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Lubrication corrections for lattice-Boltzmann simulations of particle suspensions
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The lattice-Boltzmann method has been refined to take account of near-contact interactions between spheri-
cal particles. First, we describe a comprehensive solution to the technical problems that arise when two
discretized surfaces come into contact. Second, we describe how to incorporate lubrication forces and torques
into lattice-Boltzmann simulations, and test our method by calculating the forces and torques between a
spherical particle and a plane wall. Third, we describe an efficient update of the particle velocities, taking into
account the possibility that some of the differential equations are stiff.
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I. INTRODUCTION

Lattice-Boltzmann simulations@1,2# are being increas
ingly used to calculate hydrodynamic interactions@3–9#, by
direct numerical simulation of the fluid motion generated
the moving interfaces. However, as two particles appro
each other the calculation of the hydrodynamic force bre
down in the gap between the particles, typically when
minimum distance between the two surfaces is of the or
of the grid spacing. For example, it is impractical to u
sufficient mesh resolution to resolve the flow in the sm
gaps that can result from an imposed shear flow. At h
shear rates the rheology of a suspension of spheres is q
tatively affected by lubrication forces between particles se
rated by gaps less than 0.01a, wherea is the particle radius
@10,11#. A simulation at this resolution ('107 grid points per
particle! is unfeasible for more than a few particles. T
number of grid points can be reduced by using body fit
coordinates@12# or adaptive meshes@13,14#, but the small
zone size in the gap reduces the time step that can be us
integrate the flow field@15#. The problem is exacerbated b
the uniform grid used in lattice-Boltzmann simulations, bu
should be noted that similar techniques, using particles
bedded in regular grids, are becoming increasingly pop
in computational fluid dynamics@16,17#. Some aspects o
this work may therefore be applicable to such methods
well.

Simulations of hydrodynamically interacting particle
typically use multipole expansions of the Stokes equati
@18,19#. Again the calculations break down when the p
ticles are close to contact, unless an impractical numbe
multipole moments are used@20#. A solution to this problem
is to calculate the lubrication forces between pairs of p
ticles for a range of small interparticle gaps, and then pa
these solutions on to the friction coefficients calculated fr
the multipole expansion. The method exploits the fact t
lubrication forces can be added pair-by pair, and has b
shown to work well in practice@18#. A simplified version of
this approach has already been adopted to include no
lubrication forces in lattice-Boltzmann simulations@21#. In
this paper we extend our previous work to include all co
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ponents of the lubrication force and torque, and test the
merical scheme for the interactions between a spherical
ticle and a planar wall. We find that the hydrodynam
interactions can be well represented over the entire rang
separations by patching only the most singular compone
of the lubrication force onto the force calculated from t
lattice-Boltzmann model. This is simpler than the Stokes
dynamics approach, where the patch is calculated at e
separation.

We begin this paper with a summary of the lattic
Boltzmann algorithm for particle suspensions@1,2#. We dis-
cuss recent innovations by other groups@6,22#, and describe
some additional improvements to these methods. In part
lar, we propose a comprehensive solution to the techn
difficulties that arise when particles are close to contact
particular the loss of mass conservation. The bulk of o
numerical results are a series of detailed tests of the hy
dynamic interactions between two surfaces in near cont
We demonstrate that after including corrections for the lub
cation forces we obtain accurate results over a wide rang
fluid viscosities. Finally, we describe an efficient implicit a
gorithm for updating the particle velocities even in the pre
ence of stiff lubrication forces. An explicit solution of thes
differential equations requires either that the particles
much denser than the surrounding fluid@2#, or that very
small time steps are used to update the particle velocities
the other hand, if the particle velocities are updated imp
itly, the resulting system of linear equations severely lim
the number of particles that can be simulated. In this pa
we describe what we call a ‘‘cluster-implicit’’ method
whereby groups of closely interacting particles are group
in individual clusters and interactions between particles
the same cluster are updated implicitly, while all other lub
cation forces are updated explicitly. In fluidized suspensio
clusters typically contain less than ten particles, even at h
concentrations, so that the implicit updates are a small o
head. Our simulations efficiently cope with clusters of se
eral hundred particles by using conjugate-gradient metho
and only slow down if the number of particles in the clus
exceeds 103.

II. THE LATTICE-BOLTZMANN METHOD

The lattice-Boltzmann equation describes the time evo
tion of a discretized velocity distribution functionni(r ,t)
©2002 The American Physical Society08-1
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N.-Q. NGUYEN AND A. J. C. LADD PHYSICAL REVIEW E66, 046708 ~2002!
ni~r1ciDt,t1Dt !5ni~r ,t !1D i@n~r ,t !#, ~1!

whereD i is the change inni due to molecular collisions, an
Dt is the time step. This one-particle distribution functio
describes the mass density of particles with velocityci , at a
lattice noder , at a timet; r , t, andci are discrete, whereasni
is continuous. The hydrodynamic fields, mass densityr, mo-
mentum densityj5ru, and momentum fluxP, are moments
of this velocity distribution,

r5(
i

ni , j5ru5(
i

nici , P5(
i

nicici . ~2!

In three dimensions, isotropy requires a multispeed mo
for example, the 18-velocity model described in Ref.@23#,
which uses the@100# and @110# directions of a simple cubic
lattice. In this work the 18-velocity model is augmented w
stationary particles, which enables it to account for sm
deviations from the incompressible limit, although in sim
lations of stationary flows we have found the numerical d
ferences to be small@24#.

A computationally useful form for the collision operato
D i(n) can be constructed by linearizing about the local eq
librium neq @23#,

D i~n!5D i~neq!1(
j

Li j nj
neq, ~3!

whereLi j are the matrix elements of the linearized collisi
operator,nj

neq5nj2nj
eq , and D i(n

eq)50. The form of the
equilibrium distribution is constrained by the moment con
tions required to reproduce the inviscid~Euler! equations on
large length scales and time scales. In particular, the sec
moment of the equilibrium distribution should be equal
the inviscid momentum flux,Peq5( ini

eqcici5p 11ruu. A
suitable form for the equilibrium distribution of the 19
velocity model is@25#

ni
eq5aciF r1

j•ci

cs
2

1
ruu:~cici2cs

21!

2cs
4 G , ~4!

wherecs5Ac2/3, c5Dx/Dt, p5rcs
2 , and the coefficients

of the three speeds are

a05
1

3
, a15

1

18
, aA25

1

36
. ~5!

In our suspension simulations we use a 3-parameter
lision operator, allowing for separate relaxation of the fi
shear modes, one bulk mode, and nine kinetic modes.
postcollision distributionni* 5ni1D i is written as a series o
moments@Eq. ~2!#, as for the equilibrium distribution@Eq.
~4!# @24#,

ni* 5aciS r1
j•ci

cs
2

1
~ruu1Pneq,* !:~cici2cs

21!

2cs
4 D . ~6!
04670
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The zeroth (r) and first (j5ru) moments@Eq. ~2!# are un-
changed, but the nonequilibrium second moment,Pneq, is
modified by the collision process,

Pneq,* 5~11l!Pneq1
1

3
~11lv!~Pneq:1!1, ~7!

wherePneq5P2Peq; the eigenvaluesl andlv are related
to the shear and bulk viscosities and lie in the range22
,l,0.

The macrodynamical behavior arising from the lattic
Boltzmann equation can be found from a multitime-sc
analysis@24,26#. A complete error analysis is rather length
@24#, but it can be shown that for sufficiently low velocitie
the convergence is quadratic in the lattice spacing. T
Navier-Stokes equations

] tr1“•~ru!50,

] t~ru!1“•~ruu!1“rcs
25h“2u1~hv1h!“~“•u!

~8!

are recovered in the low velocity limit, with viscosities

h52rcs
2DtS 1

l
1

1

2D and hv52rcs
2DtS 2

3lv
1

1

3D .

~9!

III. SOLID-FLUID BOUNDARY CONDITIONS

Boundary conditions in the lattice-Boltzmann model a
straightforward to implement, even for nonplanar surfac
@1#. Solid particles are defined by a surface, which cuts so
of the links between lattice nodes. Fluid particles movi
along these links interact with the solid surface at bound
nodes placed halfway along the links. Thus we obtain a d
crete representation of the particle surface, which beco
more and more precise as the particle gets larger~Fig. 1!. In
the past we have treated the lattice nodes on either side o
boundary surface in an identical fashion, so that fluid fills t
whole volume of space, both inside and outside the so
particles. Because of the relatively small volume inside e
particle, the interior fluid quickly relaxes to rigid-body mo
tion, characterized by the particle velocity and angular vel
ity, and closely approximates a rigid body of the same m
@24#. However, at short times the inertial lag of the fluid
noticeable, and the contribution of the interior fluid to th
particle force and torque reduces the stability of the part
velocity update. For these reasons we have followed the s
gestion in Ref.@6#, and removed the fluid from the interior o
the particles. A somewhat different implementation of t
same idea is described in Ref.@22#.

The moving boundary condition@1# without interior fluid
@6# is then implemented as follows. We take the set of flu
nodesr just outside the particle surface, and for each node
the velocitiescb such thatr1cbDt lies inside the particle
surface. An example of a set of boundary node velocitie
shown by the arrows in Fig. 1~a!. Each of the corresponding
population densities is then updated according to a sim
8-2
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LUBRICATION CORRECTIONS FOR LATTICE- . . . PHYSICAL REVIEW E 66, 046708 ~2002!
rule which takes into account the motion of the particle s
face @1#;

nb8~r ,t1Dt !5nb* ~r ,t !2
2acbr0ub•cb

cs
2

, ~10!

wherenb* (r ,t) is the postcollision distribution at (r ,t) in the
direction cb , and cb852cb . The local velocity of the par-
ticle surface,

ub5U1V3~rb2R!, ~11!

FIG. 1. Location of boundary nodes for a curved surface~a! and
two surfaces in near contact~b!. The velocities along links cutting
the boundary surface are indicated by arrows. The locations of
boundary nodes are shown by open squares, and the fluid nod
solid circles.
04670
-

is determined by the particle velocityU, angular velocityV,
and center of massR; rb5r1 1

2 cbDt is the location of the
boundary node. We have used the mean densityr0 in Eq.
~10! instead of the local densityr(r ,t) since it simplifies the
update procedure. The differences between the two meth
are small, of the same order (ru3) as the error terms in the
lattice-Boltzmann model. Test calculations show that ev
large variations in fluid density~up to 10%! have a negligible
effect on the force~less than 1 part in 104).

As a result of the boundary node updates, momentum
exchanged locally between the fluid and the solid partic
but the combined momentum of solid and fluid is conserv
The forces exerted at the boundary nodes can be calcu
from the momentum transferred in Eq.~10!,

f~rb ,t1 1
2 Dt !5

Dx3

Dt F2nb* ~r ,t !2
2acbr0ub•cb

cs
2 Gcb .

~12!

The particle forces and torques are then obtained by s
ming f(rb) and rb3f(rb) over all the boundary nodes ass
ciated with a particular particle. It can be shown analytica
that the force on a planar wall in a linear shear flow is ex
@1#, and several numerical examples of lattice-Boltzma
simulations of hydrodynamic interactions are given in R
@2#.

To understand the physics of the moving boundary con
tion, one can imagine an ensemble of particles, moving
constant speedcb , impinging on a massive wall oriente
perpendicular to the particle motion. The wall itself is mo
ing with velocity ub!cb . The velocity of the particles afte
collision with the wall is2cb12ub , and the force exerted
on the wall is proportional tocb2ub . Since the velocities in
the lattice-Boltzmann model are discrete, the desired bou
ary condition cannot be implemented directly, but we c
instead modify the density of returning particles so that
momentum transferred to the wall is the same as in the c
tinuous velocity case. It can be seen that this implementa
of the no-slip boundary condition leads to a small ma
transfer across a moving solid-fluid interface. This is phy
cally correct and arises from the discrete motion of the so
surface. Thus during a time stepDt the fluid is flowing con-
tinuously, while the solid particle is fixed in space. If th
fluid cannot flow across the surface there will be large a
ficial pressure gradients, arising from the compression
expansion of fluid near the surface. For a uniformly movi
particle, it is straightforward to show that the mass trans
across the surface in a time stepDt @Eq. ~10!# is exactly
recovered when the particle moves to its new position.
example, each fluid node adjacent to a planar wall has
links intersecting the wall. If the wall is advancing into th
fluid with a velocityU, then the mass flux across the inte
face@from Eq. ~10!# is r0U. Apart from small compressibil-
ity effects, this is exactly the rate at which fluid mass
absorbed by the moving wall. For sliding motion, Eq.~10!
correctly predicts no net mass transfer across the interfa

Although the link-bounce-back rule is second-order ac
rate for planar walls oriented along lattice symmetry dire
tions, it is only first-order accurate for channels oriented

e
by
8-3
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N.-Q. NGUYEN AND A. J. C. LADD PHYSICAL REVIEW E66, 046708 ~2002!
arbitrary angles@27,28#. Thus for large channels, the hydro
dynamic boundary is displaced by an amountD from the
physical boundary, whereD is independent of channel widt
but depends on the orientation of the channel with respec
the underlying lattice. Convex bodies sample a variety
boundary orientations, so that it is not possible to make
analytical determination of the displacement of the hydro
namic boundary from the solid particle surface. Nevert
less, the displacement of the boundary can be determ
numerically from simulations of flow around isolated pa
ticles. By considering the size of the particles to be the
drodynamic radius,ahy5a1D, rather than the physical ra
dius a, approximate second-order convergence can
obtained, even for dense suspensions@2#.

The hydrodynamic radius can be determined from
drag on a fixed sphere in a pressure-driven flow@2#. Galilean
invariance can be demonstrated by showing that the s
force is obtained for a moving particle in a stationary flu
@2#. Since the particle samples different boundary node m
as it moves on the grid, it is important to sample differe
particle positions when determining the hydrodynamic
dius, especially when the particle radius is small (,5Dx).
Rather than averaging over many fixed configurations,
chose to have the particle move slowly across the grid
constant velocity, sampling different boundary node maps
it goes. The changing boundary node maps lead to fluc
tions in the drag force, as shown in Fig. 2. The force h
been averaged over a Stokes timets so that the relative fluc-
tuations in force are comparable to the relative fluctuation
velocity of a neutrally buoyant particle in a constant for
field. The force fluctuations,dF5A(,F2.2^F&2)/^F&, are

FIG. 2. The drag forceF as a function of time, normalized b
the drag force on an isolated sphere,F056phaU. Time is mea-
sured in units of the Stokes time,ts5a/U. The particle is moving
along a randomly chosen direction in a periodic unit cell with
51.
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of the order of 1% for particles of radius 223Dx, and are
considerably smaller for larger particles~Table I!. More so-
phisticated boundary conditions have been developed u
finite-volume methods@29,30# and interpolation@13,14,31#.
Both methods reduce the force fluctuations by at least
order of magnitude from those observed here, but even w
the simple bounce-back scheme, the fluctuations in force
be reduced by an appropriate choice of particle radius.
have noticed that fluctuations in particle force are stron
correlated with fluctuations in particle volume. Thus w
choose the radius of the boundary node map so as to m
mize fluctuations in particle volume for random locations
the grid. It can be seen from Table I that a two fold reducti
in the force fluctuations is possible by this procedure,
though for sufficiently large particles the difference is min
mal. A set of optimal particle radii is given in Table II.

The bounce-back rule leads to a velocity field in the
gion of the boundary that is first-order accurate in the g
spacingDx. The hydrodynamic boundary~the surface where
the fluid velocity field matches the velocity of the particle! is
displaced from the particle surface by a constant,D ~Fig. 3!,
that depends on the viscosity of the fluid@2#. For the range of
kinematic viscosities used in this work, 1/6<n* <1/1200,D
varies from 0 to 0.5Dx ~Table II!; the dimensionless kine
matic viscosity n* 5nDt/Dx2. For small particles (a
,5Dx), D also depends weakly on the particle radius~Table
II !. Although the difference between the hydrodynam
boundary and the physical boundary is small, it is import
in obtaining accurate results with computationally useful p
ticle sizes. Calibration of the hydrodynamic radius leads
approximately second-order convergence from an inhere
first-order boundary condition; it will not be necessary wh
more accurate boundary conditions are implemented.

The hydrodynamic radii (ahy) in Table II were deter-
mined from the drag force on a single sphere in a perio
cubic cell @2#. The Reynolds number in these simulatio
(,0.2) was sufficiently small to have a negligible effect o
the drag force. The time averaged force was used to de
mine the effective hydrodynamic radius for three differe

TABLE I. Variance in the computed drag forcedF

5A^F2&2^F&2/^F& for a particle of radiusa moving along a ran-
dom orientation with respect to the grid. The results are avera
for 502200ts , after the system reaches a steady state. The dim
sionless viscosityn* 51/6. The numbers in brackets indicate pow
ers of 10.

a/Dx 2.7 2.5 8.2 8.5

dF 5.738@23# 1.208@22# 4.332@24# 5.674@24#

TABLE II. Hydrodynamic radiusahy ~in units of Dx) for vari-
ous fluid viscosities;a is the input particle radius.

a/Dx 1.24 2.7 4.8 6.2 8.2

n* 51/6 1.10 2.66 4.80 6.23 8.23
n* 51/100 1.42 2.92 5.04 6.45 8.46
n* 51/1200 1.64 3.18 5.31 6.72 8.75
8-4
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LUBRICATION CORRECTIONS FOR LATTICE- . . . PHYSICAL REVIEW E 66, 046708 ~2002!
kinematic viscosities: n* 51/6, n* 51/100, and n*
51/1200. In each case the cell dimensions were ten tim
the particle radius and the corrections for periodic bound
conditions~about 40%! were made as described in Ref.@2#.

The difference between the hydrodynamic radius and
input radius,D5ahy2a, is independent of particle size fo
radii a.5Dx, and its magnitude increases with decreas
kinematic viscosity@24#. The kinematic viscosityn* 51/6
gives a hydrodynamic radius that is the same as the in
radius ~for sufficiently large particles!, and is the natura
choice for simulations at low Reynolds number. At high
Reynolds numbers a lower viscosity is necessary to main
incompressibility@2,24#, and for accurate results it is the
essential to use the calibrated hydrodynamic radius.

In order to implement the hydrodynamic radius in a m
tiparticle suspension, all distance calculations are based
the hydrodynamic radius~as shown in Fig. 3!; the input ra-
diusa is only used to determine the location of the bound
nodes. It should be noted that not all combinations of part
radius and viscosity can be used. Table II indicates that
ticle radii less than 3Dx cannot be used with a kinemat
viscosity n* 51/6, since the hydrodynamic radius is the
less than the input radius.

IV. PARTICLE MOTION

An explicit update of the particle velocity

U~ t1Dt !5U~ t !1
Dt

m
F~ t !, ~13!

V~ t1Dt !5V~ t !1
Dt

I
T~ t !, ~14!

has been found to be unstable@2# unless the particle radius i
large or the particle mass density is much higher than
surrounding fluid. In previous work@2# the instability was
reduced, but not eliminated, by averaging the forces
torques over two successive time steps. Subsequently, an
plicit update of the particle velocity was proposed@32# as a
means of ensuring stability. Here we present a general

FIG. 3. Actual ~solid lines! and hydrodynamic~dashed lines!
surfaces for a particle settling onto a wall.
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version of that idea, which can be adapted to situatio
where two particles are in near contact.

The particle force and torque can be separated into a c
ponent that depends on the incoming velocity distribut
and a component that depends, viaub , on the particle veloc-
ity and angular velocity@Eqs.~11! and ~12!#,

F5F02z FU
•U2z FV

•V, ~15!

T5T02zTU
•U2zTV

•V. ~16!

The velocity independent forces and torques are determ
at the half-time step

F0~ t1 1
2 Dt !5

Dx3

Dt (
b

2nb* ~r ,t !cb , ~17!

T0~ t1 1
2 Dt !5

Dx3

Dt (
b

2nb* ~r ,t !~rb3cb!, ~18!

where the sum is over all the boundary nodesb describing
the particle surface, withcb representing the velocity assoc
ated with the boundary nodeb and pointing towards the par
ticle center. The matrices

z FU5
2r0Dx3

cs
2Dt

(
b

acbcbcb , ~19!

z FV5
2r0Dx3

cs
2Dt

(
b

acbcb~rb3cb!, ~20!

zTU5
2r0Dx3

cs
2Dt

(
b

acb~rb3cb!cb , ~21!

zTV5
2r0Dx3

cs
2Dt

(
b

acb~rb3cb!~rb3cb! ~22!

are high-frequency friction coefficients, and describe the
stantaneous force on a particle in response to a sud
change in velocity.

The magnitude of the friction coefficients can be read
estimated, thereby establishing bounds on the stability o
explicit update. Apart from irregularities in the discretize
surface, z FU and zTV are diagonal matrices, whilez FV

5zTU50. For a node adjacent to a planar wall( ia
cici

2

5 5
18 c2, where the sum is over the five directions that cro

the wall. The number of such nodes is approximat
4pa2/Dx2, so that

zFU;
20p

9

r0Dxa2

Dt
. ~23!

Similarly,

zTV;
8p

9

r0Dxa4

Dt
. ~24!
8-5
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N.-Q. NGUYEN AND A. J. C. LADD PHYSICAL REVIEW E66, 046708 ~2002!
These estimates of the translational and rotational frict
coefficients are within 20% and 50% of numerically com
puted values, respectively. The stability criterion for an e
plicit updatezFUDt/m,2 then reduces to a simple conditio
involving the particle radius and mass density,

5

3

r fDx

rsa
,2. ~25!

The corresponding condition for the torque leads to the sa
stability criterion

zTVDt

I
;

5

3

r fDx

rsa
,2, ~26!

whereas with interior fluid the numerical factors were six a
ten, respectively@2#, showing that interior fluid destabilize
an explicit update.

The friction coefficients in Eqs.~15! and ~16! are essen-
tially constant, fluctuating slowly in time as the partic
moves on the underlying grid; thus the particle velocities c
be updated assuming these friction matrices are cons
The equations of motion can then be written in matrix fo
as

F U~ t1Dt !

V~ t1Dt !
G5F U~ t !

V~ t !
G1F m

Dt
11az FU az FV

azTU I

Dt
11azTV

G 21

3FF02z FUU~ t !2z FVV~ t !

T02zTUU~ t !2zTVV~ t !
G , ~27!

wherea is a parameter that controls the degree of implic
ness. An explicit update@2# corresponds toa50, an implicit
update@32# corresponds toa51, and a second-order sem
implicit update corresponds toa5 1

2 . The explicit, implicit,
and semi-implicit updates evaluate the velocity-depend
force at t, t1Dt, and t1 1

2 Dt, respectively. In practice we
find only small differences between semi-implicit and fu
implicit methods and we use the fully implicit method (a
51) in this work. The boundary node map is updated inf
quently ~every 10–100 time steps! and the 636 matrix in-
version need only be done when the map is updated. We
that in the limit of zFUDt/m@1 only the fully implicit (a
51) version of Eq.~27! reduces to the steady state force a
torque balance,F02zFUU(t1Dt)5T02zTVV(t1Dt)50.
The semi-implicit method (a5 1

2 ) produces an oscillating
solution and the explicit method (a50) a diverging solu-
tion.

An implicit update of the particle velocities requires tw
passes through the boundary nodes. On the first pass
population densities are used to calculateF0 and T0. The
implicit equations@Eq. ~27!# are then solved forU(t1Dt)
and V(t1Dt) for the given implicit parametera. These
velocities are then used to calculate the new population d
sities in a second sweep through the boundary nodes.
computational overhead incurred by the boundary node
04670
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dates is typically less than 100%, even at high concentrat
~see, Ref.@24# for a detailed discussion of computation
performance!.

The key drawback to excluding fluid from the interior o
the particle is that the update of the boundary node m
introduces stronger discontinuities in the flow field th
when the particle interior is filled with fluid. If the interio
fluid is to be excluded, then fluid must be removed when
movement of the particle causes a node to be transferre
the interior region. Moreover, interior nodes are exposed
particle motion and must then be filled with fluid with a
appropriate velocity distribution. It is essential to make the
changes as smoothly as possible to avoid strong pres
pulses in the fluid. When an interior node is uncovered by
motion of the particle, its velocity distribution is taken to b
the local equilibrium@Eq. ~6!# with a mass densityr0 and a
velocity given by the local velocity when it last resided i
side the particle~assuming rigid-body motion!. We note that
it is also possible to use interpolation to set the nonequi
rium distribution@31#, but we have not yet implemented th
idea although it has been shown to lead to very smooth
ticle trajectories. The momentum transferred by this proc
is balanced by an appropriate force and torque, which
added to the particleF0 andT0 at the next time step. When
fluid node is covered by a particle, its momentum is simila
absorbed in the particle force and torque. In addition
excess fluid massDM5(r2r0)Dx3 is uniformly redistrib-
uted among the boundary nodes at the next time step,
similar fashion to when particles are in near contact~see Sec.
V A !. In this way the global mass density of the fluid r
mains constant, even though the volume occupied by
particles fluctuate as they move on the grid.

V. LUBRICATION INTERACTIONS

A. Surfaces near contact

When two particle surfaces come within one grid spaci
fluid nodes are excluded from regions between the solid
faces@Fig 1~b!#, leading to a loss of mass conservation. Th
happens because boundary updates at each link produ
mass transfer (2acbr0ubcb /cs

2)Dx3 across the solid-fluid in-
terface, which is necessary to accommodate the discrete
tion of the particle surface~see Sec. III!. The total mass
transfer in or out of an isolated particle,

DM52
2Dx3r0

cs
2 FU•(

b
acbcb1V•(

b
acbrb3cbG50,

~28!

regardless of the particle’s size or shape.
Although the sums(bacbcb and(bacbrb3cb are zero for

any closed surface, when two particles are close to con
some of the boundary nodes are missing and the surface
no longer closed. In this caseDM5” 0 and mass conservatio
is no longer ensured. Two particles that remain in close pr
imity never reach a steady state, no matter how slowly th
move, since fluid is constantly being added or removed,
pending on the particle positions and velocities. If the tw
8-6
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LUBRICATION CORRECTIONS FOR LATTICE- . . . PHYSICAL REVIEW E 66, 046708 ~2002!
particles move as a rigid body mass conservation is resto
but in general this is not the case.

The accumulation or loss of mass occurs slowly, and
many dynamical simulations it fluctuates with changing p
ticle configuration but shows no long-term drift. Howeve
we enforce mass conservation, particle-by-particle, by re
tributing the excess mass among the boundary nodes~cf. Eq.
~10!!

ni 8~r ,t1Dt !5ni* ~r ,t !2
2acbr0ub•cb

cs
2

2acbr0

DM

A
,

~29!

whereA5Dx3(bacbr0.
The force and torque arising from this redistribution

mass are small, but not exactly zero;

DF5
Dx3r0

Dt F2
DM

A (
b

acbcbG , ~30!

DT5
Dx3r0

Dt F2
DM

A (
b

acbrb3cbG . ~31!

They can be compactly included by a redefinition of t
friction coefficients, Eqs.~19!–~22!, replacing cb and rb
3cb by their deviation from the mean,

cb5

(
b

acbcb

(
b

acb

and rb3cb5

(
b

acbrb3cb

(
b

acb

, ~32!

so thatcb→cb2cb̄ and rb3cb→rb3cb2rb3cb. Then the
force and torque are correctly calculated from Eqs.~15! and
~16!, even when mass is redistributed.

B. Lubrication forces

When two particles are in near contact, the fluid flow
the gap cannot be resolved. For particle sizes that are t
cally used in multiparticle simulations (a,5Dx), the lubri-
cation breakdown in the calculation of the hydrodynam
interaction occurs at gaps less than 0.1a. However, in some
flows, notably the shearing of a dense suspension, qua
tively important physics occurs at smaller separations, ty
cally down to 0.01a. Here we describe a method to impl
ment lubrication corrections into a lattice-Boltzman
simulation.

For particles close to contact, the lubrication forc
torque, and stresslet can be calculated from a sum
pairwise-additive contributions@18#, and if we consider only
singular terms, they can be calculated from the particle
locities alone@33#. In the grand-resistance-matrix formula
tion @34#
04670
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F F1

T1

T2

S1

S2

G 52F A11 2B11 B22

B11 C11 C12

2B22 C12 C22

G11 H11 H12

2G22 H21 H22

G FU12

V1

V2

G , ~33!

whereF252F1 , U125U12U2, and the friction matrices are
as given in Ref.@34#. We have made full use of the symme
tries inherent in the friction matrices, but without assumi
that the particle radii are the same. Most importantly,
external flow field does not enter into the lubrication calc
lation, which removes the need for estimates of the lo
flow field.

We have noted in previous lattice-Boltzmann simulatio
@21,24# that the calculated forces follow the Stokes flow r
sults down to a fixed separation, around 0.5Dx, and remain
roughly constant thereafter. The solid symbols in Fig. 4,
example, show this behavior for the normal force betwee
spherical particle and a plane wall. This suggests a lubr

FIG. 4. Normal force on a particle of input radiusa settling onto
a horizontal planar surface at zero Reynolds number. The drag f
determined by lattice-Boltzmann simulation, normalized by t
drag on an isolated sphereF056phahyU, is indicated by solid
symbols: n* 51/6 ~circles!, n* 51/100 ~triangles!, and n*
51/1200 ~squares!. The hydrodynamic radii (ahy), taken from
Table II, were used to determine the gaph between the particle and
the wall ~see Fig. 3!. Results including the lubrication correctio
described in Sec. V C are shown by the open symbols. The s
line is the theoretical result from lubrication theory@35#.
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tion correction of the form of a difference between the lub
cation force ath and the force at some cut off distanc
hN ; i.e.,

Flub526ph
a1

2a2
2

~a11a2!2 S 1

h
2

1

hN
DU12•R̂12, h,hN

50, h.hN , ~34!

whereU125U12U2 , h5uR12u2a12a2 is the gap between
the two surfaces, and the unit vectorR̂125R12/uR12u.

The friction coefficients in Eq.~33! are all products of a
scalar function of the gap between the particles, either 1/h or
ln(1/h), multiplied by a polynomial of the unit vector con
necting the particle centers@34#. For two spheres of arbitrary
size, there are a total of 15 independent scalar coefficie
which fall into three classes. Again using the notation of R
@34# these are X11

A , X11
G , X22

G ~normal force!; Y11
A , Y11

B , Y22
B ,

Y11
G , Y22

G ~tangential force!; and Y11
C , Y12

C , Y22
C , Y11

H , Y12
H ,

Y21
H , Y22

H ~rotation!. We implement our lubrication correctio
by calculating a modified form of each scalar coefficient
in Eq. ~34!; for example,

FIG. 5. Tangential force on a particle settling next to a verti
planar surface at zero Reynolds number. The drag force determ
by lattice-Boltzmann simulation, normalized by the drag on an i
lated sphereF056phahyU, is indicated by solid symbols. Resul
including lubrication are shown by the open symbols.
04670
-

ts,
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s

X̃11
A ~h!5X11

A ~h!2X11
A ~hN! h,hN ,

X̃11
A ~h!50 h.hN , ~35!

which vanishes at the cut-off distanceh5hN . We allow for
different cut off distances for each of the three types of
brication interaction.

C. Particle wall lubrication

The hydrodynamic interactions between two moving s
faces have been calculated for the simplest geome
namely, a spherical particle adjacent to a planar wall.
used three different particle sizes, with input radiia/Dx
52.7, 4.5, and 8.2, chosen to minimize volume fluctuatio
~see Sec. III! with the exception of the results fora/Dx
54.5, which were generated before the optimum rad
(4.8Dx) was determined. The hydrodynamic rad
ahy(a,n* ), that are used to determine the positions of t
lubricating surfaces were taken from Table II. The locati
of the planar wall was shifted byD(n* ), corresponding to
thea→` limit in Table II ~see Fig. 3!. In this way we ensure
that the lubricating surfaces are in the same position as
hydrodynamic boundaries in the lattice-Boltzmann simu
tions. The unit cell is periodic in four directions with a to
and bottom wall, and cell length of ten times the partic

l
ed
-

FIG. 6. Torque on a particle settling next to a vertical plan
surface at zero Reynolds number. The torque determined by lat
Boltzmann simulation, normalized by the torque on an isola
sphereT058phahy

2 U, is indicated by solid symbols. Results in
cluding lubrication are shown by the open symbols.
8-8
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LUBRICATION CORRECTIONS FOR LATTICE- . . . PHYSICAL REVIEW E 66, 046708 ~2002!
radius, which is sufficiently large that the effects of period
images were negligible. The simulation determines
steady state force and torque on the particle for a given
locity and angular velocity, which was then used to calcul
the friction coefficient as a function of the gaph from the
wall. Simulation results for the frictional forces and torqu
are shown in Figs. 4–7 for three different fluid viscositi
n* 51/6, 1/100, and 1/1200.

The normal force shows the trend discussed in Sec.
for each particle size and fluid viscosity~Fig. 4!. The simu-
lated force~solid symbols! follows the exact result~solid
line! down to an interparticle gap,hN,Dx, that is indepen-
dent of particle size. For larger particles the lattic
Boltzmann method captures progressively more of the lu
cation force, but even fora58.2Dx there are noticeable

FIG. 7. Torque on a particle rotating next to a vertical plan
surface at zero Reynolds number. The torque determined by lat
Boltzmann simulation, normalized by the torque on an isola
sphereT058phahy

3 V, is indicated by solid symbols. Results in
cluding lubrication are shown by the open symbols.

TABLE III. Lubrication ranges for various kinematic viscositie
determined for a sphere of radiusa58.2Dx. The ranges are deter
mined separately for the normalhN tangentialhT and rotationalhR

motions.

hN /Dx hT /Dx hR /Dx

n* 51/6 0.67 0.50 0.43
n* 51/100 0.24 0.50 0.15
n* 51/1200 0.10 0.50 0.00
04670
e
e-
e

B
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deviations forh/ahy,0.01. The simulation reproduces mo
of the lubrication force at smaller viscosities because
shift in the hydrodynamic radius delays the contact of
particle surfaces. The data obtained for a particle radius
8.2Dx was used to determine the lubrication cutoffhN(n* )
for each viscosity, and the numerical values are recorde
Table III. These lubrication corrections bring the simulat
normal force into agreement with theory for all the partic
sizes, interparticle gaps, and fluid viscosities studied~open
symbols in Fig. 4!. The corresponding result for the forc
and torque on a sphere sliding along the wall is shown
Figs. 5 and 6. Again we see that the lubrication correct
gives consistently accurate forces and torques, though
quite as accurate as the normal force. The lubrication ran
for tangential motion were found to be independent of
fluid viscosity, as shown in Table III. We also noticed that t
reciprocal relations are obeyed; the force on a rotating sph
is similar to the data in Fig. 6. The calculated torque on
rotating sphere~Fig. 7! is in agreement with theory for the
higher viscositiesn* 51/6 and n* 51/100, but not at the
lowest viscosityn* 51/1200. Here the lattice-Boltzman
method over predicts the torque on a rotating sphere by
30 %. We think that the error is caused by the large diff
ence between the hydrodynamic and input radiiD
50.55Dx) and it implies that viscositiesn* less than 0.01
are not suitable for suspension simulations, at least w
bounce-back boundary conditions. In practice this is no
serious limitation: a viscosityn* 50.01 allows simulations
with a Reynolds number up to ten per grid point~with a

r
e-
d

FIG. 8. Settling of a sphere (a54.8) onto a horizontal wall. The
gap between the particle surface and wall,h, relative to the hydro-
dynamic radius, is plotted as a function of the nondimensional t
~open circles!. The solid line is based on the frictional force calc
lated from lubrication theory@35#.
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N.-Q. NGUYEN AND A. J. C. LADD PHYSICAL REVIEW E66, 046708 ~2002!
Mach number;0.1), which is at or beyond the limit o
resolution of the flow. In other words, there is little practic
value in viscosities less than 0.01.

Finally, we examined the dynamic motion of a partic
(a54.8Dx) settling onto a solid wall~Fig. 8!. The lubrica-
tion force was calculated using the ranges given in Table
The particle was given a finite mass and placed with an
tial gap of h50.2ahy between the particle and wall. Th
simulations were performed at a Reynolds number

FIG. 9. Illustration of the algorithm to determine the list
clusters.

FIG. 10. The maximum cluster size as a function of the clus
cutoff gaphs /a at varying volume fractions,f.
04670
l
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e

;0.02 by applying a constant force to the particle. The
sults show the expected exponential decay of the gap
tween the particle and wall over time, in quantitative agre
ment with lubrication theory@35# ~shown by the solid line!.

D. Cluster implicit method

The lubrication forces complicate the update of the p
ticle velocity because they involve interactions betwe
many particles, especially at higher concentrations. For s
plicity we update the particle velocities in two steps; first t
lattice-Boltzmann forces and torques@Eq. ~27!#, followed by
the lubrication forces. The overall procedure is still first o
der accurate, but the lubrication forces can cause instabil
whenever the particles are in near contact. The instabilit
driven by the normal forces, and the stability criteria

jDt

m
5

6pha2Dt
4
3 prsa

3h
5

9

2

hDt

rsah
,2 ~36!

is violated whenh is less than;0.1Dx.
It is impractical to solve all the equations implicitly, so w

implemented an algorithm which uses an implicit upda
only where necessary. In our simulations we used the c
servative criteriajDt/m,0.1. Schematically, we solve th
coupled differential equations

ẋ52A•x1b ~37!

by splitting the dissipative matrixA into regular and singular
components,A5AR1AS. In our contextAS only contains
components of the normal friction coefficient when the g
between particles is less than the stability cutoff,hs , deter-
mined from Eq. 36. ThusAR contains all the nonzero com
ponents of the lubrication correction but with the interpa
ticle separation in the normal force regularized byhs so that
the larger ofhi j and hs is used to calculate the force. Th
remaining normal force is included inAS, with the form of
Eq. ~34!, but with hN replaced byhs . Using a mixed
explicit-implicit differencing,

x~ t1Dt !2x~ t !

Dt
52AR

•x~ t !2AS
•x~ t1Dt !1b, ~38!r

FIG. 11. Number of clusters as a function of the cluster cut
gaphs /a at varying volume fractions,f.
8-10
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LUBRICATION CORRECTIONS FOR LATTICE- . . . PHYSICAL REVIEW E 66, 046708 ~2002!
we obtain the first-order update

~11ASDt !•x~ t1Dt !5x~ t !2ARDt•x~ t !1bDt. ~39!

The important point is that, by a suitable relabeling of t
particle indices,AS can be cast into a block diagonal form
with the potential for an enormous reduction in the comp
tation time for the matrix inversion. The relabeling
achieved by a cluster analysis. First, all pairs of particles
are closer than the stability cutoff are identified, and a lis
made of all such pairs. An illustration is shown in Fig. 9~a!,
where pairs of particles with separations less thanhs are
indicated by the solid lines. The cluster labels are initializ
to the particle index; each particle is then relabeled by giv
it the smallest label of all the particles it is connected
After one pass, the labels are as shown in Fig. 9~b! and after
two passes three distinct clusters have been identified,
with a unique label@Fig. 9~c!#. The algorithm stops when n
further relabeling takes place. Although more efficie
schemes are possible, this simple scheme is more than
equate for our purposes. Once the clusters have been id
fied, the implicit equations can be solved for each cluster.
use conjugate gradients to exploit the sparseness ofAS,
which is extensive even within each diagonal block.

The computational cost of the cluster-implicit algorith
depends primarily on the maximum cluster size, which
shown in Fig. 10 as a function of the cluster cutoff gaphs . A
random distribution of 1000 particles was sampled in a p
odic box at volume fractions 0.10, 0.25, and 0.50. At low a
moderate volume fractions the cluster size is only wea
dependent onhs /a, ranging from 2–7, and clusters of th
size impose a negligible computational overhead. Howe
at high volume fractions there is a percolation threshold
hs /a;0.02 beyond which a single cluster more or less sp
the whole volume. In this case the cluster will grow to e
compass almost all the particles in the system. Thus at h
densities computational efficiency requires thaths /a,0.02.
When combined with the stability criteria, which implie
ev
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hs /a'1/a2, we find a minimum radius ofa510Dx to keep
jDt/m,0.5. A simulation of several hundred such particl
is possible on a personal computer or desktop workstatio

In Fig. 11 we show the corresponding number of cluste
In general there is a steep rise in the number of clusters w
increasinghs /a, leveling off to around 100 clusters. Th
sharp drop in the number of clusters at the highest volu
fraction is associated with the percolation transition, as s
in Fig. 10.

VI. CONCLUSION

In this work we have described and tested several ex
sions to the lattice-Boltzmann method for particle susp
sions, which enable reasonably accurate force calculation
be made even for particles in near contact. In particular,
have shown how to deal with problems of mass conserva
when two particles are in near contact, and how to acco
for the lubrication forces between closely spaced partic
Numerical tests show that the forces and torques betwe
particle and a plane wall can be computed to within a f
percent of the exact result for Stokes flow. We note that
torque on a rotating sphere adjacent to a plane wall is s
ously in error~30%! when the fluid viscosity is very smal
(1/1200). This suggests that the calibration procedure m
break down when the hydrodynamic boundary is displa
by more thanDx/2 from the physical one.

Inclusion of the lubrication forces leads to large forc
and stiff differential equations for the particle velocities. W
have developed a mixed explicit-implicit velocity updat
which minimizes the number of linear equations that must
solved, while maintaining absolute stability.

ACKNOWLEDGMENT

This work was supported by the American Chemical S
ciety Petroleum Research Fund~34142-AC9!.
J.

ut.
@1# A.J.C. Ladd, J. Fluid Mech.271, 285 ~1994!.
@2# A.J.C. Ladd, J. Fluid Mech.271, 311 ~1994!.
@3# A.J.C. Ladd, H. Gang, J.X. Zhu, and D.A. Weitz, Phys. R

Lett. 74, 318 ~1995!.
@4# A.J.C. Ladd, Phys. Rev. Lett.76, 1392~1996!.
@5# P.N. Segre´, O.P. Behrend, and P.N. Pusey, Phys. Rev. E52,

5070 ~1995!.
@6# C.K. Aidun, Y.N. Lu, and E. Ding, J. Fluid Mech.373, 287

~1998!.
@7# D.W. Qi, J. Fluid Mech.385, 41 ~1999!.
@8# P. Raiskinma¨ki, A. Shakib-Manesh, A. Koponen, A. Ja¨sberg,

M. Kataja, and J. Timonen, Comput. Phys. Commun.129, 185
~2000!.

@9# A.J.C. Ladd, Phys. Rev. Lett.88, 048301~2002!.
@10# J.F. Brady, J. Chem. Phys.99, 567 ~1993!.
@11# J.R. Melrose and R.C. Ball, Europhys. Lett.32, 535 ~1995!.
@12# R. Mei and W. Shyy, J. Comput. Phys.143, 426 ~1998!.
@13# O. Filippova and D. Ha¨nel, J. Comput. Phys.147, 219 ~1998!.
.

@14# R.W. Mei, L.S. Luo, and W. Shyy, J. Comput. Phys.155, 307
~1999!.

@15# C.K. Ghaddar, Phys. Fluids7, 2563~1995!.
@16# R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, and

Périaux, J. Comput. Phys.169, 363 ~2001!.
@17# S.O. Unverdi and G. Tryggvason, J. Comput. Phys.100, 25

~1992!.
@18# J.F. Brady and G. Bossis, Annu. Rev. Fluid Mech.20, 111

~1988!.
@19# A.J.C. Ladd, J. Chem. Phys.93, 3484~1990!.
@20# B. Cichocki and B.U. Felderhof, J. Chem. Phys.89, 1049

~1988!.
@21# A.J.C. Ladd, Phys. Fluids9, 491 ~1997!.
@22# M.W. Heemels, M.H.J. Hagen, and C.P. Lowe, J. Comp

Phys.164, 48 ~2000!.
@23# F. Higuera, S. Succi, and R. Benzi, Europhys. Lett.9, 345

~1989!.
@24# A.J.C. Ladd and R. Verberg, J. Stat. Phys.104, 1191~2001!.
8-11



tt.

Y.

,

N.-Q. NGUYEN AND A. J. C. LADD PHYSICAL REVIEW E66, 046708 ~2002!
@25# Y.H. Qian, D. d’Humières, and P. Lallemand, Europhys. Le
17, 479 ~1992!.

@26# U. Frisch, D. d’Humie`res, B. Hasslacher, P. Lallemand,
Pomeau, and J.-P. Rivet, Complex Syst.1, 649 ~1987!.

@27# I. Ginzbourg and P.M. Adler, J. Phys. II4, 191 ~1994!.
@28# I. Ginzbourg and D. d’Humie`res, J. Stat. Phys.84, 927~1996!.
@29# H.D. Chen, C. Teixeira, and K. Molvig, Int. J. Mod. Phys. C9,

1281 ~1998!.
@30# H. Chen, Phys. Rev. E58, 3955~1998!.
@31# M. Bouzidi, M. Firdaouss, and P. Lallemand, Phys. Fluids13,
04670
3452 ~2001!.
@32# C.P. Lowe, D. Frenkel, and A.J. Masters, J. Chem. Phys.103,

1582 ~1995!.
@33# I.L. Claeys and J.F. Brady, PCH, PhysicoChem. Hydrodyn.11,

261 ~1989!.
@34# S. Kim and S. J. Karrila,Microhydrodynamics: Principles and

Selected Applications~Butterworth-Heinemann, Boston, MA
1991!.

@35# B. Cichocki and R.B. Jones, Physica A258, 273 ~1998!.
8-12


