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Self-organized interface growth with the negative nonlinearity in a random medium
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We introduce two self-organized growth models that describe the motion of the driven interfaces in random
media including the Kardar-Parisi-ZhaigPZ) nonlinearity. One model follows the quenched KPZ equation
with a positive nonlinear term, while the other model follows the quenched KPZ equation with a negative
nonlinear term. By obtaining the critical exponents for two models, we confirm that the sign of the KPZ
nonlinear term does not affect the universality class.
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Dynamics of an interface roughening in a random me-QKPZ equation. Tang and Leschhdrf] suggested that the
dium has attracted much attention during the last decade ardirected percolation depinnind®PD) model[8] follows the
is relevant for various phenomefia-5|. The driven motion  positive QKPZ(PQKP2 equation in whichh>0. They ar-
of an interface in a random medium takes place by compegued that the roughness exponenin the PQKPZ univer-
tition between smoothening due to the surface tension angality class is given by the ratio of two correlation length
roughening due to interaction with the random pinningexponentsy, andwj, in the perpendicular and parallel di-
forces of the medium. Further, there is an interplay betweenmections of directed percolating clusters, whichwis v, /|
the pinning force and the external driving force acting on the=0.63 in one dimension. Leschhdi®] also showed that the
interface. The interface is pinned when the driving fdfcs  roughness exponent in the PQKPZ universality clasg is
smaller than the pinning strength induced by the quenchee-0.63 in one dimension via the numerical integration of the
disorder. The interface moves with a constant velocity wherPQKPZ equation and the automaton model, which is the dis-
F is greater than the pinning strength. Hence, there exists @rete version of the QKPZ equation.
threshold of the driving forc& . above which the interface Also, Sneppen10] introduced two simple self-organized
moves with a constant velocity; the velocity is zero for growth models in which the growing interface is not con-
<F., and it increases foF>F.. This phenomenon is trolled by an external driving forcg but rather by the self-
called the pinning-depinning transition. organized growth. Such self-organized growth models are
In the presence of an external driving forEgthe well-  useful to understand the dynamics of driven interfaces in
known nonlinear equation describing the dynamics of aandom medid11]. Two models show two different scaling
driven interface in a random medium is the quenchecbehaviors when the growth rule is a bit changed. In one
Kardar-Parisi-ZhangQKP2) [6] equation, model, the scaling behavior of the model can be explained by
the PQKPZ equation, which is in the same universality class
as the DPD model giving the roughness exponest0.63.
While the other model witih <0 gave the roughness expo-
nenta=1 showing the interface morphology of a mountain
where the quenched noigey(x,h)) satisfies( »(x,h))=0  with constant inclination. Jeonet al. [12] also showed the
and ((x,h) 7(x’,h"))=2D &%(x—x')8(h—h’) with noise ~same interface morphology as the Sneppen model with
strengthD. The quenched noise term describes a randonwO resulting ina=1 through the numerical integration for
pinning force by the quenched disorder. Near the depinninghe negative QKPZNQKPZ) equation in which\ <0.
threshold, the dynamics of a driven interface in a random Thus the NQKPZ equation exhibits scaling behaviors dif-
medium can be described in terms of the roughness exponef@rent from those of the PQKPZ equation. However such
« and the growth exponerg corresponding to the spatial interface morphology with constant inclination is simply due
and temporal scalings of the surface roughness, respectiveli the localized pinned region around the site at which the
[6]. In this picture, the interface widtiV(L,t), defined as height is absolute minimum. This localization remains
the root mean square of the heidt(ix,t), throughout the interface growth since the pinning strength at
the site is relatively large. Therefoee=1 resulting from the
1 . 12 localized pinning site could not properly describe the
W(L,t):<—GI > [h(x,t)—h(t)]2> , (2 NQKPZ equation. Moreover, Stepandd3] carried out a
L™ x quantitative analysis of the QKPZ equation by the functional
renormalization group scheme, in whighis included as a
scales as.“ for a long time and” at the early stages of the square in the coupling constant associated withxtterm.
process. Herdr, L, andd denote the mean height, system This study indicates the sign af does not affect the scaling
size, and substrate dimension, respectively. behavior of the QKPZ equation so that the QKPZ equation is
Many studies have been carried out to describe and urin the same universality class regardless of the sigh.dh
derstand the motion of the driven interface following thethis aspect, a controversy still remains and the study of the

dh(x,t)
ot

A
=vV2h+§(Vh)2+F+ n(x,h), (1)
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FIG. 1. The schematic representations of the stochastic rules of madals) andB (b,d). All panels represent the various situations
after a particle is deposited. Here the arrows denote the selected site with the minimum random number before deposition and the gray
squares denote the newly added particles on the interface. The large-size numbers denote the newly updated random numbers. The upper twi
panels correspond to the case in which the deposited particle does not hop to the other site fér @cated modeB (b) lower two panels
represent the case in which the hoppings of the deposited particle occur for A@rjehnd modelB (d).

NQKPZ equation is inadequate when comparing that for th&hen we update the random number only at the newly occu-
PQKPZ equation. Therefore it would be interesting to studypied site irrespective of whether the deposited particle hops
the NQKPZ equation through the self-organized growthto the other site or not. We call this model the model
model. Figures 1a) and Xc) show the schematic representations of

In this paper, we introduce two kinds of self-organizedthe growth rule of modeA.
growth models that describe the QKPZ equation with the Our simulations were carried out starting from a flat ini-
positive or negative sign of KPZ nonlinear term, respec-tial surface with periodic boundary conditions in one dimen-
tively. In the two models, we use the same dynamic rule busion. Numerical data were averaged over more than 100 con-
apply different ways of updating random numbers on thefigurations. Figure 2 shows the plot of the surface width
interface each time. The different updating rule of randomW?(L) versus system size with L=128, 256, 512, 1024,
numbers makes the sign of the KPZ nonlinear term in two2048, and 4096. The solid guide line represents that
models opposite. That is, in one model, the sign of KPZ
nonlinear term is positive, while the sign of KPZ nonlinear
term is negative in the other model. By measuring the inter-
face velocity for various tilts of the substrate, we confirm the
sign of the KPZ nonlinear term. We also obtain the critical
exponents for the two models and find that the values of  10* |
exponents are the same, regardless of the sign of the KP.
nonlinear term.

The growth rule of our model is defined as follows: We 3
preassign random numbers between 0 and 1 representing i,
purities in random media, to all perimeter sites of the initially
flat substrate. A particle is deposited on the siteith the
lowest minimum random number on the interface. If the re-  4q'
stricted solid on solidRSOS condition on the neighboring
heights|Ah|<1 is obeyed, the deposited particle stays at site
X, which increases the height(x)—h(x)+1 and the ran- o
dom number at site is updated. If the RSOS condition is not 10102 S— 163 TS
obeyed at the sitg, the deposited particle is allowed to hop L
to the nearest neighbor site with the smaller height until a
site satisfying the RSOS condition is found. When the FIG. 2. The plots of Widtth(L) versus the system sizefor
heights of all nearest neighbor sites are the same, the particteodel A. The solid guide line represents=0.63. In the inset, we
hops to a randomly chosen one of its nearest neighbor sitesbtain the growth exponem=0.89 andBs=0.65.
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=0.63. This value agrees with that obtained from DPD mod-
els in the PQKPZ universality class. We measured two
growth exponents as shown in the inset of Fig. 2. One
growth exponeng is measured on the flat initial surfa@he
bottom one and the other growth exponegt is measured
on the initially saturated surfacghe top ong The guide
lines represent3=0.88 and B,~=0.65, respectively. The
value of B is generally smaller than that ¢f and it is well
known thatpB is a correct growth exponent to classify the =
universality class in growth models for driven interfaces in
random medig14]. The obtained value g8 0.65 is close to
0.63 in the PQKPZ universality class. Thus modédbllows
the PQKPZ equation.

To confirm the sign of the KPZ nonlinear term in model
A, we consider the average velocityas a function of slope 10~ SV VI
m, which is the slope of the tilted substrdib]. By measur- 10 10 10 10
ing the interface velocity, we can obtain the value Yof t
through the relation

FIG. 3. The plot of the timé, vesust. The guide line is linear,
which indicates the another time scaledoes not change the values
A 2 of exponent for the considered models.
v(m)=v(0)+§m ) 3
ary conditionh(0t)=h(L,t)—Lm and h(L+21t)=h(1})

Here \ is obtained as\=2(s%/dm?). Amaral et al. [16] T Lm with the initial vicinal surface of the slope.

showed two distinct universality classes for the dynamics of We then con5|d§r another growth model that can describe
the driven interfaces in random media by analyzing the det’® NQKPZ equatioriwe call it modelB). To do this, we
pendence of the interface velocii(m) on the slopem. In modify the rule of modeA slightly, where the dynamic rule

the case where the interface velocitym) depends on the is the same but the way ‘_)f updating the random_ n_umber is
slopem near the depinning threshold, the KPZ nonlinearityChanged' When a particle is added at the selectedi siteno

exists. While if the slope dependence of the interface velochogpmg ocgur)?] the r:gldom nubmber at Lhe Sﬁleﬁted _site I
ity is absent or vanishes at the depinning threshold, the kppdated as in the mo [F'g' 1(b)]. But when the hoppings
nonlinearity does not exist. to the nearest neighbor site occur, we update all random

To monitor the interface velocity, at first, we consider then_umbgrs at the sites between the s_elected and a newly occu-
time incrementAt. In the growth rule of modeA, we always pied site[Fig. 1(d)]. Thus the updating rules of the random
drop a particle at each time step, thatAt=1/L, so that a

number for the two models are different if the hoppings of
unit time interval, or a Monte Carlo time corresponds to theﬂlethdepzz't%d ﬂart'df Qccur(.j lrt] E‘Odﬁ!lthe Ilia’.[l’r:dom r(ljumber
one deposited event per site, on average. In the time scal e? 'te site ondytl)s l:ﬁ ahe » while all the ran orr(; nturcT
the average interface velocity always becomes 1 regardle r'S Of Sites passed Dy the nopping process are updated in

of the slope of the substrate, so we cannot measure the v lodel B. This updating rul_e of_random numbers increase§
’ the number of newly updating sites between the selected site

locity versus the tilt of the substrate. To solve this problem, i > .
we consider another time incremeht, . If the same site is and the added site. The probability of choosing the selected

chosen continuously in some time intervdlL, we regard it

as an avalanche of which amount Asand we takeAt, 5 ' ' '

=At/A, that is, an event of avalanche per site becomes a (a)

unit time interval. Such another time scale does not affectthe g 4} i
>

critical exponents describing the dynamics of the model be-
causet, depends ort linearly as shown in Fig. 3. However

we can measure the increasing interface velocity when the ~0.8 0.4 0 0.4 0.8
substrate is tilted. If the deposited particle diffuses to its m

nearest neighbor site, the random number at the selected site . - -

is not changed and still has a very low value. Therefore an 151 m) il
avalanche may occur until the random number at the selected g 1.4 | g
site is updated. Thus the more the substrate is tilted, the more ¥

diffusion processes occur. Eventually the amount of ava- 137 ]
lanche becomes larger and the interface velocity increases as 1.2 ' . .

the substrate is titled. Figuréa shows the plot of the inter- 08 04 ; 04 08

face velocity versus the slopa of the tilted substrate. We
obtain A\=~7.94, which confirms that the KPZ nonlinearity ~ FIG. 4. The plots of the interface velocity versus the tilt of the
exists and its sign is positive. Here we used a helical boundsubstrate for modeA (a) and modelB (b).
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longs, we obtain the roughness exponent and the growth
exponent. Figure 5 shows that=0.65, f=1, and B
=0.65. These values are in a good agreement with those of
the DPD models, which indicate that the universality class of
the NQKPZ equation is same as that of the PQKPZ equation.
Therefore the sign of the KPZ nonlinear term does not affect
the universality class for the dynamics of the driven interface
in a random medium as the analytic result in Ré8].

In summary, we have introduced two self-organized
growth models that describe the PQKPZ and the NQKPZ
equation in one dimension. The same dynamic growth rule
has been used in the two models, whereas the updating rules
of the random number are different in two models. The
modification of the updating algorithm makes the sign of the

W(L)

10~ [ N L] nonlinear term be opposite in two models. Also the updating
10° 10° 10'  rules of the random number prevent the specific sites from
L being pinned throughout growth process. In modelthe

positive KPZ nonlinear term exists and modefollows the
PQKPZ equation withe=0.63 andB,=0.65. In modelB,
the sign of nonlinear term is negative and moBefollows
the NQKPZ equation withh=0.65 andBs=0.65. Here the

. . . obtained values of the roughness and growth exponents in
site again at the next time step decreases so that the average je|sa andB are very close each other, which indicate that

amount of avalanches decreases. This makes the interfage, NQKPZ and PQKPZ equations belong to the same uni-

velocity decrease when the substrate is tilted. versality class regardless of the sign of the KPZ nonlinear
Figure 4b) shows the dependence of the interface velocygpy,

ity on the tilt of the substrate with~ —1.16. This indicates

that modelB contains the KPZ nonlinear term with a nega- This work was supported in part by Korean Research
tive sign. We thus expect modBlfollows the NQKPZ equa- Foundation Grant No(KRF-2001-015-DP0120and by the
tion. To survey the universality class to which mo@ebe-  Ministry of Education through the BK21 project.

FIG. 5. The plots of widthA?(L) versus the system siefor
modelB. The solid guide line represents=0.65. In the inset, we
obtain the growth exponem@=1 andB,=0.65.
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