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Quantum Kramers equation for energy diffusion and barrier crossing dynamics
in the low-friction regime
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Based on a true phase space probability distribution function and an ensemble averaging procedure we have
recently develope@Phys. Rev. B65, 021109(2002] a non-Markovian quantum Kramers equation to derive
the quantum rate coefficient for barrier crossing due to thermal activation and tunneling in the intermediate to
strong friction regime. We complement and extend this approach to weak friction regime to derive quantum
Kramers equation in energy space and the rate of decay from a metastable well. The theory is valid for arbitrary
temperature and noise correlation. We show that depending on the nature of the potential there may be a net
reduction of the total quantum rate below its corresponding classical value, which is in conformity with earlier
observation. The method is independent of path integral approaches and takes care of quantum effects to all
orders.
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I. INTRODUCTION quantum Kramers equation which is valid for arbitrary tem-
perature and friction. The solution of this equation as an
The dynamics of noise-induced rate processes was firgtppropriate boundary value problem results in an expression
successfully treated in a seminal paper by Kramers in 194fr quantum rate coefficient which not only reduces to
[1]. With the advances in experimental methods for monitorKramers-Grote-Hynefl, 8] rate in the classical limit but also
ing ultrafast processes on microscopic spatial and tempora® the result corresponding to zero-temperature tunneling in
scales over the last two decad@s3], this has been the sub- the full quantum limit, treated by Caldeira and Legd@4|
ject of numerous investigation from classical, semiclassical'l early 1980s. The rate coefficient thus derived pertains to

and quantum mechanical point of vid@—7]. The classical spatially diffusion limited processes and is therefore valid for

Kramers theory has thus been extended to non-Markovialfité'mediate to strong friction regime. We undertake the

e o resent study with the following specific objectives to
dissipation model§8—10], generalization to complex poten- cF:)ompIement this work in the low ?ricti%n regimeJ where the
tial [11-13 and to many degrees of freeddit4,15, fluc- , e

. . . . process is controlled by energy diffusion.
tuating barrier probleril6] and nonstationary activated pro- (1) To extend the treatment of quantum Kramers problem
cesseq17], .thermal ratche(18,19 and molegular mOtorS for low to low-moderate friction we develop a quantum
[20], analysis of quantun¥,5,21-23 and semiclassical ef-

X i 2. Kramers equation for energy diffusion which is a quantum
fects[24], calculation of time-dependent transmission coef-ersjon of classical non-Markovian equation of Carmeli and

ficient [25,26, fractional kinetics[27,28, nonequilibrium  Njitzan (CN) [10] proposed in early 1980s.
open systemf29,30), activationless escape of a free Brown-  (2) our aim here is the inclusion of memory effects for
ian particle[31], and other related issug4,6,7]. arbitrary noise correlation of the heat bath kept at an arbi-
Although classical Kramers equation was proposed mor¢rary temperature taking into consideration the quantum ef-
than sixty years ago and quantum Kramers problem of esfects (correction$ to all orders.
cape from a metastable state has attracted wide attention over (3) We solve the quantum Kramers equation for energy
the last two decadest], the quantum version of Kramers diffusion to derive an explicit form of rate coefficient in the
equation was not reported in the literature. This is probablyveak friction regime and show that it reduces to non-
because of the fact that the traditional method of treatment dflarkovian counterpart of Haygi and Weis$35] in the clas-
quantum Kramers problem rests on calculation of partitiorsical limit. Furthermore, it provides the rate coefficient of
function for a system-reservoir Hamiltonian in terms of pathlow-temperature tunnelingdown to absolute zejoin the
integrals, rather than on evolution of probability distribution quantum limit. The present theory thus interpolates between
function as used in classical theory of stochastic processethermal activation and tunneling for weak dissipation within
Very recently we have developd@2] a method based on a single scheme and is a direct extension of classical theory
true quantum ¢ numbej phase space distribution function to quantum domain.
(rather than quasiprobability function, like Wigner function  The classical non-Markovian Fokker-Planck equation in
[33]) to derive for the first time an exact non-Markovian the energy variable for arbitrary noise correlation was first
proposed by CN10]. The detailed classical analysis by sev-
eral groupq10,35—37 revealed that the rate, in general, is
*Present address: Max-Planck-Institut Rhysik Komplexer Sys-  significantly modified by memory effects when compared to
teme, Ndhnitzer StraRe 38, 01187 Dresden, Germany. corresponding Kramers theory in the static friction limit. As
"Email address: pcdsr@mahendra.iacs.res.in mentioned earlier, the traditional quantum treatment of the
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Kramers problem in weak friction limit is based on func- some of the theoretical predictions in low-temperature quan-
tional integral approach4] which takes care of dissipative tum effects in weak friction regime is still awaited.
tunneling[34]. Since for weak friction limit at a finite tem- The outlay of the paper is as follows. We introduce a
perature one finds a small population at the upper energg-number representation of a generalized quantum Langevin
levels of the system which results in nonequilibrium effects,gquation in Sec. Il. This formulation helps us to use the
quantum correction to classical Kramers weak damping reclassical formulation of CN[10] for deriving a non-
sults above the crossover temperature is of considerable ifarkovian quantum Kramers equation in energy space in
terest. Several authof88—43 have addressed this problem S€C- Ill. We solve the problem of quantum energy diffusion
in relation to nonequilibrium quantum tunneling out of acontrolled rate coefﬂqent in the spirit pf classical theory
metastable state. Although the method of functional integral§32,48 in Sec. IV. This reduces to classical rate expression
as employed in these theories has been successful in treatiffy Kramers-Haggi-Weiss[35] form in the limit #—0. An
arbitrary coupling and correlation time scales in a formally€Xplicit example with a cubic potential is worked out to
exact manner, analytic evaluation of these integrals usualljfustrate the theory in Sec. V. The paper is concluded in
requires semiclassical approximations, e.g., semiclassica®C- VI

steepest descent method, WKB approach, etc., or other spe-

cific cases, which put restriction on applicability of the theo- Il. THE QUANTUM GENERALIZED LANGEVIN

ries in several ways. Second, the weak coupling theories EQUATION IN ¢ NUMBERS

which hav n extensivel in ntum i . L . :
ginc(e: 19$0; l?aeseed eor'ie n?as?e% i?qiitioniu?hatlij mglgafse of We consider a p{irtlclelln a medmm. The latter is modeled
quasiprobability functions, such as Wigner functi@g] of- 35 @ set of harmonic oscillators with frequerey}. Evo]u—

ten pose serious difficulties concerning negativity or singu—tIon of such a quantum open system has been studied over
larity of the probability distribution functions as discussed inthe Ia_st several q_ecades un_der a varlety_of reasonable as-
detalil in earlier work[45]. Third, when the system or the sumptions. _Sp_emflcally our interest _here IS .to de_vglop an
system-reservoir coupling is nonlinear, the differential equa?xact description of quantum Brownian motion within the

tions concern highefthan secondderivatives of quasiprob- preview of this model described by the following Hamil-

ability functions[46] for which quantum-classical correspon- tonian[54]:

dence gets blurred. Our approach here is basedrom B2 2y

guantum probability phase space functiand is free from N o Py 1 AR Y

such difficulties. Furthermore, an important decisive advan- H=73 +V(X)+; 7 ZKJ(qJ X7 @D

tage of the scheme is that it allows us to implement the
classical non-Markov theories of activated processes in a fulljere X andP are coordinate and momentum operators of the
guantum setting without taking recourse to any semiclassical _ .. An :
technique. In what follows we specifically apply the classicalpartlcIe and the seig; ,p} is the set of cqordmate and mo-

' o ; mentum operators for the reservoir oscillators coupled lin-
procedure of Lax47], CN [10], Buttiker, Harris, and Land- v to th tem th h thei i fici
auer (BHL) [48], Hanggi and Weisg35] in our quantum early to ? SySAem roug €lr coupiing Coe_ ICIer{s
phase space formulation to develop a non-Markovian quanlhe potentiaM(X) is due to the external force field for the
tum Kramers equation in energy variable and derive an exBrownian particle. The coordinate and mqm?ntum operators
pression for quantum rate coefficient in the spirit of classicafollow the usual commutation relatiofX,P]=i% and
Kramers theory. The quantum Kramers equation and the ral[ei]j ,ﬁj]ziﬁaij . Note that in writing the Hamiltonian no ro-
coefficient are classical looking in form but quantum me-tating wave approximation has been used.
chanical in their content and it is easy to recover their non- Eliminating the reservoir degrees of freedom in the usual
Markovian classical counterparts in the linfit-0. way [44,55,56 we obtain the operator Langevin equation for

The Kramers kinetics in the low friction regime is just not the particle,

a theoretical issue today but has been a subject of experimen-
tal investigation over the last two decaddsA9—-53. A num- x t - ~ oA
ber of experimental works in chemistry aimed at detecting X(t)+fodt'ﬂ(t—t')X(t/)+V,(X)=F(t), (2.2
Kramers turnover phenomena, in various reactions that can
be conveniently explained in terms of a one-dimensional . -
model, e.g., ioo)I/ine gtom recombination in various inert sol-\'\/her‘.3 the noise operatéi(t) and the memory kemeg(t)
vents[49], chair-chair isomerization of cyclohexaft0], ex- are given by
cited state isomerization of 2-alkylanthracd®]. Another
class of experiments where the energy diffusion mechanism g(t)=>" [{&,’(0)—5((0)}Kj cosw;t+ E)j(O)Kjl’zsinwjt]
has been successfully implemented concern resonant activa- i
tion of a Josephson junctidB7,4] and decay of zero voltage 2.3
state in a current-biased Josephson jundi&8). The nonex-
ponential decay behavior in spin gld<q is also an area of and
active research in this context. All these problems have their
guantum counterparts which are being considered for further ﬁ(t)=2 . COSw:t (2.4)
studies in rate theory although the experimental evidence of . "
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with Kj:wjz (masses have been assumed to be unity so that for any quantum mechanical mean value
Equation(2.2) is an exact quantized operator Langevin oj(<§j(o)>,{<aj(o)>—<5((o)>}) the statistical average

equation which is now a standard textbook matdgdd] and (--)gis

for which the noise properties &(t) can be defined using a

suitable initial canonical distribution of the bath coordinates - - &

and momenta. Our aim here is to replace it by an equivalent <Oj>s:f O;(pi(0)).{(a;(0)) = (X(0)})

guantum generalized Langevin equati@GLE) in ¢ num-

bers. Again this is not a new problem so long as one is X Pi((p;(0)),{(q;(0))—(X(0))})
restricted to standard quasiprobabilistic methods using, for - A o
example, Wigner functiong33]. To address the problem of X d(p;(0))d{(a;(0)) = (X(0))}. 29

guantum non-Markovian dynamics in terms ofrae proba- Heren: indicates th th | bhot ber of th
bilistic descriptionwe, however, follow a different proce- eren; indicates the average thermal photon number of the

dure. Wefirst carry out thequantum mechanical averagé  jth oscillator at temperaturé and n; = 1] exp(iw; /kgT)—1]
Eqg. (2.2, andV is the normalization constant.

The distribution(2.8) and the definition of statistical av-
erage(2.9) imply that F(t) must satisfy

(2.5 <F(t)>S:0 (2.10

and

N t N A .
(X(1))+ fodt’ﬁ(t—t’xX(t’))+<V’(X))=(F(t)),

where the averagé---) is taken over the initial product
separable quantum states of the particle and the bath oscilla- 1 P
tors att=0, |p){|a1)|as)- - -|an)}. Here|¢p) denotes any (FIOF(t"))s=5 >, Kjﬁwj(coth—J
arbitrary initial state of the particle arjd;) corresponds to 29 2kgT
the initial coherent state of thigh bath oscillator.|«;) is (2.1

given by|a)=exp(-|ai?/2)=7 _o(af'/Vni) i), @i being  That s, thec-number noise~(t) is such that it is zero cen-
expressed in terms of the mean values of the coordinate ardred and satisfies the standard quantum fluctuation-
momentum of theith oscillator, <ai(o)>:(\/%/2wi)(ai dissipation relation as known in the literat|ig] in terms of

+a’) and (I5i(0)>=i\/m(a-*—ai) respectively. It is quantum statistical average of the noise operators. The dis-
I | 1 "

. A . , . tribution (2.8) is thus an ansatz introduced to calculate the
|mporttant to E.Othe _tha¢F(t)> Iof Eq.(25isa clat)ssugal-hke ensemble average over the quantum-mechanical mean values
NOISE term which, In general, IS a NONZEro NUMDET bECAUSE Gk o hath oscillators. Its justification lies in the fact that

the quatntum mec?anlc?ltﬁvetr)agt;rl]ng oxlertthe c%c])rdmate tat ith Eq. (2.9 it reproduces the correct noise properties of
momentum operators of the bath oscillators with reSpect gnq o e the guantum fluctuation-dissipation relation for
the initial coherent states and arbitrary initial state of they . .\ mber quantum noisé.11) along with Eq.(2.10
particle and is given by Second, the distribution(2.8) has a form which is
Boltzmann-like(but not a Boltzmann distributiorsince the

cosw(t—t’").

(F())=2) [{(a;(0))—(X(0))}k; cosw;t width parameter of the Boltzmann distributi&T gets re-
! placed byf w;(n;+3)
+<E>j(0)>f<jllzsinw,—t]. (2.6) To proceed further we now add the force tevt{(x)) on

both sides of Eq(2.7) and rearrange it to obtain formally
It is convenient to rewrite the-number equatior(2.5 as
follows:

3'<(t)+ftdt’ﬁ(t—t’)k(t'HV’(x):F(t)+Q(x,t),

0

x t , e x ' IEe _ (212
Ky + [ dvpa—t) &+ ) =F, @7

where we Ie(f((t))zx(t) for simple notational convenience
where we let the quantum mechanical mean valkiét)) and
=F(t). We now turn to thesecondaverage. To realizE(t) .
as an effectivee-number noise we now assume that the mo- QX 1) =V'(x) =(V'(X)) (2.13
menta (p;(0)) and the shifted coordinateg(q;(0))

—(X(0))} of the bath oscillators are distributed according to
a canonical distribution of Gaussian forms as

represents the quantum mechanical dispersion of the force

operatorV’(X) due to the system degree of freedom. Since
Q(x,t) is a quantum fluctuation term E@2.12 offers a
simple interpretation. This implies that the classical looking
QGLE is governed by a-number quantum noige(t) which
originates from the quantum mechanical heat bath character-
ized by the propertief2.10 and(2.11) and a quantum fluc-
(2.8  tuation termQ(x,t) due to the quantum nature of the system

—[(p;(0))*+ k;1(0;(0)) = (X(0))}?]

Pi=Nexp

— 1
nj+§
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characteristic of the nonlinearity of the potential. Although * 1 .

because of the last term in E(R.12 the equation looks Qt)=—>, V(X I(1). (.19
formal and implicit, the actual structure Qf(x,t) gets more i=3 (n—1)!
transparent as we go over to the beginning of the followin

section. A recipe for calculation @(x.t) is given in Refs. gHereV”(x) denotes theth derivative of the classical poten-

[45,57,58. tial. The role of Q(x,t) is therefore to modify the classical

We summarize the above discussions to point out that it (#teNtal V(x) in Eg. (2.12. Q(x,t) can be calculated by
possible to formulate an exact QGL(E.12 of the quantum  Solving (8X"(t)) order by order. To the lowest ordésec-
mechanical mean value of position of a particle in a mediumpnd (X) and (8X?) follow a coupled set of equations as
provided the classical-like noise terf(t) satisfies Eqgs. given in Eqs.(5589—(55¢ of Ref.[45]. (Higher-order equa-
(2.10 and(2.11). The important new content of the approachtions, e.g., the fourth order equations, are given in R&j]).
is that to realizeF(t) as a noise term we have split up the For convenience, we will now split up the right hand side of
standard quantum statistical averaging procedure into Eq.(3.10 into a time-independent and a time-dependent part
qguantum mechanical medn- -) by explicitly using an ini- as
tial coherent state representation of the bath oscillators and
then a statistical averade - - )5 of the quantum mechanical 1 , (n—1)
mean values with distributiof2.8). This is distinctly differ- Q)=- 2 o (n—1)! o VO0(eXD(0)) +g(b),
ent from the usual procedure of quantum statistical averaging (3.10
where the quantum mechanical average is carried out with
number states over the noise operators followed by an enRyhere
semble average with Boltzmann distribution. Two pertinent
points are to be noted. First, it may be easily verified that the 1 .
distribution of quantum mechanical mean values of the battg(t)=— 2 L (= 1)1 ——V()[(SXM 1)) — (sX1(0))].
oscillators(2.8) reduces to classical Maxwell-Boltzmann dis- (3.18
tribution in the thermal limit, #w;<kgT. Second, the )
vacuum term in the distributiof2.8) prevents the distribu- For future use it is convenient to wrig(t) in the Taylor
tion of quantum mechanical mean values from being S'”9U|a§er|es of the form
at T=0; or in other words the width of distribution remains

[

oo

finite even at absolute zero, which is a simple consequence o o 1 tm [ gm

of uncertainty principle. The procedure has been recently g(t)y=-— 2 T — V[ x(t)]

implemented by us to formulate a quantum theory of Brown- m=0 n=3 (N=1)! m! | gm

ian motion [45] and to propose amxact non-Markovian

guantum Kramers equatidg2] with true probability distri- I SKM=D) 1)) — ¢ sX(n—1)

bution functions {{oX (1) ={oX )} o .19

IIl. QUANTUM KRAMERS EQUATION The Langevin equatiof2.12) then reduces to
IN ENERGY SPACE
Let us begin by noting that the generalized quantum X+f dT,B(t—T)X(T)+V (x)+2 7 1)|Vn(x)

n—

Langevin equatiori2.12 of a Brownian particle in presence

of an external force field takes into account arbitrary cou- o (n—1) B
pling between the system and heat bath and contains quan- X (X (0))=F(t)+g(t). 3.2
tum correctionsQ(x,t) due to system to all orders. To make

. - o Expressing
the latter assertion explicit we now express the operators
andP as
V(0 =V(x)+ 2 e 1), V(X D(0)),
X(t)=(X(t))+ 8X(1), (3.3
=(P(t))+ sP(t). (3.13  Eq.(3.2 takes the form
By construction (8X(t))=0, (5P(t))=0, and [X,5P] X=v, (3.4)

=i%. Expanding(V’ (X)) around(X) (=x) in a Taylor se-
ries we obtain

+ fotdrﬁ(t— (1) +Vy(x)=F(t)+g(t). (3.5a

N 1 N
’ —\// —_\/m 2 .
V)=V 00 + 2V (){X5)+---. (31D Equation(3.59 is our starting Langevin equation. The poten-
tial V4(x) appearing in Eqs3.3) and(3.53 is not the clas-
ThereforeQ(t) can be expressed as sical potential but a renormalized one with quantum correc-
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tions. The damping memory kern@.4) is identified by the  Thus we have
fluctuation-dissipation relatiofi2.11) by noting that in the
continuum limit

J= ox ftd F 3.8
=50 ", TB(t—7)v(7)+ (t)+g<t)}, (3.8

1(~ hw
<F(t)F(0)>S:§fo dwdw)p(w)ﬁw(COthm) coswt i t
é=w(J —5[—JOdTﬂ(t—T)U(T)+F(t)+g(t)}.

=C(t) (3.5b
(3.9
and
Herev represents the velocity of the particle. For the deter-
o ministic part of the system’s Hamiltonian given by
B(1)= o dwk(w)p(w)coswt (3.59 =(1/2)v?+V4(x) we may write
in the Fourier domain can be related as _dHQ)
o(d)=—7 (3.10
= B 1 0\~
c (“’)_Eh“’ COthszT B ), (3.5d Since V4(x) [see Eq.(3.3)] contains quantum corrections,

ourJ and ¢ are quantumg-numbej variables as implied in

whereC%(w) and B%(w) are the cosine transforms af(t)  EG- (3.3). In the absence of quantum corrections they be-
and 8(t), respectively. For convenience we now express th&€ome classical variables of C[M0]. The canonical transfor-

Fourier transform of3(t) as mation from §&,v) space to {,¢) space has been done with
the deterministic Hamiltonian. We can therefore expand
- % andv as
ﬁn(w)zfo dtB(t)exp —inwt). (3.6

x(J,¢)= 2 xn(dexing), (3.113

We now consider the following time scales in the dynamics
relevant for energy diffusion in the weak friction limit,

o)

y<lUr<o, (3.7 v(J, )= > va(d)expiing), (3.11b

where v is the friction arising due to interaction with the

bath, evaluated in the Markovian limit, is the correlation  with

time of the noise due to heat bath aadis the linearized

system frequency, which for a Brownian particle is assumed Xp=X*, and v,=v*,. (3.12
to be very high. This separation of time scales in E77)

and casting of an operator Langevin equationcinumber  Differentiating Eq.(3.113 with respect to time and noting

form (3.4)—(3.53 allow us to implement a classical method that in the action-angle variable spage: w(J) we can write
for solving the problem of quantum energy diffusion. Fol-

lowing the standard procedure one can transform Ej4)— vp(D=inw(I)x,(J). (3.13
(3.53 to the action(J) and angle §) coordinates with the
help of a Jacobian matrix as Since, we are considering the motion in one dimension only,
we can choosd and ¢ in such a way that we can make the
_dv X _ simplification forx=x* as
J dp P X
b | o ox | \; 1 . . _
- _ = x=§ 2 [Xhexping) + X, exp(—ing)].
ad ad n=—o
v ox Inserting Eq.(3.12 we get
dp I
= 1 ®
‘9_U _0_X X== E [X,exping)+x_,exp(—ing)].
ad ad n=-
JH With the choice of phase
Jdv
X o . ) X=X_g[since In{x,)=0] (3.144
——— | d7B(t— +F(t)+g(t
IX fo A= nu(n+FU+eM) X may be further expressed as
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X= 2, X,COSNd.

n=-—ow

Similarly using Egs.(3.13 and (3.14a we get forv,=
—v_ .,

J=—i E Z nxnexp(ind))ftdrﬂ(t—r)vmexp(imd>)+i8(t) > nx,exping),
0 n=—ow

n=—o m=-—wx

= w(J)+ Z E

n=—o m=—®

where, we have express&{t) as a sum of two terms; the

noise due to heat batl(t), and quantum correction term,

a(t),

PHYSICAL REVIEW E 66, 051105 (2002

v= > wv,sinng. (3.14H

n=-—ow

Inserting Eqs(3.113 and(3.11h in Egs.(3.8) and(3.9) we
obtain

(3.15
exp(lnqs fdrﬂ (t—T)vmexpime) —S(t) Z exp(mqb) (3.16
|
t
fodTﬁ(t—T)vm(T)eXF{imqﬁ(T)]
=vm()exdime(t)|Bu(w). (3.2

S(t)=F(t)+g(t). (3.17)
In the equations of motio(8.15 and(3.16), the argument of
the damping memory kerngd is (t— 7). Now B decays to
zero in a timer, (the correlation timg So, to deal with the
integrals of Eqg.(3.15 and Eg.(3.16), it is reasonable to
divide the range of integration into two part&) |[t— 7|
<17, and(b) t>7.. Thus following CN[10] we can write

¢
¢(t)=¢[7+(t—7)]2¢(7)+ﬁ (t—1),
t=71

neglecting higher terms of,. . It follows that

H(1)=¢(t)~(t-Tow (3.18

and

UVin(7)=vm(1). (3.19

Equation(3.18 and Eq.(3.19 are reasonable approxima-

tions so far as the integrals of E(.15 and Eq.(3.16) are

Putting Eq.(3.21) which takes into account the observational
time scale, in Eq(3.195 and Eq.(3.16) we get

J==i 2 X nxuuBm(e)exdi(n+m)g¢]

n=—o m=—=

t) _2 nx, exp(in ¢), (3.22

p=0(D)+ 2 X XwmBm(w)exdi(n+m)s]

n=—o m=—w

—S(t) 2_ X! exp(in), (3.23
where
, 9%,
Xn_ﬁ' (324)

concerned. Within the integral, we therefore manipulate théOur next task is to formulate the Fokker-Planck equation. To

behavior of¢p anduv,, for a time upto which3(t— 7) exists
and also for the observational time at whjgthas decayed to
zero. So, more specifically we can write for- 7| < 7.,

fotdrﬂ(t—r)vm(r)exp[imd>(r)]

=v(t)exdime(t)] f;drﬁ(t— Texgd—im(t—7)w]
(3.20

and fort> 7., using Eq.(3.6) we have

this end we note that Lap47] had prescribed a method for
deriving Markovian Fokker-Planck equation from a classical
Langevin equation with short but finite correlation time. Al-
though the procedure can be extended to higher-order itera-
tion scheme to include non-Markovian effects, we adopt the
method advocated by Carmeli and NitZd1@] for their clas-
sical theory. This is based on Kramers-Moyal expansion of
the transition probability which connects the probability dis-
tribution functionP(J,¢,t) at timet with that of P(J,¢,t

+7) at a later time + 7 for small 7, given that we know the
moments of the distribution. For details we refer to Risken
[59] The time evolution of the probability distribution
P(J,¢,t) is determined by the equation,
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9P 1.5 (—1n g\m where(l) denotes théth iteration stage.
T lim |= > ol (5) The non-Markovian naturg.e., 7. is finite andr.<7) of
r-0+[ T =l T (mk=0);(m+k=n) the present problem allows us to consider, in principle, all
K orders ofr in Eq. (3.25. But, sincedP/4t is evaluated in the
| — AJ)M(A )Y PY | 3.2 limit 7—0,, terms linear inz, i.e., the coarse-grained time
(9¢) H(A)TAS)DsP) (3:29 scale, are taken while all the higher powers are neglected.
We now introduce the following abbreviations:
where
AJi=AJ(7)=J(t+7)—J(1), on(J)=inxy(J), (3.30
Ap=A¢(7)=p(t+ 1) — $(1). dx,(J)

J)= , 3.3
At this juncture it is worth recalling that is the coarse- #n(J) dJ (339

grained time scale over which the probability distribution
function evolves, whereas; is the correlation time, which , ~
due to low damping is much smaller than The low value Bam(J) =inXy(vm(I) Bl @(I)], (3.32
of v prompts us to take ! as the largest time scale for the
entire problem. However, the reciprocal of the frequency of
oscillation, i.e.,w™ 1, is the smallest time scale. Our task is, Cnm(J):[
therefore, to evaluate the moments of the form
((AJ)™(A ¢)*)s where our definition of average - - )g is
given in Eq.(2.9).

To evaluate the moments we make use of the followin
standard procedurd 0,47

dxn(J)

—a7 |mVBrle(D]. (333

Substituting Eqs(3.30—(3.33 in Egs.(3.22 and(3.23 we
%btain the quantum equations in the form of classical equa-
tions of CN[10],

AJI(T)=des'{J(twLs),¢(t+s),t+s], (3.26
O o0 oo
J=— 2 2 Byn(dexdi(n+m)e]

A‘MT):f(:olsézS[J(H:~:),<zﬁ(t+s),(t+s)], (3.27) e
+S(t) 2 on(dexping), (3.39

where the forms) and ¢ are given by Eq(3.22 and Eq.
(3.23), respectively. The iterative equations are given by,

AIO(7)= fofds;[J(t)+AJ§"”(S>'¢(U ¢=w(J)+n;m m;m Com(d)exdi(n+m)e]

As0-D(s) t+s], 3.2 S
+A¢y (s),t+s] (329 _S(t)z wn(d)exp(ing). (3.39

A ()= fods¢[J<t)+AJ§'*”<s>,¢<t>
From Egs.(3.28 and(3.34 we get the explicit structure of

+Ag{ V() t+s], (329 Al as
A== 3 3 | dsBa()+A3(s)]explin+mI$(t)+ Adi(s)])
+n:2_m OTdsSs)an[J(t)+AJt(s)]exp{in[¢(t)+A¢t(s)]}. (3.36

Similarly from Eq.(3.29 and(3.35, A ¢, is given by

Ap(7)= fonsw[J(tHAJt(s)HnE 2 Ofdscnm[J(tHAJt(s)]exp{i<n+m)[¢<t>+A¢t<s>]}

=—o m=—

-3 OTds3s>un[J<t>+Aat<s>]exp{in[¢<t>+A¢t<s>]}. (3.37

n=-—ow
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For beginning the systematic iteration procedure given by

Egs. (3.36 and (3.37) we initialize the zero order iteration
stage as

AIO(7)=0 (3.383
and

APO(N=w[It)]rT=wT. (3.38h

The entire process of iteration involves cumbersome but

PHYSICAL REVIEW E 66, 051105 (2002

([AJ(N)][Adi(7)])s=0, (3.43

. - d ~
(Ad(m)s= =272, n? olxa|*Bi(w) = G5l *Ch( )}

straightforward calculations, some relevant details of which
appear in the Appendix A. Here we state only the main re\Vhere

sults.

Inserting Eqs(3.383 and (3.38h in the right hand sides
of Egs.(3.36 and(3.37) we get the results of the first order
iteration. Thus,

AI()=—1 Z By _nt Z o, expling)
xffdsF(s)exp(inws)wL S o exging)
0 =

X deSQXs)exp(inws) (3.39
0

and

©

A¢§l)(r)=wr+7_§; Cn-n— _22 unexping)

xfrdsF(s)exp(inws)— S uexging)
0 n=o

% frdsg(s)exp(inws), (3.40
0

where in writing Eqs.(3.39 and (3.40 we have used Eq.
(3.17. For the second iteration we put E¢3.39 and(3.40
back into Egs.(3.36 and (3.37) and thus obtaim J{?)(7)
andA ¢{?)(7). Putting them back into Eq$3.36) and (3.37)
again we obtain\ J(*)(7) andA ¢{*)(7). These are presented
in some details in Appendix A.

In calculating the moments as demanded by 8125,
we have neglected all higher powens=2) of 7 and 1b.
The reason for doing this in case ofis clear from the limit
imposed onr in Eq. (3.25. For 1w also, this approximation
is legitimate since 14 is the shortest time scale of the prob-
lem [see inequality(3.7)]. The final results for the moments
are

<[AJt<T>]2>S=4rn§1 n?x,|?CS(w),  (3.4D

2~
Chw),

= |d
(Ad(DP)s=473, | (3.42
n=1

(3.44
- ~dx,[?  d [~ d|x,|?
T e
— 7foumote, (3.4H
BE= fwdtﬁ(t)cos(nwt), (3.463
0
Bﬁ=detﬁ(t)sir\(nwt), (3.46h
0
Ct= thca)cos{nwt), (3.460
0
Eﬁ=detC(t)sin(nwt), (3.460
0
and
” d .
fo== 2 oy gl V(X HD)
—(8X"H0)}]. (3.469
Also
Bn(@)=Bi(0) =i B3(w), (3.460
Ch(w)=C(w)—iC3(w). (3.469

Some remarks are needed in connection with B¢l to

Eqg. (3.45. Let us now examine how the quantum notion is
implied in Egs.(3.41)—(3.45. First, all the moments are the
functions of the Fourier components,(J) where J is a
quantumc number. Second, the moments are crucially de-
pendent on the Fourier components of quantum correlation
function C(t) of the heat bath. In the classical limi(J)
becomes the function of the classical action variabknd

alsoC,(w) reduces taC(w)=kgTB,(w). We thus obtain

([AJ( r>]2>s=4rkBTn21 n?x,|2B5(w),

2

B(w)

(Bt )= arkeTS, |2 (3.4
n=1

in the high-temperature limft w<kgT. The last term in Eq.
(3.45 is due to a correction to frequeney and is of pure
guantum origin(3.1f). f{ is precisely the coefficient df in
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the Taylor expansion of Eq3.1f). t. is the “cut-off” time w(J)=v(E), (3.59)
upto which the quantum fluctuation remains linear in time

and is approximated as 1/w, as allowed by the time scale we have

of the problem. Thus the quantum character of the nonlinear

system enters into the description in two different ways. d

First, classical Hamiltonian gets modified by quantum cor- ﬁz”(E)E' (3.59
rections att=0 [see Eq.(3.3)]. This makes action angle

variables bear quantum signature. Second, the quantum cowith this transformation the quantum Kramers equation for
rection fort>0 as contained imy(t) makes its presence in energy diffusionEq. (3.52] looks like

phase drift term in Eq(3.45.

Inserting Egs(3.41)—(3.45 in Eq.(3.25 and thereby dis- JP(Et) 4 1
regarding terms witln>2 with the following definitions: a  9E E) E+ A v(B)P(E.D)],

w (3.56
'E(J):an1 nxq| ?B5(), (348 where the diffusion coefficient is given by

. —— 1]

dx,|°~ = - 2|y |2

ra)=23 d_Jn &), (3.49 D(E) V(E)Zﬁg{n(wﬂ—z n§=‘,1 n2|x,|

n=1

xf dtp(t)cog nv(E)t]. (3.57
0

” ~dx.|2  d (. d|x,|?
D=0+ S nl ops |Xn| ( (AIxy|
n=1

an dJ - dJ Cn dJ )}_f(,)/‘LOtcv
(3.50 Equation (3.56 is the first key result of the present paper
The equation is valid for arbitrary temperature and noise cor-
we obtain the Fokker-Planck equation f8(J, ¢,t) as relation. The prime quantities that determine the equation for
energy diffusion(3.56 are the diffusion coefficient®; the
e 127 guantum analog d{T, A; and the frequency of the dynami-
znzl n*[Xn| “Br(@) cal systemy(E). It is important to note that all the quanti-
ties as defined by Eq63.57), (3.53 and(3.54), respectively,

0

IP(J,pt) 9
at T8

Cw) o contain quantum contributions. In the classical limit
Xl~c 5+w(~])}|:’ Eq. (353 reduces to kT when n(w)>1/2 and
Brl@) n(w)[ ={exptw/kT)—1} 1]~kT/hw. Since by virtue
92P IP (3549 v(E)=w(J)=0H/9J with H defined as H
+F(J)(97)2—Q(J)£. (3.5) =(1/2)v2+Vq(x) where Vq(x) includes quantum

corrections over the classical potenti(x) according to

Eq. (3.3), »(E) reduces to classical frequency in the classical

limit as 2#—0. Although the expression for the diffusion

coefficient(3.57) looks a bit complicated and formal due to

the appearance of the Fourier coefficiertsin the summa-

, (3.52 tion, it is possible to read the various termsD{E) in the
following way. D(E) is essentially an approximate product

of three termsfiw[n(w)+1/2], [dtB(t)cognr(E)t], and
v(E)=n_,n?|x,|%, where then dependence of the latter two
63(;) contributions have been separated out for interpretation. The
— integral is the Fourier transform of the memory kernel, while
Bh(®) the sum can be shown to be equalttAppendix D of Ref.
[10]), which is the quantum action variable. In the classical
or limit the quantum diffusion coefficienD(E), therefore,
- clearly reduces to the classical diffusion coefficient of Car-
A=ho [n(w)+1/2]. (3.53  meli and Nitzan[10]. A few further remarks on the related
o issues may be made at this point. To address the problem of
Here w is the linearized frequency antl plays the typical nonequilibrium quantum tunneling above crossover tempera-
role of kgT. We have ture (nonequilibrium situation arises due to the significant
growth of population above zero levels at temperature above
~dH dE crossover since the dissipation is very wgaleveral authors
T 93 dI [38—43 have advocated the use of a probability function per
unit time (of finding the system in the barrier region near a
Expressing classical turning point with energ) which obeys an inte-

If the distribution function is initially independent ap it
satisfies the quantum diffusion equation in action space

P 9
ETEEN]

e(J)lA%+w(J)] P

where by virtue of Eq(3.5d we write

A=A(w)=

w(J

051105-9
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gral equatior{43] whose differential approximation leads to P(E)=7(E)Peq(E) (4.6)
an equation similafnot the samgto Eq.(3.56. The notable

difference is in the fact that the former equation is applicablgo arrive at
above crossover temperature while Eg§.56) works at all

temperatures down to vacuum limit. The energy loss coeffi-

cient in Eq.(3.56), i.e., D(E)/A when put into the form

[using Eq.(3.53)]

an(E
je= D(E)(E)Peg ) 1. (4.7

Integrating the above expression frdi=E;=A [see Eq.

D(E) w - (3.53] to E=Ef, one derives an expression for energy in-
A fo dtﬁ(t)”(E)nZl 2n?|x,|*cog nu(E)t] dependent currerjiz (with E<E}) as
is comparable to that of Grift al.[43], the intergrand with- - [7(A)— n(Ep)]
out B(t) being a function of actioffor equivalently energy E ng dE
These results can be utilized as a consistency check of the A D(E)¥(E)Peq(E)

present scheme.
c c N~t —ES/A
IV. QUANTUM ENERGY DIFFUSION CONTROLLED =[1=7(Ep)ID(Ey) Ae T (4.8
RATE OF ESCAPE

) i where we have used the boundary conditig\)=1.
_The classical treatment of memory effects in the energy  rqjiowing the original reasoning by BHL we now allow
diffusion controlled escape is now well documented in the

; . an outflowj,,; from each energy rangg to E+dE, with
!lterature[10,35,3§. TO. address the corresppndlng prOblemeachE satisfying the conditiofE=Ef . Then we can write
in the quantum domain we start by recasting the Kramers

equation in the energy diffusion regini&q. (3.52] in the djou=av(E) 7(E)Poy E)dE, (4.9
form of a continuity equation to obtain d

. which is compensated by a divergence in the vertical flow
IP(E,t)  djg

+——=
at JE

0, 4.0 dic
JE =~ @V(E)7(E)PeE). (4.10
wherejg is the flux along the energy coordinate at thermal

equilibrium and is given by Here « is a parameter that has been set approximately equal

to one by BHL. Inserting the expression for nonequilibrium

_— 1 current Eq(4.7), we obtain the ordinary differential equation
JE__D(E) (9_E+X V(E)Pst(E)! (42) for 7](E) as
wherePg; is the stationary probability distribution. For zero d?n [dD(E) 1]dy
current condition, we have the equilibrium distributid®,, D(E)EJr g PBx|gg —an(E)=0.
at the source well as (4.1
-1 -1
Peo(E)=——-exp —E/A)= N—exp[—(ECJr AQ)/A], Within small energy range abO\!:‘eg one can assume essen-
v(E) v(E) @3 tially a constant diffusion co-efficient, i.e.,
: : : dD(E) c
where we have split the energy into classidaf) and quan- dE =0 for E=Ey. (4.12
tum (AQ) parts, the contribution arising from the latter be- E=Ef
ing very small. We now define the rate of escdpas flux
over population Substituting a trial solution of the formp(E) = C expGEA)
for s<0, in Eq.(4.11) we have
k=1, (4.9 [ 4an?|™?
a s . =——|| 1+ —| —1]. (4.13
2 D(E})

where
Setting 7(E) = n(Eg)exd S(E—Ef)/A] and putting this into

n,= (total population at the source wt fEbp(E)d E. Eq. (4.7) and comparing this with the right hand side of Eq.
0 (4.8) we have
(4.5

Here Ej is the classical value of the activation barrier. Fol-
lowing BHL [48] we use a Kramers like ansatz Thus, escape ratecan be obtained as

n(Ep)=1/(1—s) for s<O. (4.14
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-1 tailed discussion of quantum diffusion coefficient in the
(4.19 context of Eq.(3.56), the diffusion coefficienD(E) is con-
tributed by the three factors and has to be evaluated at the
Making use of Eq(4.14) in Eq. (4.8) and the resulting ex- barrier top. The main effect (_)f the preexponerjtial factqr_ is
pression forj in Eq. (4.15 we obtain that the rate becomes proport|on.al to the damping coefficient
and the memory kernel results in the decrease of prefactor

kie| [ nEpEre

EC -1 for increasing correlation time. The structure of the rate ex-
s fo 7(E)Peq(E)ME pression(4.19 suggests that it has the same form of the
= . (4.1 preexponential factor as that of higgi and Weisq35] al-
1=s[ (N"YA)D(Ef)exp —Eg/A) though its content is quantum mechanical in character. The

. ) quantum mechanical content of the rate expression lies in
For the dynamics at the bottom we haye-1. Recalling  several quantities, e.g., quantum diffusion coefficR(ES),
thatE=E®+ AQ, whereAQ is the quantum contribution to quantum analog oksT, A as given by Eqs(3.57 and
classz,lcal energy, we expartd in a Taylor series. Her€® (353 respectively. The frequency at the bottom of the well,
=(v%/2)+V(x) andAQ(x) is the quantum correction terms , "4 well as the classical activation enefgyget modified
n Eq. (3.3. Reta_umng terms upto the second ordexjrand by quantum correctiol Qy and AQ, terms. The result of
making harmonic approximation around the bottom of theHénggi and Weis§35] for the classical non-Markovian case
well atx=0, we get can then be appropriately recovered. It is thus apparent that
p2 1 1 quantum correction terms in the exponential factor in Eq.
E=>+ Eng2+AQ0+ AQpx+ EAngz, (4170  (4.19 depend on the nature of the potential which in turn
determines the rate. In what follows in the following section
we illustrate the results with a specific cubic potential of
wher(_awo correspo_nds to the frequency at the bottom ng theKramers form. We mention in pagsing that thrgughout the
classical potential V(x) ~at x=0 so that wg treatment the noise intensity needs to be small for the result

— 72 2 : . ,
_&,,V(X)/‘?X |x=0- The subscript zeros'mQ(',, AQq, and (4.19 to be a good description of the activated process con-
AQg are the gquantities evaluated at this point. trolled by energy diffusion.

Now n,, the total population at the source well, can be

evaluated as
V. AN EXAMPLE WITH CUBIC POTENTIAL

n,= J, J, Peo(E)dxdp We consider a model cubic potential of the foiX)

=—(1/3)AX3+BX2. A andB are two constant parameters
* ) of the problem withA>0 andB>0. Then by virtue of Eq.
=eXF{—AQO/A]leeXF(—U 12\ )dv (3.3 we have thec-number form of quantum potential,

—o0

* 1 1 ! 1 " A <
xf exp{—x(zngerAQoxﬂL EAQ0X2> dx. Vq(x)=—§x3+ Bx2— A(8X2(0))x+const (5.1

Thus so that the time independent Hamiltonian is given by

1 27A AQq (AQp)? 2
Na=— ————expg — - vt A L
N wé-i—AQg ;{ A 2A(wS+AQ6 H(x,v)= 5 §X +Bx*—Cx=E, (5.2
(4.18
So, the quantum non-Markovian rate of escape from a metavhere C=A#%/(2y2B). We have used (55(2(0))
stable well in the low-friction regime is given by =#/(22B), the minimum uncertainty, and ignored the
constant part inV4(x). HereC refers to quantum contribu-
{1+(4aA2)/D(E§)}1/2—1 D(Eg) \/w02+AQ6 tion to classical potential due to which the minimum, the
- 2 c\11/2 2 metastable point corresponding td,(x) shifts to Xg
{11(4aAD/D(EF=HL] A o =C/(2B) (with respect to the correspgnding classical meta-
1 (AQY)? stable minimum ak=0).
Xexp — N EE—AQﬁﬁ . (419 Linearizing the potential/(x) aroundx, we obtain
2(w5+AQyg

The above expression is the second key result of the piiper V(X)=Vq(Xo) + (X—X)2. (5.3

has the form of the celebrated Arrhenius expression for rate
coefficient with the classical activation energjj in the ex-
ponential factor and a complicatéddandD dependent quan- We then calculate the actiod the usual form of which is
tity in the preexponential factor. As noted earlier in the de-given by

5 AC
2B
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1 [x N 2_
J=—f 2vdx. (5.9 k:ﬂ {1+ (4aA )/?(‘]b)} 1/D(Jp)
T 27| {1+ (4aA2)D(I)12+ 1] A
X, andx, are the two turning points of oscillation for which i A2
v is equal to zero and they jointly correspond to a particular xexpg — A Ep+ 4w8 (511

value of the system enerdy. In principle, they are the first
two roots (in ascending order of magnitudef the cubic

) Here J,, denotes the value of the action of the system at the
equation

barrier top. It should be noted that it includes both the clas-

sical and quantum contribution&g corresponds to classical
éxs_ Bx2+Cx+E=0, (5.5 activation energy WhiCh gets modified by a coptribu_tion due
3 to quantum correction entangled with the nonlinearity of the

potential. It is important to note that the positivity of the
the third root being irrelevant for the present purpogeand  factor (Azﬁz)/(4w8A) in the exponential in Eq(5.11) re-
X,, however, can be approximately calculated by simply putsults in a larger effective activation barrier which causes
ting V4(x)=E (sincev =0 is the turning pointin Eq. (5.3 a net reduction of the full rate below its corresponding
and solving the resulting equation fry classical value. This is in good agreement with the earlier

observation by Griff etal. [43] and is somewhat
172 counterintuitive—as emphasized by mi et al. [4] to the
(5.6 fact that full rate comprises classical rate and zero tempera-

ture tunneling. The quantum reduction of total rate in the
weak friction regime is a manifestation of interplay of ther-
mal noise and quantum fluctuation and is expected to be
pronounced for systems with flat barriers, commonly en-
countered in absorption-desorption processes in surface phe-
nomena4].

(E—Vq(Xo)
X1,0~= X+ T

Putting the value ob from Eq.(5.2) in Eqg. (5.4 we get the
action integral in the form
2 (x 1/2
J=£f 2[(E—BX2)+
T Jx,

dx. (5.7

ASC
§X+X

VI. CONCLUSIONS
Putting Eq.(3.54) in Eqg. (3.57) we can express the quantum

diffusion coefficient in terms of the action as Based on a true quantum phase space distribution function

and an ensemble average procedure we have derived a gen-
eralized Kramers equation for energy diffusion and analyzed
the quantum transmission coefficient associated with the rate
coefficient within a full quantum mechanical framework in
0 . the low friction regime. The present formulation is a comple-

2|y |2 mentary follow-up to our recent work32] on quantum
anl N0l Jo dip(ticogne(Itl, - (5.9 Kramers theory in the spatial diffusion limited regime. The
main conclusions of this study are the following.

(i) The proposed Kramers equation in the energy diffusion
(ﬂagime is an exact quantum analog of non-Markovian clas-
sical Kramers equation derived by CNO] in 1980s. The
equation retains its full validity both in the classical and
w vacuum limits at arbitrary temperature and noise correlation

2 2_ of the heat bath.
w(J)n:E_w e DI7= . ©9 (ii) The generalized quantum rate coefficient for the decay
from a metastable well reduces to Kramersabigi-Weiss
Putting Eq.(5.9) in Eq. (5.8) the diffusion coefficient can be fate[35] in the classical limit and to pure weak dissipative
approximately expressed as tunneling rate in the quantum limit at zero temperature.
(iii ) While in the intermediate to strong damping regime
" the total Kramers rate comprising classical as well as quan-
f dtB(t)cog nw(JI)t]. tum rate is always higher than the corresponding classical
0 rate, the notable feature in the weak friction regitfer a
(5.10 metastable potentials a net quantum reduction of the total
rate below its corresponding classical value. This is in con-
For the present form of model potential we also haveformity with the earlier observation in this conte3].
AQ(x)=—Cx for which AQy=0, AQg=0 and AQy= (iv) While the existing methods of calculation of quantum
—C. With these expressions for quantum contributions andKramers rate are based on path integral techniddexl—
making use of Eq(5.10 in Eq. (4.19 we have the final 23,60,61, we rely on a canonical quantization procedure and
expression for the escape rate as true probability distribution function of-number variables.

D(J)=w(J)2kwo| N(wy) + %

where we have replaceB(E) by D(J) to emphasize the
change made in the argument. Furthermore, for unit mass
the Brownian particle we may writel 0]

- 1
n(wo)‘*'z

D(J)=23hw,
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dynamics.
(v) The quantum effects appear in the present formulation
in two different ways. The nonlinear part of the potential of APPENDIX A: CALCULATION OF MOMENTS
the system gives rise to quantum dispersion, while the heat
bath imparts quantum noise. An important advantage of the Some details of the calculations involving the iterations
present method is that it is possible to incorporate quantunupto the third orderfor determination of the moments have
corrections to all orders and one need not invoke any semheen shown here. The procedure followed here is that of
classical technique which is almost always used in the pracclassical theories of Carmeli and Nitzdd0]. We have
tical evaluation of the formal functional integrals. stressed the steps for which the quantum contributions form
The present scheme of mapping of the quantum theory aéssentially new content.
Brownian motion in energy space into a classical form offers
an opportunity to generate quantum noise as classicam-
bers and study numerically the quantum stochastic dynamics 1. First iteration
independent of path integral Monte Carlo techniq{@&2—
64]. We hope to address this issue in a future communica- Inserting Eq.(3.389 and Eq.(3.38b in Eqg. (3.36 we
tion. have

A== > > Bnmexr[i(n+m)qb]fonsexp[i(nan)ws]Jrnzw anexp(inq’))fOTdsF(s)exp(inws)

n=—o m=—wx

+n:2m o-nexmngb)fordsg(s)exr(inws), (A1)

where we have suppressed the arguments of quartitigs * *

o, and ¢ for the sake of brevity. Now, from Ed3.7) and ApM(=wr+7 D>, Cp_n— > pnexping)
the argument following Eq(3.25 we can infer thatwr n=-e n=-v
>1. So we can write

XdeSF(S)eXF(ian)— > unexping)
0 n=—w

f dsexdi(n+m)ws]=78, _n (A2)
0 T
) xf dsgs)expinws). (A5)
for which 0
” ) ” Along with these we will also require the statistical averages
nmz’w Bamexdi(n+m)]7é, —m= Tn;w Bn,—n- of the above expressions for calculation of the moments.
(A3) Thus,
Thus,

(AIP(1)s==7 2 By pt 2 opexping)

A ()==7 3 Byt 2 opexping) r
NS n=—o xfodsgﬁ)exp(inws), (A6)

XdeSF(S)exqian)+ > o,exping)
0 n=—w

where we have used E.10. We can proceed further with
Eg. (A6) and cast it in a more transparent form. In this con-

T . text it is worth mentioning that so far as the quantum noise
X deSQXs)exp(mws). (Ad) g(t) is concerned, we take only the significant terms from
Eq. (3.1f) which result in terms linear im. Referring back to
Similarly from Eq.(3.37) we have Eq. (3.32 we then have
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°O * 5 2. Second iteration
_Tn;w Bn,—n= _Tnzw Nw[Xq|*Bn( ) Here we insert Eqs(A4) and (A5) into the right hand
sides of Eq.(3.36 and Eq.(3.37). Keeping in mind Egs.
(3.38a and(3.38h, we expand the functions dfJ,(s) and

=—272 n2w|xn|2732(w)' (A7) Ad(S), Viz.,, Byms Coms 0n, andu,,, keeping terms up to
n=1 the first order only. Thus,

using Eq.(3.46a. The second expression of EGA6) has Byl J(1) +AJi(S)]=Bymt+ B/ AJi(S)  (Al0a)
been shown to be negligible in Appendix B. Thus
w0 with
(1) —_ 2 275¢
(AI(n)s=—272, nPolx|*Bi(w).  (AB) B —B [3(0)] (ALOD)
Similarly from Eg.(A5) we have and
= d|Xn|2~ p dB
AP M= wrt 73, nos 0B ot Bgm:[d_y" (A109
(A9) J=J(t)

In deriving Eq.(A9) we have used Eq€3.3]) and(3.39.  The expansion has been done abaud{®’(s)=0 and
Otherwise, the way leading to EGA9) is similar to that of A ¢{?)(s)=ws. The same expansion procedure is followed
Eq. (A8). The origin of the last term is the same integral thatfor C,,, o, ©,, and the exponentials as well, occurring in
appears in Eq(A6) and is shown in Appendix B. Egs.(3.36 and(3.37). We therefore obtain

AIBY( T)=AJ§1>(T)—n;w m;w l;w [Bmo—i(n+m)B e Jexdi(n+m+1) ] fordsf:dle(sl)exp[i(n+m)ws

tilos]- 2 X X [B;mal—i(n+m)Bnmﬂ,]exqi(n+m+|)¢]JOTdsJ:dslg(sl)exqi(nJrm)ws

—o m=—o |=—

+i|w51]+n2 Zx (a;a,—inanM,)exqi(n+|)¢]JOTdsf:dle(s)F(sl)exp(inws+i|wsl)

S

+ > Zw(ar’,al—inanﬂl)exqi(n+|)¢]fonsf:dle(s)g(sl)exmnws+i|wsl)+ > Ew G

n=-o|=- n=-—o |=-

—inonm)exp[i(n+I)d)]fOTdsf:dslg(s)F(sl)exp(inws+iIwsl)+n2 Zw (olhoy—inoam)

S

T S
xexp[i(n+|)¢]f dsJ ds,g(s)g(s;)expinws+il ws;). (Al
0 0
|
The derivation of this form of Eq/A11) requires two impor- exlik{A ¢{M(s)}]
tant steps to be followed. The first step is just a Taylor ex-
pansion. While putting EqgA4) and(A5) in Eq. (3.36 and =exik{A ¢ (s)— A p{O(s)} lexd ik{A ¢V (s)}]
Eqg. (3.37), we come across several integrals that contain one ) 1 _
quantity in common in the integrands. This is an expression =[1+ik{A¢{"(s) - ws}lexplikws). (A12)

of the form ex@ik{¢(t)+A¢§1)(s)}], wherek is an integer.

The first part, i.e., eXjikg(t)], being a function ot, can be  Here we have used E¢3.38h and as an essential stégec-
taken outside the integral while the second part can be deadnd discarded the nonlinear terms. Also, sinc& () and
with as follows: A¢M(7) are of orderO(7), we have
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AP (s)exikA ¢{M(s)]=AIV(s)expikws). (A13)

Guided by the same physical reasoning, we assert that all integrals of the fdissHs), with F(s) being finite ass—0,
yield terms of the order"(n>1), and are hence neglected. In a similar way, we can obtain the second iteratfornTbus,

A¢§2)(7):A¢§l)(7)+w,n;m opexping) fonsfosdle(sl)exp(inwsl)

© 0 ]

to' D, onexp(ind))fOTdsf:dslg(sl)exp(inwsl+ > > > [CLo—i(n+m)Chmu]

n=-—o n=—o m=—w |=—wx

 exifi(n+ m+I)¢]J’OTdSJ:d51F(sl)exm(n+ m)ws+il 0s,]

o) © %)

+ > > > [Clao—i(n+m)Chmulexdi( n+m+I)qS]desfsdslg(sl)eXQi(n+m)ws+i|wsl]
0 0

n=—o m=—% |=-x

) o

- > > (uho— |n,un,u|)exp[i(n+|)¢]fTdsfsdle(s)F(sl)exp(inweriIwsl)
0 0

n=-o0o |=-ox

[ [’

- > E (uho— |n,un,u,)exp[i(n+I)¢]fordsf:dle(s)g(sl)exp(inws+iIwsl)

n=—w |=—
oo o]

- > 2 (who—inwnm) exp[i(n+|)¢]fTdsfsdslg(s)F(sl)exp(inws+i|wsl)
0 0

n=—ow |==

- 2 2 (mho—inupu) exp[i(n+I)¢]fofdsf:dslg(s)g(sl)exp(inws+iIwsl). (A14)

n=-o |=—

We next require to calculate the averagasl®)(7))s and(A ¢{?(7))s. By virtue of Eq.(2.10), the former yields

QIO AI - 3 S 3 (B i+ mBylexti(nt g1 [ s “ds.a(syexitn+m)

o] o

Xos+ilws ]+ > > (oho1— inanm)exm(n+I)¢]fTdsfsdsl(F(s)F(sl»exp(inws+iIwsl)
0 0

n=—o |=—w

* - T S
+ E 2 (a,’p,—inonM|)exr[i(n+I)¢]f dsJ ds,g(s)g(sy)expinws+il ws;). (A15)
n=—ow |=—w 0 0
|
In Eq. (A15) we encounter three double integrals. The first 0 T s s si—1
and consequently the third are shown to be negligible in ! =f dsf dslf ds, f ds;C(s—sj)

Appendix B. For the second integral, Vviz,

J3dsf3ds(F(S)F(sy))sexplinwstilwsy), or [idsfgds; xexginos+il ws;]

X C(s—s;)explnws+ilws;), we refer to Ref[10]. In Ap- (-1 -1

pendix C of Ref[10] this type of integral of more general - 1 ('_) d"Bi(w) 5 (A16)
. 1 — | i—1 n,—I-

form have been evaluated. Here we state the results only: (=Dl do!
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The important physical consideration here is to neglect the * | n|2
terms of orderC(w)/w. The rest of the task amounts to (AJ?(7))s= —272 N w|X,| 2B @) — C(w )}
solving the above integral, also known as the Dirichlet's con- (A18)
dition for multiple integrals. Thus the integrals of the third
term in the right hand side of EGA15) reduce to, In a similar manner we also get
desJSdle(s— s))explinws+il ws))=78/(w) 8, _, . @) _ . dldx*
0 0 ' (Ap(7))s=wT+ Tnzl wIBn ndJ a1 —fomotc.
(A17) (A19)

Pluttigg Eq.(A17) back into Eq.(A15) yields, after a little  Next we step out for the final iteration stage, the third one.
algebra,

S d| |2 3. Third iteration
2 _ n
(A3 )(T)>s—<AJ§1)(7)>s+ZT§l n’ 43 Cn(@), Inserting Eq.(A11) and Eq.(A14) in Eq. (3.36 and Eq.
(3.37 as before we get the expansions f@ﬂ§3)(r) and
which, after using Eq(A8), reduces to A¢§3)(r) which we write in the following convenient form:

AI®(1)=A3P)(7)— n:E_m m;_m B! ,exdi(n+m)a] fords[AJE)(s) —AIMV(s)]exdi(n+m)ws]

o [

-2 X i(n+m)Bnmexp:i(n+m)¢]J’OTds[A¢>§2)(s)—A¢§1)(s)]exr[i(n+m)ws]+ > opexping)

n=—o m=—®=
©

><des[AJF)(s)—AJ§1>(s)]F(s)exqinws)+ > inonexp(in¢)deS[A¢§2)(s)
0 n=-—=x 0

—ApY(s)IF(s)exdinws]+ >, o exping) des[Ang)(s) —AJM(s)]g(s)expinws)
n=—ox 0

+ > inanexp(inda)J'Tds[A #P(s)—ApM(s)]g(s)exinws] (A20)
0

n=-—w

and

A7) =2 (r)+ o’ fo’ds[AJ§2>(s)_Ang>(s>]+ 2 2 Copexti(n+m)g] fOTds[AJEzks)—AJ%”(s)]

x exdi(n+m)ws]+ Z 2 i(n+m) nmexp[i(n+m)¢>]ffds[AzﬁF)(s)—A¢>t(1)(s)]exp[i(n+m)ws]
ne—w m=—o 0

- > M,;exp(in¢)des[AJF)(s)—AJ§1>(s)]F(s)exp(inws)— > inuyexpling)
n=—co 0 n=

X JOTdS[A »P(s)— AN (s)IF(s)expinws) — n;w o exping) Jords[AJF’(s) ~AIM(s)]

o)

xg(s)expinws)+ >, in,unexp(inqS)fons[AqS%z)(s)—Aq&%l)(s)]g(s)exp(inws). (A21)

n=-—o
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It is needless to carry out further iterations because they yieldhere we have used E.5b. Using the result of Eq/A16)
terms of ordeﬁ(w)/w even in the order of-, and hence are followed by a little bit of algebra we eventually arrive at the
negligible. From this point we therefore proceed to calculate/alue ofls. Thus,

the momentg (AJ)™(A ¢)*)g as the right hand side of Eq.

(3.25 demands. While performing the averaging, some inte- T’ y dC_ (o)
grals occur in common with both(AJ®)(7))s and ls= = =~ o-nexp(—ing)—g - (A23)
(A¢P(7))s. They are as follows:
and
|1=f ds([AJP(s) - AN (s)])s,  (A223) l1=1,=13=14=1=17=0. (A24)
0
Thus we have
|2=f ds([AIP)(s)— AIM(s)])sexdi (n+m)ws], =
’ aozp  (AIMs=(AIP(M)st 2 inopexaling)[ls],
(A25)
l3= frds<[A¢§2)(s)—A¢§1)(S)]>Sexp[i(n+m)ws], in which, by changing the dummy index fromn to n for
0

this symmetric summation{> to +), and employing
(A220) Egs.(3.12, (3.30, and(3.469 and finally putting the value
of (AJ?)(7))s from Eq. (A18) we reach at

|4: fofd%[Ang)(S)_A\]gl)(s)]F(S))seXF(inws),

(A22d) (AIP(n)s= =272, n*| wlxlBr(w)
. d -
lg= fods([A¢§2>(s)—A¢§1>(s)]F(s)>sexmnws), — g5 {xnl*Ci(@)} . (A26)
(A22¢)

Similar calculations establish the result

lo= JOTdS<[AJ§2)(s)—AJE”(S)Dsg(s)exp(inws), s Al d ("’sd|xn|2”

P43 " 43

<A¢§3)( T))s= 0T+ 7'21 n

n
(A22f) dJ
— 7fgumotc- (A27)
" (2)(g)— A (D) i
7= deS<[A¢>t (8)—A¢(s)))sg(s)explinws). For the calculations of the second momeritaJ;)?)s,

(A229) ((A¢)?)s, and(AJA )5 we refer the reader to the Ap-
pendixes B and C of Ref.10], where it has been clearly

Integrals 1, to 1, are in common with (AJ®(n)s Shown that terms that do not appear MJ{"(r) and
and(A ¢{3)(7))s while I, occurs in the latter only. The inte- Ap{Y(7) lead to cross terms or square terms containing
grands containing(-) alone or in a product witig(-), on  three or more integrals over one or t&functions. All of
averaging give zero by virtue of E2.10. And the inte- them contain higher powers of or terms of order
grands containing(-) alone or twog’s in product, amount [C(w)/w] with N=1, and are hence discarded. Thus we
to negligible contributiongsee Appendix B The integrands obtain the second moments as
containing the correlation average of twd& and not obey-

ing (or cannot be recasthe form of Eq.(A16) have all been 5 ” o 1R

shown to be negligible by CN in their Appendix[C0]. Such ((AJy) >s=47'n§=:1 n“|x,|*Ci(w), (A28)
integrals as stated above constitute the bodies; db I;.

For 1, throughl,, some integrals contain product of three (AJA b)s=0, (A29)

terms,  viz, (FC)F()F(-)s  (F())sa()a(-),
(F(IF())s9(-), 9(-)g(-)g(+), etc. The first two “ 1d
type of integrals vanish, the former due to E@®.10 <(A¢t)2>s=472 ‘j
and the latter due to the Gaussian property Fof The n=1|dJ
last two types vanish, the Ilatter following from

Appendix B and the former has been shown to beln obtaining the results of Eq§A28) to (A30) we have used
negligible in Appendix C. The only nonzero contribution Egs.(A10a) to (A10c) and the like, along with the fact that
comes from |5, the integral as a whole appears ashigher-order terms” and[C(w)/w]" (with n>1) are neg-
o' _ oexpll ¢)f5dsf3dslf31dSZC(s*sz)expanws+iI wS)), ligibly small.

2
C(w). (A30)
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APPENDIX B: EVALUATION OF INTEGRALS INVOLVING
QUANTUM CORRECTIONS

Here we calculate the terms involving single or multiple

integrals of the quantum fluctuatiay(-), keeping in mind

PHYSICAL REVIEW E 66, 051105 (2002

where the summation over the indexow extends from 1 to
infinity. Within the integral the exponential part fluctuates
rapidly (w being very largg remaining finite in the limits
—0. As it stands even fdt=2 such integrals yield terms of
order 7 (where p>1) [10]. Thus, integrals of the above

the time scale of energy diffusion. First of all we recall the tgrm are negligibly small and are hence discarded. The case

structure ofg(t) from Eq. (3.1f) and then refer to Eq(AB6).

of k=1 calls for a special attention. The above expression

On the right hand side of that equation we have an expresakes a more simple form Thus,

sion of the form,2.___ o.expine)fidsgs)exp(nws). For
brevity, we set

m

— [V (x(t) (X Dt))

(n=21)I'm! 5t
—(8XD(0))}e=0= Y mn(0), (B1)
so that Eq(3.1f) appears as
== 2 2 (MVni(0), (B2)

and we can write

n=—ow

> o, exp(inqb)desg(s)exp(inws)
0

= :Em |:23 op,exping)

x> k=0“Yk|(O)fOTds§<exr(inws) .

(B3)
From Eq.(B1) it is obvious that
Yon(0)=0, (B4)

and thus it follows that the right hand side of E&3) as-
sumes the form

E 2 onexmn¢>EY «(0)

n=—= |=3

JTdsé< exp(inws),

dest $19(s)g(sy)explinws~+il ws;)
0 0

o

> > onexp(ingi))E Yk|(O)JTds§<exp(inws)
= =3 k=1 0

-3 3 anex;iinqﬁ)Yl,(O)jrdssexp(inws).
n=—w i= 0

(B5)

In comparison to the rapidly varying exponential part, the
linear part arising from the quantum fluctuation does not
alter significantly within the range of integration and hence
the right hand side of EqB5) can be written as

o

> 2 o eXpind)Y 1(0)te 76 0

n=—ow |=3

Z (inx,)exp(ing) Y 1,(0)t.78,

Hb4 g

[using Eq.(3.30)]
(B6)
Heret; is the cutoff time &1/w) as has been mentioned

earlier in the discussions preceding E8.48. Similarly, af-
ter averaging the last term of EGA5) becomes

o oo

2 2w eXHING)Y1i(0)terdy o= — ooy,
(B7)

=0.

where we have used E.31) and Eq.(3.466.

Now consider the last integral of the right hand side of
Eqg. (A15). It is of the form [ds/3ds;9(s)g(s;)expinws
+ilws;). Using Eq.(B2), it can be cast in the following form:

= desg(s)exr(inws)fsdslg(sl)eXQilwsl)

™Y mi(0)

0

“TMS HMS

M8

0

M R s s

=
fia
I

w

exp(mws)f ds;

Y 1(0)Y 4, (0) J:d ssexp(inws)

mzzo ,23 ST Y myk, (0) | exp(il wsy)

Y 1 (0)Y 1 (O)f dsé“exp(lnws)j dsls Lexp(il ws;)

Ylk(O)Ylkl(O)J'Ofdssexp(inws) f:dslsl explil wsy) [using Eq(B5)]

sexpil ws)

, (B8)

ilw
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where evaluating the third bracket of the last expression we T s s1

have neglected terms of ord&(1/w?). The last expression (D)f dSJ dle dsy(F(s1)F(sz))s9(s)
yields terms of negligible contribution due to the reasons 0 ° °

given at the onset of EqB5). Integrals involving threeg Xexgio(js+ns; +1s;)]

functions can be similarly shown to be negligibly small. )
occurs inlg andl 5.

All the integrals from(A) to (D) lead to negligible con-
tributions. We establish this by showing the case of, say, type
(B). For doing this we invoke the quantum fluctuation-

In the discussions that appeared in between (B@2g)  dissipation relation from Eq3.5b as
and Eqg.(A23) we mentioned of four types of integrands that 1 (e
appear in the calculations involving the evaluations of the (F(S)F(sz»sz—f do'k(w)p(ow ) ho'
integralsl, to 1; [Egs. (A22d)—(A22g)]. Let us recall their 2Jo
forms again. They are

(1) (FCIFCFC s, (2) (F(-))s9(-)g(-),
(3) (F(F(-))s9(+), (Hg(-)g(-)g(-).

It was reasoned there that typds, (2), and(4) yield terms ~ With

of negligible contributiongsee Appendix B Here we clarify 1

the way of dealing with typé€3). The specific forms of inte- Glw')=zk(o")p(o o'
grals involving this type of integrands are 2

APPENDIX C: TREATMENT OF INTEGRANDS
OF 1, TO |; OF APPENDIX A

ho'
2K

coth

X cosw'(S—Sy)
= f do'G(w')cosw’ (s—Sy)
0

!

hﬁw
cot m,

. < 5 where, a superscript prime has been added to denote the
(A) f dsf dSlf dsy,(F(s)F(s1))s9(Sy) frequency of the bath modes,
0 0 0

1 o0
Xexdiw(js+ns;+1s,)], <F(S)F(sz)>s=§fo do'G(w)[exgio’(s—sy)}

(®) [ 05 a5 | "dsF(sIFcnsatsy rexp—iv'(smsp)l] ©
o Jo 0 When Eq.(C1) is put in type(B) integral along with Eq.

x exi w(js+ns;+1s,)]. (B2), we get the value of the integral as

These two integrals occur iy, [type B]:féf dw'G(w’){ — o741 2
0 nN“w°—w’
T s Sy (CZ)
(C) | ds| ds; | dsF(s)F(sz))sg(s2)
0 0 0 This being of higher order in &/, can be discarded. It is easy
xexfio(js+ns,+1s,)]. to show that the other three types of integrals also lead to

negligible contributions. The procedure is the same as that
This, with type(A) above, occur inhs. And lastly the integral adopted above in the case of ty(i®).
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