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Thermodynamics and structure of self-assembled networks

A. G. Zilman* and S. A. Safran
Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel

~Received 21 November 2001; published 22 November 2002!

We study a generic model of self-assembling chains that can branch and form networks with branching
points~junctions! of arbitrary functionality. The physical realizations include physical gels, wormlike micelles,
dipolar fluids, and microemulsions. The model maps the partition function of a solution of branched, self-
assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin
components. As for the calculation of thermodynamic properties as well as the scattering structure factor, the
mapping rigorously accounts for all possible cluster configurations, except for closed rings. The model is
solved in the mean-field approximation. It is found that despite the absence of any specific interaction between
the chains, the presence of the junctions induces an effective attraction between the monomers, which in the
case of threefold junctions leads to a first-order reentrant phase separation between a dilute phase consisting
mainly of single chains, and a dense network, or two network phases. The model is then modified to predict the
structural properties at the mean-field level. Independent of the phase separation, we predict a percolation
~connectivity! transition at which an infinite network is formed. The percolation transition partially overlaps
with the first-order transition, and is a continuous, nonthermodynamic transition that describes a change in the
topology of the system. Our treatment that predicts both the thermodynamic phase equilibria as well as the
spatial correlations in the system allows us to treat both the phase separation and the percolation threshold
within the same framework. The density-density correlation has the usual Ornstein-Zernicke form at low
monomer densities. At higher densities, a peak emerges in the structure factor, signifying the onset of medium-
range order in the system. Implications of the results for different physical systems are discussed.

DOI: 10.1103/PhysRevE.66.051107 PACS number~s!: 64.10.1h, 82.70.2y
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I. INTRODUCTION

Networks and branched structures are ubiquitous in b
natural and synthetic materials and form under a variety
equilibrium and nonequilibrium conditions. In this paper, w
present a theory that describes in a unified way the struc
and thermodynamic properties of equilibrium networks a
their relation to several soft condensed matter systems,
as gels, wormlike micelles, microemulsions, and dipolar l
uids and colloids. In all these systems, the networks con
of crosslinked, elongated objects~e.g., polymer chains in the
case of a gel!. The study of network phases is of both the
retical and practical interest. From the practical point
view, gels and sol-gel systems are at the core of many ind
trial, biological, and biomedical applications. Exampl
range from novel plastics and food processing to gel ch
matography and tissue implants@1,2#. Despite intensive the
oretical and experimental investigations carried out over
past three decades, many features of network-forming
tems still remain unclear~Refs. @2,3,48#!. For example,
whether the gelation transition in physical gels is a first-or
or a continuous transition, is currently under debate@2–5#.
Experiments have not yet provided a clear-cut answer,
cause the gelation transition can be obscured by the van
Waals interaction@6#. Another example is the transition of
solution of wormlike micelles to a self-assembled netwo
that has been suggested to occur on the basis of rheolo
measurements; this has also been discussed theoret
@7,8#. Network formation may also be responsible for t
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‘‘closed loop’’ phase diagrams of dipolar and magnetic flui
and colloids, and microemulsions@9#. Cryoelectron micros-
copy shows clear evidence of coexisting network phase
dilute microemulsions@10#. In many of the systems men
tioned above, the chains themselves are self-assembled
equilibrium manner from a large number of monomers~Ref.
@48#!.

We focus here on the thermodynamic behavior and str
ture of systems with thermoreversible crosslinking; th
means that the crosslinks can break and re-form under
influence of thermal fluctuations. It turns out, however, th
many of the large scale structural properties of netwo
forming phases are independent of the precise nature o
crosslinks. In many of the complex systems mention
above, an understanding of the local and large scale corr
tions is also of importance. Certain structural transitions c
not be detected by examining the thermodynamic proper
alone, but are expressed by the nature of the correlat
between different components of the system. One examp
the percolation transition, at which a network spanning
whole system is formed, as schematically shown in Fig. 1
is a continuous transition, unrelated to the thermodyna
properties of the system. Generally speaking, one would
to know both the thermodynamic behavior of these syste
as well as such experimentally measurable quantities
density-density correlation functions and response functi
to applied fields such as an electromagnetic field or hyd
dynamic flow.

To answer these questions, at least within a mean-fi
approach, we study a generic system consisting of s
assembled chains that can branch and form networks. E
chain consists of a large number of ‘‘monomers.’’ The cha
©2002 The American Physical Society07-1
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are self-avoiding and mutually avoiding but are permitted
branch~crosslink!. We shall call both the branching poin
and the crosslinks ‘‘junctions.’’ The exact physical interpr
tation of the ‘‘monomers’’ and ‘‘junctions’’ will differ from
system to system. In each particular case, the energy
other properties of the junctions and the ends can be ca
lated from microscopic considerations, e.g., molecular pa
ing for surfactant systems, or dipolar interaction energies
plicable to ferrofluids.

In this paper, we present a lattice model that establis
the equivalence between a solution of branched, s
avoiding, self-assembling chains and a Heisenberg magn
the limit of ‘‘zero’’ spin components; we show that the
partition functions can be mapped onto another. This mo
known as ‘‘n50’’ model, was proposed by de Gennes
study polymer solutions and we have modified it in order
include the possibility of branching. The model provides
exact calculation of the thermodynamic properties, includ
the density fluctuations and accounts for all possible confi
rations of equilibrium branched clusters~excluding closed
rings, whose influence is of importance only at very lo
densities! ~cf. also Appendix B!. This formulation of the
problem enables us to explore both the thermodynamic
the structural properties of self-assembling branching ch
in a unified manner. The model is treated in the mean-fi
approximation and our major conclusions are summarize
Fig. 2, which shows the phase diagram of the system a
function of the density and temperature. We find that des
the absence of any specific interactionsbetween the mono
mers, the presence of the junctions induces aneffective at-
traction between the monomers. The model can be modi
to study the topological properties of the system and co
late them with the thermodynamic behavior. As the monom
density is increased or the temperature decreased, the sy
passes through apercolation~connectivity! threshold, where
a network spanning the entire volume is formed. This tr
sition is purelytopological, and has no thermodynamic sig
nature. However, the junction-induced attraction do
modify the concentration of monomers at which the perco
tion threshold occurs; as the temperature is decreased
threshold is decreased compared to its value in the limi
infinite temperature, where the interactions are irrelevant

FIG. 1. Schematic illustration of the formation of a connect
network from disconnected clusters upon increase in the mono
densityf.
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For threefold junctions, the junction-induced attraction
strong enough to drive afirst-order phase separation, where
the system separates into a low-density and a high-den
phase. This is a transition whose origin is purely entrop
because there are no specific interactions between the m
mers. The physical reason for the transition is the hig
entropy of the junction-dominated high-density phase:
though the translational entropy of the chains is lower in
high-density phase, it is overcompensated by the increas
the entropy of the self-assembled junctions, that are abun
in the high-density phase. In this respect, this entro
induced transition is similar to the crystallization of rig
spheres and the isotropic-nematic transition. The transi
line terminates at a critical point. For fourfold and high
functionality junctions, the junction-induced transition is to
weak to drive a phase separation. In this case, the junct
induced interaction merely renormalizes the excluded v
ume interaction between the chains, and drives the sys
closer to theU point. The structural percolation transition, o
course, is also present above the critical temperature of
first-order phase separation. At very low temperatures
monomer densities, the chains are depolymerized and
system consists mainly of separate monomers.

The nature of the phases in equilibrium depends on
temperature, as well as on the rigidity of the chains a
details of the junction configurations. In general, there
three possibilities:~i! a phase of dilute chains that coexis
with a connected network, ~ii ! two coexisting networks, or
~iii ! the coexistence of dilute and dense phases of disjoin
branched aggregates, although not predicted by our mode
also possible.

Our treatment of the spatial density variations with
mean-field theory shows that the density-density correla

er
FIG. 2. Phase diagram of a solution of self-assembli

branched chains as a function of temperatureT in units of the end
energyee , and the monomer volume fractionf. The junction en-
ergy has been chosen to be equal toee/4. The thick line shows the
phase separation region. The dashed line is the percolation line
the left of this line the system consists of a solution of disconnec
~but possibly entangled!, branched chains; to the right there is a
infinite connected network. Moving along the lineb, the actual
gelation transition will be seen as a continuous nonthermodyna
transition, while moving alonga will result in a first-order thermo-
dynamic transition. Thus, coexistence of two connected network
possible at high enough temperatures.
7-2
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function, relevant for scattering experiments, has a sim
Ornstein-Zernicke form for relatively low densities of th
self-assembling monomers. For higher densities, apeak
emerges in the structure factor as a function of the scatte
wave vector; this indicates the emergence of medium ra
~longer range than the lattice size but not long range ord!
correlations in the system. In the intermediate regime,
structure factor is a monotonically increasing function of t
wave vector. This is expected in any dense system: at h
densities, the system has a low compressibility at long wa
lengths and this suppresses the small wave vector scatte
The absence of a peakin the structure factor does not impl
the absence of thenetwork: there is a region in the phas
diagram beyond the percolation line~where an infinite net-
work exists! where there is indeed no peak in the densi
density correlation function. The precise location a
strength of the peak depends on the monomer density an
number of junctions present in the system. As discusse
Sec. VII, these theoretical predictions may be related to
scattering peak observed experimentally in bicontinuous
croemulsions.

Our predictions of the thermodynamic and structu
properties can be put in the context of previous work on
physics of ‘‘living’’ ~self-assembling! polymers and net-
works; this area has been the focus of extensive experime
and theoretical attention over the past two decades~cf. Ap-
pendix E!. Most notably, phenomenological, Flory typ
~chains with linkers! theories have been employed to mod
physical gels@4,5#. Another important contribution is the
work of Drye and Cates that was motivated by studies
wormlike micelles@11#. However, the predictions of thes
various studies regarding the properties of the gelation t
sition vary depending on the details of the models that w
studied, the assumptions regarding the solvent quality
other parameters. This is partially due to the fact that th
studies@4,5# did not emphasize the extreme sensitivity of t
gelation transition to the functionality of the junctions a
the importance of the competition of the branching poi
and the free ends. These previous, more heuristic, mean-
theories could not be extended in a simple manner to pre
the correlations.

We have therefore focused on the more rigorous ‘‘n50’’
model, which allows one toexactlyevaluate the number o
all possible configurations of branched self-avoiding and m
tually avoiding chains on a lattice. Our use of the latti
approximation models the configurations of the chains o
approximately at short length scales. However, as long
one is interested in the behavior of the system on len
scales much larger than the lattice constant,~i.e., thermody-
namics! the choice of the lattice does not influence any of
qualitative predictions of the model. The ‘‘n50’’ model has
been successfully used to explain the properties of asso
ing monomers and has been applied to the polymerizatio
sulfur @12# and wormlike micellar solutions@13#. The exten-
sion of the model ton51 was used to model systems co
sisting of chains and rings in equilibrium@14#. Our model is
similar to the one employed by Isaacson an Lubensky@15# to
which it can be related~cf. part A of Appendix E!. These
authors studied the continuum version of the tenso
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‘‘ n50’’ model with a cubic term in the Hamiltonian in th
context of percolation and focused on the scaling behavio
the model to study the properties of the gelation-percolat
transition. However, they did not calculate the thermod
namic transitions~such as the phase separation predic
here! or study the monomer density fluctuations and scat
ing structure factor. In our model, however, the junctions
not modeled as pointlike objects, and the treatment of to
logical structure is simpler than that of Ref.@15#, but is ap-
plicable only in the mean-field approximation. Then51
model, which also accounts for closed rings, but does
properly take into account the self-avoidance, was used
Lequeux, Elleuch, and Pfeuty@7# to study the general prop
erties of micellar solutions but did not consider the topolo
of the network. Similarly, in the two-field model of Ref.@16#,
that also accounts for closed rings, correlations and struc
were not studied and no analytic expression for the free
ergy was obtained.

This paper is organized as follows. In Sec. II A we revie
the ‘‘n50’’ model without junctions. In Sec. II B we exten
the model to include the possibility of junctions and establ
the correspondence between this model and the physic
the problem of self-assembled networks. In Sec. III we c
culate the free energy and the phase diagram in the m
field approximation. We next extend the mean-field theory
include spatial variations of the monomer density and in S
IV, predict the spatial variations and correlations. In Sec
we show how the model can be modified at the mean-fi
level to enable us to predict the topological properties a
correlate them with the thermodynamic behavior. The
proximation employed is at the same level as the class
Flory-Stockmayer theories of gelation. In particular, in Se
V B we discuss the structure and evolution of a sing
branched cluster as a function of monomer density and
temperature, and the emergence of a connected netw
Section VI describes the extension of our model and its p
dictions to the case of rigid and semiflexible chains. In S
VII we discuss the results and their application to particu
physical systems such as physical gels, microemulsions
polar fluids, and wormlike micelles.

II. ZERO-COMPONENT HEISENBERG MODEL

A. Self-avoiding chains

For systems with no junctions, the ‘‘n50’’ model has
been extensively studied in the context of polymer solutio
and micellar systems@13,17–19,21,22,44,45#. For the sake
of completeness we review here the derivation of the mo
in Sec. II B we extend the model to include junctions. Rea
ers familiar with ‘‘n50’’ model can proceed directly to Sec
II B. We consider a system that comprises a solvent an
collection of self-assembling chains, each consisting o
large number of identical monomer units. The physical n
ture of the ‘‘monomers’’ can be different. For example,
physical gels these would be the individual molecular un
that comprise the polymers, in microemulsions these wo
be surfactant covered oil~or water! domains, and in dipolar
colloids, the colloidal particles~cf. the discussion in Sec
VII !. The chains are self-avoiding and mutually avoidin
7-3



. W
a

a
s.
o
ca
m
o

ro
re
in

tr
ch
a

io
e
th

th
s-

o
u

ol

-
re
d

o

e

-

ors

is

t

il-

all
t

-
the

-
l

an-
ion
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that is, they cannot intersect themselves and each other
focus on self-assembling systems where the monomers
relatively weakly associated within a chain; thus, individu
monomers can be freely exchanged between the chain
this case, the equilibrium distribution of chain lengths is n
fixed, but is determined by the values of relevant physi
parameters, as we discuss later. We consider the syste
the grand-canonical ensemble, in equilibrium with a bath
monomers of the chemical potentialm. We assume that the
energy of a monomer at the end of the chain,ee , relative to
that of a monomer in the middle of the chain is positive,ee
.0. This is indeed the case for micellar systems and mic
emulsions, because~in the regime where long chains a
formed! the bending energy of the surfactant layer is lower
the cylindrical part than in the semi-spherical end caps@20#.
The same is true for dipolar particles, because the elec
static energy of a dipole in the middle of the chain, whi
has two neighbors, is lower than that of a dipole at the ch
end, where it has only one neighboring dipole. Ifee,0, the
self-assembling chains will be very short and the solut
will mostly consist of individual monomers; this is not th
limit that we are interested in. The end energy, taken with
opposite sign,2ee , can also be interpreted asmp , the
chemical potential conjugate to the number of chains in
solution, Np . This interpretation is usually adopted in di
cussion of regular polymer solutions@18,21,22#. For the sys-
tems of our interest, the energyee is determined from micro-
scopic considerations, be it molecular packing
electrostatics. The number of chains and average molec
weight are not fixed but determined by physically contr
lable parameters, namely, the temperature, the totalmonomer
densityf, andee . For simplicity, we imagine that the mono
mers and the solvent molecules occupy the sites of a th
dimensional lattice. With the above notation, the gran
canonical partition function of a solution of equilibrium
chains is given by

Z5 (
$N,Ne%

exp@mN/T#exp@2eeNe /T#N~N,Ne!, ~1!

whereN is the number of monomers in a given realization
the grand-canonical ensemble,Ne is the total number of free
ends, andN(N,Ne) is the number of ways to arrangeNe/2
nonintersecting chains of total lengthN, on a lattice. Ther-
modynamic quantities can be obtained from Eq.~1! by dif-
ferentiation with respect to the relevant parameter. For
ample, the mean number of monomers and chains,N̄ and
N̄p , respectively, are

N̄5
] ln Z

]m
,

N̄p5
] ln Z

]ee
.

The direct combinatorial calculation ofN(N,Ne) is a for-
midable task. A way of circumventing the difficulties in
volved in its calculation was proposed by de Gennes@21#. It
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was later refined by equivalent methods by different auth
@22,23#. The calculation ofN(N,Ne) is performed by relat-
ing the partition function of Eq.~1! to that of a certain spin
model on a lattice. Consider then-component Heisenberg
model on a three-dimensional lattice whose Hamiltonian
given by

H52(
$SW i %

JSW i•SW j2(
$SW i %

hW •SW i , ~2!

where the summation is over alldistinct pairs of nearest
neighborsi,j. SpinSW i is ann-component vector normalized a
each site as

uSW i u25 (
a51

n

Si ,a
2 5n,

where a indexes the components ofSW i . We arbitrarily
choose the fieldhW to point in the direction~1,0,...,0!.

The partition function corresponding to this spin Ham
tonian is

ZH5Tr exp@2H/T* #, ~3!

where the trace operator Tr signifies an integration over
possible directions ofSW i , divided by a normalization, so tha
the trace TrA of any quantityA is

Tr A5

E ) i dV i
~n!A

E ) i dV i
~n!

,

whereV (n) is then-dimensional solid angle. The ‘‘tempera
ture’’ T* has no physical meaning and is not related to
real physical temperature of the system in Eq.~1!; we put
T* 51 ~another choice ofT* would amount to a renormal
ization of the constantsJ andh!. Expanding the exponentia
in ZH of Eq. ~3! in a power series, we obtain

ZH5(
k

1

k!
Tr )

~ i , j !
^JSW i•SW j1hSi ,1&

k. ~4!

Each term in Eq.~4! has the following form:

~5!

Note that in the tracing operation in Eq.~5!, all sites are
decoupled.

In any realistic system in which the spinSW with n com-
ponents is to have a physical interpretation,n>1 is required;
n51 corresponds to the usual Ising model. However, qu
tities such as partition function and the cumulant expans
remain mathematically meaningful even whenn,1. In par-
ticular, one can consider the mathematical limitn→0
@18,24#. It can be shown that whenn→0 ~cf. Appendix A!,

Tr Si ,aSj ,b5dabd i j , ~6!
7-4
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andall other cumulantsare zero. The spinSW does not have a
physical interpretation in then→0 limit and should be re-
garded purely as a convenient mathematical device. A
cise mathematical meaning can be given to Eq.~6! ~cf. Ap-
pendix A!. In particular, Eq.~6! implies that in the expansion
~5!, the only nonvanishing terms are those in which ev
spin Si appears twice. As can be seen from Eq.~4!, this
condition is satisfied by terms consisting of the chains
neighboring bonds: ...JSiSjJSjSj 8 ... . Since every spin mus
appear twice for the term to be nonzero, the uncoupled s
at the ends of a chain (Si and Sj 8 in the above expression!
must be paired with another spin at the same site either b~i!
closing a chain on itself or by~ii ! the appearance of th
single-spin, ‘‘field’’ term hSi . However, in the limit of
n→0, the terms given by~i! vanish, due to summation ove
all the components~via summation over the indexa!; this
sum is proportional to the number of components,n, which
is equal to zero. The terms that contain the field variablesh,
do not vanish because theh terms single outonecomponent
with the indexa, parallel to the fieldh, namely,S1 . It is easy
to see that such terms consist of products of the form

Tr hSi ,1JSi ,1Sj ,1JSj ,1Sk,1¯JSq,1Sr ,1hSr ,1 ~7!

that repeat themselves with differenti andr. Any term of the
form of Eq. ~7! corresponds to a self-avoiding random wa
on a lattice, starting at sitei and ending at siter. In other
words, a term containing the factorJmh2k counts all the pos-
sible configurations ofk random walks of total bond lengt
m. Thus, the partition function~1! can be written as

ZH5 (
$Nb ,Ne%

JNbhNeN~Nb ,Ne!, ~8!

whereN(N,Ne) is the number of ways to arrange on a latti
an ensemble of self-avoiding random walks with a total nu
ber ofbonds Nb and a total number of endsNe . Noting that
the number of chains isNp5Ne/2 and the number of mono
mers isN5Nb1Np , one can see that Eq.~8! is identical to
Eq. ~1! if the following identification is made:

J5em,

h5e2eeJ1/2[h0J1/2.

Each term in the sum in Eq.~8! corresponds to a differen
realization of the grand-canonical ensemble of a solution
self-avoiding chains. We have thus demonstrated that
grand-canonical partition function of a solution of polydi
perse, living polymers is identical to that of then component
Heisenberg model where the number of componentsn→0.
As mentioned in the Introduction, the lattice approximati
is adequate as long as the chains are much longer than
lattice constant. This theory describes the ensemble ofself-
assembling‘‘living’’ chains, which are of interest to us. The
molecular weight and the length distribution are not fixed
are functions of external parameters, such as the mono
density. However, this model has also been successfully
plied to non-self-assembling polymer solutions~where the
degree of polymerization is constant and fixed by the che
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model is the basis for the application of field-theoretic
methods to polymer physics@22,23,25#. The self-assembling
theory can be used to predict the properties of non-s
assembling polymer solutions of long chains~small h in our
formulation!, because the scaling behavior of such system
universal and independent of the detailed chain propertie

B. Threefold junctions

The model presented in the preceding section can
modified to include the possibility of junctions that conne
several chains; this allows the formation of a branched str
ture and is achieved by introducing an additional term in
Hamiltonian of Eq. ~2!. Again, we consider the grand
canonical partition function of an equilibrium solution o
branched crosslinked polymers with reversible crosslin
The crosslinks~branching points! are in thermal equilibrium
and can break and re-form. Similar to the solution of po
mer chains discussed above, the grand-canonical part
function of the system is

Z35 (
$N,Ne ,Nj %

exp@mN/T#exp@2eeNe /T#

3exp@2e jNj /T#N~N,Ne ,Nj !, ~9!

wheree j is the energy of a crosslink relative to the energy
a monomer in the middle of a chain,Nj is the number of
junctions ~crosslinks! and N(N,Ne ,Nj ) is the number of
ways to put self-avoiding branched chains of total lengthN
on a lattice so thatNe ends andNj junctions are formed. The
chemical potential for the monomers,m and the end energy
ee are defined as in the preceding section. Similar to
discussion of the end energy and its associated chemica
tential, the junction energy taken with the opposite sig
2e j , can be interpreted as the chemical potential conjug
to the number of junctions. We suppose that the physic
controllable parameters are themonomerdensityf, the tem-
peratureT, and the end/junction energiesee ,e j . In this for-
mulation, the density of ends,fe , and the density of junc-
tions, f j , are not fixed but determined in therm
equilibrium as functions off andT.

In this section we show how the threefold junctions c
be described by ‘‘n50’’ model. The generalization to junc
tions of arbitrary functionality is discussed in the followin
section. As in the preceding section, one can relate the
tition function of Eq.~9! to an equivalent spin model on
lattice. The mapping rigorously accounts for all possible co
figurations of branched, self-avoiding clusters, except
closed rings. The influence of rings on the properties of l
ing polymers has been studied in Refs.@14,46#. However, in
the case of branched chains, the influence of closed ring
the thermodynamic properties of the system is small, exc
at very low densities, and they are not treated in this pa
~cf. Appendix B 1!. The reason for this is that for any close
ring there is an exponentially large number of branched c
ters formed by attaching side chains to it. No topologic
information regarding, e.g., the network formation, or t
cluster size distribution can be extracted from the model f
7-5
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mulated below. However, it can be modified to include t
treatment of topological properties too, as shown in Sec.

We introduce the following Hamiltonian that contains
term which couples three adjacent spins:

H35(
i

hW •SW i1(
i j

J~SW i•SW j !1(
i jk

KSi,1Sj,1Sk,1 , ~10!

wherei,j,k sum is over all distinct triplets on the lattice an
S1 is the component of a spin along the direction of the fi
h which is chosen to point in the~1,0,...,0! direction. The
partition function corresponding to this Hamiltonian is

ZH3
5Tr$Si %

exp@2H3$Si%/T
!#. ~11!

The ‘‘temperature’’T! can be taken equal to unity and an
other choice would amount to a redefinition of the consta
J, K, andh. Proceeding as in the preceding section, we
pand ZH3

in series in powers ofK, J, and h. In the limit

n→0, the terms in the expansion ofZH3
in powers ofJ, K,

andh are similar to those discussed in the preceding sect
However, there are additional terms obtained by insert
into any term of the expansion Eq.~5! of the preceding sec
tion, combinations of the form

~12!

Each insertion of this kind corresponds to a threefold ju
tion on a lattice, joining the sitesj,m,n (cf. Fig. 2).Thus, a
general term in the expansion ofZH3

might look like

~13!

This particular term, for example, corresponds to a threef
branched, self-avoiding chain, which has a junction betw
the pointsj,n,k, and free ends at pointsi, n8, andm. In other
words, the partition function corresponding to the Ham
tonianH3 is

ZH3
5Tr exp@2H3#5 (

$Nb ,Ne ,Nj %
JNbhNeKNjN~Nb ,Ne ,Nj !,

~14!

whereN(Nb ,Ne ,Nj ) is the number of ways to arrange on
lattice an ensemble of self-avoiding branched random wa
with a total number ofbonds Nb ~excluding three ‘‘ghost’’
bonds at each junctions, cf. Fig. 3!, a total number of ends
Ne , and a total number of junctionsNj ~cf. Appendix B!.
The closed rings fall out from the expansion of Eq.~14! due
to the summation over spin components. Each ring produ
a contribution proportional ton which tends to zero as
n→0, analogous to the case of linear chains. From sim
geometric considerations, the number of monomers,N, is
alwaysN5Nb1 1

2 Ne1 3
2 Nj ~we do not count the junctions a

monomers; see Appendix B!, regardless of the presence
05110
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absence of intrachain loops. Note that this formulation d
not treat the junctions as pointlike objects. Choosing diff
ent forms of the three-spin coupling in Eq.~10! allows one to
study the influence of the junction size on the system pr
erties~cf. Appendix B!.

If the following identifications are made:

J5em/T, ~15!

h5e2ee /TJ1/2[h0J1/2,

K5e2e j /TJ3/2[K0J3/2,

thenZH3
of Eq. ~14! becomes identical toZ3 of Eq. ~9!. To

summarize, we have shown that in then→0 limit, the grand-
canonical ensemble of a solution of branched, revers
crosslinked polymers is equivalent to a Heisenberg mag
with a three-spin term. It is important to emphasize that
though the closed rings~linear, unbranched chains closed
form a ring! are not included in the expansion~13!, all the
intracluster loops are counted properly.

The concentrations of the monomers, ends, and junctio
f, fe , andf j , respectively, can be obtained by differen
ating the partition function with respect to a relevant para
eter, as follows from Eqs.~9! and ~14!,

f5
1

V

] ln Z

] ln J
, fbonds5

1

V

]s ln Z

]s ln J
, ~16!

fe5
1

V

] ln Z

] ln h
, f j5

1

V

] ln Z

] ln K
,

where ]s denotes a derivative with respect toJ with the
generalized fugacitiesK, J, and h taken to be independen
The great advantage of the present formulation is that it
lows us to apply the methods of statistical mechanics de
oped in the past four decades for the treatment of the s
models.

In this paper we are interested in systems where juncti
form spontaneously; in that case, the number of junctio
the distribution of the chain intervals between the junctio

FIG. 3. Junction can be formed between three adjacent s
i,j,k. The Boltzmann factor for a junction isK05e2e j /T.
7-6
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and the size of the branched clusters will be determined
the junction energye j , the monomer densityf, and the tem-
peratureT. This is what one expects, for example, in dipo
fluids or microemulsions. In other systems, junction form
tion may only be possible if linker molecules, that conne
several chains, are added to the system. In that case
grand-canonical formulation presented here amounts to
assumption that the system is in equilibrium with a bath
linker molecules with chemical potential2e j . The grand-
canonical potential per unit volume of a system with se
assembled junctions,v(e j ,ee ,m), is given by

v~e j ,ee ,m!/T52
1

V
ln Z~K0 ,h0 ,J! ~17!

and other physically realizable situations are related to
~17! by a Legendre transform. For instance, the free ene
corresponding to the case where junctions form only in
presence of linker molecules is

g~m,ee ,Nj !5v2f j ln K0 .

Of course, in the thermodynamic limit (V→`) the proper-
ties of the system are identical in either ensemble. Here,
will focus on the case where the physically controllable p
rameters are the total monomer densityf, and the defect
energies,ee /T52 ln(h0) and e j /T52 ln(K0). The corre-
sponding Helmholtz free energy per unit volume in this ca
is

f ~f!5v~m!1mf5v1f ln J.

III. MEAN-FIELD THEORY

A. Mean-field approximation

The first approximation in evaluating the free energy is
disregard the spatial variations of the densities and the l
range correlations between the monomers. In this section
assume that the system is spatially uniform and calculate
free energy as a function of the average monomer volu
fractionf, and of the end and junction densities,fe andf j ,
respectively. A mean-field calculation of the free energy fo
system with no junctions has been presented in R
@12,13,19#. We extend this calculation by an alternativ
method to a system that contains both ends and junctions
first calculate the grand-canonical potentialV/T52 ln Z in
the mean-field approximation, which is generally known
correctly predict the qualitative thermodynamic behav
@26#. As we shall show subsequently in Sec. V, the me
field approximation disregards the internal loops in t
branched clusters, because only local properties are
served in the mean-field approximation. Geometrically, it
equivalent to Flory construction@27# wherein each cluster is
constructed by adding consecutive bonds, disregarding
positions of the previously placed ones, and the long ra
correlations are lost. In particular, intracluster self-avoida
is neglected in the mean-field approximation. However,
excluded volume between different clusters is taken into
count. The partition functionZ is given by
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Z5Tr expF2(
i , j

JSW i•SW j2(
i , j ,k

KSi,1Sj,1Sk,12(
i

hW •SW G .
~18!

The sums in the argument of the exponent of Eq.~18! are
over distinct pairs and triples, as explained in Sec. II B. W
now note the following identity:

SW i•SW j5~SW i2SW !~SW j2SW !2SW 21SW •~SW i1SW j !

.2SW 21SW •~SW i1SW j !,

whereSW 5^SW i&. The underlined term in the equation is qu
dratic in the deviation of the local spin from its average va
S. It is this term that is neglected in the mean-field appro
mation. Since the ‘‘magnetic field’’h has been chosen t
point in the direction~1,0,...,0! the only nonzero componen
of the average spin isSi ,1 . Therefore, the transverse comp
nents of the spinSW do not contribute to the mean-field ap
proximation, due to the fact that^Si ,'&50. In the following
we drop therefore the vector sign andSi signifies the com-
ponent ofSW i in the direction ofh. Similarly, the mean-field
approximation for the three-spin term is

SiSjSk.22S31S~Si1Sj1Sk!.

Thus, the mean-field approximation to the Hamiltonian rea

HMF5VS 1

2
qJS212aKS3D2(

i
~qJS13aKS21h!Si ,

whereV is the number of lattice sites~which tends to infinity
in the thermodynamic limit! and the sum is over all lattice
sites;q is the lattice coordination number. The prefactora
5 1

3 a8, wherea8 is the number of possible configurations
sitesj,k in the triple termi,j,k making a junction around the
cite i. The exact value ofa8 depends on the type of th
lattice used and on the physical assumptions made in co
ing the physically relevant junction configurations. Phy
cally, it represents the entropy associated with local re
rangements of a single junction and we discuss its value
semiflexible and rigid systems in Sec. VI. In most of th
paper, we shall use the value ofa8 appropriate for a simple
cubic latticea85q(q22)/3 ~cf. Appendix B!. A particular
feature of then→0 limit, following from Eq. ~6! @18,19,24#
~cf. also Appendix A! is that for an arbitrary vectorkW ,

lim
n→0

Tr ekW•SW i511 1
2 k2.

Consequently, performing the trace in Eq.~18!, we get

1

V
~V/T![v5

1

2
qJS212aKS3

2 lnS 11
1

2
~qJS13aKS21h!2D . ~19!

The average value of the spin,S, is given by
7-7
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S52
]v

]h
5

1

V K (
i

Si L .

The total monomer density is

f5fbonds1
1

2
fe1

3

2
f j52

]sv

]s ln J
2

1

2

]v

] ln h
2

3

2

]v

] ln K

52
]v

] ln J
, ~20!

as follows from Eq.~16!, and can be also understood by
simple geometrical argument~cf. Appendix B!. Finally, com-
bining all the equations we find

DenotingqJS13aKS21h by x, the solution of this system
of equations gives

f5 1
2 Sx,

S5
x

11fx/S
.

Consequently

x5A 2f

12f
, 11

1

2
x25

1

12f
, S5A2f~12f!,

v5qJf~12f!12aK~2f!3/2~12f!3/21 ln~12f!.

It follows that in the limit of systems with relatively sma
numbers of junctions and ends, compared to the total num
of monomers in the chains@h0(2f)1/2!f,K0(2f)3/2!f#,

qJ5~x2h23aKS2!/S.
1

12f S 12
h0

A2f
23aK0A2f D .

~21!

Because we are interested in those systems where the de
f ~and not the Lagrange multiplierJ! is a physically control-
lable parameter, we perform a Legendre transformf 5v
1f ln qJ in order to obtain the Helmholtz free energy p
unit volumef (f,h0 ,K0). Up to first order inh0 andK0 , we
find

f /T'~12f!@ ln~12f!21#2
h0~2f!1/2

q1/2 2
aK0~2f!3/2

q3/2 ,

~22!

whereq is the coordination number of the lattice. The fir
term in Eq.~22! describes the self-avoidance of the chai
05110
er

sity

.

The second and the third terms are the densities of ends
junctions, respectively, as can be seen from Eqs.~16!. De-
noting the volume fraction of ends byfe and of junctions by
f j it follows that

h0~2f!1/2

q1/2 5fe , ~23!

aK0~2f!3/2

q3/2 5f j .

The expansion in powers ofh0 andK0 is justified because
we are interested in the limit where the density of ends
much smaller than the total monomer density,fe!f. The
density of junctions is much smaller than the total monom
density,f j!f, if K05e2e j /T is sufficiently small, as fol-
lows from Eq.~23!.

We note in passing that the choice of the lattice affe
only the numerical prefactors in Eqs.~23! and ~22!. The
lattice-specific dependence of junction and end densitie
Eq. ~23! on q is consistent with a simple probabilistic argu
ment. In equilibrium, the probabilities of defect~e.g., ends
and junctions! formation and breakup must be equal. T
probability of bond formation is proportional to12 fe

2q, be-
cause a bond can be formed whenever two ends are ne
bors on a lattice~the factor1

2 is due to indistinguishability of
any two ends!. The probability of bond breakup is propo
tional to the total number of bondsNb'N. Taking into ac-
count that the formation of two ends from a single bond co
an energy 2ee , the probability of bond breakup isfe22ee /T.
Equating the probabilities of bond breaking and bond form
tion produces Eq.~23! ~recalling thath05e2ee /T). Similarly,
three ends for an end and internal monomer can coalesc
form a junction, giving in equilibrium fe

3/e23ee

.af j /e2eJ (K05ee j /T). Note that this argument is inde
pendent of whether the ‘‘ground state’’ consists of infin
chains or closed rings of linear chains.

Together with Eq.~23!, the free energyf of Eq. ~22! can
be cast into the lattice-independent form

f /T5~12f!~ ln~12f!21!2fe2f j . ~24!

This particular form off is expected on very general ground
The first term in Eq.~24! is due to self-avoidance betwee
the chains. If one thinks of the ends and junctions as def
in the system of infinite chains, each defect lowers the f
energy bykBT, which is true for any system with noncon
served defects, e.g., dislocations in crystal structures.

Average distance between the defects

The average volume fractions of junctions,f j , and ends,
fe , are not fixed but depend on the total volume fraction
monomers,f. Similarly, the self-assembling nature of th
system means that the size distribution of the branched
gregates is polydisperse.

Absorbing the lattice-dependent prefactors in Eq.~23!
into the definition of the constantsK andh, the junction and
end densities can be rewritten as
7-8
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f j5K08f
3/2 and fe5h08f

1/2. ~25!

As can be seen from Eq.~25! for f!h08/K08 , the number of
junctions is much smaller than the number of ends,f j!fe
while in the opposite limitf j@fe . Let us consider the mea
length of a chain segment between two consecutive def
~i.e., ends or junctions!, l̄ . Each junction is attached to thre
chain segments while each end is attached to a single
ment. The total length of the segments is proportional to
total volume of monomers in the system. Consequen

( 3
2 Nj1

1
2 Ne) l̄ 5N; the factor1

2 corrects for the double count
ing of each segment. Consequently, we find

l̄ 5
2f

3f j1fe
.

2f

3K08~2f!3/21h08~2f!1/2. ~26!

For f!h08/K08 , the ends dominate and the mean chain len

between endpoints isl̄ ;f1/2 while for f@h08/K08 the junc-
tions dominate and the mean chain length in between
junctions is l̄ ;f21/2. These results are in agreement w
the known results for both nonbranched micelles and p
networks@11,20#. These results suggest that at high densi
~where the ends are negligible! a connected network is
formed, as we shall actually prove in Sec. V B. They a
imply that the mean chain length between defects,l̄ (f) has
a maximum aroundf;h08/K08 . One can easily convince

oneself by taking the derivative] l̄ /]f, that l̄ is indeed a
nonmonotonic function off whose maximum is located a
f5 1

2 (h08/K08) or, in other words, wherefe53f j . This fact
will become important for the determination of the details
the evolution of the system from a state of disconnec
chains to that of a connected network~cf. Sec. V B!.

In the absence of junctions~e.g., when the junction energ
is very high and the resulting value ofK is close to zero!, the
mean chain length in between end points isN̄5f/2fe

5h08f
1/2. The free energyF(f,h0) of Eq. ~24! can be trans-

formed to a free energy that depends only onf andfe ~or
the mean chain lengthN̄) by means of the Legendre tran
formation f (f,h0)1fe ln h05 f̄(f,N̄). The result is identical
to the Flory-Huggins expression for the free energy of
polymer solutions~neglecting terms linear inf!,

f̄ ~f,N̄!5~12f!ln~12f!1
f

N̄
ln f.

As mentioned above, this is because the mean-field appr
mation is geometrically equivalent to Flory lattice constru
tion, that disregards the intrachain self-avoidance, but ret
the excluded volume interactions between different cha
Our model thus describes the case of polydisperse ch
with both ends and junctions, as well as the limiting case
finite chains ~with no junction points! where the average
length is well defined; this is the case that is applicable
chemically prepared polymeric chains.
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B. The junction-end transition

The free energyf of Eq. ~22! is unstable in a certain rang
of parameters~monomer densityf, defect energiesee and
e j , and temperature! and shows a first-order phase transitio
that terminates at a critical point. The spinodal line asso
ated with this transition is determined by the conditi
]2F/]f250 and at the critical point,]3F/]f350. We de-
termine the conditions for the critical point from our mod
as

]2F

]f2 5
1

12f
1

h0

q1/2~2f!23/223a
K0

q3/2~2f!21/250,

~27!

]3F

]f3 5
1

~12f!223
h0

q1/2~2f!23/213a
K0

q3/2~2f!23/250.

Recalling thath05e2ee
/T

and K05e2e j
/T

, Eq. ~27! can be
solved analytically for smallf, expanding (12f) @ ln(1
2f)21#.1

2f
2, which gives

Tc5
23e j1ee

ln q4/~4a3!
, ~28!

fc5
1

2

q

a
e~e j 2ee!/Tc,

while for arbitraryf they can be solved numerically~Fig. 4!.
It is interesting to note that in the small density limit,fe
'f j at the critical point, which emphasizes the fact that t
transition is junction induced. ForT.Tc the system is a
homogeneousmixture of chains and branched aggregat
while for T,Tc there is a two-phase equilibrium between
end-rich phase that coexists with a junction-rich phase.
will be shown in Sec. V B, the end-rich phase usually co
sists of dilute, disconnected chains, while the junction-r
phase is usually aconnected networkthat spans the whole
system volume.

Although there areno direct interactionsbetween the
monomers in our model, junction formation induces effect

FIG. 4. Structure factor as a function of wave vectorp in the
high-density region,f.

1
2 . The dashed line shows the structu

factor at low temperatures, where the number of therma
generated junctions is small. For higher temperatures, a peak d
ops in the structure factor, as shown by the thick line.
7-9
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attraction between the monomers, and it is this effective
teraction that leads to the phase separation of Eq.~27!. Equa-
tion ~28! has several interesting consequences: First,
phase separation is possible only whene j,

1
3 ee @as long as

q4/(4a3).1]; in the opposite case, the junctions are pres
only as a minor ‘‘perturbation’’ to a system of linear chai
and their number is too small to generate an attraction la
enough to drive a macroscopic phase separation. Second
critical monomer densityfc, 1

2 ; this fact is important for an
understanding of the correlations between monomers and
tween junctions in the system. Third, ifa is large
@q4/(4a3),1#, there is no upper critical temperature, a
the phase separation takes place even at infinitely high t
peratures (Tc→`). If the ‘‘microscopic’’ end cap and junc-
tion energies,ee ande j themselves depend on temperature
density ~e.g., in microemulsions, Ref.@28#!, the phase dia-
gram may become more complicated. Note that the ph
transition described by Eq.~27! shows reentrant behavior. A
high temperatures, there is no phase separation, as usu
very low temperatures the parameterK05e2e j

/T
tends to

zero and there is no separationeither, as shown in Fig. 2,
because the number of thermally generated junctions is
small to drive a phase separation.

The phase transition discussed here is of entropic ori
which augments a qualitative claim by de Gennes t
crosslinking is thermodynamically equivalent to attracti
interactions@24#. The origin of this phase transition lies i
the fact that although the translational entropy of the cha
is lower in the dense phase, the total entropy is stillhigher
due to high entropy of the self-assembled junctions, wh
are abundant in the dense phase. It is important to empha
that the presence of junctions induces an attraction betw
all monomersand notonly between the junctions, as we sha
show in Sec. V. Also, the phase separation discussed he
not the same as the percolation~connectivity! transition,
where an infinite cluster appears, although at both transit
a macroscopic connected network is formed. As we shall
in Sec. V B, the percolation transition, at which an infin
branched cluster appears in the system, is not a therm
namic, but rather astructural transition. In some cases, th
percolation transition can be masked by the end-junc
phase separation.

Osmotic pressure and the phase coexistence line

The osmotic pressureP can be calculated from the fre
energyf of Eq. ~22!,

P52 f 1
] f

]f
f.2 ln~12f!2f1

1

2
h08~2f!1/2

2
1

2
K08~2f!3/2.

Note that the coefficient in front of theh08-dependent~ends!
term is positivedue to the fact that the exponent inf1/2 is
less than one, while the sign of the junction term is negat
This emphasizes the fact that, although both ends and j
tions terms are negative in thefree energy, the junction term
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is thermodynamically equivalent to anattraction, while the
end term produces an effectiverepulsion. The location of the
phase coexistence line is determined as usual, requiring
the chemical potentialsm5] f /]f and the osmotic pressure
P in both phases are equal,

m~f1!5m~f2! P~f1!5P~f2!.

Numerical solution of these equations is shown in Fig. 2

C. Fourfold and higher functionality junctions: Gelation
versus vulcanization

The analysis of the preceding section can be general
to systems with crosslinks of arbitrary functionalityz, by the
addition to the HamiltonianH3 of Eq. ~10!, a term that
couplesz spins.

with Kz5Jz/2e2ez ~cf. Sec. II B; ez being the energy of the
z-fold junction. In this case, the resulting Helmholtz free e
ergy per unit volume then takes the form

f /T.~12f!@ ln~12f!21#2a1h0f1/22aze
2ezfz/2,

~29!

wherea1 andaz are two numerical, lattice dependent pre
actors reflecting the local end and junction configuratio
respectively. There are two interesting points to be noted

~i! There is no thermodynamic phase separation foz
.4, as can be readily seen from Eqs.~27! and~29!, because
the resulting free energy of Eq.~29! is always convex
(]2f /]f2.0). The attraction induced by the junction
weakens with increasingz. The topological percolation tran
sition is, however, still present, as discussed in Sec. V B

~ii ! Whenz54, the contribution of the fourfold junctions
to the free energy is indistinguishable from the two-bo
attractions between the monomers~at least at the mean-field
level!. Both contribute a term;f2 to the free energy for
f!1. The free energy is

f /T.~ 1
2 2 1

2 e2e48!f22fe , ~30!

where the effective junction energye48 has been redefined t
absorb the internal degrees of freedom of a junction,

pressed in the prefactora of Eq. ~29!. The term1
2 e2e48 cor-

responds to thex parameter of the Flory theory. At the poin
wheree4850, the excluded volume repulsion is balanced
the junction-induced attraction, a situation analogous to
U point of polymer solutions. The location of the compe
sation point is intuitively very clear: ife4850, there is no cost
for creating a junction and the chains can intersect each o
at will ~the fact that the junctions are fourfold is crucia!,
thereby acting as completely Gaussian phantom chains.
threefold and fourfold junctions correspond to two physica
7-10
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distinct situations. Threefold junctions describe the proc
of gelation when the monomers simultaneously crosslink
polymerize in the reaction bath. The clusters formed this w
exhibit mostly threefold junctions, simply due to the fact th
the collision of three monomers is more probable than
fourfold collision. In addition, in some systems~e.g., micro-
emulsions@28#! it can be shown that the energy of fourfo
junctions is higher than that of threefold junctions. The fo
fold crosslinks correspond to the process of vulcanizati
when existing long polymer chains are crosslinked by ad
tion of crosslink molecules, by irradiation, or other mea
@15,17,27#. Formation of threefold junctions is structural
inhibited by the nature of the crosslink which crosslinks tw
preexisting chains. Contrary to gelation, these systems s
only fourfold junctions that result from an intersecting pa
of chains.

IV. SPATIAL VARIATIONS AND CORRELATIONS

The advantage of the ‘‘n50’’ model is that it can be used
to predict the spatial correlations of the monomers, ends,
junctions, in addition to the thermodynamic properties d
cussed above. These correlations are obtained from calc
tions of the second moment of the relevant probability d
tributions, such as the two-point correlations of the physi
parameters, e.g., the density. The density-density correla
function can be measured in scattering experiments. A
from being interestingper se, the correlations can also pro
vide information about the structural, nonthermodynam
s

st
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transitions that one might expect in such structurally co
plex systems. Here, we generalize the mean-field treatm
of the preceding section to include the possibility of spa
variations; this formalism allows us to calculate the corre
tions in the system. Each spin is approximated by its
semble average, but spatial variations in the value of
average spin~due, for example, to a spatially varying exte
nal field! are permitted~cf. Refs.@20,29#!. In that case one
must allow for spatial variation of the constants, which a
denoted now asJi , hi , Ki each one labeled by its loca
spatial index. Neglecting the fluctuations of each spin ab
its local average valuêSi&, as in Sec. III, we have

where^Si& is a local spin average. Similarly, we can approx
mate the triplet term as

SiSjSk.22^Si&^Sj&^Sk&1^Sk&^Sj&Si1^Si&^Sk&Sj

1^Si&^Sj&Sk .

Using the same procedure as in Sec. III and writing the
erage of the local spin aŝSi&[si , we find that the grand-
canonical potential per unit volume,v$si% ~cf. Appendix D
for details! is
~31!
n-
where( jk
(K) is an unconstrainedsum over all possible pair

of sites j,p, belonging to the same triplei,j,k ~cf. Appendix
B!, and the subscriptnni

means summation over neare
neighbors. It follows that

si52
]v

]hi
5

xi

11 1
2 xi

2
,

f i52
]v

] ln Ji
5

1

2 (
i j

Jisisj1
1

2
hisi1

3

2 (
i jk

Kisisjsk

5
1

2
sixi . ~32!

From this we find

xi5A 2f i

12f i
and si5A2f i~12f i !, ~33!
Ji5

S xi2hi2Ki(
jk

~K !

sjskD
(

j
sj

,

where ( j sj are sums over nearest neighbors of the sitei.
From these formulas, the Helmholtz free energyF$f i%
5vV$f i%1( if i ln Ji can be calculated.

For K05h050 ~corresponding to infinitely long chains!
the free energy is

F$f i%5(
i

Ff i1 ln~12f i !1
1

2
f i ln

2f i

12f i

2f i ln (
nni

@2f j~12f j !#
1/2G , ~34!

which we explicitly write here to emphasize the very no
trivial coupling between the differentf i ’s coming from the
7-11
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underlined term. For a spatially uniform system,f i5f, and
the F$f i% has only the single term (12f)ln(12f) of Eq.
~22! because the terms proportional to 1/N vanish in the limit
of K05h050 ~infinitely long chains! considered here as a
illustration.

The focus of the present discussion is different from
treatment of Ref.@15#, that was restricted to a study of spin
spin correlations in the context of the percolation transiti
In this section, we focus on the physically measura
density-density correlations and the thermodynamic prop
ties. The location of the percolation line can also be obtai
within a slightly modified formalism, at least at the mea
field level, that permits us to relate the thermodynamic pr
erties of the system to its structure, as discussed in Sec

A. Density fluctuations

In order to extend the mean-field theory to treat sm
local density fluctuations, the free energy as a function of
local densities,F$f i% is systematically expanded to qu
dratic order in the density fluctuations. We define asdf i the
difference between the local average value of the densityf i
and the spatial meanf (f i5f1df i),
05110
e

.
e
r-
d

-
-
.

l,
e

~35!

whereFMF(f) is just the mean-field free energy of Sec. I
FMF(f)5V fMF(f); Sik

215]2F$f i%/]f i]fk is a matrix of
the second derivatives ofF$f i%, and we have used the fac
that ]F/]f i5m i5 ln Ji . The expansion in Eq.~35! is com-
pletely general, and the particular expressions forSik

21 can be
obtained from Eqs.~33! and ~32!. By the definition of the
constantJi , as an exponent of a local chemical potential, t
density-density correlation function is given bŷf ifk&
2f25]2 ln Z/] ln Ji] ln Jk , which turns out to be the invers
of the matrixSik

21,

~f ifk!2f25
1

V

]f i

] ln Jk
5

1

V
Sik ,

where we have used the fact that] ln Z/] ln Ji 5fi . A cum-
bersome, but straightforward calculation the Eq.~33! ~cf. Ap-
pendix C! gives
]2F$f i%

]f1]fk
5

] ln Ji

]fk
5

1

2f~12f! S d ik2~122f!
1

q (
j Pnni

d jkD 1
h0

2q1/2~2f!3/2

1

~12f! S d ik1~122f!
1

q (
j Pnni

d jkD
2

3K0~a8/3!

q3/2~2f!1/2

1

~12f! S 1

2
d ik2~122f!

1

6q (
j 5nni

d jk1
2

a8
~122f! (

j 5nnni

d jkD . ~36!
orm

e

Writing the Fourier transform

df i5(
pW

df~pW !eipW •rW i,

we obtain

d~2!F5(
pW

S21~pW !df~pW !df~2pW ! and

^df~pW !df~2pW !&5
1

V
S~pW !,

with S(pW )5( ikSikeipW (rW i2rWk). From Eq.~36! we find ~for the
simple cubic lattice!

S21~pW !5
1

2f~12f!
$A1B@cos~px!1cos~py!1cos~pz!#

1C@cos~px!cos~py!1cos~pz!cos~py!

1cos~px!cos~pz!#%, ~37!

where
A511
h0

2~2fq!1/22
3K0~a8/3!

2q3/2 ~2f!1/2,

B5~2f21!F2

q
2

h0

~2f!1/2q3/22
3K0~a8/3!

3q5/2 ~2f!1/2G ,
C5~2f21!

4K0~a8/3!

q5/2 ~2f!1/2,

and where we have used the fact that the Fourier transf
~F ! of the d function is equal to unity and

F F(
j

d i j G5(
a

eipW êa,

whereêa is the unit vector that points in the direction of th
site j. As one can easily see from Eqs.~22! and ~37!, the
inverse of the structure factor at zero wave vectorS(0)
5*S(rW ) d 3r is equal to the second derivative of themean-
field free energy,
7-12
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S21~0!5
]2FMF~f!

]f2 5
1

12f
1

h0

~2f!3/2q1/22
3K0~a8/3!

~2f!1/2q3/2.

~38!

This is an expression of the fluctuation-dissipation theor
in the grand-canonical ensemble. The variance of the m
number of monomers in the grand-canonical ensemble i

^N2&2^N&25E dr^@f~r !2f~0!#2&5TVf3kT5S~0!,

~39!

wherekT is the isothermal compressibility@26#. Noting that

]2FMF~f!

]f2 5
]m

]f
5

1

f3

]P

]v
5

1

f3 kT
21

@P is the osmotic pressure,v51/f, andm5]FMF(f)/]f is
the chemical potential#, Eq. ~38! becomes identical to Eq
~39!. Thus, the calculated density-density correlation fu
tion satisfies the expected thermodynamic sum rules.

The structure factorS(pW )5^df(pW )df(2pW )& is experi-
mentally measurable by scattering experiments~neutron,
light, x ray, etc.! where the intensity of scattered radiation
wave vectorpW is proportional toS(pW ). If S(0) is determined
experimentally as a function off, the free energyFMF(f)
can be found by the integration of Eq.~38!. Obviously, Eq.
~37! is not valid for the values of parameters at which t
phase separation is observed, that is, in the region w
]2F(f)/]f2,0. Rather, each macroscopic phase in a tw
phase equilibrium has its own value ofS(pW ), with the value
of the monomer density appropriate for each phase.

The expression~37! for S(pW ) is quite complicated, and its
behavior is rather different for low and high densities. W
next consider the nature of the predicted structure facto
Eq. ~37! in the limits of high and low monomer density,f.

1. Low-density limit

For low densities,f, the coefficientsB and C are nega-
tive, and one can expand Eq.~37! in a power series in the
wave vectorpW . One finds that the coefficient ofp2 is positive
so that this expansion is reasonable for wave vectors tha
small compared with the inverse of the monomer size.

S21~pW !.S21~0!1ap2 so that S~pW !.
S~0!

11aS~0!p2 ,

~40!

S~0!5S ]2FMF~f!

]f2 D 21

and

a5
~122f!

2f~12f! S 11
3K0~a8/3!

q3/2

15

4
~2f!1/22

h0

~2fq!1/2D .

Note thata is non-negative, becauseh0 /(2fq)1/25fe/2f
~half of the ratio of the number of ends to the number
junctions! and in the present approximation of sparse ju
tions and ends,fe /f!1. In the case of linear polymer
without junctions,fe/2f is equal to the inverse averag
05110
an
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t

re
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of

re

f
-

length of the chains,fe/2f51/N, which leads to the known
correction to the scattering structure factor@17#.

In real space, the density-density correlation function
given by the Fourier transform of theS(pW ). It follows from
Eq. ~40! that in real spacê df(rW)df(0)& has the usual
Ornstein-Zernicke form

^df~rW !df~0!&5(
pW

S~pW !eipW •rW.
1

r
e2r /j,

with the correlation lengthj given by

j5aS ]2FMF~f!

]f2 D 21

. ~41!

The correlation length of density fluctuations,j, diverges at
the spinodal line of the first-order junction-end transiti
studied in Sec. III, at which]2FMF(f)/]f250; this is ex-
pected for any first-order transition. Similarly, from Eq.~40!
we see that the density fluctuations at zero wave vec
S(pW 50), are also divergent at the spinodal, and, in parti
lar, at the critical point. The divergence of the scatteri
intensity at the critical point should be observable in scat
ing experiments in the same way as the usual critical op
escence. We note in passing, that in the absence of junct
the structure factor, as given by Eq.~40!, reduces to the
classical random-phase approximation result for polymer
lutions @17#.

It is interesting to note that theoverall structure of a so-
lution of self-assembled, branched aggregates is not str
self-similar, as we can see from Eq.~40!. There is at least
one characteristic length in the problem, namely, the co
lation lengthj. At distances larger thanj the correlations
decay exponentially while for self-similar structures one e
pects algebraic decay of correlations. However, each in
vidual branched cluster is expected to be self-similar, in an
ogy to percolation clusters@30#. Note that both the
correlation lengthj and the scattering intensity at zero wa
vectorS(0) are proportional to the second derivative of t
free energy,]2FMF(f)/]f. This means that both of them ar
nonmonotonicfunctions of the density, but have a maximu
around the linefe'f j , as follows from Eqs.~27! and~41!,
by taking the derivatives]j/]f, ]S(0)/]f. The maxima of
S(0) and of j as a function off are determined by the
condition]S(0)/]f5(1/S(0)2)@]3FMF(f)/]f3#50, which
is the same condition that determines the location of
critical point (]3FMF(f)/]f3ufc

50). In particular, this
leads to the conclusion that the maximum scattering in
region above the phase separation should be observed a
a line that starts at the critical point and is determined by
condition]3FMF(f)/]f350 ~equivalent for low densities to
the conditionfe'f j ), as shown in Fig. 4. This is in agree
ment with observations from scattering experiments from
lutions of branched wormlike micelles@8# ~cf. also Discus-
sion!.

It is instructive to comparej with another length scale
that is present in the problem, namely,l̄ , the mean distance
between the defects~i.e., ends or junctions!. As shown in
Sec. III,
7-13
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l̄ 5
2f

3f j1fe
.

f

3K08f
3/21h08f

1/2 ~42!

and l̄ (f) has a maximum aroundf;h08/K08 . The behavior

of l̄ is quite different from that ofj, indicating thatthese two

lengths are physically unrelated. The behavior ofl̄ is nons-
ingular, while the correlation lengthj diverges at the spin
odal line of the junction-ends transition. This emphasizes
fact that the junction-induced attraction has an effect on
the monomers in the system, as reflected in the behaviorj;
the effect of junction induced attraction is not limited to t
behavior of the junctions alone. The physical meaning ofj is
similar to the ‘‘blob’’ size of the semidilute polymer solu
tions. Namely, at distances smaller thanj, the behavior of an
aggregate is that of a single self-avoiding branched polym

2. High densities

When f.1/2, the coefficient (2f21) in Eq. ~37! be-
comes positive, which results in a negative coefficient
front of the term proportional top2 ~in the expansion of the
structure factor for small wave vectors!. Thus, the small
wave vector expansion becomes meaningless, since it w
give a negative structure factor for high enough values op.
Therefore, in this region one cannot use the expansion
one must retain the full form of theS(pW ). The exact location
of the line where the behavior changes,f51/2, is an artifact
of the lattice model and should not be taken literally. Insp
tion of Eq. ~37! reveals that for small enough junctions de
sities ~small Boltzmann factorK05e2e j /T), for which

uB/~2C!u,1⇒K08,
4

17

S 12
1

2

h0

~2fq!1/2D
~2f!1/2 [K!

(K085K0a/q3/2), the structure factorS(pW ) is a monotoni-
cally increasing function of the wave vector,p ~for concrete-
ness we consider the@1,1,1# direction! for all f.1/2.

This behavior of the structure factor at high monom
densities but small junction densities~weakly branched
chains! agrees with the previous studies of the density fl
tuations in concentrated polymer solutions and melts@31,47#.
Indeed, it is known that the structure factor of concentra
polymer solutions and melts is qualitatively similar to that
simple liquids@31,47#. In particular, for small wave vector
p, S(p) is an increasing function ofp. This is related to the
low compressibility of dense liquids. As discussed in t
preceding section, as the monomer densityf tends to unity,
the compressibility tends to zero. The magnitude of the d
sity fluctuations, related to the compressibility by t
fluctuation-dissipation theorem tends to zero as well@26#.
When the monomer densityf is high, but lower than unity,
the long wavelength~small p! density fluctuations are smal
because large collective rearrangements of the monomer
structurally inhibited. However, short wavelength, local,
arrangements of the molecules are still possible. Combi
together, these two effects produce a structure factor
increases with increasing wave vector,p.
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In real systems, for values ofp larger than the inverse
molecular size, one observes oscillations of the structure
tor as a function ofp, with the peaks corresponding to th
first-shell, second-shell, etc., correlations of the positions
the adjacent monomers. Although the lattice model in
mean-field approximation cannot be used to precisely pre
the extremely low short scale features, such as the first-s
peak observed in scattering experiments on polymer s
tions, it adequately treats the qualitative behavior of
structure factor for wave vectors smaller than the inverse
the lattice constant.

For higher values ofK0 , K8.K!, ~i.e., for higher junc-
tion densities! a peakemerges inS(pW ) ~see Fig. 4! at a value
of the wave vector given by

p05arccosF2
B

2CG , ~43!

indicating the presence of medium range correlations. T
peak is quite different from the first-shell peak of simp
fluids, which reflects excluded volume interactions on t
molecular scale. On the contrary, the peak of Eq.~43! reflects
medium range structural correlations. By medium range
mean that the correlation range is larger than the lattice c
stant. The location of the peak depends on the values of
parameters, as discussed below, and not a lattice arti
Because the peak appears only deep in the network ph
where the number of ends is negligible compared to
number of the junctions, one can neglect theh0-dependent
term in Eq.~37! as a first approximation and write

p0>arccosF1

4 S 12
1

4K08~2f!1/2D G , ~44!

FIG. 5. At low densities,f,
1
2 , the structure factor is a decrea

ing function of the wave vector. The scattering intensity at ze
wave vector and the correlation length diverge at the phase stab
boundary of the junction-end transition, shown by the thick, clos
line. In the region above the phase separation, the scattering in
sity has a maximum along the dashed line, starting at the crit
point. For high monomer densities and low numbers of junctio
the structure factor is an increasing function of the wave vec
while for higher numbers of junctions, a peak develops in the str
ture factor.
7-14
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indicating that the location of the peak moves towards low
values ofp asK08(2f)1/2 increases. Figure 4 shows the stru
ture factor for two values ofK08 : below and aboveK!. Al-
though Eq.~44! was obtained for the@1,1,1# direction (px
5py5px), a similar result would be obtained for the isotr
pically averaged structure factorS̄(p)5*d3pS(pW ). The peak
in S̄(p) should appear whenever there is a peak in any ‘‘cr
tallographic’’ direction. In isotropic systems, the averag
structure factorS̄(p) is, of course, the experimentally me
surable quantity, free of lattice and model artifacts. The p
dicted peak in the structure factor due to the presence of
junctions, is not a lattice artifact, because the location of
peak location is not related to the lattice constant, but de
mined solely by the numbers of junctions present in the s
tem.

The precise size of the junction is arbitrary to a cert
extent and can be adjusted to reflect the real physical feat
of any given system. We have defined a junction as a c
nection between three adjacent sites. However, one can
consider a larger junction, connecting next nearest neighb
as in Fig. 8~b!. Intuitively, one expects a more pronounc
peak for larger junctions, because it amounts to an incre
of the junction volume. Numerical calculations show th
this is indeed the case.

In the context of microemulsions, this peak can be rela
to the experimentally observed peak in the scattering fr
bicontinuous microemulsions@32,33# ~cf. Discussion!. It is
important to realize that the absence of a peakdoes not, in
principle, imply the absence of a network~cf. Fig. 5!. The
overall behavior of the structure factor as a function of s
tem parameters is shown in Fig. 5.

V. SPIN-SPIN CORRELATIONS AND TOPOLOGICAL
STRUCTURE

So far we have been concerned with the thermodyna
properties of the system and related phenomena such as
librium density fluctuations. They can be adequately
scribed by the model presented in Sec. II B that maps
solution of equilibrium branched clusters onto a Heisenb
model with the anisotropicSi ,1Sj ,1Sk,1 three-spin term. How-
ever, no structural information, e.g., concerning the form
tion of a continuous network, can be extracted from
model as it is formulated in Sec. II B. Unfortunately, in ord
to be able to extract structural information about the netw
topology from the model,while retaining the exact corre
spondencebetween the spin model and the physical syst
of branched clusters, one has to resort to a tensor orde
rameter; this results in a formally complicated theory@15#
~cf. part A of Appendix E!. Instead, we use a simpler, but le
rigorous theory, applicableonly in the mean-field approxima
tion, employed in this paper.

Although the spinSW has ‘‘zero’’ components, one can sti
think about a ‘‘parallel’’ componentS1 pointing in the direc-
tion of the fieldhW and a ‘‘transverse’’ componentS' . The
rigorous mathematical procedure that justifies this is sho
in Appendix D and amounts to calculating all the quantit
of interest for a finite number of componentsn, and then
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taking the limit n→0. One can then devise a slightly mo
generalized version of the Hamiltonian~10!, where the three-
spin term takes the following form:

K(
i jk

FSi ,1Sj ,1Sk,11
b

3
@Si ,1~Sj ,'•Sk,1!1Sj ,1~Si ,'•Sk,'!

1Sk,1~Si ,'•Sj ,'!#G , ~45!

and the sum is over distinct triples of neighborsijk andb is
a numerical parameter. One can also include coupling
tween the ‘‘transverse’’ components of the spinSW , consistent
with the symmetries of the system. This modification of t
Hamiltonian has no effect on the thermodynamic proper
and equilibrium fluctuationsin the mean-field approximation,
discussed so far. The expression for either the partition fu
tion or the two-point correlation function has contributio
from the terms proportional tob that have at least one powe
of the average of the transverse component^S'& ~cf. Appen-
dix D!. Since^S'&50, terms proportional tob do notcon-
tribute to thermodynamic quantities at the level of the me
field approximation. Forb50 the Hamiltonian~45! reduces
to the one discussed in Sec. II B. ForbÞ0 the correspon-
dence between the spin model and the equilibrium branc
clustersis not exact. The clusters containing internal loop
enter into expansion with the wrong weights due to summ
tion over then21 ‘‘transverse’’ components. However, wit
the choiceb53 all loopless treelike clusters are counte
correctly ~cf. Appendix D!. The mean-field approximation
neglects the presence of intracluster loops, which forma
correspond tocorrelationsbetween different spins. This ca
be seen from the fact that the mean-field free energy does
depend on the value ofb in Eq. ~45!. That is, it is indepen-
dent of the precise way in which weights are assigned to
internal loops, which means that the intracluster loops
neglected in the mean-field approximation~cf. also Appendix
D!. It does, nevertheless, correctly describe the local pro
ties such as the average densities of the ends and junct
Thus, at the mean-field level, Eq.~45! with b53 can be used
to calculate the transverse spin correlations that are relate
the cluster size and percolation threshold. Therefore, we
the b53 model which neglects intercluster, long range c
relations, responsible for the loops; this, as we have sho
is consistent with the mean-field approximation.

Although the spinSW itself has no physical meaning,
enters the calculation of the various physical quantities,
we have seen in Sec. III. Analogously, the spin-spin corre
tion functions ^Si ,aSj ,a&, although unphysical themselve
can be used to derive physically relevant quantities such
the density-density correlation function. Another interestin
physical observable~e.g., by scattering experiments co
ducted in solutions of end-labeled chains! is the correlation
between the end points of the aggregates, which is relate
the spin-spin correlation function by~cf. Appendix. D!

^fe~r i !fe~r j !&2fe
25

]hi^Si&
]hj

5d i j 1h@^SiSj&2^Si&^Sj&#.

~46!
7-15
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This can be understood geometrically by noting that
graphs which enter intôSiSj& are those with ends present
both sitesi and j ~cf. Fig. 6 and Appendix D!.

Similarly, althoughS' itself does not have a direct phys
cal interpretation, its correlator^Si ,'Sk,'& does. If one con-
siders the expansion of the correlation function^Si ,'Sk,'&
~cf. Appendix D! in powers ofJ,h ~in the absence of junc
tions, i.e.,K50) one can see that the only nonzero con
butions arise from configurations that contain a single ch
that starts at the sitei and ends at the sitek. Consequently,
^Si ,'Sk,'& measures the correlations between the ends
single chain. As a matter of fact, even whenKÞ0, ^Si ,'Sk,'&
is nonzero only wheni andk are the ends belonging to th
samecluster~cf. Appendix D and Fig. 6!. Thus, in general,
the ‘‘transverse’’ correlation function measures the correl
tions between chain ends belonging to the same aggre
Similarly the ‘‘longitudinal’’ correlation function ^Si ,1Sk,1&
measures the end-end correlations betweenany two ends,
even if they belong to different chains or aggregates. T
density-density correlations can be calculated from the ‘‘lo
gitudinal’’ correlator^Si ,1Sk,1& using Eq.~32! that relatesf i
to Si . This calculation yields result identical to those o
tained in Appendix C.

In this section, we present the results of a calculation
the spin-spin correlatorŝSi ,aSj ,a& using the same loca
mean-field approximation which was used in Sec. III to fi
the density-density correlation function. Each spin is a
proximated by its local ensemble average:si ,a5^Si ,a& local
~with a5$1,'%), which can, however, be different for spin
at different sites labeled byi. Eventually, we will be inter-
ested in the deviationsdsi of the local average spins from the
spatially averaged valueS. The full calculation is presente
in Appendix D. The spin-spin correlator is obtained from t
partition functionZ using the relations

^dsi ,adsj ,a&5
]2

]hi ,a]hj ,a
ln Z5

]si ,a

]hj ,a
.

FIG. 6. ‘‘Longitudinal’’ spin-spin correlator measures the corr
lations betweenany two chain ends. The ‘‘transverse’’ correlato
measures the correlation between the ends of thesamechain.
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Using the results of Eq.~32!, a tedious but straightforward
calculation yields the Fourier transform of the spin-spin c
relator,CpW

q5(pWe
ipW (rW i2rWk)^dsi ,adsj ,a&,

CpW
a5

Aa

12Aa
„Jg1~pW !16Ksg2~pW !…

, ~47!

where~cf. Appendix D!

A~1!5~122f!~12f!,

A~' !5~12f!,

and where

g2~pW !5
2

3

a

q (
unit cell

eipW êa1 (
second cell

eipW êa,

g1~pW !5 (
unit cell

eipW êa.

Consequently, the spin-spin correlation function in Four
space is

^dsa~pW !dsa~pW !&5CpW
adpW ,2pW 8 .

In the following we show how these results can be used
determine various physical characteristics of the system.

A. Longitudinal correlations and the defect correlation
function

The correlation function of the aggregate ends can be
culated form Eq.~47!, giving in Fourier space

^dfe~pW !dfe~2pW !&511hCpW
15^dfe~pW !dfe~2pW !&21

5h~122f!S~pW !, ~48!

where S(pW ) is the same as in Eq.~37! for density-density
correlations~Refs.@44,45#!. Apart from the prefactor and the
constant~equal to 1! that ensures that the correlation of a
end with itself is not counted, the dependence
^dfe(pW )dfe(2pW )& on the wave vectorp is identical to that
of the full density-density correlation function of Append
C. This is not accidental, but rather is a direct conseque
of the fact that the density-density correlation function
related to spin-spin correlation function via Eq.~32!. In par-
ticular, the correlation length at small densitiesj is the same
as the correlation length of the total density fluctuations. T
same is true of the junction-junction correlation function

^f j~r i !f j~r j !&2f j
25

]Ki (
i ,k,m

sisksm

]K j

5d i j Kas316Ks2(
p, j

~K !
]sp

]K j
7-16
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that can be calculated in a manner similar to that used
calculate^SiSj&. The superscript~K! indicates that the sum
mation is over all possible couples of the spins belonging
the original triplei,k,m.

The fact that the correlation length for total density flu
tuations equals that of the end/junction fluctuations emp
sizes the point that the junctions induce anoverall effective
attraction between the monomers andnot only between the
defects~i.e., ends and junctions!. In particular, the correlation
length of junction-junction correlations is the same as tha
the monomerdensity-density correlations. Thecorrelation
length, related to thethermodynamicsof the system, is unre
lated to themean distance l¯ between the junctions which
reflects thestructural and topological properties.

B. ‘‘Transverse’’ correlations: The structure of a single
aggregate and percolation

As has been mentioned, the ‘‘transverse’’ correlation fu
tion measures the autocorrelations~denoted by the subscrip
auto! between the ends of thesamecluster

^fe~r i !fe~r j !&auto5h2^Si ,2
' Sj ,1

' &.

BecauseA'5(12f) is always positive, we can safely ex
pand the expression for the spin-spin correlator of Eq.~47!
up to second order in the wave vectorp. Substituting the
mean-field values ofJ andK from Eq. ~21!, one gets

CpW
'5

~12f!

12~12f!Aa
„Jg1~pW !16Ksg2~pW !…

.
1

h0 /~2f!1/223K0a~2f!1/21bp2 ,

whereb is a nonsingular function of the parameters. In oth
words,

^fe~pW !fe~pW 8!&auto5
1

~fe23f j !/2f1bp2 dpW ,2pW 8 ,

and in real space

^fe~r !fe~0!&auto.
1

r
e2r /R̄,

with R̄5@2f/(fe23f j )#1/2. This means that the correla
tions between the ends belonging to thesameaggregate are
negligible for r @R̄. In other words, the average size of th
largest cluster

R̄.S 2f

~fe23f j !
D 1/2

. ~49!

When f j5
1
3 fe , the mean size of the largest cluster d

verges, and an infinite cluster is formed. This process
known as percolation and the emergence of an infinite
work at f j5

1
3 fe agrees with other mean-field level studi

of percolation@15,27#. Substituting forfe andf j from Eq.
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~23! we obtain the following equation for the percolation lin
in the (f,T) plane~cf. Fig. 2!:

fp~T!5
q

6a
e~e j 2ee!/T.

The length scaleR̄ has no thermodynamic meaning and r
flects a purely topological~infinite network versus discon
nected clusters! property. At infinite temperature, th
junction-induced interaction becomes irrelevant andfp , the
percolation threshold, is similar to the usual lattice perco
tion, studied in many classical works@30#. The valuefp
5q/6a @equal to 1/2(q22) for cubic lattice#, obtained here
is not inconsistent with the usual mean-field resultfp
51/(q21) for site percolation; the difference stems fro
the fact that in our model, there is percolation of two diffe
ent objects: the monomers and the junctions, which do
occupy the sites of the same lattice; in our model, the mo
mers occupy the vertices of the lattice, while the junctio
occupy the interstitial positions.

Although the percolation transition, where an infini
cluster is formed isnot directly related to the junctions-end
transition discussed in Sec. III B, the junction-induced int
action influences the shape of the percolation line at l
temperatures, in agreement with earlier studies of the pe
lation in interacting lattice gas@30#. The exact value ofa,
and consequently the value offp , should not be taken too
seriously, because the lattice approximation is not adeq
for a description of the system at the scale of an individ
junction. Although the calculation shows that the percolat
line intersects the coexistence line of the phase transition
the left side of the critical point~cf. Fig. 2!, in real physical
systems, the intersection point can be also to the right of
critical point @6#. For instance, rigid systems can have effe
tively different value ofa, as discussed in Sec. VI. Thu
depending on where the percolation line intersects the co
istence curve, the coexisting phases discussed in Sec. III
be either two network phases, two phases of disconnec
branched clusters, or a network coexisting with dilute cha

We now discuss the details of the cluster evolution a
function of monomer densityf. Recall that the mean dis
tance between the defects~i.e., junctions or ends!

l̄ .
2f

fe13f j
~50!

is a nonmonotonic function but has a maximum atfe
53f j ; this is precisely the conditionthat determines the
percolation threshold. Noting that Eq.~49! implies that the
cluster size increasesmonotonicallywith increasing density
f, we conclude that there are two competing processe
cluster formation: lateral growth of the clusters due to t
addition of the branches at the periphery of existing cluste
and the ‘‘filling’’ in of the clusters from inside, by adding
new branches from within the mesh. As the monomer den
is increased, for small densities up to the percolation thre
old, f5fp(T), the clusters become larger but more dilute
At fp(T), an infinite cluster is formed and the process
reversed: clusters~including the infinite one! become denser
7-17
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being predominantly filled in from inside. Although both b
low and abovefp(T) the lateral size of the clusters in
creases, the rate oflateral growth with increasing monome
densities is smaller than the rate ofinternal densification
above the percolation thresholdfp(T).

VI. RIGID AND SEMIFLEXIBLE CHAINS

Solutions of rigid and semiflexible chains present tw
other broad classes of systems that exhibit self-assembly
formation of ends and junctions, in a manner similar to t
of flexible chains as discussed up to now. As an example,
can think about solutions or gels of actin, a biopolymer t
forms the cytoskeleton and is involved in cell locomotio
Although it is difficult to introduce bending rigidity into a
lattice model such as ours, the qualitative effects of stiffn
can be easily understood, at least at the mean-field level.
flexible chains, as in our model, the lattice size is usua
taken to be the persistence length~Kuhn segment for poly-
mers!. This defines an effective ‘‘monomer’’ size. For sem
flexible chains, the lattice size should be the true size
molecular monomers, that comprise the chains, since the
sistence ‘‘length’’ is much larger than the lattice size. O
very general grounds, each defect~i.e., an end or a junction!
contributes a term2kBT to the free energy. Consequentl
the defect-dependent part of the free energy in a sys
where nonconserved defects are present is

F/T52fdefects52fe2f j ,

in accord with Eq.~24! @9#. The difference between flexibl
chains and rigid chains lies in the dependence offe andf j
on the total monomer densityf, which can be understood o
the basis of the simple probabilistic argument outlined
Sec. III B. Two ends can join to form a bond. In the case
flexible chains, any two ends that are neighbors on the lat
can form a bond, irrespective of the orientation of the ad
cent links ~see Fig. 3!. In the case of rigid rods, only rod
that are colinear, can coalesce. Therefore, taking into acc
that the coalescence of two ends lowers the energy by
amount 2ee , so that the Boltzmann factor for the probabili
of coalescence is proportional toe2ee, we find that in equi-
librium

f5cfe
2e2ee,

c5q flexible chains,

c51 rigid rods.

The same argument applies for a formation of a junct
from three ends~or an end and internal monomer!

f j5afe
3e3ee2e j ,

a5q~q22!/3 flexible chains~cubic lattice!,

a51 rigid rods.

In general, for semiflexible chains 1<c<q;
a<q(q22)/3. In the continuum limitq→4p for flexible
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chains. Therefore the most general form of the mean-fi
free energy of Eq.~22! can be written as

F/T.~12f!ln~12f!2S f

c D 1/2

e2ee2aS f

c D 3/2

e2e j ,

with c anda depending on rigidity of the chains and of th
junctions. In general, the degree of the flexibility of the jun
tions is not necessarily equal to that of the chains themsel
The former may depend on the microscopic properties of
crosslinker molecules as in the case of gels, or on the p
erties of the surfactant molecules in the case of micelles
microemulsions, and other system-specific details.

The effect of the rigidity on the correlations is more d
ficult to quantitatively treat within the present framewo
due to formal difficulty of introducing the bending rigidit
into the model. In particular, the influence of branching
the nematic transition, present in the solutions of rigid ro
remains to be investigated. An heuristic theory@11# might be
more useful for this purpose.

VII. DISCUSSION

We have presented a generic model of self-assemb
chains that can branch and form networks with branch
points ~junctions! of arbitrary ~but fixed! functionality. The
modelrigorouslymaps the partition function of a solution o
branched, self-assembling, mutually avoiding chains o
that of a Heisenberg magnet in the mathematical limit of z
spin components. The model has been studied in the m
field approximation, which neglects the presence of intr
luster loops. It is found that despite the absence of anyspe-
cific interaction between the chains, the presence of t
junctions induces aneffective attractionbetween the mono-
mers, which in the case of threefold junctions leads to
first-order, reentrant phase separation between a dilute p
consisting mainly of single chains, and a dense network.
reason for this entropic transition lies in the observation t
although the translational entropy of the chains is lower
the dense phase, thetotal entropy is still higher due to the
entropy of the large number of self-assembling junctions
the dense phase. The prerequisite for the phase separat
that the energy of a junction must be smaller than the ene
of a free end:e j,

1
3 ee , that is, the formation of junctions is

energetically favorable~both ee ,e j are considered positive
and are measured relative to the energy of a monomer in
middle of a chain!. The model was then modified to study th
topological properties of the system at the mean-field lev
Independent of the junctions-ends transition, we predict
percolation~connectivity! transition at which an infinite net
work is formed. The percolation transition partially overla
the junction-end transition~cf. Fig. 2!, and takes place at th
point where the density of the free ends is three times
junctions density,fe53f j . This result agrees with othe
mean-field level studies of percolation@15,27#. Indepen-
dently, the average distance between the defects,l̄ , has a
maximum at the percolation threshold. This result means
up to the percolation transition the branched clusters g
laterally, predominantly by addition of the new branches
7-18
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the periphery of a cluster, while at the percolation transiti
an infinite network is formed and the process is reversed:
clusters grow mainly due to the filling of the internal mes
The percolation transition is a continuous,nonthermody-
namic transition that describes a change in the topology
the system but not a thermodynamic phase transition.
treatment that predicts both the thermodynamic phase e
libria as well as the spatial correlations in the system allo
us to treat both the phase separation and the percola
threshold within the same framework, at least at the me
field level.

The predicted density-density correlation function ha
usual Ornstein-Zernicke form at low monomer densities. T
correlation length of the density fluctuationsj is divergent at
the spinodal line of the junction-end transition and is a n
monotonic function of the monomer density, reaching
maximum around the point where the number of ends eq
the number of junctions,fe'f j . It is important to empha-
size that it isj that is measured in actual scattering expe
ments, and not the other lengths of the problem, such as

mean cluster radiusR̄ or the mean distance between the d

fects l̄ . The zero wave vector scattering intensity,S(0) also
has a maximum as a function off along the same line
starting at the critical point. This effect is a direct cons
quence of the first-order phase separation between low-
high-density phases~cf. Fig. 5!.

We also predict the emergence of medium range corr
tions at high monomer and junction densities, as reflecte
the predicted peak in the structure factor, signifying the on
of structural correlations in the system~cf. Fig. 5!.

The theory presented here has many physical realizati
We now discuss the implications of the generic results
several specific cases.

A. Physical gels

Physical gels include a broad class of systems, consis
of long polymer chains that are reversibly crosslinked. T
crosslinks can break and re-form under the influence of th
mal fluctuations. Examples of these materials are numer
many of them of practical interest@2#. The chains that com
prise the basis of the gel, can either be self-assemblin
chemically bonded@34#. With increasing monomer density
the gelation threshold is reached and a connected netw
~gel! is formed. Despite intensive research in the past t
decades, several features of the physical gelation proces
still under debate. One question concerns whether the g
tion transition ~i.e., the transition from disconnecte
branched clusters to a macroscopic, connected network! is a
structural transition or a thermodynamic one. Another qu
tion of interest is: if the gel transition is indeed a thermod
namic one, what is the order of the transition@2,5#. Our
results show that actually there aretwo independent transi
tions. The first one is the classical percolation transition,
cated at the point where the density of the crosslinks is eq
to one third of the density of the free ends in agreement w
classical result due to Flory@27#. An infinite connected clus-
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ter is formed at the percolation threshold. This transition
structural and is not related to anythermodynamicsingular-
ity.

For threefold crosslinks, a secondthermodynamictransi-
tion is also present at low temperatures, and partially ov
laps the percolation line~see Fig. 2!. This transition is the
first-order phase transition that occurs due to intermono
attraction induced by the presence of the junctions and
due to the aggregation of the stickers~crosslink molecules!.
Our model shows that the phase separation can occur u
good solvent conditions, and not only inU solvents. An ad-
vantage of the present model is that it starts from a rigor
description of a solution of self-avoiding branched cha
and does not involve anyad hochypotheses about interac
tions between the monomers, crosslinkers, and solvent m
ecules. An interesting problem is the difference betweenge-
lation, when molecular segments are allowed to polymer
and crosslink simultaneously in the reaction bath, andvulca-
nization, when preexisting polymer chains are crosslinke
e.g., by irradiation. In addition to the fact that one expe
large spatial inhomogeneities in the case of vulcanizat
@35#, we argue that an additional major difference is the fun
tionality of the crosslinks. In the case of gelation, most of t
junctions will be threefold, simply due to the fact that th
collision of three segments is more probable than a collis
of four. In the case of vulcanization, on the contrary, t
junctions will be fourfold, being formed by crosslinking tw
preexisting chains. Thus, in certain cases, gelation will
observed experimentally as a first-order thermodynamic tr
sition, while vulcanization is always a continuous, nonth
modynamic transition, at least for weak crosslinking,e j.0.
As a matter of fact, we have shown that the presence
fourfold junctions is thermodynamically equivalent to d
creasing the quality of the solvent, in accord with the resu
obtained by other theoretical methods@35# and Monte Carlo
simulations@2#. The case of strong crosslinks will be treate
elsewhere.

The long-standing question about the presence of clo
intracluster loops in the pregel clusters and in the gel pha
becomes irrelevant in the present formulation. In our mod
nothing prevents the intracluster loops from forming a
their number is determined by the distributions of ends a
junctions. However, we note that the question of the infl
ence of the loops on the thermodynamic and structural pr
erties cannot be properly addressed in the mean-field
proximation, used in the paper, because it effectiv
disregards the loops.

Experimentally, the gelation transition is commonly o
served by measuring a viscosity increase due to the for
tion of the macroscopic network. Therefore, the nature of
experimentally observed gelation transition will depend
the path in phase space along which the transition is
proached. For example, decreasing the temperature at a
stant monomer density along the pathb of Fig. 2 will pro-
duce a continuous, nonthermodynamic gelation transition
the point where lineb intersects the percolation line. On th
contrary, a temperature decrease along the patha will pro-
duce a first-order phase separation between a phase of d
chains and a connected network~gel!.
7-19
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B. Microemulsions

Microemulsions consist of domains of two immiscib
fluids ~typically, water and oil! stabilized by a surfactan
@32,36#. One theoretical approach to their understanding is
map the oil-in-water dispersion onto a lattice model in t
following manner. When the spontaneous curvature,c0 , @20#
is small, the relevant length scale is the persistence lengt
the surfactant film; this length is determined by the bend
rigidity and the thermal fluctuations@37#. For systems where
the spontaneous curvature dominates~this occurs when the
spontaneous curvature is larger than the inverse of the
sistence length!, for a certain range of spontaneous curv
tures, one finds that the oil or water domains are eit
spheres or elongated tubes of radiusr;c0

21. For oil internal
systems, the radius of the oil domains can also be kept c
stant by maintaining a fixed ratio of the surfactant density
that of oil: fsurf/foil ~in a water internal system it is given b
the surfactant to water ratio!. Takingr as the lattice constant
and considering an oil internal system, the microemuls
can be mapped to a solution of self-assembling, branc
chains~oil domains→‘‘monomers’’; oil1surfactant fraction
→f) as described by our model. Obviously, the analo
breaks down at oil volume fractions close to one, beca
our model does not allow the merging of a two elongat
adjacent domains into a wider one.

Using this analogy, the evolution of spontaneous cur
ture dominated microemulsions can be qualitatively
scribed in the context of our model and the results prese
above, as follows: at low oil fraction, the microemulsio
consists of spherical droplets of radiusr;c 0

21. At a certain
oil fraction a ‘‘polymerization transition’’@12,28# takes place
and cylinders of radiusr are formed which eventually
branch. With increasing oil fraction, a percolating oil doma
is formed when the oil fraction is equal tofp(T).const
3e(ee2ej)/T, indicating the onset of the bicontinuous micr
emulsion~cf. Sec. IV A 2!. At low temperatures, this trans
tion can be masked by a first-order,phase separationtransi-
tion due to junction-induced attraction between the
domains ~Sec. III B!. This first-order transition is presen
only if the branching points are threefold, which seems to
relevant to microemulsions. In addition to the fact that thr
fold branches are more probable statistically, the energy
the threefold junctions is lower than that of four-fold an
higher fold junctions, as can be shown from calculations
the bending energy of the surfactant bilayers in the junct
region @28#. These predictions are in qualitative agreem
with experimental data on thermodynamics of microem
sions@33,38#.

The structure factor~for scattering from the bulk water o
oil domains—i.e., bulk contrast experiments! has a simple
Ornstein-Zernicke form in the droplet microemulsion regi
~which also includes elongated, but disconnected cylindr
droplets! with a correlation length that diverges at the sp
odal line of the first-order transition. In the bicontinuous r
gion, the structure factor is an increasing function of t
wave vector, as expected in any high-density system~cf. Sec.
IV A 2 !. As the number of junctions is increased, either d
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to an increase in the monomer density, or the temperatur
peak appears in the structure factor, indicating the emerge
of medium range correlations between oil domains~cf. Fig.
4!. The peak is predicted to appear whenever the condi
f*fb5a/2qe2e j /T is satisfied. The peaked structure fact
is a distinctive characteristic of bicontinuous microem
sions, as borne out by many experimental studies@32,33#. It
is important to emphasize that our model predicts that

peak occurs only whenf.max@ 1
2,fb# which means that, in

principle, there may be network microemulsions thatdo not
show a peak in the structure factor~the region between the
percolation line and verticalf51/2 line in Fig. 5!. However,
the fact that the peak appears only forf.1/2 should not be
taken too seriously. The exact valuef5 1

2 is most probably
an artifact of a lattice construction, reflecting the monom
hole symmetry. More important is the qualitative predicti
that the peak in the structure factor is a consequence of
correlation between the oil domains, induced by the prese
of the junctions.

C. Wormlike micelles

Surfactant molecules in aqueous solutions can form lo
cylindrical micelles in certain regions of the phase diagra
In the cylindrical phase, each micelle consists of a la
numbers of surfactant molecules. The micelles are poly
perse in size, the equilibrium distribution being determin
by the interplay between the entropy~which favors small
micelles! and the ‘‘cap’’ energy, which is fixed by the geom
etry of packing of surfactant molecules at the ends of a
celle. Due to the bending rigidity of the surfactant layer, t
micelles are stiff up to length scales of order of thepersis-
tence length lp @20#. However, for length scales much larg
than l p , the micelles can be considered as flexible cha
Therefore, for long enough micelles (h0 /A2f!1), the lat-
tice constant of the equivalent Heisenberg model can
taken to be equal to the persistence lengthl p . In the opposite
case of short chains, one can take a surfactant molecule
‘‘monomer’’ size, with the reservations described in Sec. V

It has been suggested on the basis of rheological, con
tivity, and dielectric polarizability experiments, that the m
celles can branch, and at a certain point the system tr
forms to a connected micelle network. The energy of
junctions and the ends in this system can be varied by cha
ing the salt concentration. Theoretically, it was proposed t
a spin model might describe the formation of a network
wormlike micelles@7,16#. Our results substantiate these su
gestions and indeed predict the formation of a connec
micellar network, that can partially overlap with the firs
order, phase separation phase transition.

Results of neutron scattering performed on wormlike m
celles solutions show that the correlation length,j, of the
density fluctuations is a nonmonotonic function of the mon
mer density@8#, which might be explained by the results o
Sec. IV A 2. These experimental results were interpreted
Ref. @8# in terms of the mean micelle size~analogous tol̄ in
our formulation!. However, it is important to realize tha
7-20
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although bothj and l̄ exhibit a maximum as a function of th
density, it isj which is actually measured in scattering e
periments, whilel̄ conveys purely geometrical information
and is not directly measured in scattering experiments.
correlation lengthj has a maximum aroundfe5f j , which
is a direct consequence of the junctions-ends transition,
cussed in Sec. III B. It should be noted that the maximum
j is not directly related to the network formation, whic
takes place atfe53f j .

D. Dipolar and magnetic fluids and colloids

Dipolar fluids or colloids consist of dipolar particles th
carry electric or magnetic dipole. For, example ferroflu
consist of magnetic~metallic! particles immersed in an iner
fluid. The molecules of real liquids, such as aceto
(C3H6O) or dimethylsulfoxide (C2H3SO) also bear elec
tronic dipolar moments. The interaction energy of two
poles has a minimum when the dipole moments are collin
@39#. This means that dipolar particles have a tendency
aggregate into chains@40#, so that all the dipole moments o
the particles in the chain are more or less double. Howeve
is important to realize that these chains can also branch@9#.
The energy of the particles at the branching point is ob
ously higher than in the middle of a chain and can be ca
lated from electrostatics~or magnetostatics in the case
magnetic dipoles! @9#. Disregarding thelong rangepart of
the dipole-dipole interactions, the system of branched dip
chains can be mapped to the model presented in this pa
and our predictions for the phase separation, scattering,
percolation would apply. This mapping is justified in dilu
systems such as ferrofluids or magnetic colloids. In de
molecular liquids, it probably breaks down. In order to u
derstand the properties of molecular dipolar liquids, one m
have to take into account specific interactions between
molecules. The results of this paper are supported by si
lations ~Ref. @48#!.

E. Actin networks

Actin is a self-assembling biopolymer that supports
membranes of biological cells. The sol-gel transition of ac
solutions and networks, induced by various proteins,~e.g.,
myosin! plays an important role in cell movement and loc
motion. The properties of actin networksin vivo have been
extensively studied by biochemical and molecular biolo
methods@41#. Recently, the physical properties of actin s
lutions and gels have been studiedin vitro, in rheological and
scattering experiments@42#. The experimentally obtained
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phase diagram is strikingly similar to Fig. 2, where at t
percolation line there is a transition from andentanglednet-
work to aconnected‘‘microgel’’ state. However, it was ob-
served that at low temperatures the dense phase consis
‘‘bundles,’’ where several parallel actin filaments are tigh
bound together by the crosslinks@42#.

Actin filaments are rigid, with the persistence length th
can be as high as 10mm. However, the general results of th
paper should apply, with the reservations made in Sec.
this accounts for the similarity between the predicted ph
diagram and the experimental measurement. The forma
of the bundles is probably due to nematic interactions
tween the rigid filaments and cannot be captured in
present model. However, one can estimate the condition
the bundles formation using a crude qualitative argume
For this purpose, the network phase can be viewed as a
lection of rigid filaments of average lengthl̄ .ee j /Tf21/2 ~cf.
Sec. III A!. The orientational order appears in the solutio
of rigid rods whenf*const /L, which means that forf
*e22e j /T one might expect appearance of the bundles.

ACKNOWLEDGMENTS

The authors thank R. Granek, J.-F. Joanny, T. Lubens
S. Panyukov, P. Pincus, Y. Rabin, E. Sackmann, T. Tlu
and T. Witten for helpful discussions. Support from the IS
Center of Excellence on Self-Assembly, the donors of
Petroleum Research Fund administered by the ACS, and
Schmidt-Minerva Center are gratefully acknowledged.

APPENDIX A: ‘‘ nÄ0’’ MODEL

The formal aspects of the ‘‘n50’’ model have been stud
ied extensively@24,18,19#. For the sake of completeness w
review the derivation here. Let us calculate the genera

function TrekW•sW for an n-component spin, sW, on a
d-dimensional lattice, where the averaging is over solid an
of the vectorsW, subject to condition(a sa

25n,

Tr ekW•sW5

E )
a

dsadS (
a

sa
22nDekW•sW

E )
a

dsadS (
a

sa
22nD 5

gn~kW !

gn~0!
.

The cumulants ofsW can be obtained by differentiating th
generating function with respect tok. Now, supposing that
kW5(k,0,...,0),
gn~k!5E )
a

dsadS (
a

sa
22nDekW•sW5E

2`

`

dweivnE ds1eks12 is1
2vE )

a52

n

dsae2 ivs1
2

5pn/2E
2`

`

dv
eivn1~k2/4iv!

~ iv!n/2 5pn/2i 2n/2F E
0

`

dv
ein~v2k2/4nv!

vn/2 1~21!n/2E
0

`

dv
e2 in~v2k2/4nv!

vn/2 G .
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The integrals in step two of the above equations, altho
formally divergent, should be treated as generalized fu
tions. The resulting integrals are known@43#. Puttingn51
2n/2, we find

gn~k!5pn/2i 2n/22S p i

2
D S k

2An
D n

3@H2n
~1! ~ ikAn!1H2n

~2! ~ ikAn!#

5pn/2i 2n/22p i S k

2An
D n

e2 i ~np/2!I 2n~kAn!

5p~n/2!11n~n/2!21
I ~n/2!21~kAn!

~kAn/2!~n/2!21
,

whereHp
(1)(x), Hp

(2)(x) are Hankel functions of the orderp,
andI p(x) is a modified Bessel function of the orderp. Now,
up to second order

I p~x!5S x

2D pS 1

G~p11!
1

1

2G~p!
x21O~x4! D .

Keeping in mind that in our casep5n/221, it follows that

lim
n→0

Tr ekW•sW5 lim
n→0

gn~k!

gn~0!
511

1

2
k2.

In particular,

Tr sa
m5

dm

dkm F lim
n→0

Tr ekW•sWGk505dm,2da,1 ~A1!

and

Tr sasb5
]2

]ka]kb F lim
n→0

Tr ekW•sWGk505da,1db,1 .

Due to the fact that the generating function has only q
dratic terms ink, cumulants higher than second order vani
This is because the higher order cumulants are relate
higher order derivatives of the generating function with
spect tok and these all vanish, as seen from Eq.~A1!.

APPENDIX B: MONOMERS, BONDS, AND JUNCTIONS
ON A LATTICE

1. Ghost monomers and rings

In addition to the configurations of branched clusters
scribed in Sec. II B, the expansion of Eq.~13! includes also
separate terms of the form12 h2Si

2 and 1
2 K2Si

2Sj
2Sk

2 that cor-
respond to ‘‘ghost’’ monomers occupying the sites of t
lattice or the interstitial positions~fixed by the triplesi,j,k!,
respectively. In certain physical situations, e.g., polymeri
tion of sulfur, the terms12 h2Si

2 are physically meaningful and
should be retained@12,16#. In other physical situations, thes
terms can be eliminated from the expansion of Eq.~13! by
05110
h
c-

-
.
to
-

-

-

adding compensating terms into the Hamiltonian~10!: H3

→H32 1
2 ( ih

2Si
22 1

2 ( i jkK2Si
2Sj

2Sk
2.

For the purposes of the present study, these terms
irrelevant, because in the case of sparse junctions and e
studied in this paper, the terms higher than linear inK andh
are neglected in the calculation of the partition function a
the free energy. Closed rings can also be accounted fo
least for study of the thermodynamics by choosing the tw
spin term in Hamiltonian~10! to be of the formS i j JSi ,1Sj ,1
which couples only the components of the spin in the dir
tion of the fieldh, therefore the closed rings are retained
the expansion of the partition function.

However, this does not change the mean-field results,
cause long-range correlations, such as closed loops are
regarded in the mean-field approximation~cf. also Ref.@16#!.

2. Relation between the densities

The chains consist of monomers, that occupy the verti
of the lattice, connected by bonds. Each junction is not
cupied by a monomer but is formed by three unphysi
‘‘bonds,’’ connecting three adjacent monomers as illustra
in Fig. 3. The bonds forming the junction are not counted
the model. The monomers comprising a chain fall into tw
categories: internal monomers, attached to two bonds,
the monomers at the ends of the cluster, attached only to
bond. The total number of bonds~including the unphysical
ones! is therefore

Nbonds
total 5 1

2 ~2Ni1Ne13Nj !,

where Ni is the number of internal monomers,Nj is the
number of junctions, andNe is the number of ends; the pre
actor 1

2 accounts for the double counting of each bond. T
total number of monomers is

N5Ni1Ne

and the number of physical bonds, connecting a pair
monomers, is the total number of bonds minus those
physical bonds that are involved in junctions

Nbonds5Nbonds
total 23Nj .

Combining these equations together, one gets

N5Nbonds1
1
2 Ne1 3

2 Nj .

3. Value of a

Here we present the considerations that lead to partic
values of the constants in mean-field equations of Sec. III
our model we consider each site of a lattice to be occup
either by a monomer or a solvent molecule. Chain bonds
defined as the bond between two occupied neighbor site
junction can be formed when three ends are neighbors o
7-22
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lattice as shown in Fig. 3. The sum in the three-spin te
( i jkKSiSjSk in Eq. ~18!, accounting for the junctions be
tween the chains, is constrained over alldistinct triplets of
spins i,j,k. The three-spin term can be rewritten
1
3 ( iKSi( jk

(K)SjSk where( i is now anunconstrainedsumma-
tion over all cites and( j ,k is unconstrainedsum over all
possible pairs of sitesj,k which together withi form a junc-
tion i,j,k. In the mean-field approximation this term is furth
transformed into1

3 ( i3KSi( jk
(K)^Sj&^Sk&. On a hypercubic

lattice, there are two possible configurations of the trip
i,j,k. The first one, is shown in Fig. 7~a!: both j andk are the
nearest neighbors of the sitei. The second is realized whe
either j or k is a next nearest neighbor ofi, shown in Fig.
7~b!. A simple calculation shows that for a hypercubic latti
of a coordination numberq, the number of such pairs of th
first kind is q(q22) and the number of the pairs of th
second kind is 1

2 q(q22). Therefore, a5 1
3 @q(q22)

1 1
2 q(q22)#5 1

2 q(q22). For a hexagonal close-packe
structure or for the fcc. lattice, a similar calculation giv
a5q @Fig. 8~a!#. However, the exact numerical value ofa is
an artifact of the lattice construction and should be thou
of as a phenomenological parameter reflecting the mic
scopic features of a junction, along with the junction ene
e j . A particular value ofa affects only the numerical value
of the critical temperature and density but not the ove
qualitative behavior. It can be adjusted to reflect physica
allowable junction configurations. For example, three nei
boring chains, coming perpendicular to the plane of a trip
i,j,k and connected by it, can hardly be interpreted as a ju
tion in most of the experimental systems. For convenien
we have useda5 1

3 q(q22) in calculating the phase diagra
and the structure factor.

FIG. 7. Two possible configurations of the tripleti,j,k: ~a! the j
andk sites are the nearest neighbors of the sitei; ~b! k is the nearest
neighbor of the sitei while j is the next nearest neighbor ofi.
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APPENDIX C: DENSITY-DENSITY CORRELATIONS

In this appendix we show the derivation of the result~36!
of Sec. IV for the density-density correlation function. Fro
Eq. ~33!

si5
xi

11 1
2 xi

2
, ~C1!

xi5A2f i /~12f i !,
] ln xi

]fk
5d ik

1

2f i~12f i !
,

si5A2f i~12f i !,
]si

]fk
5d ik

122f i

A2f i~12f i !
,

Ji5

xi2hi2Ki(
j ,k

~K !

sjsk

(
j

sj

.

Consequently,

ln Ji5 ln xi2 ln (
j

sj2
h0

Axi(
j

sj

23K0

S 1

3
(
~K !

sjskD xi
1/2

S (
j

sj D 3/2

1O~K0
2,h0

2,K0h0!.

Now,

FIG. 8. Two possible alternative definitions of a junction.~a!
shows a junction on a hexagonal lattice,a5q/2; ~b! shows a larger
junction, coupling the sites separated by two lattice constants.
7-23
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^df idfk&5
] ln Ji

]fk

5
] ln xi

]fk
2

(
j

]sj

]fk

(
j

sj

1
h0

2S xi(
j

sj D 3/2F ]xi

]fk
(

j
sj1xi(

j

]sj

]fk
G23K0S 1

3 (
jp

~K !

sjspD
3F 1

2xi
1/2S ( sj D 3/2

]xi

]fk
2

3

2

xi
1/2

S (
j

sj D 5/2(
j

]sj

]fk
23K0

xi
1/2

S (
j

sj D 3/2

2

3 S (
jp

~K !

sp

]sj

]fk
D G .

Together with Eq.~C1! this leads to Eq.~36! of Sec. IV A.
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APPENDIX D: SPIN-SPIN CORRELATIONS

This appendix shows the detailed calculation of the sp
spin correlation function of Sec. V. In principle, the sca
products of any two spins in Eq.~10! contain a longitudinal
component,S1 , parallel to the direction of the fieldhW , and a
‘‘transverse’’ one,SW' . For the two-spin term this yields

JSW i•SW j5J~S1,iS1,j1SW i ,'•SW j ,'! ~D1!

and the three-spin term is chosen to be

K(
i jk

S S1,iS1,jS1,k1
b

3
@S1,i~SW',i•SW',k!1S1,j~SW',i•SW',k!

1S1,k~SW',i•SW', j !# D . ~D2!

The average value of the ‘‘transverse’’ component,^SW'&, is
equal to zero, because the average magnetization is ali
along the fieldhW , in the ‘‘1’’ direction. Consequently, it has
no consequence for the thermodynamic properties, and
neglected in the calculation of the free energy in the Sec.
However, itsfluctuationsaround its average of zero, are n
zero, and convey physically important information. Neith
S1 nor SW' has anydirect physical meaning. However, phys
cally relevant information can be extracted from the know
edge of their correlation functions.

Consider the correlation function̂S1,iS1,j& between the
‘‘longitudinal’’ components of two spins located at sitesi and
j. As follows from the discussion of the Secs. II and II B t
only terms entering its expansion, TrS1,iS1,je

2H$Sk%/T, are
the same as of Eq.~13! with S1,iS1,j replacing theh termshSi
andhSj . This means that the correlator^S1,iS1,j& counts all
the configurations where there are chain ends at the poi
and at the pointj. In other words,̂ S1,iS1,j& measures the
correlations betweenany two ends. Recalling that the end
density isfe(r i)5hiS1,i , and subtracting thed i j contribu-
tion corresponding to the correlation of an end with itself,
arrive at Eqs.~46! and ~48!, which can also be obtaine
directly from the relation
05110
-
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I.
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^dfe~r i !dfe~r j !&5
]fe~r i !

]hj
.

To calculate the ‘‘transverse’’ correlation function

^Si ,'Sj ,'&, where nowS' signifies a component ofSW in one
of the (n21) ‘‘transverse’’ directions, one must focus on th
second term of Eq.~D1!. Following the arguments of Sec
II B, the only terms that enter into expansion of^Si ,'Sj ,'& in
the limit n→0 are of the form

~D3!

that is, the clusters, consisting of the ‘‘backbone’’ of theS'’s
with branched ‘‘sidechains’’ of theS1’s, closed bySi ,' and
Sj ,' . Inspection of the possible terms of the Eq.~D3! shows
that the sitesi and j must belong to thesamechain, because
the Eqs.~D1! and~D2! couple either two transverse comp
nents or a longitudinal one with two transverse. In oth
words, the ‘‘transverse’’ correlator measures the correlati
between any two ends belonging to asamechain. It is seen
from Eq. ~D3! that the junctions enter the expansion of t
transverse correlator with the weight (b/3)K. Since one
wants to measure the correlations between the ends of a
ter belonging to the expansion of the original Hamiltoni
~10!, where all the junctions enter with the same weightK,
the valueb53 must be chosen. That is, the relevant part
the three-spin term in the Hamiltonian~10! has the form

K(
i jk

@Si
1Sj

1Sk
11Si

1~Si
'Sk

'!1Sj
1~Si

'Sk
'!1Sk

1~Si
'Sj

'!#.

It is important to emphasize that the model given by E
~D2! is suitable only for loopless clusters. Clusters conta
ing loops enter the expansion with wrong weights, due
summation overn21 ‘‘transverse’’ components. Howeve
7-24
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the clusters with loops are neglected in the mean-field
proximation and one can use the model given by Eq.~D2!.

Performing the mean-field approximation on these ter
as outlined in Appendix C gives for the local spin averag

si ,15
] ln Z

]hi ,1
5

xi

11 1
2 @x1

21x'
2 #

,

si ,'5
] ln Z

]hi ,'
5

x'

11 1
2 @x1

21x'
2 #

,

where

x15hi ,11(
j

Jsj ,113S 1

3 (
j ,k

~K !

Ksj ,1sk,1D ,

x'5hi ,'1(
j

Jsj ,'16S 1

3 (
j ,k

~K !

Ksj ,'sk,'D , ~D4!

with ( j the sum over nearest neighbors of the sitei and( j ,k
(K)

the sum over the pairs of sitesj,k which together withi make
the junction tripleti,j,k as in Sec. V. The coupling betwee
the parallel and transverse components ofs in the three-spin
term in Eq.~D4! has no consequence for the thermodynam
properties because the average value of ‘‘transverse’’ com
nent is zero:^S'&5s'50. The terms containing product
si ,'sj ,' have been omitted for the same reason. Howe
this coupling is important for correlations, as we shall s
We thus define the spin-spin correlation functionCik

(a) ,
whose ‘‘longitudinal’’ component is given by

Cik
~1![^Si ,1Sk,1&2s25

]si ,1

]hk,1

5A~1!Fd ik1J (
j Pnni

]sj ,1

]hk,1
16KS 1

3 (
m, j

~K !
]sj ,1

]hk,1
D G

~D5!

with

A~1!5
]

]x1
S x1

11 1
2 @x1

21x'
2 #

D U
x'50

5
1

11 1
2 x1

2
2

x1
2

~11 1
2 x1

2!2
.

For the transverse component~bearing in mind that̂ S'&
5s'50), we obtain

Cik
~' ![^Si ,'Sk,'&5

]sj ,'

]hk,'

5A~' !Fd ik1J (
j Pnni

]sj ,'

]hk,'
16KS 1

3 (
m, j

~K !

sm,1

]sj ,'

]hk,'
D G ,

A~' !5
]

]x'
S x'

11 1
2 ~x1

21x'
2 !

D U
x'50

5
1

11 1
2 x1

2
. ~D6!
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Note that the coupling betweens' ands1 in Eq. ~D6! does
contribute to the transverse spin-spin correlation functi
Substituting from Eq.~33! one finds

A~1!5~122f!~12f!,

A~' !5~12f!.

Recalling that (m, j
(K)5 2

3 (a/q)(nni
1(nnni

, after Fourier

transformCik
(a)5(qWe

ipW (rW i2rWk)CpW
(a) (a5$1,'%) the equations

~D5! and~D6! yield the Eq.~47! of Sec. V. It is important to
emphasize that the model given by Eq.~D2! is only suitable
for loopless clusters. Clusters containing loops enter the
pansion with wrong weights, due to summation overn21
‘‘transverse’’ components. In principle, one can inclu
higher order terms, coupling different ‘‘transverse’’ comp
nents. However, as seen from the calculation above, in
mean-field approximation, these termsdo not contribute to
either the free energy or the spin-spin correlation functi
That is, the mean-field results are independent of the pre
way in which the weights are assigned to clusters with loo
It follows that the mean-field approximation disregards t
loops that contain information about long range intraclus
correlations. Only the treelike clusters give contribution
the mean-field approximation and therefore one can use
model given by Eq.~D2!.

APPENDIX E: RELATED THEORETICAL MODELS

Some of the results described here have been obta
previously. Although a complete review of previous work
out of the scope of the present paper, we briefly describe h
several related theoretical approaches and compare the
sumptions and results to those of this paper.

1. Exact model for percolation

In order to extract information about the topological stru
ture of the system, while retaining the exact corresponde
between the expansion terms of the spin model, and the e
librium, branched clusters, one has to resort to a tensor o
parameter or, equivalently, to use several coupledn50
fields. The presentation in this section closely follows t
derivation of Ref.@15# with the major distinction that the
junctions are not treated as pointlike objects, which allows
to use a conventional normalization of the ‘‘n50’’ spins SW .
The Hamiltonian to be used is

HT5h(
i

(
a51

m

S1,i
a 1J(

^ i , j &
(
a51

m

SW i
a
•SW j

a

1K (
^ i , j ,k&

(
a51

m

S1,i
a S1,j

a S1,k
a , ~E1!
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whereSW a’s are m n-component vectors with the normaliza
tion Sa(SW a)25mn wheren→0; a goes form 1 tom. In this
form, the Hamiltonian consists ofm replicas of the Hamil-
tonian ~10!, and there is a one to one correspondence
tween the terms in the expansion of Tre2HT, and the equi-
librium, branched clusters. Due to presence of the additio
parameter,m, each cluster in the expansion acquires an
ditional weightm. The partition function then reads

ZT5 (
Nj ,Ne ,NnNp

JNbKNjhNemNcN~Nj ,Ne ,Nb ,Nc!,

where Nj ,Ne ,Nb ,Nc , are the number of junctions, end
bonds, and clusters, respectively. The parameterm can be
analytically continued to noninteger values and has
meaning of the fugacity conjugate to the total number
clusters in the system. For self-assembled, branched clus
he
on
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o

s
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n
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um
ob
si
ei
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the relevant value ism→1, because the number of clusters
not constrained@15#.

The Hamiltonian~1! can be rewritten, after the spin var
ables are transformed by rotation in them-dimensional space
of a components, with the use of a set ofm-dimensional
orthogonal vectors vW l ; l 50,...,m21, with vW 05(1/
Am)(1,1,...,1) andvW l•vW l 85d l l 8 @15#. The new variables are
then defined as

SW 05(
a

SW av0
a5

1

Am
(
a

SW a,

SW l5(
a

SW av l
a for lÞ0.

Note that the normalization remains the sam
( l 50

m21(Sl)25mn.The Hamiltonian expressed in the new va
ables then reads
HT5hAm(
i

(
l 50

m21

Si
l1J(

^ i , j &
(
l 50

m21

Si
lSj

l 1
K

Am
(

^ i , j ,k&
FSi

0Sj
0Sk

01S Si
0 (

l 50

m21

Sj
l Sk

l 1perm~ i , j ,k!D 1 (
lÞ0,l 8Þ0,l 9Þ0

all 8 l 9Si
lSj

l 8Sk
l 9G ,

~E2!
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he
where all 8 l 9 are numerical coefficients, depending on t
value ofm. It can be shown then that the correlation functi
^Si

0Sj
0& measures the correlation between any two endpo

while the correlation function̂Si
lSj

l & measures the correla
tions between two endpoints belonging to the same clu
@15#.

In the mean-field approximation, the products ofSl with
lÞ0 do not contribute to either the free energy or the tw
point correlation function, because only^S0&Þ0 ~they do,
however, contribute to higher order correlation function!,
and can be neglected. In particular, the fact that the me
field two-point correlation function is independent of the c
efficientsall 8 l 9 ~i.e., of the precise way in which weights a
assigned to loops!, means that the mean-field approximati
takes into account only the loopless graphs contributing
the two-point correlation function. With this in mind, the la
term in Eq.~E2! vanishes, and in the limitm→1 the Hamil-
tonian ~2! becomes formally identical to the Hamiltonia
~45! of Sec. V, withSl ( lÞ0) taking place of a ‘‘transverse’
componentSg , gÞ1.

In Ref. @15#, Isaacson and Lubensky used a continu
field version of the spin model described above. It was
tained by counting various diagrams present in the expan
of the partition function of the Hamiltonian presented in th
work. Alternatively, it can be obtained by performing
Hubbard-Stratonovich transformation on the partition fun
tion of original spin Hamiltonian, and keeping terms up
fourth order in the expansion in the order parametercmn that
ts

er

-

n-
-

o

-
on
r

-

is conjugate toSn
m @15#. We note parenthetically that th

model of Ref.@15# is not, strictly speaking, an ‘‘n50’’ model
because it employs a set of closure conditions for differ
moments of the tensor fieldSn

m, which are somewhat differ-
ent from the one described here, in part because the junct
are modeled as pointlike objects in the Isaacson-Luben
theory. Those authors have focused on the geometrical p
erties of various objects that emerge near the percola
transition, such as the statistics of lattice animals and
scaling exponents of the percolating cluster. Their res
were obtained by studying the critical behavior of differe
components of the tensor fieldcmn . They did not study ther-
modynamic behavior of the model, which requires investig
tion of the free energy as a function of the appropriate phy
cal variables, namely, the monomer densityf;c2 and the
temperature. Also, although Ref.@15# starts with a rigorous
mapping of the branched chains, the excluded volume
equivalently, the translational entropy of the chains, is c
rectly treated only for small monomer densities in the co
tinuum limit, due to approximations involved in the con
struction of the field theory.

2. The O„1… model

Another approach to the theoretical description
branched equilibrium polymers was proposed in Ref.@7#. In
earlier work@14#, these authors had shown that under cert
circumstances, theO(1) model can be applied to stud
chains in equilibrium with closed rings. The authors of R
@7# argued that the addition of a cubic term to theO(1)
model allows one to incorporate threefold junctions into t
7-26
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THERMODYNAMICS AND STRUCTURE OF SELF- . . . PHYSICAL REVIEW E 66, 051107 ~2002!
theory. TheO(1) model belongs to the same universal
class as the Ising model and does not allow a rigorous
respondence between the partition function of the mo
Hamiltonian and the configurations of branched clusters o
lattice. In particular, it does not correctly account for t
self-avoidance of the chains. Nevertheless, as the aut
point out, the model can be used if one is interested in
scaling behavior near the critical point. The model was st
ied in terms of the scalar field variablec, parallel to tensor
field of the Lubensky-Isaacson theory, to identify differe
regions in the phase space of the system as a function o
monomer chemical potential and the end and junct
fugacities. The junction-end transition was not analyzed
this work because the thermodynamic stability analysis w
performed in terms of the field variablec and not in terms of
the monomer densityf. Also, as the authors point out, th
scalarO(1) model is not suitable for the determination of t
network structure.

3. Two-field model

Another, closely related approach was used in Ref.@16#,
which was concerned with the investigation of the phase
gram of self-assembling systems~e.g., wormlike micelles! at
all values of monomer~surfactant! densities. To this end, th
authors of this work used two coupled ‘‘n50’’ fields which
also allowed them also to treat the polymerizationc.m.c.
transition. One local field resides on the vertices of the lat
and corresponds to the monomers, while the second
occupies the bonds of the lattice. Branching of the s
assembled chains was modeled by writing the Hamilton
as a sum of terms corresponding to one-, two- and th
functional units. Expressions for the junction and end den
ties similar to ours and the previous work of Drye and Ca
@11# were obtained. Because the two-field model does
allow one to obtain a closed analytical expression for the f
.
0
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energy, the authors used numerical techniques to predic
osmotic pressure from the model. It was found that for c
tain values of the control parameters, the system undergo
phase separation into a dense system with many junction
equilibrium with a dilute phase. The phase behavior w
studied in Ref.@16# as a function of the junction energy fo
fixed end-cap energy, and the phase diagram obtained in
@16# differs form ours. One difference is that the reentra
nature of the phase transition is absent from the analysi
Ref. @16#. Because the model used in Ref.@16# does not
provide predictions for the geometrical structure, the auth
could only suggest that the dense phase contains a conn
network, in contrast to our work that permits the calculati
of structure and thermodynamics within the same formalis
The density fluctuations, and the relation of the correlat
length to the interjunction distance were not studied in R
@16#.

4. Drye and Cates model

Some of the results described here can be derived
phenomenological way, without a rigorous theory. In a p
neering work@11#, Drye and Catesassumedthe existence of
a network in a system of self-assembled chains, which t
viewed as an assembly of flexible rods. Using a phenome
logical estimate of the reduction of the translational entro
of the rods due to junction formation, they found that
certain values of the junction energy, the system becom
thermodynamically unstable. They were also able to obt
an expression for the junction density, essentially identica
the one obtained in the present paper using a rigorous the
The model of Ref.@11# postulates the existence of a netwo
and disregards the existence of free ends. Among other p
lems, this does not allow a clear identification of the pha
in equilibrium. Also, phenomenological arguments used
Ref. @11# do not allow to locate the percolation transition.
m.
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