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We extend the conventional mode-coupling theory of supercooled liquids to systems under stationary shear
flow. Starting from generalized fluctuating hydrodynamics, a nonlinear equation for the intermediate scattering
function is constructed. We evaluate the solution numerically for a model of a two-dimensional colloidal
suspension and find that the structural relaxation time decreases agith an exponenv<1, wherey is the
shear rate. The results are in qualitative agreement with recent molecular dynamics simulations. We discuss the
physical implications of the results.
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Recently, there has been an explosion of interest in undescopic relationship between fluid structure and dynamics as a
standing out of equilibrium properties in supercooled liquids.function of thermodynamic control variables and external
In general, the nonequilibrium behavior of a glassy system iglriving.
characterized by a violation of the fluctuation-dissipation In this paper, we shall generalize the mode-coupling
theorem and the absence of time translation invariance. Ifheory developed to describe the fluctuations in an equilib-
the particular case where the system is subjected to a hom§Um state to that of a system under a stationary shear flow.
geneous, steady shear flow, time translation invariance is r&2Ur starting point is generalized fluctuating hydrodynamics.
covered. This simpler nonequilibrium situation is of interestYSing several approximations, we obtain a closed nonlinear
for two reasons. First, understanding the rheological propel@quatlon for the sheared generalization of the intermediate

ties of complex fluids such as colloidal suspensions an&cattgrir]g function. In this paper, we shall con;ider bOth hor-
polymers at a microscopic level is important for the designmaI liquids as well as the overdamped Brownian behavior of

. a colloidal suspension in the absence of hydrodynamic inter-
and control of new materials. On a more fundamental level P y Y

it has recentlv been suagested that for suoercooled li uidactions. Numerical results will only be presented for the
Y 99 P UG8 ownian case, but the more general results derived here

there are fundamental connections between the standard thels |4 pe used to make quantitative contact with recent mo-
modynamic control variables of temperature and density iqecular dynamics simulations.

the equilibrium case and steady state shear out of equilibrium -~ <ider the shear flow given by

[1]. A major goal of this work is to develop a theory that

provides an explicit microscopic connection between the Vo(r)=T-r=(vy,0,0), (1)
temperature, density, and shear rate in a supercooled liquid.

Dense colloidal suspensions are known to exhibit weakvhere (I') 5= ¥3,,J4y is the velocity gradient matrix. The
shear thinning behavior. Such behavior is predicted fohydrodynamic fluctuations for densip(r,t) and the veloc-
simple liquids as well, but the effect is too small to observeity field v(r,t) obey the following set of Langevin equations
at temperatures well above the glass transition. For supef5,6]:

cooled liquids, however, the situation is different. Recent nu-

merical simulations have revealed anomalous rheological be- ‘9_’) =—V.(pv)
havior in supercooled liquids. Yamamoto and Onf&iand at '
Berthier and Barraf3] have simulated supercooled liquids )
i _ d(pv OF ¢
gn_der strong stationary shear flow and observeq a character P V- (pw) = _BV___O (V=vo) +fr,  (2)
istic shear dependence of the structural relaxation time and at m  Sp

the shear viscosityr, , 7=y~ ", wherer, is the structural . - i
Yar %Y Ta where £, and m are the collective friction coefficient and

relaxation time, is the shear viscosityy is the shear rate, 555 for colloidal particledq(r,t) is the random force. The
and the exponent is empirically found to range between 2/3 , term is specific for the colloidal case. In the case of
and 1. An abstract schematic approach based on the exactlyomic liquids, the friction term should be replaced by a
solvablep-spin spin glass has been proposed and studied bytress term that is proportional to the gradient of velocity
Berthier, Barrat, and Kurchaf@]. This model predictsy  field multiplied by the position dependent shear viscosities.
=2/3 in agreement with the lower bound found in the simu-Both cases, however, lead to the same dynamical behavior at
lations of Berthier and Barrd8]. Since this model is sche- long time scales. We neglect the weaklependence of the
matic, it cannot be used to understand in detail the microfriction coefficient, which could arise from hydrodynamic
interactions between colloidal particles in the Brownian case.
The first term in the right-hand side of the equation for the
*Electronic address: miyazaki@fas.harvard.edu momentum is the pressure term, afAds the total free en-
"Electronic address: reichman@fas.harvard.edu ergy in a stationary state. Here we assume that the free en-
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ergy_is \_Nell approximated by that of yhe equilibrium form wherek(t)=exdTt]-k=k+ &théy, where 'T" denotes the
and is given by a well-known expression transpose ol" and &, ,,=(27)%V 15(k—k’) for a system
of volumeV.
Equation (5) states that the fluctuations satisfy transla-
= I -1 . . ; . . .
BF j dr p(r){In p(r) =1} tional invariance in a reference frame flowing with the shear

1 contours. This approximation holds for long wavelengths
- _f dflf dr, 8p(r1)c(r10) dp(rs), (3)  Where the direct interactions between particles are not impor-
2 tant. On the other hand, for correlations between particles
separated by molecular length scales, this is not generally
where 8= 1/kgT andc(r) is the direct correlation function. true. The validity of this approximation for molecular length
Under shear, it is expected thefr) will be distorted and  scales should be systematically examined in the future.
should be replaced by a nonequilibrium, steady state form Using this approximation, it is straightforward to con-
Cnoned ), Which is an anisotropic function of The effect of  struct the mode-coupling equations for the appropriate corre-
shear on the static correlation functions has been studiegtion functions. We shall derive the equation for the inter-
[7,8] and is found that the distortion is characterized by themediate scattering function, defined by
Peclet number Pe ya?/D,, whereo is the diameter of the
particle andDy=kgT/{; is the diffusion constant. Thus, if
the Pelet number is small, the above assumption is valid. If
necessary, the full anisotropic steady state structure may be
used. By linearizing Eq(2) around the stationary state as WhereN is the total number of the particles in the system.
=po+ 8p andv=vy+ dv, wherep, is the average density, Note that the wave vector iap,(t) is now replaced by a
we obtain the following equations: time-dependent ond(—t).
Equation(4) has a nonlinear term

(6pk(—1)(1) 8p (0)), )

Zl -

F(k,t)=

J J
——k-F~—>5 ()= —ikJy(1), 1 A
(at ok P “ R == — | i(k-9)c(a) Spi_o()Ipg(t).  (®)

mgBJq
d d o~ . ik _ . . _—
——k-I' = +k-I' k| (1) = — —5 =+ Sp«(t) This term can be renormalized with the definition of a gen-
at JK mBS(k) eralized friction coefficient following the standard procedure

1 . lo of derivation of the mode-coupling equatiofs9]. To low-
- m_,Bf ik-qc(q) dpk—qo(t) dpg(t) — EJk(tHka(t), est order in the fluctuations, we have
q

) L kT L RT3 - —
i KTtk Tok () = mAS(K) p(t)

where c(q) is the Fourier transform of(r), k=k/|k|, 1t
Jk(t)=p0R~a\/k(t) is the longitudinal momentum fluctua- _Ef dt’f dk’ Z(k,k",t—=1t") 3y (t") + L (1),
tion, andfqudq/(ZTr)d for a d-dimensional system. Note o
that our approximate equation does not contain coupling to 9)
transverse momentum fluctuations even in the presence of
shear. where {(k,k’,t) is the generalized friction coefficient and

In order to construct equations for the appropriate correfg,(t) is a corresponding random forcé(k,k',t) is given
lations from the above expressions, an approximate symmdsy the sum of the bare friction coefficient and the mode-
try is necessary. In the presence of shear, translational invargoupling term as
ance is violated. In other words, correlations of arbitrary

fluctuations, f(r,t) and g(r,t), do not satisfy J(kK',t)=Zox28(t) + 8¢ (kK" 1), (10
(f(r,t)g(r’,0))#(f(r—r',t)g(0,0)). Instead, we shall as- ) o )
sume that the following symmetry is valfd]: with the mode-coupling contribution given by
2
(f(r,09(r",0)=(f(r=r"(),)g(0,0)),  (5) ,%(k,k,,t)zmTf*(Rk(t)R:,(o))_ 11

where we defined the time-dependent position vector by o . _ .
r(t)y=exglt]-r=r+ 7tyéx, whereéx is an unit vector ori- Substituting Eq(8) into the above expression, we obtain
ented along thex axis. In wave vector space, this is ex-

1 n n
ressed as M= ) rale(a’
P 6¢(kk't) ﬂqufq’k qc(q)k’-q’c(q’)
(F(1) g (0)) = (F (1) Gy (0)) X ity i X(8p1c_ql 1) Sp(1) 807, (0) 597 (0)).
=(frr (DG (0)) X Scr -y, (6) (12)
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This involves a four-point correlation function. Using the  For colloidal suspensions the relaxation time of the mo-
Gaussian approximation, this can be decomposed into mentum fluctuations is of the order af,=m/{, and is

product of two-point correlation functions as much shorter than the relaxation time for density fluctua-
. . , tions, which is of the order of or longer thag= o*/D,. For
(8pk—q(t) Opq(t) Opy _ 4/ (0) Spg, (0)) =NF(k(t) the time scale of interesk(—t)-I'-k(—t) as well as the

inertial term can be neglected in the equation for the momen-
—q(t),)F(Q(t), ] Sit)k’ Oty a’ + Oty Fqt) k’ —q' > _ = neg _ equation fc

tum fluctuations sinceyr,,<1 in realistic situations. Thus,
(13 the equation for the momentum fluctuations may be written

where use has been made of the translational invariancg,S
Eq. (68). (13 back 12 o ik(—t)
Substituting Eq(13) back to Eq.(12), we obtain 0=————=<F(k,t)—,C(k,t
oL (kK" t)=8L(K,t) Sty » (14 ¢
) —f dt’ 6¢(k(—t),t—t")C(k,t’). (20
with 0

pof( - . Substituting this back into Eq19), we arrive at
5§(k,t)=ﬁf {k-qgc(ag) +k-(k—ag)c(k—a)}
a dF(k,t)  Dok(—t)?

. =— F(K,
X k(t)-q(t)e(a(t))F (k(t)—q(t),t)F(q(t),t) dt sk(— Y
_23 qV(k,q)V(k(t),q(t))F(k(t) fodt M(k(—t),t—t") o (21
—q(t),t)F(q(t),t), (19  where

whereV(k,q) is the vertex function given by _poDo Kk
P M(k,t)=—"— quV(k,Q)V(k(t),Q(t))F(k(t)
V(k,q)=k-{qc(q) +(k—q)c(k—q)}. (16)

—q(t),t)F(q(t),t). 22
From these results and E), the equation for the correla- a(D.HF (@)1 22

tion function, Equationg21) and(22) are the major results of this paper. In
1 the absence of the shear, they reduce to the conventional
Clk, == (I (DNF(0)), mode-coupling equatior4.0]. o '
N In order to study the shear thinning effect in the super-
o cooled state, we shall solve Eq21) and(22) numerically.
is given by Solving this equation is more difficult than solving the cor-
dC(k t iK(—t responding equation in the equilibrium case because the
(K, )= —k(=t)-T-k(- _ L wave vectors are distorted by shear and the system is not
k(=)-T-k(=)C(k,b) Fkt) ~Wwave v re dis! . :
dt mBS(k(—1)) isotropic. For simplicity, we shall consider a hypothetical
1t two-dimensional colloidal suspension that is simple to
— _f dt’ s¢(k(—t),t—t)C(k,t’). (17 handle numerically but still undergoes an ergodic-nonergodic
mJo transition below a certain density. The shear flow occurs in

) _ ) ) the x direction. We have chosen the following form of the
Note that in the above equation, the differential operatoitatic structure facto(k):

k-T'-9/9k disappears because

S(k) = Spy(k+ko,apo) f(k—ke), (23

whereSpy(k, p) is the static structure factor for a hard-sphere
system at the density obtained from the Percus-Yevick clo-
Likewise, the continuity equatiofthe first term in Eq(4)]  sure kg anda are parameters that were chosen in such a way

dC(k,t) aC(k,t)
dt 4t

—k(—=1)-T-

Jd
kD (18

can be written as thatS(k) is short ranged and has broader pedk—k;) is a
cutoff function that makeS(k) approach unity smoothly for

dF(k,t) wave vectors larger than the cutddf. The choice ofS(k)
dt =—Tk(=C(k.1). 19 mimics the shape 08(k) of real systems although it does

not satisfy sum-rule restrictions. In our calculation, we chose
This equation together with E¢L7) comprises the closed set ko=4.0, =32, andk,=4.0. For this system, the ergodic-
of the mode-coupling equations fBi(k,t) andC(k,t) under  nonergodic transition occurs around a “densigy o?=1.2
shear. X 10" 2 in the absence of shear. In Fig. 1, we show the be-
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FIG. 1. NormalizedF(k,t) for k=(0,20) for various shear
ratesy. The “density” is po?=1.15< 10" 2. From the right to the
left, Pe= ya?/Dy=0, 10°%, 10°%, 10°2, 10 %, and 1. The results
for Pe=0 and 10“ are almost indistinguishable. The timeis
scaled byo?/Dy,.

havior of F(k,t) for po?=1.15x10"2, slightly below p,.
The wave vector i«=(0,20). Sincek,=0, the expression
for F(k,t) is equivalent to that in the quiescent state,
Feq(k,t)EN_l<5pk(t) Spi (0)). Thus, there is no direct ef-
fect from the convection term but, due to the nonlinear cou
pling through the mode-coupling teri(k,t), a strong

shear dependence of the relaxation time can be seen. THE

dependence of the structural relaxation timgy) on the
shear ratey is estimated from the value wheie(k,r,)
=e" 1. For the particular case gfo?=1.15<10 2 we find
the power lawr, = 'y‘V with »=0.8 for Pe=10 3, and 7,
saturates to the equilibrium value at#0 3. This is simi-
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find that the exponent saturates at a higher value, in agree-
ment with the simulations of Berthier and Bar(a.

The physical picture that emerges from the molecular hy-
drodynamic theory developed here is simple. The shear flow
perturbs and randomizes the coupling between different
modes. Physically, this perturbation dissipates the cage that
transiently immobilizes particles. Mathematically, this is re-
flected through the time dependence of the vertex, which
vanishes as—oc. This simple picture illustrates the essence
of the mode-coupling approach to the shear thinning effect in
simple supercooled systems. Note that even for fluctuations
orthogonal to the direction of flow, thinning occurs due to the
coupling of fluctuations in all directions. In this sense, the
picture of cage breakup in a supercooled liquid due to exter-
nal flow is quite different from that of dynamic critical phe-
nomena under shear, in which the faster relaxation occurs
solely because the fluctuations are stretched out by the shear
flow and pushed to larger wave vectors where faster relax-
ation occurs.

In this paper, we have derived an approximate mode-
coupling theory for a supercooled liquid under steady shear
flow. The most important assumption is the use of approxi-
mate translational invariance, E¢). This allows one to
derive a nonlinear integro-differential equation fe(k,t),
similar to the one for the equilibrium state. The numerical
analysis for a hypothetical two-dimensional colloidal suspen-

sion has been carried out and a typical behavioF ¢i,t)
as shown to be consistent with recent simulations. The re-
laxation time is found to have the strong shear dependence.
More systematic and thorough analysis of the numerical so-
lutions of the mode-coupling equations are left for future
work [11].
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