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Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling
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We simulated a growth model in (11) dimensions in which particles are aggregated according to the rules
of ballistic deposition with probability or according to the rules of random deposition with surface relaxation
(Family mode) with probability 1—p. For anyp>0, this system is in the Kardar-Parisi-ZhatigP2) uni-
versality class, but it presents a slow crossover from the Edwards-Wilkinson(EM&sfor smallp. From the
scaling of the growth velocity, the parameters connected to the coefficientof the nonlinear term of the
KPZ equation, giving\ ~p?, with y=2.1+0.2. Our numerical results confirm the interface width scaling in
the growth regime a®~ \#t# and the scaling of the saturation time &s\ ~1L?, with the expected expo-
nents 3=1/3 andz=3/2, and strong corrections to scaling for small This picture is consistent with a
crossover time from EW to KPZ growth in the formp~X\"*~p~8, in agreement with scaling theories and
renormalization group analysis. Some consequences of the slow crossover in this problem are discussed and
may help investigations of more complex models.
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I. INTRODUCTION In discrete models, the interface width that characterizes
the roughness of the interface is defined as

Surface growth processes and deposition of thin films are
of great interest due to potential technological applications 1 _
(such as production of nanostructures for microelectronic de- W(L,t)= [<F > (h— h)2>
vices, the possibility of growth of designed quantum objects, '
magnetic storage devices, among otharsd due to the fun- o . _ )
damental role these systems play in nonequilibrium statistifo" deposition in ad-dimensional substrate of length(h; is
cal physics[1,2]. Several models have been investigated inthe height of column at timet, the bar inh denotes a spatial
the last decade, most of them involving one kind of particleaverage and the angular brackets denote a configurational
and a simple microscopic aggregation rule. The competitioverage. For short times it scales a&/~t? and for long
between different growth mechanisms have received less afimes, in the steady state regime, it saturateSVaf~L“.
tention, but is essential to describe some practical situationd,he dynamical exponemt= o/ 8 characterizes the crossover
such as growth of materials designed to have specific eledrom the growth regime to the steady state regime. For sys-
tronic, mechanical or magnetic properties, which involvestems belonging to the EW universality class, we hayge
deposition of two or more chemical species. In this frame-=1/2, Byg=1/4, andzy=2 in d=1 (in this paper, the sub-
work, some authors considered growth models with twoscript O will refer to exponents of the EW thegry-or sys-
kinds of particles and different aggregation rulgs-5. tems in the KPZ class, id=1, we havea=1/2, 8=1/3,
Other situations involving competition between two growthz=3/2[1,9,10.
mechanisms have also been consid¢edg]. Considering the crossover from EW to KPZ scaling in

These models usually show crossover effects from onel=1, Grossmann, Guo, and Grai@GG) [11] and Natter-
dynamics at small timesor short length scalels to another mann and TangNT) [12] (see also the review by Forrest and
dynamics at longt and largeL. One typical example is Toral [13]) proposed multiscaling relations that are equiva-
Kardar-Parisi-ZhangKPZ) growth at small nonlinearities lent to
[9]. The Langevin-type equation

1/2

, )

t L
&h_ 5 A 5 R W(L,t)ZL f(z,é—c), (3)
—=vV°h+ = (Vh)“+ n(x,t), (1)
at 2
in which §c~tl/z°. GGG also proposed that the characteristic

. . C
known as KPZ equation, was proposed as a hydrodynamigme of crossover from EW to KPZ dynamics was
description of kinetic surface roughening. Heheis the

height at the positioﬁ in ad-dimensional substrate at tinhe te~N"2, (4)

v represents a surface tensianrepresents the excess veloc-

ity and 7 is a Gaussian noigd, 9] with zero mean and vari- yjth >0, since the EW-KPZ crossover disappears Xor
ance((x,t) n(x’,t"))=D&%x—x")8(t—t’). When the co- =0. Through scaling arguments, those authors obtaifed
efficient X of the nonlinear term is small, a crossover is =z,/(ag+2z9—2), which gives¢=4 in d=1. This was
observed from linear growthA(=0, known as Edwards- confirmed through one-loop renormalization group calcula-
Wilkinson theory—EW [10] to KPZ behavior. tions by NT. The scaling analysis of the KPZ equation by
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Amar and Family{14] and the assumption of Family-Vicsek I? I.T.I LT.I I.T.I I?
scaling[15] were used to show that, in the nonlinear and
saturation regimes, %
= Ll &
) 00 EHZEEEEEEE]
W(L,t)~L1’29< N LT/2> , (5) (a) (b)

FIG. 1. (@) The aggregation rules of ballistic deposition, in
in which g is a scaling function and the dependenc&\bbn which the sticking position of each incident particle is marked with
the parameters andD of Eq. (1) was omitted. A generalized a cross(b) The aggregation rules of the Family model, in which the
scaling relation equivalent to E¢3), which is a more gen- relaxation of incident par_ticles to t_heir sticking positions is indi-
eral result than Eq(5), was also obtained by Derrida and ca'ng by arrows. The incident partlcl.e at the right has equal prob-
Mallick in the context of the connection to the one- 2bilities to stick at any one of the neighboring columns.
dimensional asymmetric exclusion modél6]. Amar and ) . )

Family [14] have shown that the scaling for(B) also pre- ewdencg of the asymptotic KPZ behavior. However, that
dicts a crossover exponetit=4. work neither studied the relation between the parameters of
On the other hand, all previous numerical results sugIhe discrete and the continuo(l(§PZ) model nor the scaling

gestedp~3; for instance, GGG obtained this value using@mPplitudes that will be considered here.
data collapse methodd1]. Thus, it would be desirable to Thg resfc of this _work is orgamzed as follows. In Sec.. I,
confirm numerically the scaling properties predicted for aWe will define preuse_;ly the dlscr_ete model gnd connect it to
KPZ system in order to solve this controversy. the KPZ equation using the scaling properties of the growth
The purpose of this work is to study a competitive growthYelOC'ty- In_Secs. II_I an_d v we will present results for _the
process with EW to KPZ crossover, involving ballistic depo_lnterface Wldth scaling in the discrete model at the nor_1I|near
sition (BD) [1,17] and random deposition with surface relax- growth regime and qt the steady state regime, respectively. In
ation (Family modeJ [18] in d=1. In this model, incident S_ec. V we summarize our results and present our conclu-
particles aggregate to the deposit according to the rules of'OnSs-
BD with probability p and according to the rules of the Fam-
ily model with probability 1—p. It is known that the Family II. THE DISCRETE MODEL AND ITS CONNECTION
model is in the EW universality class, while BD is in the TO THE KPZ THEORY
KPZ class. This competitive model was introduced by Pelle- ] ) ) ]
grini and Jullien[19], whose main interest was the connec- e considered a model in which particles are aggregated
tion to the roughening transition present in higher dimen-following the rules of BD with probability or the rules of
sions. Although it is expected that this model is in the KPzrandom deposition with surface relaxatiofamily mode}
class for anyp>0, the crossover id=1 was not studied in With probability 1—p. In BD [Fig. 1(a)], the incident par-
detail in their original work and, fop=0.3, effective expo- ticle fo!lows a stra!ght trajectory_perpendmular to the surface
nents very near the EW values were obtaifeel. a_nd st_lcks upon first contact Wlth a nearest nelghbpr occu-
Here we will simulate that model in order to analyze thepied _S|te. It Iead_s to the formatlor_1 of a porous deposit. In the
interface width scaling in the nonlinear regime, the crossovefamily model[Fig. 1(b)], the particle falls towards the sur-
to the saturation regime and to connect the paranpeterd face alopg the [nC|d§nt column and sticks at the top of that
the coefficienth of the KPZ equation in the corresponding column if its height is lower than or equal to the heights of
continuum limit. The amplitudes of typical saturation times the neighboring columns. Otherwise, the particle diffuses to
and of interface width scaling in the growth regime are con{he neighboring column which has the lowest height and, if
sistent with multiscaling concepfd1,12,14 and refine pre- two or more neighbors have the same height, it chooses one
vious numerical estimates for related systems. The crossov&f them randomly. . S
exponenty=4 follows directly from our numerical results ~ FOrp=0, we have the Family model, which is in the EW
and, together with the observed relatian-p?L, indicate universality class. For anpfo, |n_d=1, we expect.the BD
that the crossover at smalis very slow. The analysis of this Process to change the universality class to KPZ in the con-
apparently simple problem shows that, in order to obtaifinuum limit (see the analysis in Ref25] for a related
reliable asymptotic exponents governing various quantitiesr,“_Odeb-_ Then the coefficient of the nonlinear term vanishes
it is essential to account for corrections to the leading term&ith p in the form
in the scaling relations. Thus, this work may also be relevant
to the analysis of other systems with slow crossover to KPZ A~p?, (6)
scaling, whose interest increased after the recent debate on
the problem of Fisher waves and their discrete realizations iwith y>0 (to be estimated below For smallp and suffi-
d=1 dimensiong20-23. For that reason, the crossover ef- ciently large L, the interface widthw/(L,t,p) must scale
fects identified in our simulations’ data will be discussed inanalogously to the weak coupling regime of the KPZ theory
detail. [13,19, in which three regimes were identified: a linear
It is also relevant to point out that a related competitive(EW) growth regime at early timest€t.), a nonlinear
model was recently studied oh=1 andd=2 [24], showing (KPZ) growth regime fott.<t< 7, and the saturation regime
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FIG. 2. For small values gb and sufficiently large., the inter- 0 002 004 0.06
face widthW(t,L,p) presents three regimes: a lind&W) growth 1/L
regime at early timest&t.), a nonlineafKPZ) growth regime for
t.<t<r, and the saturation regime for 7. FIG. 3. b,(p,L)=AvXL versus 1L for p=0.25 (squares p

=0.2(triangles, andp=0.15(crossey Solid lines are least squares

for t>7 as illustrated in Fig. 2 £ is the characteristic time fits of the data for larget.
for the interface width saturation

In order to calculate the exponemt we considered the the restricted solid-on-solid model by Krug and Meal26].
scaling of the interface growth velocity. The difference be-The corrections were considered in the extrapolation of the
tween the growth velocity.. in an infinitely large substrate data in Fig. 3, which provided estimatesBjf(p) for several
and the velocityv (L) in the steady state of a finite lattice values ofp (intercepts with the vertical axis in Fig).3

(thick films) scales a$26,27] Crossover effects may be crucial in the extrapolation pro-
cedure discussed above, and may severely affect the esti-
Av(L)=v.,.—v(L)~AL"4, (7)  mates ofB, for smallp. For 0.25<p=<0.5, four values ob,
(16=<L=<128) were well fitted by straight lines in the
with @=1 in d=1 [26]. Defining b,(p,L) X 1/L plots (these results were not shown in Fig. 3,

except forp=0.25). Forp=0.2, the data for 32 L<256
confirm the presence of thel1£orrection and was also used
to estimateB, (the estimate fol.=16 deviates from this
trend. On the other hand, fop=0.15, the result forL
) =256 showed a crossover b, , which suggested calcula-
tions for L=512. Figure 3 shows that,(0.15]) slowly
increases for 18L<128, but decreases for 128 <512.
Consequently, the extrapolation considered only the three
last points(see Fig. 3 and gaveB,~0.057. However, if the
extrapolation toL —c was performed only with results for
L=<128, then a 7% larger value &, would be obtained.
Smaller values ofp were not studied here because such
crossover would appear for much largeand, consequently,
the extrapolations based on small systems’ data would pro-
vide unreliable estimates @f,(p,>).

In Fig. 4 we show IfB,(p)] versus Irp using the extrapo-
lated values oB,,, as discussed above. The linear fit in Fig.
4 givesB,~p?L Considering the error bars B,, we ob-
tain an exponeny=2.1+0.2[Eq. (6)].

b,(L)y=Av(L)XL, (8)
we expect that, ak— o,
b,(L)—B,=BA\,

whereB is a constant.

In the discrete modeh varies withp, consequentlyp, is
a function ofL andp which has a finite limiting valu®,(p)
asL—o. For very largelL, Egs.(6) and (9) show thatB,
scales withp with exponenty.

Simulations of the model were performed in lattices of
lengths fromL =16 to L=4096 until the saturation regime,
and in lattices with_ = 2'5= 65536 during the growth regime
(linear and nonlinegy for several values of the probabilify
betweenp=0.15 andp=0.5. The results presented in this
paper are averages typically over®1fealizations for the
smallest lattices I(<256), 10 realizations for 25&L

<4096, and 19 realizations forl.=65536. The growth ve- The | | f th texolains th
locities were calculated from numerical derivatives of the € large value ot the exponeptexpiains the crossover

average heights of the deposits, with accuracies from 5 to gﬁeq qliscussed abov.e. Sinlced.ecreases rapidly witp, the
decimal places, in lattices of lengths< 128 (L<512 for p coefficient of the leading term idv [Eq. (7)] is small com-

=0.15). We considered the data for=65536 as represen-
tative of an infinite lattice in the growth reginijsome simu- O T
lations in L=131072 supported this assumptipand also

In Fig. 3 we showb,(p,L) versus 1L for the three small- 4

obtainedv.. with high accuracy. These data provided esti- a ! ‘ '
mates oMb, (p,L) with accuracy from 0.5% to 5%. For larger EJ? r ]
lengths, poorer results were obtained due to the much = 2 7
smaller number of realizations. - - .

-3 —

est values op considered in this work. The variablel1in 2 15 -1 o5
the abscissa was the best choice to represent finite-size cor- In(p)
rections inb, asL—x, and is related to higher order terms

(1/L?) in Eq. (7). Such scaling corrections have been previ-  FIG. 4. Log-log plot ofB,(p) as a function op. The linear fit
ously observed in the analysis of smialtlata for BD and for  gives an exponeny=2.1+0.2.
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0.8 T 2 prerrrrrrTpTrg in the form 1f*(x>0) were tested in the abscissa, but the
= I T 15E 3 variable 11 of Fig. 5@ provided the best linear fits for
S, 08 ] < L E E most values ofp. The fact that in Fig. &) a(p,t) is still
~ s ¢ o 3 E decreasing for largé indicates the presence of a constant
< 0.4 F USSR i 05 F = (independent of) correction to the leading behavior in Eq.
Y S . 0 Bty it (12). It proves again the relevance of accounting for scaling
0 002 0.04 0 0.05 0.1 0.15 corrections in this problem, although we are not able to jus-
1/t1/3 pz tify these corrections on theoretical grounds.
As t—oo, a(p,t) converges to a finite limiting value
(a) (b)
A(p)=a(p,*). (19

FIG. 5. (a) Interface width amplitude in the nonlinear regime
a(p,t)=W(L—x,t)/t*® as a function of 33 for p=0.4, p  A(p) is the complete amplitude of scaling of the interface
=0.3, p=0.25,p=0.2, andp=0.15(from top to bottony;, (b) Ef-  width in the nonlinear growth regimgEg. (11)]. Our esti-
fective exponent; versusp?, with a linear fit that gives the expo- mates ofA(p) were obtained from linear extrapolations of

nent5~0.7 asp—0. a(p,t) x 1t plots tot— o [intercepts with the vertical axis
. _ . in Fig. 5a)].
pared to higher order corrections (#/ 1/L.3, etc) for small From Eq.(11), it is expected that the amplitud&(p)

p. Thus, very large values &fare needed to provide reliable scales aa”. From the connection relatia), it is expected
extrapolations with a single correction term, which preventednat

us to use values gh<<0.15 in our study.

A(p)~p’, (16)
ll. INTERFACE WIDTH AT THE NONLINEAR _
GROWTH REGIME with
In the nonlinear growth regime {<t<\ ~1L?) for suffi- 5= vyB. a7

ciently large substrates ith=1, the interface width does not
depend orL. (weak finite-size effecis Then the scaling func- Then, the test of Eq(11) reduces to the test of E¢L7) for

tion of Eq. (5) behaves as the amplitude exponen.
In order to calculate the expone#tin the relation(16),
g(x)~Cxf, p=1/3, (100 our first step was to plot [iA(p)] versus Irp, but we noticed

that it showed decreasing slopespedecreased. We analyzed
the evolution of the slopes of [A(p)]XIn p plots by calcu-
8ating the following effective exponents for consecutive val-
uesp=p’ andp=p":

with constantC, so thatwW does not depend aln, except for
vanishing corrections to scaling. Consequently, th
N-dependent scaling aiV in this regime is

~CN\PtB
In this section, we will verify this\ dependence through a P In(p'/p”) » PENPR
careful analysis of simulations’ data of our discrete model.

However, first we will show that Ed11) gives¢p=4 [Eq. SO that, ap—0 (A—0), we expect thab,— §.

(4)] in a simple way, as follows. The crossover EW-KRZ In Fig. 5(b) we shows), versusp?, which gives a reason-
t~t.) occurs when the scaling relatighl) matches the EW able linear fit and indicates that=0.7+0.2. Again the vari-
scaling ablep? in the abscissa is the one that provides the best linear
fit of the central estimates of,, chosen among other vari-
W(t,L)~C'tPo, (120 ables in the formpY(y=>0). In Fig. 5b), the effective expo-

nents systematically decreasemeéecreases, which reflects

with C* constant. Thus our previous observation of decreasing slopes (A(p)]

t Bo~\BtA (13) XIn p plots.
¢ ¢ Our estimatess=0.7+0.2 andy=2.1*+0.2 (Sec. |) are
then we obtaing=[B/(8— Bo)1=[20/(z0—2)]=4. consistent with relatiof17) with 8= 1/3. Even considering

We conclude that the numerical test of K1), in par- that the error bars are large, it is relevant to notice that the

ticular, of the dependence on the paramatemay be used central estimates confirm that relation exactly, which gives
to test the proposalp=4. The first step is to extract the additional support to our analysis.
amplitude oft? scaling in Eq(11), which motivates the defi-
nition of the amplitudea(p,t) as IV. INTERFACE WIDTH NEAR AND AT THE STEADY
STATE REGIME
a(p,t)=W(L—oo,t)/tY3, (14

Our numerical results in the steady state regime provide

In Fig. 5@ we showa(p,t) versus 11" for several values additional support for the scaling picture proposed for the

of p, using the data fot. =2°=65536. Different variables problem.
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From Eq.(5), we expect that the crossover from the non- -1 o
linear to the steady state regime takes place at a characteristic 0 C ]
time 7 that scales as A oL 3

~\1L7 (19 2 :
S 3r 7
with z=3/2 ind=1. In this section, our main purpose is to - C ]
test thex dependence of this characteristic time in our dis- gD bt 0 N
crete model. -& -15 -1 -05
The saturation timer is usually estimated using some ln(p)

arbitrary recipe. Here, instead of estimating the saturation

time 7 (which may be defined from the time dependence of FIG- 6. Log-log plot of the amplituded(p) (7o/L¥* as L

the interface width as it converges to the saturation yalue — %) as @ function ofp. The linear fit givesD(p)~p~* with o

we calculated a characteristic timg which is proportional =<+

to 7, according to a recently proposed metH@8]. That ) ) , ]
method provided accurate estimates of dynamic exponengs the difference between the saturation width for a given
for several growth models id=1 andd=2, including the E)robabllltyp and the saturation width for the Family model

Family and the BD models. p=0). . .
First, the saturation widthV, is estimated, for fixegh and In Fig. 7 W§25h°W IMW versus Irp. The linear fit sug-
L. Then we define, through gestsAW;~ p~4, thus we obtain the complete form for the

saturation width as
W(7g)=kWs, (20)

Wg=(Cy+Cop¥IL7, (25
with fixed k(k=<1) [28]. Using the Family-Vicsek relation
W(L,t)=L*f(tL "% and considering thatV;~L*, we con-
clude thatry~L7% i.e., 7 is proportional to the saturation
time 7. For the particular case of a KPZ system, E§)
gives

with «=1/2, C; and C, constants. The amplitude &f/
scaling is D/24v)Y? [27], i.e., the heights’ fluctuations de-
pend only on the parametersand D of the KPZ equation
(1), but not on the nonlinearity parameter Thus we con-
-1y 32 clude that the dependence prin Eg. (25) is related to the
To~N "L (21) :
dependence op of the surface tension parameterwhenp

Extending the procedure of previous wdi2g], we con- decrease; the amplitude in E(QS) decreases,_then the pa-
sideredk=1—1/e=0.632% - - in Eq. (20) to estimater,. ~ '@meterv increases. Indeed, this term is physically expected
This value ofk gave 7y~  for BD, wherer was estimated 0 Increase in the crossover from Bw v) to the Family
from the decay oW,—W [28]. In the present model, for Model(high »).
fixed p, we calculated the ratios,/L%? for several lengths

and obtained the asymptotic amplitude V. SUMMARY AND CONCLUSIONS

To We studied a competitive growth model in{1) dimen-

D(p)=—; Lo (22 sions involving two dynamics: ballistic deposition with prob-
L ability p and random deposition with surface relaxation

(Family mode) with probability 1—p. This model is a dis-

The extrapolation procedure follows the same lines of the R . . i
) . crete realization of the continuum KPZ equation with an ad-
calculation ofA(p) from a(p,t) in Sec. Ill. However, only

results forp=0.2 could be obtained using data for Iatticejustablg_nonlinear coupling. related top. At the critjcal
sizesL <4096, since the saturation for smaller value i probability pg=0, the process belongs to the EW universal-

typically of EW type (—L?2) in this range ofL. ity class, while any finite value qf drives the system to KPZ

From Egs.(22) and (21), we expect thaD(p)~\ 1. class.
Consequently, it must scale withas S
2 f— —
D(p)~p " (23 o f .
= 15[ -
In Fig. 6 we show IrD(p) versus Im, with a linear fit that = F ]
gives D(p)~p~ 2L This result is consistent with the inde- e r E
pendent estimate of from Eq. (6) (Sec. I). 05 E E
We also analyzed the scaling of the saturation widith AN
For lattice sizesL<1024, we obtainedWg~L“ with -15 -1 -05
a=1/2 and weak corrections to scaling. Using the data for ln(p)

L=1024, we defined
FIG. 7. Log-log plot of AW =W,(p) —W,(0) as a function of
AW =W, (p) —W,(0) (24)  p, using data folL=1024. The linear fit suggestsW,~ p*.
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We established the connection between the paramptersor KPZ saturation, and. can be estimated from the condi-
and\ as\~p?!and showed thav~p°®42in the growth  tion 7~t., which givesé.~\"2~p~*2 This large expo-
regime. This indicates that the discrete model presents a vernent proves that simulations in very large system sizes are
slow crossover from EW to KPZ scaling at small valuepof necessary in order to observe all features of KPZ scaling for
since the crossover time is~\ ~4~p~ 84 This slow cross- smallp.
over explains the discrepancies in the effective expong@nts  Our results are consistent with the scaling theories for the
measured in that regime in previous wofl$]. weak coupling regime of the KPZ equation proposed by sev-

We also obtained the saturation time-p~2L.%2 The eral authors and refine previous numerical analysis. Then we
conditionT>t. is necessary to observe the crossover to KPZxpect that the methods presented here may be helpful to
scaling, while the opposite condition leads to EW saturatioranalyze other growth models with slow crossovers to KPZ
without an intermediate KPZ growth of the interface width. scaling, in which scaling theories cannot be easily devel-
A critical system sizet; separates systems that present EWoped.
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