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Epidemic spreading in correlated complex networks
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We study a dynamical model of epidemic spreading on complex networks in which there are explicit
correlations among the node’s connectivities. For the case of Markovian complex networks, showing only
correlations between pairs of nodes, we find an epidemic threshold inversely proportional to the largest
eigenvalue of the connectivity matrix that gives the average number of links, which from a node with connec-
tivity k go to nodes with connectivitk’. Numerical simulations on a correlated growing network model
provide support for our conclusions.
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Statistical physics has witnessed in recent years a renewgrhrameter$7,12]. Nevertheless, it represents a first approxi-
interest in graph theory due to the discovery that many natumation to real networks, which neglects the possibility of
ral and artificial systems can be described in terms of comeorrelations in the connectivity of the nodes. The existence
plex networks, in which the nodes represent typical unitsand importance of connectivity correlations has been re-
and the links represent the interactions between pairs of unigently pointed out in the literature. In fact, it has become
[1,2]. The term complex network has been coined to refer teclear that these correlations are critical in the understanding
networks that typically exhibit two distinct properties: of the hierarchical structure of the InterjéB8-15. On the

(i) A scale-free(SF) connectivity distribution. If we define other hand, some growing network models have been pro-
the connectivity distributiorP(k) as the probability that a Posed[16], in which correlations are spontaneously gener-
node is connected tk other nodes, then SF networks are ated and have important effects in the percolation transition.
characterized by a power-law behavgk) ~k 7, wherey In this paper we shall present a study of epidemic spread-
is a characteristic exponent. This property renders classicétd in complex random networks in which there are explicit
models of random grapH8], described by an exponentially correlations among the node’s connectivities. We will con-
bounded connectivity, inappropriate for the description ofsider in particular the subset of undirect®tarkovian ran-
many real networks. dom networks that are completely defined by their connec-

(i) The small-world property[4] that is defined by an tivity distribution P(k) and the conditional probability
average path length—average distance between any pair B(k’[k) that a node of connectivitly is connected to a node
nodes—increasing very slowlysually logarithmicallywith ~ of connectivityk’. These two functions can have any form
the network sizeN. (including SF behavigr and are assumed to be normalized

Apart from the empirical characterization of real complex(2¢P(k) == P(k'|k)=1) and restricted by the connectiv-
networks and the development of new models, accountingy detailed balance condition
for the observed properties, the interest in this field has been
also driven by the discovery of the profound and subtle ef-
fects that the connectivity has on the behavior of dynamical kP(k'[k)P(k)=k'P(k|k")P(k")=(k)P(k,k"), (1)
systems defined on top of complex networks. These effects
are particularly interesting in the study of disease transmis-
sion in SF networks, relevant for the understanding of thevhere the symmetric function (26y,/) P(k,k") is the joint
spreading of computer virus¢§] and sexually transmitted probability that two nodes of connectivityandk’ are con-
diseaseg6]. Indeed, it was first noted in Ref7] that in  nected. The Markovian nature of this class of networks im-
uncorrelatedSF networks with a connectivity exponemt  plies that all higher-order correlations can be expressed as a
<3, epidemic processes do not possess an epidemic thredinction of P(k) and P(k’|k), allowing an exact treatment
old below which diseases cannot produce a macroscopic epdf epidemic models at the mean-figllF) level. It is worth
demic outbreak or the development of an endemic state. Thisoticing, however, that a more detailed description, in terms
feature, observed in several epidemic modgls-11], is of a Langevin equatior(to be reported elsewhergl7)),
deeply rooted in the presence of very large connectivity flucyields exactly the same results, confirming the accuracy of
tuations in infinite SF networks. the MF description. In this framework, the topologically rel-

The study of epidemic spreading in uncorrelated complexevant magnitude is the connectivity matrixCy
networks(that is, in graphs in which the connectivity of any =kP(k’|k), that measures the average number of links that
node is independent of the connectivity of its neighptidss  go from a node with connectivity to nodes with connectiv-
been proved to be extremely successful, providing, for indity k’. We will show that the epidemic threshold is related to
stance, the first satisfactory explanation of the long-standinghe largest eigenvalue of this matrix. Extensive numerical
problem of the generalized low prevalence of computer vi-simulations on a random correlated network mddél con-
ruses without assuming any global tuning of microscopicfirm the predictions of the present analysis. During the
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completion of this work we became aware of two recenta node of connectivitk’ is independenf the connectivity
preprints[18,19 in which the general role of correlations in  of the node from which the link is emanating. Therefore, in

spreading and percolation in complex networks is also highgpis cased, = O™ is independent ok, and can be written as
lighted.

In order to study the effects of connectivity correlations in e 1 o
epidemic spreading, we will focus in the standard © =0 Z k'P(K")pi: (1), (4)
susceptible-infected-susceptiliglS) model[20]. All the re- K
sults, however, can be easily extended to the more genergjnce the probability that a node is pointing to a node of
susceptible-infected-removed-susceptible mdd@l. In the  conneciivityk’ is proportional tok’ P(k’). Substituting the
SIS model_each node in the networl_< represents an 'nd'V_'duaéxpressiorM) into Eq.(3), one can solve for the steady-state
a_md each link represents a connection along which the_'”fecs'olution and find the existence of an epidemic threshald
tion can propagate. Susceptilileealthy nodes become in- |6y which there are no solutions with a nonzero value of

fected with probability» if they are connected to one or gnc The expression of the epidemic threshold for uncorre-
more infected nodes. On the other hand, infected nodes r¢5iaq random networks is

cover spontaneously with probabili§. The ratio of these

two rates defines an effective spreading vatev/ § (without e (K)
lack of generality, we setb=1). For homogeneous net- Ae :@- ®
works, in which each node has more or less the same number

of connectionsk=(k), a general result states the existenceg

of a finite epidemic threshold, separating an infected- correspondinglyA"*=0. Finally, from the solution ofpy,

demig phase, with a finite average density of infected |nd|—one can compute the total prevaleneeising the relation

viduals, from a healthy phase, in which the infection dies out_
exponentially fast. In terms of the average density of infected For a general network in which the connectivities of the

individuals p(t) (the prevalencewe can describe the SIS oo o6 correlated, the above formalism is not correct,

lrg\?v?fl |nthomog?negus networks at a MF level by the fOI'since we are not considering the effect of the connectivity
g rate equatioris] into the expression fo®,. This effect can be taken into
@) account, however, for Markovian networks, whose correla-

tions are completely defined by the conditional probability
(k’|k). In this case, it is easy to realize that the correct
actor(ai< can be written as

or infinite SF networks withy<3, we have(kz)zoc, and

dp()=—p() +NMK)p(1)[1—p(1)].

In this equation we have neglected higher-order terms, sinc
we are interested in the onset of the endemic state, close

the point p(t)~0. Also, we have neglected correlations

among nodes. That is, the probability of infection of a new O t)=2, P(K'|K)pi (1), (6)
node—the second term in E@2)—is proportional to the K’

infection rate\, to the probability that a node is healthy, 1 . . Lo -
— p(1), and to the probability that a link in a healthy node f[hat is, the probability that a link in a node of connectivity

points to an infected node. This last quantity, assuming th&® p'omtmg to an mfect'ed node is propgrtlonal to t.h? ,prob—
homogeneous mixing hypothesii], is approximated for ability that any link points to a node with connectiviky,

.. times the probability that this node is infecteg, (t), aver-
P eonrggggP e;# ser;?dt‘é"r%riﬁs tﬁ?égrgtglﬁ F:r(zrig _Elq.[(zz())]thceaﬁ Xls e aged over all the nodes connected to the original node. Equa-
Cc

P . o : tions (3) and(6) define together the MF equation describing
p>r<)3\ved, such thap=0 if A<, while p~(A=Xc) if X the SIS model on Markovian complex networks.
=\,.

. : . The exact solution of this set of equations can be difficult
For general complex networks, in which large connectiv-

ity fluctuations and correlations might be allowed, we mustt0 find, depending on the particular form B{k'|k). How-

relax the homogeneous hypothesis made in writing @j. ever, it is possible to extract the value of the epidemic thresh-

. . . ; . old by analyzing the stability of the steady-state solutions. Of
and work, instead, with the relative density(t) of infected s ;
nodes with given connectivitk; i.e. the probability that a course, the healthy stajg=0 is one solution. For smafly

node withk links is infected. Following Refd.7,8], the rate we can linearize Eqe3), obtaining

equation forp,(t) can be written as dpi(t)
G =2 Luepw(d). (™
dpi(t) K’
gi PO FAKI=p(D]OK(D). ©) . , - : i

In the previous equation we have defined the Jacobian matrix
L={L b

In this case, the creation term is proportional to the spreading {hwet by

rate\, the density of healthy sites-1p,(t), the connectivity L = — S FAKP(K'[K), (8

k, and the variabl® (t) that stands for the probability that a

link emanating from a node of connectivikypoints to an  where i, is the Kronecker delta function. The solutipg
infected site. In the case of an uncorrelated random networks= 0 will be unstable if there exists at least one positive ei-
considered in Refg7,8], the probability that a link points to genvalue of the Jacobian matilix Let us consider theon-
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nectivity matrixC, defined byC,,,=kP(k’|k). Using the 0.04 - ;
symmetry condition, Eq(l), it is easy to check that if is ST ‘Eﬂ‘:l _
an eigenvector o€, with eigenvalueA, thenP(k)v, is an — ol

eigenvector of the transposed mat@X with the same ei-
genvalue. From here it follows immediately that all the ei-
genvalues ofC are real. LetA ,, be the largest eigenvalue of P oozt
C. Then, the origin will be unstable wheneverl+AA,,

>0, which defines an epidemic threshold 0.01

Ne=7— C) 0,00 | i s ;
0.10 0.15 0.20 0.25 0,30

above which the solutiop,= 0 is unstable, and another non-

zero solution takes over as the actual steady state—the en- FIG. 1. Total prevalence for the SIS model in Callaway’s

demic state. network and in a MR uncorrelated network with the same connec-

It is instructive to see how this general formalism recov-tivity distribution.

ers previous resul{/,8], implicitly obtained for random un-

correlated networks. For any random network, in which there@xponential decay d?(k,k’) for large values ok andk’, as

are no correlations among the connectivities of the nodes, wean be seen from Eq10). The estimate of the largest eigen-

have that the connectivity matrix is given bg,,  Vvalue for a connectivity matrix of size 56(G00 is Ap

P =K P/ It easy o chck thatthe ma- 2 647056, i yelds an cpidemc treshlg 015,

. nc . . nc_ 2

tsrg;n{ dci:rfiqk}torliz euigf:\?eciff‘iivs ll:ci"n‘] vérfei/ét\zé rCe?:r(;\e/er than 300<300. The epidemic threshold thus obtained is to
. koo be compared with the prediction for an uncorrelated network,

the above established result, Ef).

. - A= (K)/(k?)=0.20
In order to check the theoretical prediction H), we ’ Figure 1 shoWs t.he results of numerical simulations of the
have performed numerical simulations of the network modegI 9

: : : : S model on Callaway’s network, as well as on random
proposed by Callawagt al.[16]. This model is defined in a . L 9D e o
very simple way: each time step we add a new node, and"netvvorks with the same connectivity distribution, generated

with probability §, two nodes are randomly selected andusmg. the Molloy and ReetMR) algor|thm[22,.23]. The MR.
. : . . . .. algorithm generates a random network with a prescribed
joined with a link. This model yields a random network with AR ;
. e o _ K connectivity distribution and no correlations among nodes,

a exponential connectivity distributionP (k)= (26)“/(1 e . . . :

Kt 1 . . .. and thus it is expected to yield an epidemic threshold given
+26)“"*, which shows correlations among the connectivi- A" Simulations were performed for a fixed valde 1
ties of the nodes. These correlations can be analytically cor’r*2y - P

oy e / g _~77in networks of size up tdl=10’, averaging over at least 100
Eﬁ;iﬂ: )r/er:l?rz?osnorfeﬁgﬁéglng] probabili§(k,k"), which ful different starting configurations, performed on at least 10

different realizations of the network. Figure 1 depicts the
steady-state prevalence as a function of the spreading rate

P(k,k")= 1+45[P(k—1,k’)+ P(k,k"=1)] For the MR network, the functiop(\) shows a clear linear
behavior. The epidemic threshold estimated from a least-

P(k—1)P(k'—1) squares fitting is\.=0.21+0.01, in excellent agreement
1146 . with the prediction for an uncorrelated network. On the other

hand, Callaway’s network exhibits a very different behavior,

ating functional technique, yielding the joint probability of an infinite qrder. In fact, Fig. 1 i§ reminiscent of the be-
havior found in Ref.[16] for the giant component of the

k+k' network as a function of the paramet&r In that work, the

1+45(1+28 \ _ ,
P(k,k")=P(k)P(k") 2\ 1545 size of the giant component was fitted to an stretched expo-
(26) nential with exponent 1/2. Guided by this intuition, in Fig. 2
kel K —1 ) we perform a fit of the stationary prevalence in Callaway’s
% (ktk'—ki—k,—2)! model to the formp(\)~exg —a(A—\o) *?] [16]. The fit
Ki=0 K=0 (k—k;— 1)1 (k' —k,—1)! yields a prefactorr=1.52+0.02, and an epidemic threshold
ok A.=0.11+0.02, smaller by a factor 2 than the value corre-
« 1+46\"7"% (10 sponding to an uncorrelated random network, and in quite
1+268 good agreement with the prediction from the largest eigen-

value of the connectivity matrix.
We can numerically estimate the largest eigenvalue of the In summary, we have shown that, in the presence of cor-
connectivity matrixC by generating a finite matri(k,k’) relations, the epidemic threshold in complex networks is de-
from Eq.(10) and using the relatioft) to find P(k’|k). The  termined by the connectivity matri€, and not by the con-
correctedness of this numerical estimate is ensured by theectivity distribution P(k), as happens in uncorrelated
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107 : : connectivity matrix. At this respect, it might be surprising
that some complex networks, such as the Basabibert
(BA) graph[24], are exactly described at the uncorrelated
level given by Eq.(3) with ®, independent ok [7,8]. This
fact must be taken as an evidence of the lack of correlations
P10 | ) in the BA model; lack that, on the other hand, has been
already checked numerically in Rdf14]. The formalism
presented in this paper represents a refinement over previous
works because it includes the effects of correlations between
pairs of nodes and, in this sense, it is exact for Markovian
. . networks. Real networks, such as the Internet, however, pos-
3 4 5 6 sess a more complex correlation structure. Our formalism
- xc)“” will provide an improved approximation to epidemic dynam-
ics in these cases, but it still remains the task of ascertaining
FIG. 2. Fit of the prevalence for the SIS model in Callaway’s the effects of higher-order correlations. Further work is nec-

network to the formp(\)~exd —a(A\—\o) V%] The fit yields the  essary in this direction.
valuesa=1.52+0.02 and\.=0.11+0.02.
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