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Epidemic spreading in correlated complex networks
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We study a dynamical model of epidemic spreading on complex networks in which there are explicit
correlations among the node’s connectivities. For the case of Markovian complex networks, showing only
correlations between pairs of nodes, we find an epidemic threshold inversely proportional to the largest
eigenvalue of the connectivity matrix that gives the average number of links, which from a node with connec-
tivity k go to nodes with connectivityk8. Numerical simulations on a correlated growing network model
provide support for our conclusions.

DOI: 10.1103/PhysRevE.66.047104 PACS number~s!: 89.75.2k, 05.70.Ln, 87.23.Ge
w
at
m
its
n

r t

re

ic
y
o

ir

ex
tin
e
e
ica
ec

i
th

re
e

Th

uc

le
y

in
in
v
pi

xi-
of
ce
re-
e
ing

ro-
er-
ion.
ad-
cit
n-

ec-

m
ed
-

m-
as a
t

ms

of
l-

hat

to
cal

he
Statistical physics has witnessed in recent years a rene
interest in graph theory due to the discovery that many n
ral and artificial systems can be described in terms of co
plex networks, in which the nodes represent typical un
and the links represent the interactions between pairs of u
@1,2#. The term complex network has been coined to refe
networks that typically exhibit two distinct properties:

~i! A scale-free~SF! connectivity distribution. If we define
the connectivity distributionP(k) as the probability that a
node is connected tok other nodes, then SF networks a
characterized by a power-law behaviorP(k);k2g, whereg
is a characteristic exponent. This property renders class
models of random graphs@3#, described by an exponentiall
bounded connectivity, inappropriate for the description
many real networks.

~ii ! The small-world property @4# that is defined by an
average path length—average distance between any pa
nodes—increasing very slowly~usually logarithmically! with
the network sizeN.

Apart from the empirical characterization of real compl
networks and the development of new models, accoun
for the observed properties, the interest in this field has b
also driven by the discovery of the profound and subtle
fects that the connectivity has on the behavior of dynam
systems defined on top of complex networks. These eff
are particularly interesting in the study of disease transm
sion in SF networks, relevant for the understanding of
spreading of computer viruses@5# and sexually transmitted
diseases@6#. Indeed, it was first noted in Ref.@7# that in
uncorrelatedSF networks with a connectivity exponentg
<3, epidemic processes do not possess an epidemic th
old below which diseases cannot produce a macroscopic
demic outbreak or the development of an endemic state.
feature, observed in several epidemic models@7–11#, is
deeply rooted in the presence of very large connectivity fl
tuations in infinite SF networks.

The study of epidemic spreading in uncorrelated comp
networks~that is, in graphs in which the connectivity of an
node is independent of the connectivity of its neighbors! has
been proved to be extremely successful, providing, for
stance, the first satisfactory explanation of the long-stand
problem of the generalized low prevalence of computer
ruses without assuming any global tuning of microsco
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parameters@7,12#. Nevertheless, it represents a first appro
mation to real networks, which neglects the possibility
correlations in the connectivity of the nodes. The existen
and importance of connectivity correlations has been
cently pointed out in the literature. In fact, it has becom
clear that these correlations are critical in the understand
of the hierarchical structure of the Internet@13–15#. On the
other hand, some growing network models have been p
posed@16#, in which correlations are spontaneously gen
ated and have important effects in the percolation transit

In this paper we shall present a study of epidemic spre
ing in complex random networks in which there are expli
correlations among the node’s connectivities. We will co
sider in particular the subset of undirectedMarkovian ran-
dom networks that are completely defined by their conn
tivity distribution P(k) and the conditional probability
P(k8uk) that a node of connectivityk is connected to a node
of connectivityk8. These two functions can have any for
~including SF behavior!, and are assumed to be normaliz
((kP(k)5(k8P(k8uk)51) and restricted by the connectiv
ity detailed balance condition

kP~k8uk!P~k!5k8P~kuk8!P~k8![^k&P~k,k8!, ~1!

where the symmetric function (22dkk8)P(k,k8) is the joint
probability that two nodes of connectivityk andk8 are con-
nected. The Markovian nature of this class of networks i
plies that all higher-order correlations can be expressed
function of P(k) and P(k8uk), allowing an exact treatmen
of epidemic models at the mean-field~MF! level. It is worth
noticing, however, that a more detailed description, in ter
of a Langevin equation~to be reported elsewhere@17#!,
yields exactly the same results, confirming the accuracy
the MF description. In this framework, the topologically re
evant magnitude is the connectivity matrixCkk8
5kP(k8uk), that measures the average number of links t
go from a node with connectivityk to nodes with connectiv-
ity k8. We will show that the epidemic threshold is related
the largest eigenvalue of this matrix. Extensive numeri
simulations on a random correlated network model@16# con-
firm the predictions of the present analysis. During t
©2002 The American Physical Society04-1
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completion of this work we became aware of two rece
preprints@18,19# in which the general role of correlations i
spreading and percolation in complex networks is also hi
lighted.

In order to study the effects of connectivity correlations
epidemic spreading, we will focus in the standa
susceptible-infected-susceptible~SIS! model@20#. All the re-
sults, however, can be easily extended to the more gen
susceptible-infected-removed-susceptible model@17#. In the
SIS model each node in the network represents an individ
and each link represents a connection along which the in
tion can propagate. Susceptible~healthy! nodes become in
fected with probabilityn if they are connected to one o
more infected nodes. On the other hand, infected nodes
cover spontaneously with probabilityd. The ratio of these
two rates defines an effective spreading ratel5n/d ~without
lack of generality, we setd51). For homogeneous ne
works, in which each node has more or less the same num
of connections,k.^k&, a general result states the existen
of a finite epidemic threshold, separating an infected~en-
demic! phase, with a finite average density of infected in
viduals, from a healthy phase, in which the infection dies
exponentially fast. In terms of the average density of infec
individuals r(t) ~the prevalence! we can describe the SIS
model in homogeneous networks at a MF level by the f
lowing rate equation@8#

] tr~ t !52r~ t !1l^k&r~ t !@12r~ t !#. ~2!

In this equation we have neglected higher-order terms, s
we are interested in the onset of the endemic state, clos
the point r(t);0. Also, we have neglected correlation
among nodes. That is, the probability of infection of a n
node—the second term in Eq.~2!—is proportional to the
infection ratel, to the probability that a node is healthy,
2r(t), and to the probability that a link in a healthy nod
points to an infected node. This last quantity, assuming
homogeneous mixing hypothesis@21#, is approximated for
homogeneous networks as^k&r(t). From Eq.~2! the exis-
tence of an epidemic thresholdlc5^k&21 @20# can be
proved, such thatr50 if l,lc , while r;(l2lc) if l
>lc .

For general complex networks, in which large connect
ity fluctuations and correlations might be allowed, we m
relax the homogeneous hypothesis made in writing Eq.~2!
and work, instead, with the relative densityrk(t) of infected
nodes with given connectivityk; i.e. the probability that a
node withk links is infected. Following Refs.@7,8#, the rate
equation forrk(t) can be written as

drk~ t !

dt
52rk~ t !1lk@12rk~ t !#Qk~ t !. ~3!

In this case, the creation term is proportional to the spread
ratel, the density of healthy sites 12rk(t), the connectivity
k, and the variableQk(t) that stands for the probability that
link emanating from a node of connectivityk points to an
infected site. In the case of an uncorrelated random netw
considered in Refs.@7,8#, the probability that a link points to
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a node of connectivityk8 is independentof the connectivity
k of the node from which the link is emanating. Therefore,
this caseQk5Qnc is independent ofk, and can be written as

Qnc5
1

^k& (
k8

k8P~k8!rk8~ t !, ~4!

since the probability that a node is pointing to a node
connectivityk8 is proportional tok8P(k8). Substituting the
expression~4! into Eq.~3!, one can solve for the steady-sta
solution and find the existence of an epidemic thresholdlc ,
below which there are no solutions with a nonzero value
Qnc. The expression of the epidemic threshold for uncor
lated random networks is

lc
nc5

^k&

^k2&
. ~5!

For infinite SF networks withg<3, we havê k2&5`, and
correspondinglylc

nc50. Finally, from the solution ofrk ,
one can compute the total prevalencer using the relationr
5(kP(k)rk .

For a general network in which the connectivities of t
nodes are correlated, the above formalism is not corr
since we are not considering the effect of the connectivitk
into the expression forQk . This effect can be taken into
account, however, for Markovian networks, whose corre
tions are completely defined by the conditional probabil
P(k8uk). In this case, it is easy to realize that the corre
factor Qk can be written as

Qk~ t !5(
k8

P~k8uk!rk8~ t !, ~6!

that is, the probability that a link in a node of connectivityk
is pointing to an infected node is proportional to the pro
ability that any link points to a node with connectivityk8,
times the probability that this node is infected,rk8(t), aver-
aged over all the nodes connected to the original node. Eq
tions ~3! and~6! define together the MF equation describin
the SIS model on Markovian complex networks.

The exact solution of this set of equations can be diffic
to find, depending on the particular form ofP(k8uk). How-
ever, it is possible to extract the value of the epidemic thre
old by analyzing the stability of the steady-state solutions.
course, the healthy staterk50 is one solution. For smallrk ,
we can linearize Eq.~3!, obtaining

drk~ t !

dt
.(

k8
Lkk8rk8~ t !. ~7!

In the previous equation we have defined the Jacobian ma
L5$Lkk8% by

Lkk852dkk81lkP~k8uk!, ~8!

wheredkk8 is the Kronecker delta function. The solutionrk
50 will be unstable if there exists at least one positive
genvalue of the Jacobian matrixL . Let us consider thecon-
4-2



ei
f

-
e

v

er
, w

-

de

n
nd
th

vi
om

ne

th

t

-

er
to
rk,

the
m

ted

ed
es,
en

0
10
he
te

st-
t
er

or,
ion
e-

po-
2

y’s

ld
e-
ite

en-

or-
de-

d

ec-

BRIEF REPORTS PHYSICAL REVIEW E66, 047104 ~2002!
nectivity matrixC, defined byCkk85kP(k8uk). Using the
symmetry condition, Eq.~1!, it is easy to check that ifvk is
an eigenvector ofC, with eigenvalueL, thenP(k)vk is an
eigenvector of the transposed matrixCT with the same ei-
genvalue. From here it follows immediately that all the
genvalues ofC are real. LetLm be the largest eigenvalue o
C. Then, the origin will be unstable whenever211lLm
.0, which defines an epidemic threshold

lc5
1

Lm
, ~9!

above which the solutionrk50 is unstable, and another non
zero solution takes over as the actual steady state—the
demic state.

It is instructive to see how this general formalism reco
ers previous results@7,8#, implicitly obtained for random un-
correlated networks. For any random network, in which th
are no correlations among the connectivities of the nodes
have that the connectivity matrix is given byCkk8

nc

5kP(k8uk)[kk8P(k8)/^k&. It is easy to check that the ma
trix $Ck8k

nc % has unique eigenvalueLm
nc5^k2&/^k&, corre-

sponding to the eigenvectorvk
nc5k, from where we recover

the above established result, Eq.~5!.
In order to check the theoretical prediction Eq.~9!, we

have performed numerical simulations of the network mo
proposed by Callawayet al. @16#. This model is defined in a
very simple way: each time step we add a new node, a
with probability d, two nodes are randomly selected a
joined with a link. This model yields a random network wi
a exponential connectivity distribution,P(k)5(2d)k/(1
12d)k11, which shows correlations among the connecti
ties of the nodes. These correlations can be analytically c
puted by means of the joint probabilityP(k,k8), which ful-
fills the recursion relation@16#

P~k,k8!5
2d

114d
@P~k21,k8!1P~k,k821!#

1
P~k21!P~k821!

114d
.

This is a linear equation, that can be solved using the ge
ating functional technique, yielding the joint probability

P~k,k8!5P~k!P~k8!
114d

~2d!2 S 112d

114d D k1k8

3 (
k150

k21

(
k250

k821
~k1k82k12k222!!

~k2k121!! ~k82k221!!

3S 114d

112d D k11k2

. ~10!

We can numerically estimate the largest eigenvalue of
connectivity matrixC by generating a finite matrixP(k,k8)
from Eq.~10! and using the relation~1! to find P(k8uk). The
correctedness of this numerical estimate is ensured by
04710
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exponential decay ofP(k,k8) for large values ofk andk8, as
can be seen from Eq.~10!. The estimate of the largest eigen
value for a connectivity matrix of size 5003500 is Lm
'6.476 56, which yields an epidemic thresholdlc'0.15.
This value is stable for connectivity matrices of size larg
than 3003300. The epidemic threshold thus obtained is
be compared with the prediction for an uncorrelated netwo
lc

nc5^k&/^k2&50.20.
Figure 1 shows the results of numerical simulations of

SIS model on Callaway’s network, as well as on rando
networks with the same connectivity distribution, genera
using the Molloy and Reed~MR! algorithm@22,23#. The MR
algorithm generates a random network with a prescrib
connectivity distribution and no correlations among nod
and thus it is expected to yield an epidemic threshold giv
by lc

nc. Simulations were performed for a fixed valued51
in networks of size up toN5107, averaging over at least 10
different starting configurations, performed on at least
different realizations of the network. Figure 1 depicts t
steady-state prevalence as a function of the spreading ral.
For the MR network, the functionr(l) shows a clear linear
behavior. The epidemic threshold estimated from a lea
squares fitting islc50.2160.01, in excellent agreemen
with the prediction for an uncorrelated network. On the oth
hand, Callaway’s network exhibits a very different behavi
which might be compatible with the presence of a transit
of an infinite order. In fact, Fig. 1 is reminiscent of the b
havior found in Ref.@16# for the giant component of the
network as a function of the parameterd. In that work, the
size of the giant component was fitted to an stretched ex
nential with exponent 1/2. Guided by this intuition, in Fig.
we perform a fit of the stationary prevalence in Callawa
model to the formr(l);exp@2a(l2lc)

21/2# @16#. The fit
yields a prefactora51.5260.02, and an epidemic thresho
lc50.1160.02, smaller by a factor 2 than the value corr
sponding to an uncorrelated random network, and in qu
good agreement with the prediction from the largest eig
value of the connectivity matrix.

In summary, we have shown that, in the presence of c
relations, the epidemic threshold in complex networks is
termined by the connectivity matrixC, and not by the con-
nectivity distribution P(k), as happens in uncorrelate

FIG. 1. Total prevalencer for the SIS model in Callaway’s
network and in a MR uncorrelated network with the same conn
tivity distribution.
4-3
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networks. This fact implies that the previously predicted n
epidemic threshold for SF networks withg<3 might be
shifted in correlated graphs, attaining a positive value
pending on the nature of the correlations as given by

FIG. 2. Fit of the prevalence for the SIS model in Callawa
network to the formr(l);exp@2a(l2lc)

21/2#. The fit yields the
valuesa51.5260.02 andlc50.1160.02.
.

s.

8
/
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connectivity matrix. At this respect, it might be surprisin
that some complex networks, such as the Baraba´si-Albert
~BA! graph @24#, are exactly described at the uncorrelat
level given by Eq.~3! with Qk independent ofk @7,8#. This
fact must be taken as an evidence of the lack of correlati
in the BA model; lack that, on the other hand, has be
already checked numerically in Ref.@14#. The formalism
presented in this paper represents a refinement over prev
works because it includes the effects of correlations betw
pairs of nodes and, in this sense, it is exact for Markov
networks. Real networks, such as the Internet, however,
sess a more complex correlation structure. Our formal
will provide an improved approximation to epidemic dynam
ics in these cases, but it still remains the task of ascertain
the effects of higher-order correlations. Further work is n
essary in this direction.

This work has been partially supported by the Europe
Commission—Fet Open project Grant No. COSIN IST-200
33555. R.P.-S. acknowledges financial support from the M
isterio de Ciencia y Tecnologı´a ~Spain!. We thank A. Vespig-
nani for helpful comments and discussions.
v.

ev.

-

re-

s

@1# R. Albert and A.-L. Baraba´si, Rev. Mod. Phys.74, 47 ~2002!.
@2# S.N. Dorogovtsev and J.F.F. Mendes, Adv. Phys.51, 1079

~2002!.
@3# P. Erdös and P. Re´nyi, Publ. Math.~Debrecen! 5, 17 ~1960!.
@4# D.J. Watts and S.H. Strogatz, Nature~London! 393, 440

~1998!.
@5# R. Pastor-Satorras and A. Vespignani, inHandbook of Graphs

and Networks: From the Genome to the Internet, edited by S.
Bornholdt and H. G. Schuster~Wiley-VCH, Berlin, 2002!;
e-print cond-mat/0205260.

@6# F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, and Y
Aberg, Nature~London! 411, 907 ~2001!.

@7# R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett.86,
3200 ~2001!.

@8# R. Pastor-Satorras and A. Vespignani, Phys. Rev. E63, 066117
~2001!.

@9# R.M. May and A.L. Lloyd, Phys. Rev. E64, 066112~2001!.
@10# Y. Moreno, R. Pastor-Satorras, and A. Vespignani, Eur. Phy

B 26, 521 ~2002!.
@11# M.E.J. Newman, e-print cond-mat/0201433.
@12# S.R. White, Virus Bulletin Conference, Munich 199

~unpublished! ~http://www.av.ibm.com/ScientificPapers/White
Problems/ Problems.html!.
J.

@13# R. Pastor-Satorras, A. Va´zquez, and A. Vespignani, Phys. Re
Lett. 87, 258701~2001!.

@14# A. Vázquez, R. Pastor-Satorras, and A. Vespignani, Phys. R
E 65, 066130~2002!.

@15# K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett.88, 108701
~2002!.

@16# D.S. Callaway, J.E. Hopcroft, J.M. Kleinberg, M.E.J. New
man, and S.H., Strogatz, Phys. Rev. E64, 041902~2001!.
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