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Spectral problem for dilute atomic gases using discrete hling-Uhlenbeck operators
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Effects of free orientations§ which is related to the relative direction of scattering of particles with respect
to the normal of the propagating plane-wave fijarging four-velocity model for the dispersion relationship of
ultrasound propagation in dilute atonfltard-sphere particles of Bose and Fermi statistieses are presented.
We address the dispersion relations thus obtained by the relevant paranfatelocking factoy or B which
describes the Bose and Fermi particles for the quantum analog of the discrete Boltzmann systeBnisvhen
positive (and p=1) and negativéand p=—1), respectively. The preliminary results show that there is no
attenuation when the parametequalsw/4 for all Bs.
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[. INTRODUCTION In this short paper, we extend the four-velocity model to
be orientation-free {# 0) and then reexamine the dispersion
The behavior of atoms and their interactions at ultracoldelations(complex spectrefor the ultrasound propagation in
temperatures is a fascinating area of study. These interactiog§ute hard-spherémonatomig atomic gases by including
and their effects distinguish them from those encountered iflynamical correlationgby an Uhling-Uhlenbeck collision
collisions at room temperatufé]. Recent studies, however, term which could describe the collision of a gas of dilute
have driven a tremendous growth of interest in the finite-hard-sphere Fermi or Bose particles by tuning a parameter
temperature fieli2,3). Different theoretical approaches have [5-9] (via ablocking factorof the form 1+ pf with f being
been applied to relevant physical problems about atomi@ normalized distribution function giving the number of par-
gases[4]. For instance, emerging interests in discrete andicles per cell, say, a unit cell, in phase spa&ound waves
continuous models of the quantum Boltzmann equation ofre presumed to be plane waves. Our preliminary results
Uhling-Uhlenbeck equation have stimulated intensive reshow that for§=0 and 6= /4, there might exist gaps of
searches recent[p—9]. Both theories and their applications spectra for all kinds of Bose and Fermi gases considering the
are in rapid progress. There are related initial and/or boungrarefaction measure.
ary value problems, i.e., the former being central to the ana-
lytical or numerical approach because of the propagation of
the forced sound from certain origin, while the latter being
almost related to the experimental environment due to the We assume that the gas is composed of identical particles
sensors and transducers somewhere downstream, must dfethe same mass. The velocities of these particles are re-
well defined and then solved to obtain the complex spectra astricted to, e.g.u;,U,, . . . \Up, p is a finite positive integer.
dispersion relationgreal part : sound dispersion, imaginary The discrete number densities of particles are denoted by
part: sound attenuation or absorptid@,10,11. Our previ-  N(r,t) [5,7,10,14,1bassociated with the velocity; at point
ous attempts used a fixed-orientatio<0; ¢ is related to  r and timet. If only nonlinear binary collisions are consid-
the relative direction of scattering of particles with respect toered, considering the evolution dF , we have
the normal of the propagating plane-wave fjoribur-

Il. FORMULATIONS

velocity model that gave rather physical results, especially _ p
for the dilute Bose gaf7]. We noticed that Kaniadakis and _I+ui’VNi:FiEE > (AlklekNI_AikleiNj)a
Quarati have derived a nonlinear one-dimensional kinetic at j=1 (k)

equation for the distribution function of particles and already
extended that kinetics t®-dimensional continuous or dis-
crete space, in order to study the distribution function of
particles obeying a generalized exclusion-inclusion Pauli o o
principle. They can obtain a general expression of the stawhere k1) are admissible sets of collisiofs,7,10,14,1%
tionary distribution function, depending on the value theyWe may then definé~; of above equation for particles of
give to the parametet considering their special interests to Boltzmann statistics as

Brownian particlegwhich could evolve under the action of

an arbitrary external potentjal12]. (Later on, Kaniadakis 1 .

also proposed a classical model for the fractional statistics FiltN)=3 > (AUNKN = AKINN;), 2
which are obtained as steady states of a system of two Lk

coupled equations, linked by means of a boson-fermion

i=1,...p, (1)

transmutational potentidll3].) Their approaches are more withieA={1,... p}, and the summation is taken over all
specialized than our presently used @skall be introduced j,k,l e A, where A}, are nonnegative constants satisfying
in the following section, cf. Ref45-9]). [5,7,10,14,1%
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All=Al=AlL modulus,Sis an effective collision cross section for the col-
lision system, is the orientation starting from the positixe
axis to theu, direction.

To study the spectral problem related to the above models,
we shall study the dispersion relations for the plane wave
propagating in dilute hard-sphere monatomic Bose and
Fermi gases. Since passage of the sound wave causes a small
departure from equilibrium resulting in energy loss owing to
- internal friction and heat conduction, we linearize above

A=A (microreversibility conditio. equations around a uniform equilibrium stad, by setting
N;(t,X) =Ng [1+ P;(t,x)], whereP; is a small perturbation.
The conditions defined for the discrete velocity above re-The equilibrium state here is presumed to be the same as in
quire that elastic, binary collisions, such that the momentunrefs. [7,10,11. After some similar manipulations as men-
and energy are preserved;+u;=uc+u, [ul®*+|u]®  tioned in Refs.[7,10,11, with B=pNy#0 [5-7], which
=|ud?+|u|?, are possible for &i,j,k,I=<p. gives or defines théproportiona) contribution from the di-

The collision operator is now simply obtained by joining lute Bose gasesif p>0, e.g.,p=1) or Fermi gases g
A:‘-' to the corresponding transition probability densitié% <0, e.g.,p=—1), we then have
throughAf{' = S|u; —uj| af' [5,7,10,14,1% where,

(indistinguishability of the particles in collision
A:(j|(ui+Uj_Uk_U|):0

(conservation of momentum in the collisign

> (m—1)7] &2 J
" - o — +cPcos| 6+ ————|— +4cSN(1+B) Dy
aiJ-?O, 2 aij=l, \Y |,J=1,...,p, ot X ot
KI=1
4CSNy(1+B) & 4
with S being the effective collisional cross section. If gl D — kzl = Dk )
(p=2q) outputs are assumed to be equally probable, then N
I icanakl
aj;=1/q for all k and|, otherwiseaj=0. The termS|uy; B B . _
~uj|dtis the volume spanned by the molecule witin the YE%G(?nmo:j(mP)mJ\ermgrne)/ri'arg_té’Iéé)i(’?6rs'tlrr1]ges?nllu;ic?nrgfi?1rthe
relative motion with respect to the molecule with in the = ' yto
! form of plane waveD ,,=a,, expi(kx—wt), (m=1, ... ),

time intervaldt. Therefore,S|u;—u;|N; is the number of
molecules involved by the collision in unit time. Collisions
that satisfy the conservation and reversibility conditions
which have been stated above, are defineddmsissible col-
lisions With the introducing of the bling-Uhlenbeck colli-

with w=w(k) [7,10,11. This is related to the dispersion
relations of one-dimensional forced ultrasound propagation
of rarefied gases problefi0]. So we have

sion term[5-7,9 in Egs.(1) or (2), 1+ih(1+B)—2\2cog| o+ (m—l)ﬂ'H i
n
Fi=> Al [NNj(1+pN)(1+pN; i "
% ki [NKNj (14 pNj) (1+pN;j) _|h(1n+B) kZlak:Q M=t .. .n ©
= NiN;j(1+pN)(1+pNp)], (€©))
with

for p<0 (normally, p=—1) we obtain a gas of Fermi par-
ticles; for p>0 (normally, p=1) we obtain a gas of Bose
particles, and fop=0 we obtain Eq(1).

Considering binary collision only, from E¢B), the model . . )
of discrete quantum Boltzmann equation for dilute atomicvhereh is the rarefaction parameter of the gas; Kn is the
(Bose and Fermigases proposed in Reff5,7] is then a  Knudsen number which is defined as the ratio of the mean

system of 2(=p) semilinear partial differential equations frée path of gases to the wave length of ultrasound.

A=kc/(V2w), h=4cSNy/wx1/Kn,

of the hyperbolic type: Let ' am=C/(;+ih(1+ B)—2x200§[0+(m.—1)7r/n]),
where C is an arbitrary, unknown constant, since here we
P P cs 2 only have interests in the eigenvalues of the above relation.
—Ni+u- —Nj=— > NN n(14+pNjyq) The eigenvalue problems for differennselocity models
at X nj=1 reduce toF, (\)=0, or
X (1+pN; “2cSNN;
( P J+n+1) NN+ ih(1+B)
X (1+pNi,q) 1I-—
X(1+PNi+n+1): i=1,...,21, (4) n 1
_ X 2 =0. (7)
where N;=N;, ,, are unknown functions, and=c(cog @ M1 ih(1+B)— 27202 | 0+ (m—1)m
+(i—1)m/n],si0+(i—1)a/n]); ¢ is a reference velocity n
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FIG. 1. Variations of\, and \; with respect toé (rad for h FIG. 2. Variations ofx, and\; (both are dimensionlessvith

=100. Dilute Bose gases, denotes the dispersion angdenotes  respect tod (rad) for h=100. Cases of dilute Fermi gaseB (
the attenuation or absorption, and\; are dimensionless quanti- <0),
ties.h=4cSNy/w, Sis the effective collision cross section. ) o

We can observe that, as tliproportional contribution
We solven=2, i.e., four velocity case here. The correspond-ffom the dilute Bose gase® increases, the larger branch

ing eigenvalue equations become algebraic polynomial fornjPropagation of diffusion mode/10,11 or larger values of
with the complex roots being the resuilts Xos. both\, and\; (Fig. 1) shows an increasing trend for als.
For 2x 2-velocity model, we obtain Onced increases, this specttaoth A, and\;) will approach

to the asymptotic caseé=0.7853(nears/4) which accounts
2 for the propagation of the diffusion mode or entropy wave as

1-{lih(1+B)}/2} X 141+ih(1+B) verified in Refs[10,11.
m= Similar observations hold for dilute Fermi gasds<(0)
—2\2%cog [6+(m—1)7/2]}=0. (8)  asshown in Fig. 2. The special case is for the attenuatjon

whenB is equal to ™1 for all #s. There is also no attenua-
tion. This observation might be relevant to the Pauli blocking
IIl. DISCUSSIONS effect for dilute Fermi gase1].

As 040, the degree of the complex-coefficient polyno- '!'c_) compare present orientation—fret_a results with p_revious
mial (equation obtained above is now 4 instead of 2 for the Verified fixed-orientation dat&r], we noticed that, even if we
fixed-orientation cased=0) [7,10,11. The complex-root- only show calculations for four-velocity model, the diverse
finding procedure thus becomes much more complicate§Cattering of angular spectra due &*=0 already covers

than before. For one extreme case, i.e., the rarefaction pd?0se Of higher Xn-velocity models for6=0. This might
rameter is equal to zerdiE 0, near the vacuum limit which be the intrinsic characteristic of the coplanar discrete velocity

is surely within collisionless regimewe have roots models[5,7,10,11,14,15 o
To conclude in brief, our derivations here, as they are
\2 1 1 9 orientation dependent, may give more clues to the under-

standing of the sound propagation in microscopically atomic
gaseg1—4], random, disordered, or granular meflié]. The
The only possible case lies &&= = /4 and there is no at- anomalous behavior of the spectffar the larger valugs
tenuation §;=0). For the other extreme case, if @ r_1ear6=0_, which is similar to that for the possible Io_ca_lllza-
=0, we recover those results of the hydrodynamical oftion of dilute hard-sphere gases of Boltzmann-statistic par-
continuum-mechanic limit for dilute Bose and Boltzmann ticles[17] (or the forward scattering of sound by the vorticity
gaseq7,10,11. If +0, however, as the analysis becomesUsing a first Born approximationmight also be due to the
much more complicated or difficult, we should resolve it by @d hocassumption of having an infinitely plane wave inter-
using numerical approadlsay, for the case di=100) and gctmg_ with an |nf|_n|tely long-range velocrgy field. We shall
plot the resultgone branch for both real and imaginary partsinvestigate in details this and the relevant issue: how to

of the roots into Fig. 1. We shall focus on the variation of Simulate the exclusion principle in microscopical many-body
the spectraX, and\;) with respect to the free orientatigh ~ €guations of motion in our future works.

and the blocking paramet&: There is an essential singular-
ity near 6=0. The other(smalle)y branch has trivial results
(Ar~1.0 and\;~0.0). We only present those @fs up to The author is partially supported by the China Post-
w4 as spectra of orientation effects are symmetric with reDoctorate Science Foundation and the Starting Funds for
spect tof= /4 after our checking10,11]. 2002-NWNU Scholars.
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