,N;) is the number of
ways to put self-avoiding branched chains of total length
on a lattice so thall, ends andN; junctions are formed. The
Zy= 2 JINehNeAN, ,No), (8) chemical potential for the monomerg,and the end energy
{Np . Ne} €. are defined as in the preceding section. Similar to the
discussion of the end energy and its associated chemical po-
tential, the junction energy taken with the opposite sign,
— €, can be interpreted as the chemical potential conjugate
to the number of junctions. We suppose that the physically
controllable parameters are theonomerensity ¢, the tem-
peratureT, and the end/junction energies,e; . In this for-
mulation, the density of ends)., and the density of junc-

whereM(N,N,) is the number of ways to arrange on a lattice
an ensemble of self-avoiding random walks with a total num
ber ofbonds N, and a total number of ends$,. Noting that
the number of chains isl,=N/2 and the number of mono-
mers isSN=Np+N,, one can see that E(g) is identical to
Eq. (1) if the following identification is made:

J=ge*, tions, ¢;, are not fixed but determined in thermal
equilibrium as functions ot andT.
h=e %J¥=h 32 In this section we show how the threefold junctions can

be described by 1i=0" model. The generalization to junc-
Each term in the sum in Ed8) corresponds to a different tions of arbitrary functionality is discussed in the following
realization of the grand-canonical ensemble of a solution ofection. As in the preceding section, one can relate the par-
self-avoiding chains. We have thus demonstrated that th#tion function of Eq.(9) to an equivalent spin model on a
grand-canonical partition function of a solution of polydis- lattice. The mapping rigorously accounts for all possible con-
perse, living polymers is identical to that of theeomponent figurations of branched, self-avoiding clusters, except for
Heisenberg model where the number of components).  closed rings. The influence of rings on the properties of liv-
As mentioned in the Introduction, the lattice approximationing polymers has been studied in Rdfs4,46. However, in
is adequate as long as the chains are much longer than tiige case of branched chains, the influence of closed rings on
lattice constant. This theory describes the ensembigelif  the thermodynamic properties of the system is small, except
assemblind'living” chains, which are of interest to us. The at very low densities, and they are not treated in this paper
molecular weight and the length distribution are not fixed but(cf. Appendix B 1. The reason for this is that for any closed
are functions of external parameters, such as the monomeing there is an exponentially large number of branched clus-
density. However, this model has also been successfully apgers formed by attaching side chains to it. No topological
plied to non-self-assembling polymer solutiofghere the information regarding, e.g., the network formation, or the
degree of polymerization is constant and fixed by the chemieluster size distribution can be extracted from the model for-
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mulated below. However, it can be modified to include the
treatment of topological properties too, as shown in Sec. V.

We introduce the following Hamiltonian that contains a
term which couples three adjacent spins:

Ha=2 R-S+2 IS §)+ 2 KS1§1Sa, (10 jynction | &,
i ij ij T R .
wherei,j,k sum is over all distinct triplets on the lattice and sl sj

S, is the component of a spin along the direction of the field
h which is chosen to point in thél,0,...,Q direction. The
partition function corresponding to this Hamiltonian is

Zy,=Tris) exil — Ha{SH/T"]. (1D

The “temperature”T* can be taken equal to unity and any

other choice would amount to a redefinition of the constants FIG. 3. Junction can be formed between three adjacent sites
J, K, andh. Proceeding as in the preceding section, we exi,j,k. The Boltzmann factor for a junction kK,=e<'T.

pand ZHs in series in powers oK, J, andh. In the limit _ _ _ _

n—0, the terms in the expansion Zf, in powers ofJ, K, absence of intrachain loops. Note that this formulation does

into any term of the expansion Ep) of the preceding sec-

tion, combinations of the form erties(cf. Appendix B.

If the following identifications are made:

oo S50 1851 [KS 18 1S 01 WS n1Snr IS maSmr g een . (12) J=eMT, (15
R —
Junction h=e €/Tjl2= hOJ1/2
Each insertion of this kind corresponds to a threefold junc-
tion on a lattice, joining the sitgsm,n (cf. Fig. 2).Thus, a K=e €/13%°2=K,J%?,
general term in the expansion 8f;, might look like . i
3 thenZH3 of Eq. (14) becomes identical t@; of Eq. (9). To

summarize, we have shown that in the- 0 limit, the grand-

Tr AS;JS;1S;{KS; S, S . ' . ! .
TS0 /’1‘[ St "’1], canonical ensemble of a solution of branched, reversibly
jonetion crosslinked polymers is equivalent to a Heisenberg magnet
XISy 1Snr 1Sy 1o TSy 1S, kS, 1 (13) with a three-spin term. It is important to emphasize that al-

though the closed ring8inear, unbranched chains closed to
This particular term, for example, corresponds to a threefoldform a ring are not included in the expansi¢h3), all the
branched, self-avoiding chain, which has a junction betweefntracluster loops are counted properly.

the pointsj,n,k, and free ends at pointsn’, andm. In other The concentrations of the monomers, ends, and junctions,
words, the partition function corresponding to the Hamil- ., ¢e, and¢;, respectively, can be obtained by differenti-
tonianHj is ating the partition function with respect to a relevant param-
eter, as follows from Eqg9) and (14),
Zy,=Trexg —Hg]= N % N JNohNeKNIA(Ny ,Ne ,N;), ~14dInZ ~145InZ 16
{Np Ne.Nj} 14 =T 73 ¢bonds—vé,sl—nj, (16)

where M(Ny,,N¢,N;) is the number of ways to arrange on a ~14Inz ~149Inz
lattice an ensemble of self-avoiding branched random walks ¢e_v Jlnh’ iI"V alnK’

with a total number obonds N, (excluding three “ghost”

bonds at each junctions, cf. Fig), 3 total number of ends where §; denotes a derivative with respect fowith the

Ne, and a total number of junction; (cf. Appendix B. generalized fugacitiek, J, andh taken to be independent.
The closed rings fall out from the expansion of Et¥) due = The great advantage of the present formulation is that it al-
to the summation over spin components. Each ring producdsws us to apply the methods of statistical mechanics devel-
a contribution proportional tax which tends to zero as oped in the past four decades for the treatment of the spin
n—0, analogous to the case of linear chains. From simplenodels.

geometric considerations, the number of monomélsjs In this paper we are interested in systems where junctions
aIwaysNsz+%Ne+§Nj (we do not count the junctions as form spontaneously; in that case, the number of junctions,
monomers; see Appendix)Bregardless of the presence or the distribution of the chain intervals between the junctions,
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and the size of the branched clusters will be determined by . .

the junction energy; , the monomer density, and the tem- Z=Tr exr{ -2 3§ S;—Ek KS 181801~ 2 h'S}-
peratureT. This is what one expects, for example, in dipolar = h ' (19)
fluids or microemulsions. In other systems, junction forma-
tion may only be possible if linker molecules, that connectThe sums in the argument of the exponent of E) are

several chains, are added to the system. In that case, thger distinct pairs and triples, as explained in Sec. Il B. We
grand-canonical formulation presented here amounts to thgow note the following identity:
assumption that the system is in equilibrium with a bath of

linker molecules with chemical potentiat ¢;. The grand- §.§j:(§i_§)(§j_§)_§2+ §.(§+§j)
canonical potential per unit volume of a system with self- —
assembled junctionsy(€; , €., 1), is given by ~ -34S (§+§j),
1 whereS=(S;). The underlined term in the equation is qua-
(€ €e, )/ T==GInZ(Ko,No,J) (A7 Gratic in the deviation of the local spin from its average value

S It is this term that is neglected in the mean-field approxi-
and other physically realizable situations are related to Egmation. Since the “magnetic fieldh has been chosen to
(17) by a Legendre transform. For instance, the free energpoint in the direction(1,0,...,0 the only nonzero component
corresponding to the case where junctions form only in thef the average spin iS; ;. Therefore, the transverse compo-

presence of linker molecules is nents of the spir6 do not contribute to the mean-field ap-
(teoN) = o InK proximation, due to the fact thg§; , )=0. In the following
glu, €e, N j 0 we drop therefore the vector sign aBdsignifies the com-

Of course, in the thermodynamic limiv/(-) the proper- ponent 0f§_ in the direction ofh. Simila_\rly, the mean-field
ties of the system are identical in either ensemble. Here, wPProximation for the three-spin term is

will focus on the case where the physically controllable pa- e el e

rameters are the total monomer density and the defect S5S 2SHS(SHS TS0

energies, eo/T=—In(hy) and €;/T=-In(K). The corre- 15 the mean-field approximation to the Hamiltonian reads
sponding Helmholtz free energy per unit volume in this case
is

1
HMF=V(§qJSZ+ 2aKS*| =2 (qIS+3aKSP+h)S,
|

f(¢)=o(u)tud=wtdgind.

whereV is the number of lattice sitgsvhich tends to infinity

IIl. MEAN-FIELD THEORY in the thermodynamic limjtand the sum is over all lattice
sites; g is the lattice coordination number. The prefactor
=1a’, wherea’' is the number of possible configurations of

The first approximation in evaluating the free energy is tositesj,k in the triple termi,j,k making a junction around the
disregard the spatial variations of the densities and the longite i. The exact value ofx’ depends on the type of the
range correlations between the monomers. In this section, wattice used and on the physical assumptions made in count-
assume that the system is spatially uniform and calculate thigg the physically relevant junction configurations. Physi-
free energy as a function of the average monomer volumeally, it represents the entropy associated with local rear-
fraction ¢, and of the end and junction densitiel, and¢;,  rangements of a single junction and we discuss its value for
respectively. A mean-field calculation of the free energy for asemiflexible and rigid systems in Sec. VI. In most of this
system with no junctions has been presented in Refgaper, we shall use the value @f appropriate for a simple
[12,13,19. We extend this calculation by an alternative cubic latticea’ =q(q—2)/3 (cf. Appendix B. A particular
method to a system that contains both ends and junctions. Weature of then—0 limit, following from Eq. (6) [18,19,24
first calculate the grand-canonical poten@IT=—InZin (¢ 5150 Appendix A is that for an arbitrary vectdk,
the mean-field approximation, which is generally known to
correctly predict the qualitative thermodynamic behavior lim Tre—'§i=1+1k2
[26]. As we shall show subsequently in Sec. V, the mean- 2
field approximation disregards the internal loops in the
branched clusters, because only local properties are pre&onsequently, performing the trace in Efj8), we get
served in the mean-field approximation. Geometrically, it is
equivalent to Flory constructiof27] wherein each cluster is
constructed by adding consecutive bonds, disregarding the
positions of the previously placed ones, and the long range
correlations are lost. In particular, intracluster self-avoidance
is neglected in the mean-field approximation. However, the
excluded volume between different clusters is taken into ac-
count. The partition functio is given by The average value of the spi§, is given by

A. Mean-field approximation

n—0

1 1
— =w=— 3
V(Q/T) w 2q352+2a|<s

1
—In| 1+ E(qJS+3aKSZ+h)2 . (19
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Jdo 1 The second and the third terms are the densities of ends and
S=- sh Vv 2 S). junctions, respectively, as can be seen from Ef6). De-
' noting the volume fraction of ends kj, and of junctions by

The total monomer density is ¢; it follows that

- L1, .8, de 1w 3 dw h0(2¢)1/2:¢ 23
$=boonast 5 Pt =T 3 NI 2 5Inh 2 9InK q'7?2 ¢
Jw 312
- aKo(2¢)
InJ’ 20 — =4

as follows from Eq.(16), and can be also understood by a
simple geometrical argumeftf. Appendix B. Finally, com-
bining all the equations we find

The expansion in powers bf, andK is justified because
we are interested in the limit where the density of ends is
much smaller than the total monomer densiy<¢. The

w=1qJS?+2aKS?*—In[1+L(qJS+3aKS2+h)?], density of junctions is much smaller than the total monomer
density, ¢;<¢, if Ko=e" i T is sufficiently small, as fol-
Jw gJS+3aKS*+h lows from Eq.(23).

We note in passing that the choice of the lattice affects
only the numerical prefactors in Eq&3) and (22). The
. lattice-specific dependence of junction and end densities in
=2 S(.qJS+3aKS2+h.)' Eqg. (23) on q is consistent with a simple probabilistic argu-
x ment. In equilibrium, the probabilities of defe.g., ends
_ ) i _ and junctiong formation and breakup must be equal. The
Den0t|nquS+_3aKS +h by x, the solution of this system probability of bond formation is proportional t%)d)iq. be-
of equations gives cause a bond can be formed whenever two ends are neigh-
bors on a latticéthe factor3 is due to indistinguishability of

dh 1+1(qgJS+3aKS*+h)?

1
$=25% any two ends The probability of bond breakup is propor-

X tional to the total number of bond$,~N. Taking into ac-
S=——. count that the formation of two ends from a single bond costs

1+ ¢x/S an energy 2., the probability of bond breakup ise %<’
Equating the probabilities of bond breaking and bond forma-

Consequently tion produces Eq23) (recalling thath,=e~%’'T). Similarly,

24 1 1 three ends for an end and internal monomer can coalesce to
X= -9 1+ Exzzm, S=\2¢(1— ¢), form a junction, giving in equilibrium ¢3/e 3¢

=ap;/e” 9 (Ky=€i ’T). Note that this argument is inde-
_ _ 3121 \312 _ pendent of whether the “ground state” consists of infinite
©=QIB(1= $)+2aK(2¢)"(1~$)"HIn(1=¢). chains or closed rings of linear chains.
It follows that in the limit of systems with relatively small  Together with Eq(23), the free energy of Eq. (22) can
numbers of junctions and ends, compared to the total numbde cast into the lattice-independent form
of monomers in the chairfdy(2¢) %< ¢,Kq(2¢) %< ¢],
° 0 HT=(1-¢)(IN(1—g)—1)—de—;. (2

1
qJ=(x—h—3aKS?)/S= —( 1- > - 3aKyy2¢ |. This particular form of is expected on very general grounds.
1-¢ V2¢ The first term in Eq(24) is due to self-avoidance between
(21  the chains. If one thinks of the ends and junctions as defects

Because we are interested in those systems where the densif the system of infinite chains, each defect lowers the free

o . |¥ergy bykgT, which is true for any system with noncon-
¢ (and not the Lagrange multipligy is a physically control- served defects, e.g., dislocations in crystal structures.
lable parameter, we perform a Legendre transfdrme
+ ¢ Ingd in order to obtain the Helmholtz free energy per

: . . Average distance between the defects
unit volumef(,hg,Kg). Up to first order inhy andK,, we g

find The average volume fractions of junctions,, and ends,
¢e, are not fixed but depend on the total volume fraction of
ho(2¢)Y2  aKy(2¢)3? monomers,¢. Similarly, the self-assembling nature of the
fIT~(1-¢)[In(1-¢)—1]— q2 - REG ' system means that the size distribution of the branched ag-

(22) gregates is polydisperse.
Absorbing the lattice-dependent prefactors in E2Q)
whereq is the coordination nhumber of the lattice. The first into the definition of the constants andh, the junction and
term in Eq.(22) describes the self-avoidance of the chains.end densities can be rewritten as
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b =KoY and pe=hye2 (25 ts(p)

2.2
As can be seen from Eq25) for ¢<h(/K, the number of
junctions is much smaller than the number of enfis< ¢
while in the opposite limitp;> ¢, . Let us consider the mean 1.8
length of a chain segment between two consecutive defects
(i.e., ends or junctions|. Each junction is attached to three 1.4
chain segments while each end is attached to a single seg-

ment. The total length of the segments is proportional to the I pl
total volume of monomers in the system. Consequently
(3N;+3Ng)I =N; the factor; corrects for the double count-
ing of each segment. Consequently, we find

No| Y

FIG. 4. Structure factor as a function of wave vegoin the
high-density region,¢>%. The dashed line shows the structure
2¢ 2¢ factor at low temperatures, where the number of thermally-

- 3¢j + e = 3K6(2¢)3/2+ h6(2¢)1/2' (26) generated junctions is small. For higher temperatures, a peak devel-
ops in the structure factor, as shown by the thick line.
For ¢<h(/Kg, the ends dominate and the mean chain length B. The junction-end transition

between endpoints i~ ¢*2 while for ¢>h{/K} the junc-

tions dominEte and the mean chain length in between th8f parameter§monomer densityp, defect energieg, and

junctions isl~ ¢~ These results are in agreement with ¢ "and temperatuj@nd shows a first-order phase transition,
the known results for both nonbranched micelles and purgnat terminates at a critical point. The spinodal line associ-
networks[11,20. These results suggest that at high densitiegted with this transition is determined by the condition
(where the ends are negligiblea connected network is #’F1d$?=0 and at the critical point?®F/d$°=0. We de-
formed, as we shall actually prove in Sec. VB. They alsoiermine the conditions for the critical point from our model
imply that the mean chain length between defebtg) has as

a maximum aroundp~hg/K;. One can easily convince

The free energy of Eq. (22) is unstable in a certain range

— _ 2
oneself by tgking th_e derivativel /9 ¢, t.hatl i_s indeed a j_':zz 1_L+ %(2¢)—3/2_3a%(2¢)—1/2: 0,
nonmonotonic function ofp whose maximum is located at ¢ ¢ q q
¢=13(hy/Kg) or, in other words, where.=3¢; . This fact (27
will become important for the determination of the details of PE 1 h K
the evolution of the system from a state of disconnected —__ — = 30 (54)-321 3,0 (24)~32=0,
chains to that of a connected netwddf. Sec. VB. ip® (1—¢)2 ~ql? q*?

In the absence of junctior{s.g., when the junction energy _ o o
is very high and the resulting value Kfis close to zerp the ~ Recalling thath,=e™“ andKo=e"“ ', Eq. (27) can be
mean chain length in between end points Ns= ¢/2¢, solved analytically for smallp, expanding (* ¢) [In(1

_ _q7_1 42 H H
—hj L2 The free energf(&,ho) of Eq. (24) can be trans- — #)~11=2¢", which gives
formed to a free energy that depends only pand ¢, (or

) —3¢;t+€
the mean chain lengtN) by means of the Legendre trans- TCZW, (28)
formation f(¢,hg) + ¢ Inhy="1(4,N). The result is identical
to the Flory-Huggins expression for the free energy of the 1q
polymer solutiongneglecting terms linear i), be=5 Ee(fiffe)”c,
_ 1) while for arbitrary¢ they can be solved numericalliFig. 4).
f(¢,N)=(1-¢)In(1—-¢)+ ﬁln ¢. It is interesting to note that in the small density limit,

~ ¢; at the critical point, which emphasizes the fact that the

transition is junction induced. FofF>T,; the system is a
As mentioned above, this is because the mean-field approxikomogeneousnixture of chains and branched aggregates,
mation is geometrically equivalent to Flory lattice construc-while for T<T, there is a two-phase equilibrium between an
tion, that disregards the intrachain self-avoidance, but retainsnd-rich phase that coexists with a junction-rich phase. As
the excluded volume interactions between different chainswill be shown in Sec. V B, the end-rich phase usually con-
Our model thus describes the case of polydisperse chairssts of dilute, disconnected chains, while the junction-rich
with both ends and junctions, as well as the limiting case ophase is usually @onnected networkhat spans the whole
finite chains(with no junction points where the average system volume.
length is well defined; this is the case that is applicable to Although there areno direct interactionsbetween the
chemically prepared polymeric chains. monomers in our model, junction formation induces effective
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attraction between the monomers, and it is this effective in-is thermodynamically equivalent to aitraction, while the
teraction that leads to the phase separation of E¢). Equa-  end term produces an effectivepulsion The location of the
tion (28) has several interesting consequences: First, thphase coexistence line is determined as usual, requiring that
phase separation is possible only Whgﬁ;%ee [as long as the chemical potentialg = df/d¢ and the osmotic pressures
q*/(4a® >1]; in the opposite case, the junctions are presenil in both phases are equal,

only as a minor “perturbation” to a system of linear chains

and their number is too small to generate an attraction large w(p)=u(y) (py)=I1(ehy).

enough to drive a macroscopic phase separation. Second, the ) ) ) ) L
critical monomer densitys.< % this fact is important for an Numerical solution of these equations is shown in Fig. 2.
understanding of the correlations between monomers and be-

tween junctions in the system. Third, ifr is large C. Fourfold and higher functionality junctions: Gelation
[q*(4a®)<1], there is no upper critical temperature, and versus vulcanization

the phase separation takes place even at infinitely high tem- e analysis of the preceding section can be generalized

peratures Tc—). If the “microscopic” end cap and junc- to systems with crosslinks of arbitrary functionalityby the
tion energiese. ande; themselves depend on temperature Oraqgition to the HamiltoniarHs of Eq. (10), a term that
density (e.g., in microemulsions, Ref28]), the phase dia- coyplesz spins.

gram may become more complicated. Note that the phase

transition described by E@27) shows reentrant behavior. At

high temperatures, there is no phase separation, as usual. At _,Z K81 S0y S0,
/ z —
very low temperatures the paramellef,ze*fiT tends to 2 times

zero and there is no separatieither, as shown in Fig. 2,

because the number of thermally generated junctions is too

small to drive a phase separation. with K,=J?%e™ < (cf. Sec. Il B; ¢, being the energy of the
The phase transition discussed here is of entropic origing-fold junction. In this case, the resulting Helmholtz free en-

which augments a qualitative claim by de Gennes thaergy per unit volume then takes the form

crosslinking is thermodynamically equivalent to attractive

interactions[24]. The origin of this phase transition lies in ~ f/T=(1—¢)[IN(1— )~ 1]— a;hgd"*~ a,e” 2>,

the fact that although the translational entropy of the chains (29

is lower in the dense phase, the total entropy is bidher . .

due to high entropy of the self-assembled junctions, whictN€r€@1 and a, are two numerical, lattice dependent pref-

are abundant in the dense phase. It is important to emphasi?@tors reflecting the local end and junction configurations,

that the presence of junctions induces an attraction betweerl’?SpeCt'Vely' There are two interesting points to be noted.

all monomersnd notonly between the junctions, as we shall (i) There is no thermodynamic phase separation Zor
show in Sec. V. Also, the phase separation discussed here iS, "55 can be readily seen from E&7) and (29), because
not the same as the percolatidoonnectivity transition, e resulting free energy of Eq29) is always convex
where an infinite cluster appears, although at both transition(sazf/a¢z>0)_ The attraction induced by the junctions
a macroscopic connected network is formed. As we shall Ségeakens with increasing The topological percolation tran-
in Sec. VB, the percolation transition, at which an infinite gjiion is however. still present, as discussed in Sec. VB.
branched cluster appears in the system, is not a thermody- i) \whenz=4, the contribution of the fourfold junctions
namic, but rather atructural transition In some cases, the {j the free energy is indistinguishable from the two-body
percolation transition can be masked by the end-junctionyactions between the monoméas least at the mean-field
phase separation. level). Both contribute a term- ¢? to the free energy for
) ) ] $<<1. The free energy is
Osmotic pressure and the phase coexistence line
The osmotic pressurH can be calculated from the free f/Tz(%—%e‘fZ)&—d)e, (30
energyf of Eq. (22),
where the effective junction energy; has been redefined to
absorb the internal degrees of freedom of a junction, ex-

pressed in the prefacter of Eq. (29). The term%e*fft cor-
responds to thg parameter of the Flory theory. At the point
_E K6(2¢)3/2- wheree, =0, the excluded volume repulsion is balanced by
2 the junction-induced attraction, a situation analogous to the
O point of polymer solutions. The location of the compen-
Note that the coefficient in front of the)-dependentends  sation point is intuitively very clear: i€;= 0, there is no cost
term is positivedue to the fact that the exponent @#t/2is  for creating a junction and the chains can intersect each other
less than one, while the sign of the junction term is negativeat will (the fact that the junctions are fourfold is crugjal
This emphasizes the fact that, although both ends and junthereby acting as completely Gaussian phantom chains. The
tions terms are negative in tliee energythe junction term threefold and fourfold junctions correspond to two physically

H—f&f~ll 1h’21’2
=- +% =—In( —¢>)—¢+§ 0(2¢)
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distinct situations. Threefold junctions describe the procesgansitions that one might expect in such structurally com-
of gelation when the monomers simultaneously crosslink angllex systems. Here, we generalize the mean-field treatment
polymerize in the reaction bath. The clusters formed this wayf the preceding section to include the possibility of spatial
exhibit mostly threefold junctions, simply due to the fact thatvariations; this formalism allows us to calculate the correla-
the collision of three monomers is more probable than thdions in the system. Each spin is approximated by its en-
fourfold collision. In addition, in some systenfs.g., micro- semble average, but spatial variations in the value of the
emulsiong 28]) it can be shown that the energy of fourfold average spiridue, for example, to a spatially varying exter-
junctions is higher than that of threefold junctions. The four-nal field are permittedcf. Refs.[20,29). In that case one
fold crosslinks correspond to the process of vulcanizationmust allow for spatial variation of the constants, which are
when existing long polymer chains are crosslinked by addidenoted now asl;, h;, K; each one labeled by its local
tion of crosslink molecules, by irradiation, or other meansspatial index. Neglecting the fluctuations of each spin about
[15,17,27. Formation of threefold junctions is structurally its local average valuéS), as in Sec. Ill, we have

inhibited by the nature of the crosslink which crosslinks two

preexisting chains. Contrary to gelation, these systems show S;S;=(S;—{(S;)(S;—(S;)) =SS} +{(S)S;+(5,)$;

only fourfold junctions that result from an intersecting pair ~ g
of chains.

neglected
= —(SHS)H(S)Si+(S)S;

IV. SPATIAL VARIATIONS AND CORRELATIONS

. ) where(S;) is alocal spin average. Similarly, we can approxi-
The advantage of ther=0"model is that it can be used mate the triplet term as

to predict the spatial correlations of the monomers, ends, and

junctions, in addition to the thermodynamic properties dis- SSiSc=—2(SHSNS)+(SHS)S +{(SHS)S

cussed above. These correlations are obtained from calcula- ! ! . .

tions of the second moment of the relevant probability dis- +(S)(Sj)S«-

tributions, such as the two-point correlations of the physical

parameters, e.g., the density. The density-density correlatiodsing the same procedure as in Sec. Il and writing the av-
function can be measured in scattering experiments. Apagrage of the local spin &S;)=s;, we find that the grand-
from being interestingoer se the correlations can also pro- canonical potential per unit volumeyq{s;} (cf. Appendix D
vide information about the structural, nonthermodynamicfor detail9 is

(K) 2
1 1 1
w{s,-}VZ—E J,-s,-sj-I-ZE —K,-s,-sjsk—z Inf 1+ = h,-—l—z J,-sj+3z K58 (31)
25 ik 3 7 2 s % 3
|
whereS{¢) is anunconstrainedsum over all possible pairs (K)
of sitesj,p, belonging to the same triplg,k (cf. Appendix Xi_hi_Ki% SjSk
B), and the subscriphni means summation over nearest Ji= ,
neighbors. It follows that ; Sj
Jw Xj . ..
S=—o—=—"17> where X;s; are sums over nearest neighbors of the &ite
dhi 1+ 2% From these formulas, the Helmholtz free ener§y¢;}
=owV{d}+=;¢;InJ; can be calculated.
Jw 1 1 3 For Ko=hy=0 (corresponding to infinitely long chains
bi=- aing, 24 Jisisj+ 5 hisi+ EHEK Kisisjsk the free energy is
1 _ 12
=5 5% (32) Flot=2 | gitin(1=g)+ 35 diing—
From this we find —¢iIn Y [2¢;(1—¢)]1Y2, (34)
nn;

Xi = llz_i and s=+24(1—¢), (33  Which we explicitly write here to emphasize the very non-

b trivial coupling between the different;’s coming from the
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underlined term. For a spatially uniform systef= ¢, and 1= 5. —1 .

the F{¢;} has only the single term (4 ¢)In(1—¢) of Eq. i FMF(d)HZ &5¢'+; Sui 0400

(22) because the terms proportional ttilanish in the limit o104, s2F

of Ko=hy=0 (infinitely long chaing considered here as an +0(84) (35
illustration.

The focus of the present discussion is different from thewhereFye(¢) is just the mean-field free energy of Sec. llI,
treatment of Ref[15], that was restricted to a study of spin- Fye(#)=VTfue(¢$); Si —azF{gb Hapidpy is a matrix of
spin correlations in the context of the percolation transitionthe second derivatives &{¢;}, and we have used the fact
In this section, we focus on the physically measurablehat 9F/d¢;=u;=InJ;. The expansion in Eq35) is com-
density-density correlations and the thermodynamic properpletely general, and the particular expressionsSpt can be
ties. The location of the percolation line can also be obtainedbtained from Eqs(33) and (32). By the definition of the
within a slightly modified formalism, at least at the mean-constant);, as an exponent of a local chemical potential, the

field level, that permits us to relate the thermodynamic propdensity-density correlation function is given bip; ¢,)
erties of the system to its structure, as discussed in Sec. V._ $%=321nZ/3In J9In I, which turns out to be the inverse

of the matrixS;,*,
A. Density fluctuations
In order to extend the mean-field theory to treat small, o 1 d¢i 1
local density fluctuations, the free energy as a function of the (bi)—¢°= V9 InJ, vk’
local densities,F{¢;} is systematically expanded to qua-
dratic order in the density fluctuations. We definedds the  where we have used the fact thath Z/dIn J; =¢;. A cum-
difference between the local average value of the dersity bersome, but straightforward calculation the E3p) (cf. Ap-

and the spatial mea (p; =+ S¢;), pendix Q gives
PF{¢} dInd; 1 ho
dbride I ‘2¢><1—¢)( ~1m2d)g ,gn,‘s 24724 (1—¢) | Ok T (172004 ,gn, O
_SKO(a’IS) 1

(36)

1 2
( —(1- 2¢) E S+ —(1-2¢) 2 S.

j=nnn

q¥42¢)"* (1-¢)

Writing the Fourier transform hg 3Ko(a'/3) 2
A=1+ 2 )
2(2¢q)1/2 2q3/2 ( d))

=2 5¢(p)eP T,
P

, 2 h 3Ko(a'l3)
we obtain B=(2d—1) == o ~0
(2¢—-1) a9 26T 3q™”

)1/2

PF=2 STHP)34(p)og(~p) and Ko(a'I3)
’ . C=(2¢~ 1>T<2¢>1’2,
(56(5)56(~ D))=, S(P).
and where we have used the fact that the Fourier transform
with S(ﬁ)ziiksikeiﬁ(r}r‘k)_ From Eq.(36) we find (for the (F) of the & function is equal to unity and
simple cubic latticg

]—“[2 5”}:; elPe,

1
STHp)= m{AJF B[ cog py) + cog py) +cogp,)]
+ C[ cog py)cog py) + Cog p,) cog p,) whereé,, is the unit vector that points in the direction of the
site j. As one can easily see from Eq22) and (37), the
+cogpyx)cod p,) ]}, (37 inverse of the structure factor at zero wave vecB§D)
=[S(F)d3r is equal to the second derivative of theean-
where field free energy,
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. PPFpue(b) 1 ho 3Ko(a'l3) length of the chainsg./2¢=1/N, which leads to the known
S H(0)= =71 cipT e 72372 correction to the scattering structure fackti].
dp 1-¢ (2¢)" 9™ (2¢)"7 . . . L
(38) In real space, the density-density correlation function is

given by the Fourier transform of tH&(p). It follows from
This is an expression of the fluctuation-dissipation theoreniq. (40) that in real spac€ d¢(r)5¢(0)) has the usual
in the grand-canonical ensemble. The variance of the mea@rnstein-Zernicke form
number of monomers in the grand-canonical ensemble is

=|

e—r/§

(86(1)54(0) =2 S(p)e’ =
<N2>—<N>2=f dr([¢(r) = ¢(0)1*) =TVe¢*kr=5(0), P
(390  with the correlation lengtl¥ given by

32FMF(¢))_1

teef Zr®)
PFue(¢) w101 1 | 9%
iz ap PP ov  HT The correlation length of density fluctuatiorss,diverges at
the spinodal line of the first-order junction-end transition
[IT is the osmotic pressure,=1/¢, andu=dFye(#)/dpis  studied in Sec. IIl, at whicl?F ye($)/dp?>=0; this is ex-
the chemical potentidl Eq. (38) becomes identical to Eq. pected for any first-order transition. Similarly, from H¢0)
(39). Thus, the calculated density-density correlation funcwe see that the density fluctuations at zero wave vector,
tion satisfies the expected thermodynamic sum rules. S(p=0), are also divergent at the spinodal, and, in particu-
The structure factoS(p) =(8¢(p) ¢(—P)) is experi- |ar, at the critical point. The divergence of the scattering
mentally measurable by scattering experimefiigutron, intensity at the critical point should be observable in scatter-
light, x ray, etc) where the intensity of scattered radiation ating experiments in the same way as the usual critical opal-
wave vectorp is proportional toS(p). If S(0) is determined escence. We note in passing, that in the absence of junctions,
experimentally as a function ap, the free energyF () the structure factor, as given by E(0), reduces to the
can be found by the integration of E8). Obviously, Eq. classical random-phase approximation result for polymer so-
(87) is not valid for the values of parameters at which thelutions[17].
phase separation is observed, that is, in the region where |t is interesting to note that theverall structure of a so-
9°F($)!9¢$><0. Rather, each macroscopic phase in a twodution of self-assembled, branched aggregates is not strictly
phase equilibrium has its own value $fg), with the value self-similar, as we can see from E@0). There is at least
of the monomer density appropriate for each phase. one characteristic length in the problem, namely, the corre-
The expressiofi37) for S(p) is quite complicated, and its lation length & At distances larger thag the correlations
behavior is rather different for low and high densities. Wedecay exponentially while for self-similar structures one ex-
next consider the nature of the predicted structure factor ofects algebraic decay of correlations. However, each indi-
Eq. (37) in the limits of high and low monomer densit, vidual branched cluster is expected to be self-similar, in anal-
ogy to percolation cluster§30]. Note that both the
1. Low-density limit correlation lengthé and the scattering intensity at zero wave
For low densities, the coefficients8 and C are nega- VectorS(0) are proportional to the second derivative of the
tive, and one can expand E(87) in a power series in the free energyg’Fye(¢)/d¢. This means that both of them are
wave vectorp. One finds that the coefficient pf is positive ~nonmonotonidunctions of the density, but have a maximum
so that this expansion is reasonable for wave vectors that agfound the linepe~ ¢, , as follows from Eqs(27) and (41),

whereky is the isothermal compressibilif26]. Noting that (1)

small compared with the inverse of the monomer size. DY taking the derivativeg¢/dg, S(0)/d¢. The maxima of
S(0) and of £ as a function of¢p are determined by the
o ) S(0) condition 9S(0)/dd= (1/S(0)2)[ °F ye )/ 9651 =0, which
S H(p)=S"0)+ap® so thats(p):—lJras(o)pz' is the same condition that determines the location of the

(40) ~ critical point (#°Fye(¢)/d¢°l, =0). In particular, this
leads to the conclusion that the maximum scattering in the

S0)= PPve(¢)| d region above the phase separation should be observed along
(0)= d? an a line that starts at the critical point and is determined by the
conditiond®F x()/d¢>= 0 (equivalent for low densities to
(1-29) 3Kg(a'l3) 15 " ho the conditiong.~ ¢;), as shown in Fig. 4. This is in agree-
3= 2 h(1— o) o 7 (29)7°= 2o ment with observations from scattering experiments from so-

lutions of branched wormlike micellg$8] (cf. also Discus-

Note thata is non-negative, becaud®/(2¢q)Y%= ¢/2¢  SiON.

(half of the ratio of the number of ends to the number of It is instructive to compare with another length scale
junctiong and in the present approximation of sparse juncthat is present in the problem, namely,the mean distance
tions and endsg./$<<1. In the case of linear polymers between the defectf.e., ends or junctions As shown in

without junctions, ¢</2¢ is equal to the inverse average Sec. Il
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2¢ ¢ T/e_ percoltion Iine’

~ 42 ‘[
3¢j + e 3K0¢3/2+ h0¢l/2 ( ) H ]]

— . S . | maxil:azuum scattering
andl(¢) has a maximum aroung~hy/K,. The behavior ! line peak in S(p)
of | is quite different from that o, indicating thathese two

lengths are physically unrelatedhe behavior of is nons- 3.5
ingular, while the correlation length diverges at the spin-

H

H

H

i

!
H
H
H
{
H
!
]
odal line of the junction-ends transition. This emphasizes the f

Ornstein-Zernicke

fact that the junction-induced attraction has an effect on alll z form of S(p)

the monomers in the system, as reflected in the behavigr of T— T

the effect of junction induced attraction is not limited to the ';;‘;‘,‘gﬁ;’;f:g“g(p) 0
behavior of the junctions alone. The physical meaning isf 0.5 1

similar to the “blob” size of the semidilute polymer solu- ’

tions. Namely, at distances smaller thgrthe behavior of an FIG. 5. At low densitiesgp< 3, the structure factor is a decreas-

aggregate is that of a single self-avoiding branched polymeing function of the wave vector. The scattering intensity at zero
wave vector and the correlation length diverge at the phase stability
2. High densities boundary of the junction-end transition, shown by the thick, closed

When ¢>1/2, the coefficient (3—1) in Eq. (37) be- line. In the region above the phase separation, the scattering inten-

o : . . . . sity has a maximum along the dashed line, starting at the critical
comes positive, which results in a negative coefficient in_ . » S
point. For high monomer densities and low numbers of junctions,

. 2 . .
front of the term proportional tp” (in the expansion of the the structure factor is an increasing function of the wave vector,

structure factor for .SmaII wave vect())r.sThus, the Small hile for higher numbers of junctions, a peak develops in the struc-
wave vector expansion becomes meaningless, since it Woui’ére factor.

give a negative structure factor for high enough valuep. of

Therefore, in this region one cannot use the expansion and In real systems, for values qf larger than the inverse
one must retain the full forrr_l of th§(p). The exact '°°<’?‘“°” molecular size, one observes oscillations of the structure fac-
of the Ime_ where the behavior changess 1/2, IS an artifact tor as a function o, with the peaks corresponding to the
O_f the lattice model and should not be taken I!teral!y. InSpecTirst-shell, second-shell, etc., correlations of the positions of
tion of Eq. (37) reveals that for small enough junctions den-ye agiacent monomers. Although the lattice model in the

sities (small Boltzmann factoK,=e""T), for which mean-field approximation cannot be used to precisely predict
the extremely low short scale features, such as the first-shell

1— 1 ho ) peak observed in scattering experiments on polymer solu-

, 2 (2¢q)"° ) tions, it adequately treats the qualitative behavior of the
|B/(2C)|<1:>K0<1_7 (2¢)Y2 =K structure factor for wave vectors smaller than the inverse of

the lattice constant.
For higher values oKy, K'>K*, (i.e., for higher junc-

(K(=Koalq®?), the structure factoS(j) is a monotoni- Jr ~K :
tion densities a peakemerges ir5(p) (see Fig. 4at a value

cally increasing function of the wave vectr(for concrete-

ness we consider thd.,1,1] direction for all ¢>1/2. of the wave vector given by
This behavior of the structure factor at high monomer
densities but small junction densitiesveakly branched B
chaing agrees with the previous studies of the density fluc- pozarcco%— %} (43

tuations in concentrated polymer solutions and n{@is47.

Indeed, it is known that the structure factor of concentrateqndicating the presence of medium range correlations. This
polymer solutions and melts is qualitatively similar to that of peak is quite different from the first-shell peak of simple
simple liquids[31,47. In particular, for small wave vectors figs, which reflects excluded volume interactions on the
p. S(p) is an increasing function gf. This is related to the pglecular scale. On the contrary, the peak of @) reflects

low compressibility of dense liquids. As discussed in themedium range structural correlations. By medium range we
preceding section, as the monomer dengitiends to unity,  mean that the correlation range is larger than the lattice con-
the compressibility tends to zero. The magnitude of the densiant. The location of the peak depends on the values of the
sity fluctuations, related to the compressibility by theparameters, as discussed below, and not a lattice artifact.
fluctuation-dissipation theorem tends to zero as W2fl.  Because the peak appears only deep in the network phase,
When the monomer densit is high, but lower than unity, \yhere the number of ends is negligible compared to the
the long wavelengtltsmall p) density fluctuations are small, ,mber of the junctions, one can neglect thedependent
because large collective rearrangements of the monomers ag&n in Eq.(37) as a first approximation and write
structurally inhibited. However, short wavelength, local, re-

arrangements of the molecules are still possible. Combined 1 1
together, these two effects produce a structure factor that Po= arcco%— 1- ——5] |, (44)
increases with increasing wave vectpr, 4 4Ko(2¢)
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indicating that the location of the peak moves towards lowetaking the limitn—0. One can then devise a slightly more
values ofp asK (2 ¢) 2 increases. Figure 4 shows the struc- generalized version of the Hamiltoni&h0), where the three-
ture factor for two values oK} : below and abové&*. Al-  spin term takes the following form:

though Eq.(44) was obtained for thé¢1,1,1] direction (p,

=py=Ppy), asimilar result wo%j be obtained for the isotro- KZ [Si,lsj,lsk,l"_ '[_g[si’l(sj S +S(S L S)
pically averaged structure facts(p) = [d®*pS(p). The peak ik 3

in S(p) should appear whenever there is a peak in any “crys-

tallographic” direction. In isotropic systems, the averaged +S51(Si - Sj,1)]

structure factog(p) is, of course, the experimentally mea-
surable quantity, free of lattice and model artifacts. The preand the sum is over distinct triples of neighbgksand 3 is
dicted peak in the structure factor due to the presence of the numerical parameter. One can also include coupling be-

junctions, is not a lattice artifact, because the location of thigyyeen the “transverse” components of the sﬁ,nconsistent
peak location is not related to the lattice constant, but detefyith the symmetries of the system. This modification of the
mined solely by the numbers of junctions present in the sysgjamiltonian has no effect on the thermodynamic properties
tem. and equilibrium fluctuations the mean-field approximation
The precise size of the junction is arbitrary to a certaingiscussed so far. The expression for either the partition func-
extent and can be adjusted to reflect the real physical featurggn or the two-point correlation function has contributions
of any given system. We have defined a junction as a confrom the terms proportional t6 that have at least one power
nection between three adjacent sites. However, one can alg@ the average of the transverse compor&t (cf. Appen-
consider a larger junction, connecting next nearest neighborg;y D). Since(S, )=0, terms proportional tg do notcon-
as in Fig. 80). Intuitively, one expects a more pronounced tipyte to thermodynamic quantities at the level of the mean-
peak for larger junctions, because it amounts to an increasg)q approximation. Fog=0 the Hamiltonian(45) reduces
of. the _junction volume. Numerical calculations show thatig the one discussed in Sec. 11 B. FBr: 0 the correspon-
this is indeed the case. _ . dence between the spin model and the equilibrium branched
In the context of microemulsions, this peak can be relategystersis not exact The clusters containing internal loops
to the experimentally observed peak in the scattering fronynter into expansion with the wrong weights due to summa-
bicontinuous microemulsiong32,33 (cf. Discussion. It s {ion over then— 1 “transverse” components. However, with
important to realize that the absence of a pdaks natin e choiceg=3 all looplesstreelike clusters are counted
principle, imply the absence of a netwotéf. Fig. 5. The  correctly (cf. Appendix D. The mean-field approximation
overall behavior pf the structure factor as a function of SYSneglects the presence of intracluster loops, which formally
tem parameters is shown in Fig. 5. correspond taorrelationsbetween different spins. This can
be seen from the fact that the mean-field free energy does not
V. SPIN-SPIN CORRELATIONS AND TOPOLOGICAL depend on the value g8 in Eq. (45). That is, it is indepen-
STRUCTURE dent of the precise way in which weights are assigned to the
) iinternal loops, which means that the intracluster loops are
So far we have been concerned with the thermodynamigeglected in the mean-field approximati@h also Appendix
properties of the system and related phenomena such as eqgy. |t does, nevertheless, correctly describe the local proper-
librium density fluctuations. They can be adequately detjes such as the average densities of the ends and junctions.
scribed by the model presented in Sec. IIB that maps thghys, at the mean-field level, E@5) with 3=3 can be used
solution of equilibrium branched clusters onto a Heisenbergg calculate the transverse spin correlations that are related to
model with the anisotropi&; ;S; 1Sy ; three-spin term. HOw-  the cluster size and percolation threshold. Therefore, we use
ever, no structural information, e.g., concerning the formatnhe B=3 model which neglects intercluster, long range cor-

tion of a continuous network, can be extracted from therejations, responsible for the loops; this, as we have shown,

EO bel abltaf:orr?ﬁtrzac:nstguciturrlﬁl |nrfotrrir:1&i1;|ontr;ab01;t thte nertrwork Although the spinS itself has no physical meaning, it
opology 1ro € modeiwhile retaining the exact Corre- o yi0r¢ the calculation of the various physical quantities, as

spondencdetween the spin model and the physical systemwe have seen in Sec. Ill. Analogously, the spin-spin correla-
of branched clusters, one has to resort to a tensor order p '

flon functions (S ,S; o), although unphysical themselves
rameter; this results in a formally complicated theot: a=l.ah : . '
(cf. part A of Appendix B. Instead )\//ve usga simpler gu)tﬁ]less can be used to derive physically relevant quantities such as

fivorous theorv. aoplicablenlyin the mean-field aporoxima- the density-density correlation function. Another interesting,
'9 Y, app! y PP physical observablde.g., by scattering experiments con-
tion, employed in this paper.

N ~ducted in solutions of end-labeled chains the correlation
Although the spirE has “zero” components, one can still petween the end points of the aggregates, which is related to

think about a “parallel” componens, pointing in the direc-  the spin-spin correlation function bigf. Appendix. D

tion of the fieldh and a “transverse” componer8, . The ahi(S)

rigorous mathematical procedure that justifies this is shown 2 N _

in Appendix D and amounts to calculating all the quantities (belri) Be(r))) = de= ah; =9+ h(SS) = (S)HS)]-

of interest for a finite number of components and then (46)

, (45
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Using the results of Eq32), a tedious but straightforward
transyersat [dgitudinal calculation yields the Fourier transform of the spin-spin cor-
h 9d— 3 .alp(ri—T . )
o h relator, C1=3 ;€'P(i7"W(5s; 15 ),
Aa
Cé= - — 47)
P 1-A%Jg1(P) +6Ks(P)) (
— where(cf. Appendix D
AV=(1-24)(1-¢),
At=(1-¢),
h - Lh and where
[ Y
. 2« s -
G(P)=5 s 3 s S i,
3 q unit cell second cell
FIG. 6. “Longitudinal” spin-spin correlator measures the corre-
lations betweerany two chain ends. The “transverse” correlator
measures the correlation between the ends os#mechain. g1(p)= 2 elPes

unit cell

This can be understood geometrically by noting that the ) ] ) o )
graphs which enter int¢SS;) are those with ends present at Consequently, the spin-spin correlation function in Fourier
both sitesi andj (cf. Fig. 6 and Appendix R space Is

Similarly, althoughS, itself does not have a direct physi- - - a
cal interpretation, its correlatdiS; , S, , ) does. If one con- (354(P) 95a(P)) =C 55 -5 -
siders the expansion of the correlation functic® ; Sy ;) _
(cf. Appendix D in powers ofJ,h (in the absence of junc- N the following we show how these results can be used to
tions, i.e.,K=0) one can see that the only nonzero contri-determine various physical characteristics of the system.
butions arise from configurations that contain a single chain
that starts at the siteand ends at the sitke Consequently, A. Longitudinal correlations and the defect correlation
(Si 1S, ) measures the correlations between the ends of a function
single chain. As a matter of fact, even whem 0,(S; | S | )
is nonzero only whem andk are the ends belonging to the
samecluster(cf. Appendix D and Fig. § Thus, in general,
the “transversg correlation function measures the correla- (54 (5)5¢o(—p))=1+ hC%:<5¢e(ﬁ)5¢e( —p)-1
tions between chain ends belonging to the same aggregate.
Similarly the “longitudinal’ correlation function (S; 1S 1) =h(1-2¢)S(p), (48
measures the end-end correlations betwaey two ends
even if they belong to different chains or aggregates. Thavhere S(p) is the same as in Eq37) for density-density
density-density correlations can be calculated from the “lon-correlations(Refs.[44,45]). Apart from the prefactor and the
gitudinal” correlator(S; 1Sy 1) using Eq.(32) that relatesp; constant(equal to 1} that ensures that the correlation of an
to S;. This calculation yields result identical to those ob-end with itself is not counted, the dependence of
tained in Appendix C. (8¢e(P) Spe(—P)) On the wave vectop is identical to that

In this section, we present the results of a calculation obf the full density-density correlation function of Appendix
the spin-spin correlatorgS; ,S; o) using the same local C. This is not accidental, but rather is a direct consequence
mean-field approximation which was used in Sec. Il to findof the fact that the density-density correlation function is
the density-density correlation function. Each spin is ap-+elated to spin-spin correlation function via E82). In par-
proximated by its local ensemble average,=(S a)ocar  ticular, the correlation length at small densitéeis the same
(with a={1,1}), which can, however, be different for spins as the correlation length of the total density fluctuations. The
at different sites labeled by Eventually, we will be inter- same is true of the junction-junction correlation function
ested in the deviationss; of thelocal average spins from the
spatially averaged valu&. The full calculation is presented

The correlation function of the aggregate ends can be cal-
culated form Eq(47), giving in Fourier space

in Appendix D. The spin-spin correlator is obtained from the aKii%m Si%Sm
partition functionZ using the relations (¢i(ri)i(ry))— ¢J‘2: IK;
j
92 S a K os
(851 205 a) ahi,aﬁhj,a'nz o 5,;Kas3+6Ks % 7K.
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that can be calculated in a manner similar to that used t¢23) we obtain the following equation for the percolation line
calculate(S;S;). The superscriptK) indicates that the sum- in the (¢,T) plane(cf. Fig. 2:

mation is over all possible couples of the spins belonging to
the original triplei,k,m.

The fact that the correlation length for total density fluc-
tuations equals that of the end/junction fluctuations empha-
sizes the point that the junctions induce @rerall effective  The length scal® has no thermodynamic meaning and re-
attraction between the monomers amat only between the flects a purely topologicalinfinite network versus discon-
defects(i.e., ends and junctionsin particular, the correlation nected clustejs property. At infinite temperature, the
Iength of jUﬂCtiOﬂ-jUﬂCtiOﬂ correlations is the same as that Ofunction_induced interaction becomes irrelevant drbd the
the monomerdensity-density correlations. Theorrelation  percolation threshold, is similar to the usual lattice percola-
length related to thehermodynamicsf the system, is unre- tjon, studied in many classical work80]. The value ¢,
lated to themean distance lbetween the junctions which =q/6a [equal to 1/2¢—2) for cubic latticd, obtained here

a €i—€p)l
GplT)= 5.

reflects thestructural and topological properties. is not inconsistent with the usual mean-field resuit
=1/(g—1) for site percolation; the difference stems from
B. “Transverse” correlations: The structure of a single the fact that in our model, there is percolation of two differ-
aggregate and percolation ent objects: the monomers and the junctions, which do not

occupy the sites of the same lattice; in our model, the mono-
‘mers occupy the vertices of the lattice, while the junctions
occupy the interstitial positions.

Although the percolation transition, where an infinite

r r —h2(St.sh oy cluster is formed isot directly related to the junctions-ends
(er) el aue=h™(S, 25 1) transition discussed in Sec. Ill B, the junction-induced inter-

BecauseA' = (1— ¢) is always positive, we can safely ex- action mfluenc_es the shape (_)f the percola’qon line at low
pand the expression for the spin-spin correlator of @) ter_nperatgres, m_agreer_nent with earlier studies of the perco-
up to second order in the wave vector Substituting the lation in interacting lattice gag30]. The exact value ofy,

As has been mentioned, the “transverse” correlation func
tion measures the autocorrelatiofenoted by the subscript
auto between the ends of treamecluster

mean-field values of andK from Eq.(21), one gets and consequently the value g, should not be taken too
seriously, because the lattice approximation is not adequate
oL (1—¢) for a desc:iﬂtionhofhthe slystlem at trr:e sca;]le 01;] an indi\l/idual
YT Y = = junction. Although the calculation shows that the percolation
P 1=(1= ¢)ATI6:(P) + 6KsG(P)) line intersects the coexistence line of the phase transition on
1 the left side of the critical poinfcf. Fig. 2), in real physical
= ho/(2) 72— 3Ka(2¢) Y2+ bp?’ systems, the intersection point can be also to the right of the

critical point[6]. For instance, rigid systems can have effec-

whereb is a nonsingular function of the parameters. In othertively different value ofa, as discussed in Sec. V1. Thus,
words, depending on where the percolation line intersects the coex-

istence curve, the coexisting phases discussed in Sec. Ill can

1 be either two network phases, two phases of disconnected,
<¢e(ﬁ)¢e(ﬁ')>auto=(¢ 3126+ bp’ 85— 5" branched clusters, or a network coexisting with dilute chains.
€ J We now discuss the details of the cluster evolution as a
and in real space function of monomer densityp. Recall that the mean dis-
tance between the defedise., junctions or ends
1 _
(Pe(r) Pe(0)) qu™= Fe—r/R7 T= 2¢ (50)
bet39;

ith R= — 142 i - . . . .
with i_[z‘ﬁl(‘ﬁﬁ 3¢d)]b | This meanls that the corréla- 5 5 honmonotonic function but has a maximum g
tions between the ends belonging to eaggregate are =3¢;; this is precisely the conditiothat determines the

negligible forr>R. In other words, the average size of the percolation thresholdNoting that Eq.(49) implies that the

largest cluster cluster size increasewonotonicallywith increasing density
2 ¢, we conclude that there are two competing processes in
Ez( 2¢ ) (49) cluster formation: lateral growth of the clusters due to the
(pe—39) addition of the branches at the periphery of existing clusters,

and the “filling” in of the clusters from inside, by adding
When qbl:écﬁe, the mean size of the largest cluster di- new branches from within the mesh. As the monomer density
verges, and an infinite cluster is formed. This process is$s increased, for small densities up to the percolation thresh-
known as percolation and the emergence of an infinite neteld, ¢= ¢,(T), the clusters become larger but more diluted.
work at ¢j=%¢>e agrees with other mean-field level studies At ¢,(T), an infinite cluster is formed and the process is
of percolation[15,27). Substituting for¢. and ¢; from Eq.  reversed: cluster§ncluding the infinite onebecome denser,
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being predominantly filled in from inside. Although both be- chains. Therefore the most general form of the mean-field
low and above¢,(T) the lateral size of the clusters in- free energy of Eq(22) can be written as
creases, the rate dditeral growth with increasing monomer

densities is smaller than the rate witernal densification _ | P\ e b\ e
above the percolation threshot},(T). FIT=(1-¢)In(1-¢)- c) & T &
VI. RIGID AND SEMIFLEXIBLE CHAINS with ¢ and « depending on rigidity of the chains and of the

junctions. In general, the degree of the flexibility of the junc-
tions is not necessarily equal to that of the chains themselves.

. . . . o e former may depend on the microscopic properties of the
formation of ends and junctions, in a manner similar to thatCr

of flexible chains as discussed uo to now. As an examole. on osslinker molecules as in the case of gels, or on the prop-
X : Iscu up W. Xample, ON&ties of the surfactant molecules in the case of micelles and

can think about solutions or gels of actin, a biopolymer thatmicroemulsions and other system-specific details
forms the cytoskeleton and is involved in cell locomotion. "y o cttact of the rigidity on the correlations is more dif-

Although it is difficult to introduce k_)en_ding rigidity int_o a ficult to guantitatively treat within the present framework
lattice model such as ours, the qualitative effects of stifinesy o 1, tormal difficuity of introducing the bending rigidity

can be easn_y under;tood, at least at the r_nean_—flek_j level. F?ﬁto the model. In particular, the influence of branching on
flexible chains, as in our model, the lattice size is usuallythe nematic transition, present in the solutions of rigid rods

taken El‘?h.be dthfg per&stefr;ceflen?ttuhn seqmgnt f'c__)r POlY-  remains to be investigated. An heuristic thefit§] might be
mers. This defines an effective “monomer” size. For semi- more useful for this purpose.

flexible chains, the lattice size should be the true size o
molecular monomers, that comprise the chains, since the per-
sistence “length” is much larger than the lattice size. On ViI. DISCUSSION
very general grounds, each deféoe., an end or a junction We have presented a generic model of self-assembling
contributes a term-kgT to the free energy. Consequently, chains that can branch and form networks with branching
the defect-dependent part of the free energy in a systefjyints (junctions of arbitrary (but fixed functionality. The
where nonconserved defects are present is modelrigorously maps the partition function of a solution of
FIT= — dustonte — ba— b branched, §elf—assembling, _mutually avoiding chaﬁns onto
I that of a Heisenberg magnet in the mathematical limit of zero
in accord with Eq.(24) [9]. The difference between flexible SPin components. The model has been studied in the mean-
chains and rigid chains lies in the dependencebpfind ¢, field approximation, which neglegts the presence of intrac-
on the total monomer densit, which can be understood on luster loops. It is found that despite the absence of spgy
the basis of the simple probabilistic argument outlined inCific interaction between the chains, the presence of the
Sec. Il B. Two ends can join to form a bond. In the case ofiunctions induces aeffective attractiorbetween the mono-
flexible chains, any two ends that are neighbors on the lattic'ers, which in the case of threefold junctions leads to a
can form a bond, irrespective of the orientation of the adjafirst-order, reentrant phase separation between a dilute phase
cent links (see Fig. 3. In the case of rigid rods, only rods consisting mainly of single chains, and a dense network. The
that are colinear, can coalesce. Therefore, taking into accoufgason for this entropic transition lies in the observation that
that the coalescence of two ends lowers the energy by aﬁlthough the translational entl‘opy of .the.ChainS is lower in
amount Z,, so that the Boltzmann factor for the probability the dense phase, thetal entropy is still higher due to the

of coalescence is proportional &¢, we find that in equi- entropy of the large number of self-assembling junctions in
librium the dense phase. The prerequisite for the phase separation is

that the energy of a junction must be smaller than the energy
¢=c¢§e2€e, of a free end'fj<%ee, that is, the formation of junctions is
energetically favorabléboth €. ,€; are considered positive
c=q flexible chains, and are measured relative to the energy of a monomer in the
middle of a chain The model was then modified to study the
c=1 rigid rods. topological properties of the system at the mean-field level.
. ) _ . Independent of the junctions-ends transition, we predict the
The same argument applies for a formation of a junction,ecolation(connectivity transition at which an infinite net-
from three endgor an end and internal monomer work is formed. The percolation transition partially overlaps
bi= adlede e the junction-end transitiofcf. Fig. 2), and takes place at the
! € ' point where the density of the free ends is three times the
junctions density,¢.=3¢;. This result agrees with other
mean-field level studies of percolatidi5,27. Indepen-

a=1 rigid rods. dently, the average distance between the defdctfias a
maximum at the percolation threshold. This result means that
In general, for semiflexible chains <lc=<q; up to the percolation transition the branched clusters grow
a=q(g—2)/3. In the continuum limitqy— 4 for flexible laterally, predominantly by addition of the new branches at

Solutions of rigid and semiflexible chains present two
other broad classes of systems that exhibit self-assembly a

a=q(q—2)/3 flexible chains(cubic lattice,
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the periphery of a cluster, while at the percolation transitionter is formed at the percolation threshold. This transition is
an infinite network is formed and the process is reversed: thetructuraland is not related to anjhermodynamisingular-
clusters grow mainly due to the filling of the internal mesh.ity.
The percolation transition is a continuouspnthermody- For threefold crosslinks, a secotitermodynamidransi-
namic transition that describes a change in the topology ofion is also present at low temperatures, and partially over-
the system but not a thermodynamic phase transition. Ouaps the percolation linésee Fig. 2 This transition is the
treatment that predicts both the thermodynamic phase equiirst-order phase transition that occurs due to intermonomer
libria as well as the spatial correlations in the system allowsttraction induced by the presence of the junctions and not
us to treat both the phase separation and the percolatiatue to the aggregation of the stickécsosslink moleculgs
threshold within the same framework, at least at the meanOur model shows that the phase separation can occur under
field level. good solvent conditions, and not only @ solvents. An ad-
The predicted density-density correlation function has a/antage of the present model is that it starts from a rigorous
usual Ornstein-Zernicke form at low monomer densities. Thélescription of a solution of self-avoiding branched chains
correlation length of the density fluctuatiogiss divergent at @nd does not involve angd hochypotheses about interac-
the spinodal line of the junction-end transition and is a noniions between the monomers, crosslinkers, and solvent mol-
monotonic function of the monomer density, reaching its€CUl€S: An interesting problem is the difference betwgen
maximum around the point where the number of ends equallé‘t'on’ when mqlecular segmgnts are allqwed to polymerize
the number of junctionspe~ ¢; . It is important to empha- and crosslink simultaneously in the reaction bath, anda-

. o . . . . nization when preexisting polymer chains are crosslinked,
size that it is¢ that is measured in actual scattering experi e.g., by irradiation. In addition to the fact that one expects

ments, and not the_other lengths Of. the problem, such as tqgrge spatial inhomogeneities in the case of vulcanization
mean_cluster radiuR or the mean distance between the de-[35], we argue that an additional major difference is the func-
fects|. The zero wave vector scattering intensiByp) also tionality of the crosslinks. In the case of gelation, most of the
has a maximum as a function @ along the same line, junctions will be threefold, simply due to the fact that the
starting at the critical point. This effect is a direct conse-collision of three segments is more probable than a collision
quence of the first-order phase separation between low- ar@f four. In the case of vulcanization, on the contrary, the
high-density phase&f. Fig. 5. junctions will be fourfold, being formed by crosslinking two

We also predict the emergence of medium range correla?reexisting chains. Thus, in certain cases, gelation will be
tions at high monomer and junction densities, as reflected ifPServed experimentally as a first-order thermodynamic tran-
the predicted peak in the structure factor, signifying the onset!tion while vulcanization is always a continuous, nonther-
of structural correlations in the systeftf. Fig. 5. modynamic transition, at least for weak crosslinkilegs 0.

The theory presented here has many physical realization?S a matter of fact, we have shown that the presence of

We now discuss the implications of the generic results fo c?gggilr? J;Jhn:tl?;;slitISomﬁrems%?\)//gr?tmilga;gcgﬁjuxii‘:]emet?eglfl;s
several specific cases. 9 q y '

obtained by other theoretical methd@s] and Monte Carlo
simulationg[2]. The case of strong crosslinks will be treated
elsewhere.

The long-standing question about the presence of closed,

Physical gels include a broad class of systems, consistingtracluster loops in the pregel clusters and in the gel phase,
of long polymer chains that are reversibly crosslinked. Thebecomes irrelevant in the present formulation. In our model,
crosslinks can break and re-form under the influence of themothing prevents the intracluster loops from forming and
mal fluctuations. Examples of these materials are numeroutheir number is determined by the distributions of ends and
many of them of practical intereg2]. The chains that com- junctions. However, we note that the question of the influ-
prise the basis of the gel, can either be self-assembling @nce of the loops on the thermodynamic and structural prop-
chemically bonded34]. With increasing monomer density, erties cannot be properly addressed in the mean-field ap-
the gelation threshold is reached and a connected netwogkoximation, used in the paper, because it effectively
(gel) is formed. Despite intensive research in the past twalisregards the loops.
decades, several features of the physical gelation process areExperimentally, the gelation transition is commonly ob-
still under debate. One question concerns whether the gelaerved by measuring a viscosity increase due to the forma-
tion transition (i.e., the transition from disconnected, tion of the macroscopic network. Therefore, the nature of the
branched clusters to a macroscopic, connected nejvijmk  experimentally observed gelation transition will depend on
structural transition or a thermodynamic one. Another questhe path in phase space along which the transition is ap-
tion of interest is: if the gel transition is indeed a thermody-proached. For example, decreasing the temperature at a con-
namic one, what is the order of the transitip25]. Our  stant monomer density along the pdttof Fig. 2 will pro-
results show that actually there argo independent transi- duce a continuous, nonthermodynamic gelation transition at
tions. The first one is the classical percolation transition, lothe point where lind intersects the percolation line. On the
cated at the point where the density of the crosslinks is equalontrary, a temperature decrease along the patfill pro-
to one third of the density of the free ends in agreement witlduce a first-order phase separation between a phase of dilute
classical result due to Flof\27]. An infinite connected clus- chains and a connected netwddel).

A. Physical gels
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B. Microemulsions to an increase in the monomer density, or the temperature, a
peak appears in the structure factor, indicating the emergence
Microemulsions consist of domains of two immiscible of medium range correlations between oil domé(cis Fig.
fluids (typically, water and o)l stabilized by a surfactant 4). The peak is predicted to appear whenever the condition
[32,36]. One theoretical approach to their understanding is tap= ¢p= al2qe?i'T is satisfied. The peaked structure factor
map the oil-in-water dispersion onto a lattice model in theis a distinctive characteristic of bicontinuous microemul-
following manner. When the spontaneous curvatage[20]  sions, as borne out by many experimental stuf8533). It
is small, the relevant length scale is the persistence length @$ important to emphasize that our model predicts that the

the surfactant film; this length is determined by the bendingpeak occurs only whegh>max3,¢,] which means that, in
rigidity and the thermal fluctuatior{87]. For systems where principle, there may be network microemulsions thatnot
the spontaneous curvature dominatttss occurs when the  show a peak in the structure facthe region between the
spontaneous curvature is larger than the inverse of the pefercolation line and verticab=1/2 line in Fig. 5. However,
sistence length for a certain range of spontaneous curva-the fact that the peak appears only for-1/2 should not be
tures, one finds that the oil or \_Nate_rldomalr}s_ are eithefaken too seriously. The exact valde=% is most probably
spheres or elongated tubes of radiusc, ~. For oil internal  an artifact of a lattice construction, reflecting the monomer-
systems, the radius of the oil domains can also be kept corhole symmetry. More important is the qualitative prediction
stant by maintaining a fixed ratio of the surfactant density tathat the peak in the structure factor is a consequence of the
that of oil: ¢,/ b (in @ water internal system it is given by correlation between the oil domains, induced by the presence
the surfactant to water rafioTakingr as the lattice constant, of the junctions.
and considering an oil internal system, the microemulsion
can be mapped to a solution of self-assembling, branched C. Wormlike micelles
chains(oil domains—“monomers”; oil+ surfactant fraction . .
— ¢) as described by our model. Obviously, the analogy _Surfactant_ molec_ules in aqueous solutions can form long,
breaks down at oil volume fractions close to one, becaus&Y!indrical micelles in certain regions of the phase diagram.
our model does not allow the merging of a two elongated,m the cylindrical phase, each micelle cpn3|sts of a Iarge
adjacent domains into a wider one. numbers of surfactant molecules. The micelles are polydis-
Using this analogy, the evolution of spontaneous curvaPerse in size, the equilibrium distribution being determined
ture dominated microemulsions can be qualitatively deby the interplay between the entrogwhich favors small
scribed in the context of our model and the results presentedicelles and the “cap” energy, which is fixed by the geom-
above, as follows: at low oil fraction, the microemulsion etry of packing of surfactant molecules at the ends of a mi-
consists of spherical droplets of radiuscal, At a certain  celle. Due to the bending rigidity of the surfactant layer, the
oil fraction a “polymerization transition{12,28 takes place micelles are stiff up to length scales of order of {hersis-
and cylinders of radius are formed which eventually tence length][20]. However, for length scales much larger
branch. With increasing oil fraction, a percolating oil domainthan|,, the micelles can be considered as flexible chains.
is formed when the oil fraction is equal t,(T)=const Therefore, for long enough micellefd/\24<1), the lat-
xel%~9)'T, indicating the onset of the bicontinuous micro- tice constant of the equivalent Heisenberg model can be
emulsion(cf. Sec. IVA2. At low temperatures, this transi- taken to be equal to the persistence lerigthin the opposite
tion can be masked by a first-ordghase separatiotransi-  case of short chains, one can take a surfactant molecule as a
tion due to junction-induced attraction between the oilsmonomer” size, with the reservations described in Sec. VI.

domz_;lins (Sec. III_B). This first-order transiti(_)n is present It has been suggested on the basis of rheological, conduc-
only if the bf?”Ch'”g points are thrgt_afold, which seems to betivity, and dielectric polarizability experiments, that the mi-
relevant to microemulsions. In addition to the fact that three.q|1as can branch. and at a certain point the system trans-

fold branches are more probable statistically, the energy orms to a connected micelle network. The energy of the

the threefold junctions is lower than that of four-fold and junctions and the ends in this system can be varied by chang-

higher fold junctions, as can be shown from calculations Oil’n the salt concentration. Theoretically, it was proposed that
the bending energy of the surfactant bilayers in the junctior{ 9 ' Y, prop

region [28]. These predictions are in qualitative agreement* SP'" model might describe the formation of a network of

with experimental data on thermodynamics of microemuI—Worm"ke micelleg7,16]. Our results substantiate these sug-

sions[33,38. ggstions and indeed predict th'e formation of. a conn'ected
The structure factoffor scattering from the bulk water or Micellar network, that can partially overlap with the first-
oil domains—i.e., bulk contrast experimentsas a simple Order, phase separation phase transition.
Ornstein-Zernicke form in the droplet microemulsion region ~Results of neutron scattering performed on wormlike mi-
(which also includes elongated, but disconnected cylindricafelles solutions show that the correlation lengthof the
droplets with a correlation length that diverges at the spin-density fluctuations is a nonmonotonic function of the mono-
odal line of the first-order transition. In the bicontinuous re-mer density{8], which might be explained by the results of
gion, the structure factor is an increasing function of theSec. IVA2. These experimental results were interpreted in
wave vector, as expected in any high-density sydigfnSec.  Ref.[8] in terms of the mean micelle sizanalogous td in
IVAZ2). As the number of junctions is increased, either dueour formulatior). However, it is important to realize that,
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although botht and| exhibit a maximum as a function of the Phase diagram is strikingly similar to Fig. 2, where at the
density, it is& which is actually measured in scattering ex- Percolation line there is a transition from aadtanglednet-
periments, whilel conveys purely geometrical information, work ;otﬁc;)n{\(lactettj mlcrogtel Sta:ﬁ' I;oweverﬁ It was Ob.'t f
and is not directly measured in scattering experiments. Théerve ? at low temperatures the dense pnase consists o
correlation lengtht has a maximum around.= ¢, , which bundles,” where several parallel actin flaments are tightly

e 1 .
is a direct consequence of the junctions-ends transition, diégound_ together by the .Cr.OSS“nK‘QZJ‘ .
cussed in Sec. Il B. It should be noted that the maximum of Actin filaments are rigid, with the persistence length that

¢ is not directly related to the network formation, which can be as high as ],&Jm._ However, the general resu_lts of this .
takes place aibo=3, . paper should apply, with the reservations made in Sec. VI,

this accounts for the similarity between the predicted phase
diagram and the experimental measurement. The formation
D. Dipolar and magnetic fluids and colloids of the bundles is probably due to nematic interactions be-
tween the rigid filaments and cannot be captured in the
Dipolar fluids or colloids consist of dipolar particles that Present model. However, one can estimate the condition for
carry electric or magnetic dipole. For, example ferrofluidsth® bundles formation using a crude qualitative argument.
consist of magneti¢metallio particles immersed in an inert FOr this purpose, the network phase can be viewed as a col-
fluid. The molecules of real liquids, such as acetondection of rigid filaments of average length-ei /T~ /2 (cf.
(C3HgO) or dimethylsulfoxide (GH;SO) also bear elec- Sec. IllA). The orientational order appears in the solutions
tronic dipolar moments. The interaction energy of two di-of rigid rods when¢=constL, which means that forp
poles has a minimum when the dipole moments are collineaze ><i’T one might expect appearance of the bundles.
[39]. This means that dipolar particles have a tendency to
aggregate into chair{g0], so that all the dipole moments of ACKNOWLEDGMENTS
the particles in the chain are more or less double. However, it
is important to realize that these chains can also bra8h
The energy of the particles at the branching point is obvi
ously higher than in the middle of a chain and can be calcu
lated from electrostaticéor magnetostatics in the case of
magnetic dipoles[9]. Disregarding thdong rangepart of
the dipole-dipole interactions, the system of branched dipola$
chains can be mapped to the model presented in this paper,
and our predictions for the phase separation, scattering, and APPENDIX A: “ n=0" MODEL
percolation would apply. This mapping is justified in dilute
systems such as ferrofluids or magnetic colloids. In dense o
molecular liquids, it probably breaks down. In order to un-, 'n€ formal aspects of ther’=0" model have been stud-
derstand the properties of molecular dipolar liquids, one mayed extensively24,18,19. For the sake of completeness we
have to take into account specific interactions between thEEView the derivation here. Let us calculate the generating
molecules. The results of this paper are supported by simuunction Tre®'S for an n-component spin,§, on a
lations (Ref. [48]). d-dimensional lattice, where the averaging is over solid angle
of the vectors, subject to conditior, si=n,

The authors thank R. Granek, J.-F. Joanny, T. Lubensky,
S. Panyukov, P. Pincus, Y. Rabin, E. Sackmann, T. Tlusty,
and T. Witten for helpful discussions. Support from the ISF
Center of Excellence on Self-Assembly, the donors of the
Petroleum Research Fund administered by the ACS, and the
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E. Actin networks

Actin is a self-assembling biopolymer that supports the f H ds 5(2 sz—n)ea‘g ~
membranes of biological cells. The sol-gel transition of actin - e o \a@ ¢ gn(K)
solutions and networks, induced by various proteiiesg., Tre®s= = 9n(0)°
myosin plays an important role in cell movement and loco- f H dsaﬁ( Z si—n) "
motion. The properties of actin networks vivo have been @ @

extensively studied by biochemical and molecular biology _ _ o
methods[41]. Recently, the physical properties of actin so- The cumulants of can be obtained by differentiating the
lutions and gels have been studiaditro, in rheological and ~ 9enerating function with respect to Now, supposing that
scattering experiment§42]. The experimentally obtained k=(k,0,...,0),

n
gn(k)zf 11 dsaé(E si—n)e 4§=J' dwéwnf ds;eksisio [ T ds,efost
“ - a=2

o

- eiwn+(k2/4iw) - in(w—k2/4nw) - —in(w—k2/4nw)
=7Tn/2f do——z—=n"4""2 f do——7— +(—1)n/2f do ——7—|.
—» (fw) 0 ) 0 1)
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The integrals in step two of the above equations, althougladding compensating terms into the Hamiltonid®): H;
formally divergent, should be treated as generalized func%Hs—%zihzsﬁ—%ziijzsﬁsJ?sﬁ_

tions. The resulting integrals are knoW#3]. Putting v=1 For the purposes of the present study, these terms are
—n/2, we find irrelevant, because in the case of sparse junctions and ends,
) studied in this paper, the terms higher than lineaKiandh
o i k are neglected in the calculation of the partition function and
On(k) = 7" 2\ — the free energy. Closed rings can also be accounted for, at
2\/— least for study of the thermodynamics by choosing the two-
1) 2) spin term in Hamiltoniar(10) to be of the formX;;J§ ;S; ;
X[H*v('k\/ﬁH H*v('k‘/ﬁ)] which couples only the components of the spin in the direc-
K\ tion of the fieldh, therefore the closed rings are retained in
_ niZ—ni2o ) the expansion of the partition function.
T 277'( 2 n) € I*V(k\/ﬁ) However, this does not change the mean-field results, be-
cause long-range correlations, such as closed loops are dis-
P k\/— ) regarded in the mean-field approximati@h also Ref[16)).
A2+ 12 -1 (VAT l(n
(ky/n/2)(m2-1 2. Relation between the densities
wherer)”(x), HE,Z)(X) are Hankel functions of the order The chains consist of monomers, that occupy the vertices

of the lattice, connected by bonds. Each junction is not oc-
up to second order cupied by a monomer but is formed by three unphysical
“bonds,” connecting three adjacent monomers as illustrated
x\P 1 1, . in Fig. 3. The bonds forming the junction are not counted by
5) T(p+1) + 2T (p) X“+0O(x7) | the moc_iel. The monomers comprising a chain fall into two
categories: internal monomers, attached to two bonds, and
Keeping in mind that in our cage=n/2— 1, it follows that  the monomers at the ends of the cluster, attached only to one
bond. The total number of bondmcluding the unphysical

andl ,(x) is a modified Bessel function of the orderNow,

I p(x) =

lim Trek S fim gn(k) 1 Ekz ones is therefore
n—0 n—0 In N — (2N, +Ng+3N;),
In particular,
m where N; is the number of internal monomerd; is the
Trsh= 5 lim Treks f—0= O 21 (A1) numbler of junctions, anbl, is the numper of ends; the pref-
dk™ o actor 3 accounts for the double counting of each bond. The
total number of monomers is
and
92 N=N;+N,

k=0—" 5a,15ﬁ,1-

Trs,sz= ak—akﬁ[ lim Trek:s

and the number of physical bonds, connecting a pair of
Due to the fact that the generating function has only quamonomers, is the total number of bonds minus those un-
dratic terms irk, cumulants higher than second order vanish.physical bonds that are involved in junctions
This is because the higher order cumulants are related to
higher order derivatives of the generating function with re-

. N — Ntotal 3N
spect tok and these all vanish, as seen from E4l). bonds™ Nbonds

APPENDIX B: MONOMERS, BONDS, AND JUNCTIONS Combining these equations together, one gets
ON A LATTICE
1. Ghost monomers and rings N=Npongst 3Ne+3N; .

In addition to the configurations of branched clusters de-
scribed in Sec. 11 B, the expansion of E3d.3) includes also
separate terms of the forgh?s” and K2S7S’S; that cor- 3. Value of &
respond to “ghost” monomers occupying the sites of the Here we present the considerations that lead to particular
lattice or the interstitial positionfixed by the triples,j k), values of the constants in mean-field equations of Sec. lll. In
respectively. In certain physical situations, e.g., polymerizaour model we consider each site of a lattice to be occupied
tion of sulfur, the termg h251 are physically meaningful and either by a monomer or a solvent molecule. Chain bonds are
should be retainefl2,16. In other physical situations, these defined as the bond between two occupied neighbor sites. A
terms can be eliminated from the expansion of B@) by junction can be formed when three ends are neighbors on a
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junction g s AN < kS
sil 1sj pd ™
S I S S S
i P
\ N
a) b)
FIG. 8. Two possible alternative definitions of a junctida)
shows a junction on a hexagonal lattiees q/2; (b) shows a larger
a) b) junction, coupling the sites separated by two lattice constants.
FIG. 7. Two possible configurations of the tripigtk: (a) thej APPENDIX C: DENSITY-DENSITY CORRELATIONS

andk sites are the nearest neighbors of the isi{b) k is the nearest

of Sec. IV for the density-density correlation function. From

neighbor of the sité while j is the next nearest neighbor of In this appendix we show the derivation of the re$88)
Eq. (33

lattice as shown in Fig. 3. The sum in the three-spin term Xi

2ikKSS;S¢ in Eq. (18), accounting for the junctions be- Si=——1

tween the chains, is constrained over ditinct triplets of 1+3X

spins i,j,k. The three-spin term can be rewritten as

(CD

1

$2iKS =SS, whereX; is now anunconstrainedsumma- I alnx;
tion over all cites and¥;  is unconstrainedsum over all Xi=\2¢i /(1= ),
possible pairs of sitegk which together with form a junc-
tioni,j,k. In the mean-field approximation this term is further
transformed into33;3KS={J(S;)(S,). On a hypercubic

i OK2g(1— )"

lattice, there are two possible configurations of the triplet P 1= ﬁz ‘ 1-24
i,j.k. The first one, is shown in Fig.(@: bothj andk are the S=v2di(1-d), e §'k\/2¢i(1—¢>i) '
nearest neighbors of the siteThe second is realized when

eitherj or k is a next nearest neighbor gf shown in Fig. (K)

7(b). A simple calculation shows that for a hypercubic lattice xi—hi—K, >, S;Sk

of a coordination numbey, the number of such pairs of the ik

first kind is q(g—2) and the number of the pairs of the Ji=
second kind is 3q(q—2). Therefore, a=3[q(q—2) > Sj
+2q(g—2)]=3%9(q—2). For a hexagonal close-packed )
structure or for the fcc. lattice, a similar calculation gives
a=( [Fig. 8@]. However, the exact numerical value @fs

an artifact of the lattice construction and should be thought
of as a phenomenological parameter reflecting the micro-
scopic features of a junction, along with the junction energy
€; - A particular value ofx affects only the numerical values ho

Consequently,

1(K) 1/2
52 SjSk | X

of the critical temperature and density but not the overallINJi=In Xi_lnE Si—
qualitative behavior. It can be adjusted to reflect physically : A /XiE s
allowable junction configurations. For example, three neigh- i .
boring chains, coming perpendicular to the plane of a triplet .

ij,k and connected by it, can hardly be interpreted as a junc- +0(Kg,hg,Koho).

tion in most of the experimental systems. For convenience,

we have used=3q(q—2) in calculating the phase diagram

and the structure factor. Now,
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5b S B adln Ji
(6 ¢k>_T¢k
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alnx; 5 Iy hg X a5 1%
“e et 50,3 562 g, 73K 32 9%
Ej: Sj 2| X sj)
1 axi 3 x? Js x2 o 2( Qg
N TS Page 2 57 2 M_3K0—37?§ > 69,
S A T
J
Together with Eq(C1) this leads to Eq(36) of Sec. IV A.
|
APPENDIX D: SPIN-SPIN CORRELATIONS de(ri)

(0e(r) dpe(rj)) = oh;

This appendix shows the detailed calculation of the spin-
spin correlation function of Sec. V. In principle, the scalar . ., . .
products of any two spins in E410) contain a longitudinal To calculate the trcfalns_v.erse correlation _fU”Ct'On'
componentS; , parallel to the direction of the field, and a <?t,ﬁ5j(¢>, i/\;h?re nows, Slgj'nlfllis a componerltfcs in Oneth
“ " 2 . P of the (n—1) “transverse” directions, one must focus on the
transverse” one,S, . For the two-spin term this yields second term of Eq(D1). Following the arguments of Sec.
I1B, the only terms that enter into expansion(& , S; | ) in

IS5 =d(51;51+S.0-S.0) (D) the limit n—0 are of the form

and the three-spin term is chosen to be

B
?Ksm,J_Sn,lSk,J_

Si | IS5, Sm ISk, 1Sk,1

B . .
K% (sl,isl,jsl,k+ 3[81(51-S10+S1j(S1,-S ) e
L XISy 1Spr 1 weeee KS 1 185181 eveee S0 1S5 S 118,
+S1(S,i- S]] (D2)
(D3)

The average value of the “ransverse” comp_one{rﬁl)., 'S thatis, the clusters, consisting of the “backbone” of Bes
equal to zero, because the average magnetization is align th branched “sidechains” of th&,’s, closed byS, , and
] L

along the fieldn, in the “1” direction. Consequently, it has g | . Inspection of the possible terms of the EB3) shows
no consequence for the thermodynamic properties, and wagat the sites andj must belong to theamechain, because
neglected in the calculation of the free energy in the Sec. lllihe Egs.(D1) and(D2) couple either two transverse compo-
However, itsfluctuationsaround its average of zero, are not nents or a longitudinal one with two transverse. In other
zero, and convey physically important information. Neitheryords, the “transverse” correlator measures the correlations
S, nor S, has anydirect physical meaning. However, physi- between any two ends belonging teamechain. It is seen
cally relevant information can be extracted from the knowl-from Eq. (D3) that the junctions enter the expansion of the
edge of their correlation functions. transverse correlator with the weighB/@)K. Since one
Consider the correlation functio(S,;S,;) between the wants to measure the correlations between the ends of a clus-
“longitudinal” components of two spins located at siiesnd  ter belonging to the expansion of the original Hamiltonian
j. As follows from the discussion of the Secs. Il and Il B the (10), where all the junctions enter with the same weifht
only terms entering its expansion, S’fvislyje*'*{%}”, are the valueB=3 must be chosen. That is, the relevant part of
the same as of EQ13) with S;S, ; replacing theh termsh§ the three-spin term in the Hamiltonidfh0) has the form
andh§;. This means that the correlat@®,;S; ;) counts all
the configurations where there are chain ends at the point
and at the pointj. In other words(S,;S;;) measures the
correlations betweeany two ends. Recalling that the ends
density is¢e(ri)=h;S;;, and subtracting the;; contribu- It is important to emphasize that the model given by Eq.
tion corresponding to the correlation of an end with itself, we(D2) is suitable only for loopless clusters. Clusters contain-
arrive at Eqs.(46) and (48), which can also be obtained ing loops enter the expansion with wrong weights, due to
directly from the relation summation ovem—1 “transverse” components. However,

K2, [S'S/Sc+SI(S/ SO+ S8/ S0 +Sd(S 5]
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the clusters with loops are neglected in the mean-field apNote that the coupling betweesy ands; in Eq. (D6) does

proximation and one can use the model given by ©%).

contribute to the transverse spin-spin correlation function.

Performing the mean-field approximation on these termsSubstituting from Eq(33) one finds
as outlined in Appendix C gives for the local spin averages,

dlnz X
S. = = ,
" ohy 1+ 3[x3+x?]
dlnz X,
S. = = ,
Mohi L 1443+ x2]

where

(K)
1
Xlzhi,l+; ‘]Sj,l+3 5% Ksj,lsk,l)i

(K)
32 Ks,-,ism), (D4)

XL:hi,L—i_z JSj’i+6
J

with =; the sum over nearest neighbors of the 's'medEj("f()

the sum over the pairs of sitg& which together with make

AP=(1-2¢)(1-¢),
AL=(1-¢).

Recalling that Em=§(a/q)2nni+2nnni, after Fourier
transformC{) = 3eP(1~C® (a={1,1}) the equations
(D5) and(D6) yield the Eq.(47) of Sec. V. It is important to
emphasize that the model given by EB2) is only suitable

for loopless clusters. Clusters containing loops enter the ex-
pansion with wrong weights, due to summation ower 1
“transverse” components. In principle, one can include
higher order terms, coupling different “transverse” compo-
nents. However, as seen from the calculation above, in the
mean-field approximation, these termie not contribute to
either the free energy or the spin-spin correlation function.
That is, the mean-field results are independent of the precise
way in which the weights are assigned to clusters with loops.

the junction tripleti,j,k as in Sec. V. The coupling between It follows that the mean-field approximation disregards the

the parallel and transverse components of the three-spin

loops that contain information about long range intracluster

term in Eq.(D4) has no consequence for the thermodynamiccorrelations. Only the treelike clusters give contribution to

properties because the average value of “transverse” compdhe mean-field approximation and therefore one can use the
nent is zero(S,)=s, =0. The terms containing products model given by Eq(D2).

Si,1Sj,. have been omitted for the same reason. However,

this coupling is important for correlations, as we shall see.

We thus define the spin-spin correlation functi )
whose “longitudinal” component is given by

1

d
ClY'=(S 18— =t

1Y gs
=AD 5'k+JJ§n, ahk'l+6K 3 hklﬂ
(D5)
with
JRE N B S ‘ ! Xi _
Ml 1e3baexil)], T1e3¢ (1 b2

For the transverse componefitearing in mind thatS, )
=s, =0), we obtain

|k _<S LSKL)_ﬂh
(K)
1 (9SL
=AW 5 +J - 16K Smi| |,
Ik Jgnl 8hkl 3m2,j m,lé,thL
1% X
AL =" —iz . = 5. (D)
X\ 1+3(xq+xD) )|, 143X

L

APPENDIX E: RELATED THEORETICAL MODELS

Some of the results described here have been obtained
previously. Although a complete review of previous work is
out of the scope of the present paper, we briefly describe here
several related theoretical approaches and compare their as-
sumptions and results to those of this paper.

1. Exact model for percolation

In order to extract information about the topological struc-
ture of the system, while retaining the exact correspondence
between the expansion terms of the spin model, and the equi-
librium, branched clusters, one has to resort to a tensor order
parameter or, equivalently, to use several couptedO
fields. The presentation in this section closely follows the
derivation of Ref.[15] with the major distinction that the
junctions are not treated as pointlike objects, which allows us

to use a conventional normalization of the=0" spins S.
The Hamiltonian to be used is

=h> § SHERDY E St S

i« (i,jy a=1

m
2 2 a a gky
i,j,k) a=

(ED)
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where §0"s are m n.component vectors with the normaliza- the relevant value im— 1, because the number of clusters is
tion S%)2=mn wheren 0; oes form 1 tam. In this not constralrjecﬂl'S]. . . .
>a(S7) —o @9 The Hamiltonian(1) can be rewritten, after the spin vari-

form, the Hamiltonian consists oh replicas of the Hamil- S . :
tonian (10), and there is a one to one correspondence bez_ibles are transformed by rotation in timedimensional space

tween the terms in the expansion of &F"'T, and the equi- of a components, witp the use of a set mfdimeensional
librium, branched clusters. Due to presence of the additiondfrthogonal vectors v, 3 1=0,..m—1, with vo=(1/
parameterm, each cluster in the expansion acquires an adyM(L,1,...,.1) ands;-6),= &, [15]. The new variables are

ditional weightm. The partition function then reads then defined as

= Swg=—> S,
Zr= > INoKNihNemNeA(N; N, Ny, N,), « Vm e
Nj ,Ng ,NuNp

o S=> Sw{ for 1#0.

where N;,N¢,N,,N;, are the number of junctions, ends, @

bonds, and clusters, respectively. The parametezan be

analytically continued to noninteger values and has the Note that the normalization remains the same:
meaning of the fugacity conjugate to the total number of2["'(S')2=mn.The Hamiltonian expressed in the new vari-
clusters in the system. For self-assembled, branched clusteedles then reads

m—1

50240 S}St-i-perm(i,j,k) + > au'wSlS}’S(” ,

1#0J"#0/)"#0

Hr=hym > §$+JE Elsﬁ'sh > [S?S?SEJF

K
i =0 m T
(E2)

where a;» are numerical coefficients, depending on theis conjugate toS]' [15]. We note parenthetically that the
value ofm. It can be shown then that the correlation functionmodel of Ref[15] is not, strictly speaking, anrf= 0" model
<s|°sj°> measures the correlation between any two endpointBecause it employs a set of clos_ure conditions for d_iﬁerent
while the correlation functioqS|S]) measures the correla- moments of the tensor fielffi, which are somewhat differ-

tions between two endpoints belonging to the same clustégnt from the one descri_bed he_zre, in_ part because the junctions
are modeled as pointlike objects in the Isaacson-Lubensky
[15]

' L . theory. Those authors have focused on the geometrical prop-
In the mean-fle_zld approx_lmat|on, the productsSfwith erties of various objects that emerge near the percolation
I#0 do not contribute to either the free energy or the two-yansition, such as the statistics of lattice animals and the

point correlation function, because on{’)#0 (they do,  scaling exponents of the percolating cluster. Their results
however, contribute to higher order correlation functions were obtained by studying the critical behavior of different
and can be neglected. In particular, the fact that the meareomponents of the tensor fiell,,,. They did not study ther-
field two-point correlation function is independent of the co-modynamic behavior of the model, which requires investiga-
efficientsay; .~ (i.e., of the precise way in which weights are tion of the free energy as a function of the appropriate physi-
assigned to loopsmeans that the mean-field approximation cal variables, namely, the monomer density- * and the

takes into account only the loopless graphs contributing td€mperature. Also, although RefL5] starts with a rigorous
the two-point correlation function. With this in mind, the last M@PPing of the branched chains, the excluded volume or,
term in Eq.(E2) vanishes, and in the limin— 1 the Hamil- equivalently, the translational entropy of the chains, is cor-

tonian (2) becomes formally identical to the Hamiltonian rectly treated only for small monomer densities in the con-
ol ) - . tinuum limit, due to approximations involved in the con-

(49) of Sec. V, withS (1#0) taking place of a “transverse” ¢ ction of the field theory.

componentS,, y#1.

In Ref. [15], Isaacson and Lubensky used a continuum 2. The O(1) model

field version of the spin model described above. It was ob-  another approach to the theoretical description of

tained by counting various diagrams present in the expansiogranched equilibrium polymers was proposed in ReF. In

of the partition function of the Hamiltonian presented in theirear"er Work[l4], these authors had shown that under certain

work. Alternatively, it can be obtained by performing a circumstances, th@(1) model can be applied to study

Hubbard-Stratonovich transformation on the partition func-chains in equilibrium with closed rings. The authors of Ref.

tion of original spin Hamiltonian, and keeping terms up to[7] argued that the addition of a cubic term to tB¢1)

fourth order in the expansion in the order paraméigy that  model allows one to incorporate threefold junctions into the
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theory. TheO(1) model belongs to the same universality energy, the authors used numerical techniques to predict the
class as the Ising model and does not allow a rigorous comsmotic pressure from the model. It was found that for cer-
respondence between the partition function of the modefain values of the control parameters, the system undergoes a
Hamiltonian and the configurations of branched clusters on @hase separation into a dense system with many junctions, in
lattice. In particular, it does not correctly account for theequilibrium with a dilute phase. The phase behavior was
self-avoidance of the chains. Nevertheless, as the authostudied in Ref[16] as a function of the junction energy for
point out, the model can be used if one is interested in théixed end-cap energy, and the phase diagram obtained in Ref.
scaling behavior near the critical point. The model was studf16] differs form ours. One difference is that the reentrant
ied in terms of the scalar field variable parallel to tensor nature of the phase transition is absent from the analysis of
field of the Lubensky-Isaacson theory, to identify differentRef. [16]. Because the model used in R¢L6] does not
regions in the phase space of the system as a function of th@ovide predictions for the geometrical structure, the authors
monomer chemical potential and the end and junctiorcould only suggest that the dense phase contains a connected
fugacities. The junction-end transition was not analyzed imetwork, in contrast to our work that permits the calculation
this work because the thermodynamic stability analysis wasf structure and thermodynamics within the same formalism.
performed in terms of the field variablieand not in terms of The density fluctuations, and the relation of the correlation
the monomer densityp. Also, as the authors point out, the length to the interjunction distance were not studied in Ref.
scalarO(1) model is not suitable for the determination of the [16].
network structure.

4. Drye and Cates model

3. Two-field model Some of the results described here can be derived in a

Another, closely related approach was used in R, phenomenological way, without a rigorous theory. In a pio-
which was concerned with the investigation of the phase dianeering work{11], Drye and Cateassumedhe existence of
gram of self-assembling systerfesg., wormlike micellesat  a network in a system of self-assembled chains, which they
all values of monomegsurfactant densities. To this end, the viewed as an assembly of flexible rods. Using a phenomeno-
authors of this work used two coupledh 0" fields which  logical estimate of the reduction of the translational entropy
also allowed them also to treat the polymerizatiom.c. of the rods due to junction formation, they found that at
transition. One local field resides on the vertices of the latticecertain values of the junction energy, the system becomes
and corresponds to the monomers, while the second fielthermodynamically unstable. They were also able to obtain
occupies the bonds of the lattice. Branching of the self-an expression for the junction density, essentially identical to
assembled chains was modeled by writing the Hamiltoniarihe one obtained in the present paper using a rigorous theory.
as a sum of terms corresponding to one-, two- and threeFhe model of Ref[11] postulates the existence of a network
functional units. Expressions for the junction and end densiand disregards the existence of free ends. Among other prob-
ties similar to ours and the previous work of Drye and Catedems, this does not allow a clear identification of the phases
[11] were obtained. Because the two-field model does noin equilibrium. Also, phenomenological arguments used in
allow one to obtain a closed analytical expression for the fredref. [11] do not allow to locate the percolation transition.
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