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Lubrication corrections for lattice-Boltzmann simulations of particle suspensions
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The lattice-Boltzmann method has been refined to take account of near-contact interactions between spheri-
cal particles. First, we describe a comprehensive solution to the technical problems that arise when two
discretized surfaces come into contact. Second, we describe how to incorporate lubrication forces and torques
into lattice-Boltzmann simulations, and test our method by calculating the forces and torques between a
spherical particle and a plane wall. Third, we describe an efficient update of the particle velocities, taking into
account the possibility that some of the differential equations are stiff.
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[. INTRODUCTION ponents of the lubrication force and torque, and test the nu-
merical scheme for the interactions between a spherical par-
Lattice-Boltzmann simulation§1,2] are being increas- ticle and a planar wall. We find that the hydrodynamic
ingly used to calculate hydrodynamic interactig8s-9], by ~ interactions can be well represented over the entire range of
direct numerical simulation of the fluid motion generated bySéparations by patching only the most singular components
the moving interfaces. However, as two particles approacf*?f the lubrication force onto the force calculated from the
each other the calculation of the hydrodynamic force breaki@ttice-Boltzmann model. This is simpler than the Stokesian
down in the gap between the particles, typically when thefynamics approach, where the patch is calculated at every
minimum distance between the two surfaces is of the ordefeParation.

of the grid spacing. For example, it is impractical to use_ e begin this paper with a summary of the lattice-
sufficient mesh resolution to resolve the flow in the smallBoltzmann algorithm for particle suspensidds2]. We dis-

gaps that can result from an imposed shear flow. At higtFUSS recent innovations by other groyps22), and describe

shear rates the rheology of a suspension of spheres is quafio™e additional improvements to these methods. In particu-

tatively affected by lubrication forces between particles sepal@; We propose a comprehensive solution to the technical

rated by gaps less than OZ)lwherea is the particle radius difficulties that arise when particles are close to contact, in

[10,11). A simulation at this resolution~ 10’ grid points per particu_lar the loss of mass conserva_tion. The bulk of our
particle is unfeasible for more than a few particles. The numerical results are a series of detailed tests of the hydro-

number of grid points can be reduced by using body fitteodynamiC interactions betW?e” two surface§ in near contact.
coordinateg 12] or adaptive mesheidl3,14, but the small We. demonstrate that gfter including corrections fqr the lubri-
zone size in the gap reduces the time step that can be used 't|on'f0rce:-s_, we qbtaln accurate results overa vwde range of
integrate the flow field15]. The problem is exacerbated by fwc_i viscosities. F_mally, we d_escrlbe an efficient _|mpI|C|t al-
the uniform grid used in lattice-Boltzmann simulations, but jtgorithm fo_r upda_tlng_ the particle velochlgs even in the pres-
should be noted that similar techniques, using particles enf"ce of .St'ﬁ Iubnc_:atlon forges. A'? explicit solution qf these
bedded in regular grids, are becoming increasingly popu|ag|fferent|al equations requires either that the particles are

in computational fluid dynamic§l6,17. Some aspects of much Qenser than the surrounding fli, or that very
this work may therefore be applicable to such methods a mall time steps are used to update the particle velocities. On
well. the other hand, if the particle velocities are updated implic-

Simulations of hydrodynamically interacting particles itly, the resulting system of linear equations severely limits

typically use multipole expansions of the Stokes equation§he r:jumbgg of pﬁrticles thaltl can“b:a simqlatcalq._ !'n thishpzper
[18,19. Again the calculations break down when the par-W€ C€SCrbe w at we call a “cluster-implicit’ method,
ticles are close to contact, unless an impractical number of/€reby groups of closely interacting particles are grouped

multipole moments are usd@0]. A solution to this problem in individual clusters and interactions between particles in
is to calculate the lubrication forces between pairs of par:[he same cluster are updated implicitly, while all other lubri-

ticles for a range of small interparticle gaps, and then patcl‘fation forces are updated explicitly. In fluidized suspensions

these solutions on to the friction coefficients calculated fromCIUSterS typically contain Iegs than ten particles, even at high
oncentrations, so that the implicit updates are a small over-

the multipole expansion. The method exploits the fact tha ) . - )
lubrication forces can be added pair-by pair, and has bee ead. Our 3|mula_t|0ns eff|C|e_ntIy cope WAth clusters of sev-
shown to work well in practic§18]. A simplified version of ~ €ral hundred particles by using conjugate-gradient methods,

this approach has already been adopted to include norméf‘d only slow down if the number of particles in the cluster

lubrication forces in lattice-Boltzmann simulatiof@l]. In ~ €xceeds 18

this paper we extend our previous work to include all com- L. THE LATTICE-BOLTZMANN METHOD

The lattice-Boltzmann equation describes the time evolu-
*Email address: ladd@che.ufl.edu tion of a discretized velocity distribution functiam(r,t)
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ni(r+gAt,t+At)=n;(r,t)+A;[n(r,t)], (1)  The zeroth p) and first {=pu) momentgEq. (2)] are un-
changed, but the nonequilibrium second momdhts9, is
whereA,; is the change im; due to molecular collisions, and modified by the collision process,
At is the time step. This one-particle distribution function
describes the mass density of particles with velocityat a
lattice noder, at a timet; r, t, andc; are discrete, whereas
is continuous. The hydrodynamic fields, mass densitgno-
mentum density= pu, and momentum flufl, are moments WhereII"*9=II—1II°% the eigenvaluex and\, are related

— 1
I7% = (14 M) "% 2 (148, (4D, (7)

of this velocity distribution, to the shear and bulk viscosities and lie in the rang2
<A <O0.
_ The macrodynamical behavior arising from the lattice-
PZZ N, JIPUZEi niG, szi niGG . 2 Boltzmann equation can be found from a multitime-scale

analysis[24,26. A complete error analysis is rather lengthy
L24], but it can be shown that for sufficiently low velocities
the convergence is quadratic in the lattice spacing. The
Navier-Stokes equations

In three dimensions, isotropy requires a multispeed mode
for example, the 18-velocity model described in R3],
which uses th¢100] and[110] directions of a simple cubic
lattice. In this work the 18-velocity model is augmented with
stationary particles, which enables it to account for small
deviations from the incompressible limit, although in simu- ) 2_ g2 .
lations of stationary flows we have found the numerical dif- H(pU)+V - (puu)+V pes=nV-ut(z, +7)V(V-U)
ferences to be smalk4]. (8)

A computationally useful form for the collision operator ) S N
Ai(n) can be Constructed by |inearizing about the |oca| equi.are reCOVered n the |OW Ve|0C|ty ||m|t, W|th viscosities
librium n®9[23],

dp+V-(pu)=0,

, 1 , (2 1
n=—pCAt| =+5| and 7,=—pCAt| —+5|.
. x 2 3, 3
Ai(m=4i(n)+ 2 L], 3 ©)
where;; are the matrix elements of the linearized collision IIl. SOLID-FLUID BOUNDARY CONDITIONS

operator,n®*=n; —ni, and A;(n®9)=0. The form of the Boundary conditions in the lattice-Boltzmann model are

equilibrium distribution is constrained by the moment condi-strajightforward to implement, even for nonplanar surfaces
tions required to reproduce the invisdiulen equations on 1], Solid particles are defined by a surface, which cuts some
large length scales and time scales. In particular, the secong the links between lattice nodes. Fluid particles moving

moment of the equilibrium distribution should be equal t0310ng these links interact with the solid surface at boundary
the inviscid momentum fludI®%=ZX;nf%c=p 1+ puu. A nodes placed halfway along the links. Thus we obtain a dis-
suitable form for the equilibrium distribution of the 19- crete representation of the particle surface, which becomes

velocity model is[25] more and more precise as the particle gets laffiey. 1). In
the past we have treated the lattice nodes on either side of the
eq_ c. j-q puu(ce—cil) boundary surface in an identical fashion, so that fluid fills the
ni"=a’ p+ _+T ) (49 whole volume of space, both inside and outside the solid
s Cs particles. Because of the relatively small volume inside each

particle, the interior fluid quickly relaxes to rigid-body mo-
tion, characterized by the particle velocity and angular veloc-
ity, and closely approximates a rigid body of the same mass
[24]. However, at short times the inertial lag of the fluid is
ao:} alzi aysz:i 5) noticeable, and the contribution of the interior fluid to the
' 18’ 36 particle force and torque reduces the stability of the particle
velocity update. For these reasons we have followed the sug-
In our suspension simulations we use a 3-parameter coestion in Ref[6], and removed the fluid from the interior of
lision operator, allowing for separate relaxation of the fivethe particles. A somewhat different implementation of the
shear modes, one bulk mode, and nine kinetic modes. Theame idea is described in RER2).
postcollision distributiom’ =n;+ A; is written as a series of The moving boundary conditiofi] without interior fluid
moments[Eq. (2)], as for the equilibrium distributiofiEq.  [6] is then implemented as follows. We take the set of fluid

wherecs=/c%/3, c=Ax/At, p=pc§, and the coefficients
of the three speeds are

(4)] [24], nodes just outside the particle surface, and for each node all
the velocitiesc, such thatr+c,At lies inside the particle

i-c (puu+H”eq*):(cici—c§1) surface. An example pf a set of boundary node velocit_ies is
n*=a%| p+ — * 2 . (6)  shown by the arrows in Fig.(4). Each of the corresponding

Cs 2¢Cg population densities is then updated according to a simple
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is determined by the particle velocity, angular velocity€2,

and center of masR; r,=r+ 3c,At is the location of the
boundary node. We have used the mean densjtyn Eq.

(10) instead of the local density(r,t) since it simplifies the
update procedure. The differences between the two methods
are small, of the same ordep\{®) as the error terms in the
lattice-Boltzmann model. Test calculations show that even
large variations in fluid densitfup to 10% have a negligible
effect on the forcdless than 1 part in 19.

As a result of the boundary node updates, momentum is
exchanged locally between the fluid and the solid patrticle,
but the combined momentum of solid and fluid is conserved.
The forces exerted at the boundary nodes can be calculated
from the momentum transferred in E4.0),

3

AX 2a bpyUp- G
f(ry t+ A0 =" 2k (1 t)— PO

c2 b
(12

The particle forces and torques are then obtained by sum-
ming f(r,) andr,Xf(ry,) over all the boundary nodes asso-
ciated with a particular particle. It can be shown analytically
that the force on a planar wall in a linear shear flow is exact
[1], and several numerical examples of lattice-Boltzmann
simulations of hydrodynamic interactions are given in Ref.
[2].

To understand the physics of the moving boundary condi-
tion, one can imagine an ensemble of particles, moving at
constant speed,, impinging on a massive wall oriented
perpendicular to the particle motion. The wall itself is mov-
ing with velocity u,<c,. The velocity of the particles after
collision with the wall is—c,+2u,, and the force exerted
on the wall is proportional ta,— uy, . Since the velocities in
the lattice-Boltzmann model are discrete, the desired bound-
ary condition cannot be implemented directly, but we can
instead modify the density of returning particles so that the
momentum transferred to the wall is the same as in the con-
tinuous velocity case. It can be seen that this implementation
of the no-slip boundary condition leads to a small mass
) transfer across a moving solid-fluid interface. This is physi-
cally correct and arises from the discrete motion of the solid

FIG. 1. Location of boundary nodes for a curved surfagend ~ Surface. Thus during a time steyt the fluid is flowing con-
two surfaces in near contaf). The velocities along links cutting tinuously, while the solid particle is fixed in space. If the
the boundary surface are indicated by arrows. The locations of thBuid cannot flow across the surface there will be large arti-
boundary nodes are shown by open squares, and the fluid nodes figial pressure gradients, arising from the compression and
solid circles. expansion of fluid near the surface. For a uniformly moving
particle, it is straightforward to show that the mass transfer
rule which takes into account the motion of the particle sur-across the surface in a time stéq [Eq. (10)] is exactly

face[1]; recovered when the particle moves to its new position. For
example, each fluid node adjacent to a planar wall has five
2a%poUp- Cp links intersecting the wall. If the wall is advancing into the
Ny (r,t+At)=nj(r,t)— > , (100 fluid with a velocity U, then the mass flux across the inter-
Cs face[from Eq.(10)] is poU. Apart from small compressibil-

ity effects, this is exactly the rate at which fluid mass is

wherenj (r,t) is the postcollision distribution at (t) in the  absorbed by the moving wall. For sliding motion, E0)
directionc,, andc, = —c,. The local velocity of the par- correctly predicts no net mass transfer across the interface.
ticle surface, Although the link-bounce-back rule is second-order accu-
rate for planar walls oriented along lattice symmetry direc-
U,=U+QX(rp,—R), (11 tions, it is only first-order accurate for channels oriented at
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1.440 T T T T TABLE 1. Variance in the computed drag forces:

= (F?)—(F)?/(F) for a particle of radiusa moving along a ran-
dom orientation with respect to the grid. The results are averaged
for 50— 20Q, after the system reaches a steady state. The dimen-
sionless viscosity* = 1/6. The numbers in brackets indicate pow-
ers of 10.

1.400

FIF,

1.360

alAx 2.7 25 8.2 8.5

1320 . . . . S 573§—-3] 1.20§-2] 4.333-4] 5.674-4]

of the order of 1% for particles of radius-283Ax, and are
considerably smaller for larger particl€gable ). More so-
phisticated boundary conditions have been developed using
finite-volume method$29,30 and interpolation[13,14,31.
Both methods reduce the force fluctuations by at least an
order of magnitude from those observed here, but even with
the simple bounce-back scheme, the fluctuations in force can
be reduced by an appropriate choice of particle radius. We
have noticed that fluctuations in particle force are strongly
correlated with fluctuations in particle volume. Thus we
choose the radius of the boundary node map so as to mini-
FIG. 2. The drag forc& as a function of time, normalized by Mize fluctuations in particle volume for random locations on
the drag force on an isolated sphefg,=6m7aU. Time is mea- the grid. It can be seen from Table | that a two fold reduction
sured in units of the Stokes timg,=a/U. The particle is moving in the force fluctuations is possible by this procedure, al-
along a randomly chosen direction in a periodic unit cell with Rethough for sufficiently large particles the difference is mini-
=1. mal. A set of optimal particle radii is given in Table II.

The bounce-back rule leads to a velocity field in the re-
arbitrary angle$27,28. Thus for large channels, the hydro- gion of the boundary that is first-order accurate in the grid
dynamic boundary is displaced by an amountrom the  spacingAx. The hydrodynamic boundafyhe surface where
physical boundary, wher& is independent of channel width the fluid velocity field matches the velocity of the partidie
but depends on the orientation of the channel with respect t@isplaced from the particle surface by a constantFig. 3),
the underlying lattice. Convex bodies sample a variety ofthat depends on the viscosity of the flii2]. For the range of
boundary orientations, so that it is not possible to make afinematic viscosities used in this work, ¥6* <1/1200,A
analytical determination of the displacement of the hydrodyvaries from 0 to 0.Bx (Table I)); the dimensionless kine-
namic boundary from the solid particle surface. Neverthematic viscosity v* =vAt/Ax?. For small particles &
less, the displacement of the boundary can be determined 5Ax), A also depends weakly on the particle raditiable
numerically from simulations of flow around isolated par-1l). Although the difference between the hydrodynamic
ticles. By considering the size of the particles to be the hyboundary and the physical boundary is small, it is important
drodynamic radiusa,,=a+A, rather than the physical ra- in obtaining accurate results with computationally useful par-
dius a, approximate second-order convergence can b#cle sizes. Calibration of the hydrodynamic radius leads to
obtained, even for dense suspensifis approximately second-order convergence from an inherently

The hydrodynamic radius can be determined from thdirst-order boundary condition; it will not be necessary when
drag on a fixed sphere in a pressure-driven flajv Galilean ~ more accurate boundary conditions are implemented.
invariance can be demonstrated by showing that the same The hydrodynamic radii &,,) in Table Il were deter-
force is obtained for a moving particle in a stationary fluid mined from the drag force on a single sphere in a periodic
[2]. Since the particle samples different boundary node mapsubic cell [2]. The Reynolds number in these simulations
as it moves on the grid, it is important to sample different(<0.2) was sufficiently small to have a negligible effect on
particle positions when determining the hydrodynamic rathe drag force. The time averaged force was used to deter-
dius, especially when the particle radius is smati5AX). mine the effective hydrodynamic radius for three different
Rather than averaging over many fixed configurations, we ) ) ) ) )
chose to have the particle move slowly across the grid, at ABLE Il. Hydrodynamic radiusay, (in units of Ax) for vari-
constant velocity, sampling different boundary node maps a8us fluid viscositiesa is the input particle radius.
it goes. The changing boundary node maps lead to fluctua-

FIF,

tions in the drag force, as shown in Fig. 2. The force hasa/AX 1.24 27 48 6.2 8.2

been averaged over a Stokes titgeso that the relative fluc- *=1/6 1.10 2.66 4.80 6.23 8.23
tuations in force are comparable to the relative fluctuations in,* — 17100 1.42 2.92 5.04 6.45 8.46
velocity of a neutrally buoyant particle in a constant force ,» —1/1200 1.64 3.18 531 6.72 8.75

field. The force fluctuationsi:= (<F%> — (F)?)/(F), are
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version of that idea, which can be adapted to situations
where two particles are in near contact.

The particle force and torque can be separated into a com-
ponent that depends on the incoming velocity distribution
and a component that depends, uja on the particle veloc-
ity and angular velocityEqgs.(11) and(12)],

F=Fo—¢™.u-¢™. 0, (15
\I/ T=To—"V- U= Q. (16)
A The velocity independent forces and torques are determined
/]\ L Z L at the half-time step
_ - - Ax3
FIG. 3. Actual (solid lines and hydrodynamiddashed lines 41 _=22 *
surfaces for a particle settling onto a wall. Fo(t+240 At Eb 2 (1,06, (A7)
kinematic viscosities: v*=1/6, »*=1/100, and v* ) AX3 .
=1/1200. In each case the cell dimensions were ten times To(t+32A0) =~ Eb: 2ng (r,H)(rpXcp), (18)

the particle radius and the corrections for periodic boundary

conditions(about 40% were made as described in REZ]. \yhere the sum is over all the boundary nodtedescribing
The difference between the hydrodynamic radius and thge particle surface, with, representing the velocity associ-

input radius,A =ay,—a, is independent of particle size for 4eq with the boundary nodeand pointing towards the par-
radii a>5Ax, and its magnitude increases with decreasingicie center. The matrices

kinematic viscosity[24]. The kinematic viscosity* =1/6

gives a hydrodynamic radius that is the same as the input 206AX3

radius (for sufficiently large particles and is the natural (Y= 2 E acvc,c,, (19

choice for simulations at low Reynolds number. At higher CsAt b

Reynolds numbers a lower viscosity is necessary to maintain

incompressibility[2,24], and for accurate results it is then 2poAx3

essential to use the calibrated hydrodynamic radius. ;= At % avCy(rpX Cp), (20
S

In order to implement the hydrodynamic radius in a mul-
tiparticle suspension, all distance calculations are based on
the hydrodynamic radiu&@s shown in Fig. B the input ra- TU_ZPOAX3 S ac
diusa is only used to determine the location of the boundary A %8 (rpXCp)Cp (22)
nodes. It should be noted that not all combinations of particle S
radius and viscosity can be used. Table Il indicates that par- 3
ticle radii less than 8x cannot be used with a kinematic TQZZPOAX
viscosity v* =1/6, since the hydrodynamic radius is then cht
less than the input radius.

ga%(rbxcb)(rbxcb) (22)

are high-frequency friction coefficients, and describe the in-
stantaneous force on a particle in response to a sudden
change in velocity.
An explicit update of the particle velocity The magnitude of the friction coefficients can be readily
estimated, thereby establishing bounds on the stability of an
At explicit update. Apart from irregularities in the discretized
U(t+AD) =U() + —F(1), (13)  surface, Z™Y and ™ are diagonal matrices, whilg™
={"V=0. For a node adjacent to a planar walla‘ic?
At = 2c2, where the sum is over the five directions that cross
_ at the wall. The number of such nodes is approximately
Qt+AD=QO+ - T(D), (14 47a’/Ax?, so that

IV. PARTICLE MOTION

has been found to be unstap® unless the particle radius is FU__ 20_77 poAxa® (23)
large or the particle mass density is much higher than the 9 At
surrounding fluid. In previous worl?] the instability was

reduced, but not eliminated, by averaging the forces an&imilarly,

torques over two successive time steps. Subsequently, an im- 4
plicit update of the particle velocity was propode&?®] as a TO 8_77 poAxa
means of ensuring stability. Here we present a generalized 9 At

(24)
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These estimates of the translational and rotational frictiordates is typically less than 100%, even at high concentrations
coefficients are within 20% and 50% of numerically com- (see, Ref.[24] for a detailed discussion of computational
puted values, respectively. The stability criterion for an ex-performancg
plicit update/"UAt/m<2 then reduces to a simple condition ~ The key drawback to excluding fluid from the interior of
involving the particle radius and mass density, the particle is that the update of the boundary node map
introduces stronger discontinuities in the flow field than
5 prAX when the particle interior is filled with fluid. If the interior
3 pea =2 (25) fluid is to be excluded, then fluid must be removed when the
movement of the particle causes a node to be transferred to
The corresponding condition for the torque leads to the samthe interior region. Moreover, interior nodes are exposed by
stability criterion particle motion and must then be filled with fluid with an
appropriate velocity distribution. It is essential to make these
changes as smoothly as possible to avoid strong pressure
pulses in the fluid. When an interior node is uncovered by the
motion of the particle, its velocity distribution is taken to be
whereas with interior fluid the numerical factors were six andthe local equilibrium{Eq. (6)] with a mass densityp, and a
ten, respectively2], showing that interior fluid destabilizes velocity given by the local velocity when it last resided in-
an explicit update. side the particléassuming rigid-body motionWe note that
The friction coefficients in Eqe15) and(16) are essen- it is also possible to use interpolation to set the nonequilib-
tially constant, fluctuating slowly in time as the particle rium distribution[31], but we have not yet implemented this
moves on the underlying grid; thus the particle velocities caridea although it has been shown to lead to very smooth par-
be updated assuming these friction matrices are constarticle trajectories. The momentum transferred by this process
The equations of motion can then be written in matrix formis balanced by an appropriate force and torque, which are
as added to the particle, and T, at the next time step. When a
fluid node is covered by a particle, its momentum is similarly

gTSlAt _ E pfAX
I 3 psa

2, (26)

-1

ml+ FU al™ absorbed in the particle force and torque. In addition the
U(t+At) uU(t) At b excess fluid masaM = (p—po)Ax3 is uniformly redistrib-
Q(t+At) = Q) + uted among the boundary nodes at the next time step, in a

al™ |_1+ al™ similar fashion to when particles are in near contaee Sec.

At V A). In this way the global mass density of the fluid re-
U o mains constant, even though the volume occupied by the
Fo—dU(t) — ™ (1) ) particles fluctuate as they move on the grid.
To— £U(D -~ 000 | @0

where « is a parameter that controls the degree of implicit- V- LUBRICATION INTERACTIONS

ness. An explicit updatg2] corresponds tee=0, an implicit A. Surfaces near contact
update[32] corresponds tar=1, and a second-order semi-
implicit update corresponds te= 3. The explicit, implicit,
and semi-implicit updates evaluate the velocity-depende
force att, t+At, andt+3At, respectively. In practice we
find only small differences between semi-implicit and fully

'Tlp“(.:'t trR.ethOdi ?I_ld vk\)/e usée the fCL:"y |mp!|C|t n;eihge.k (f terface, which is necessary to accommodate the discrete mo-
=1) in this work. The boundary node map is updated in ®Yion of the particle surfacésee Sec. l). The total mass

qguently (every 10—100 time stepsnd the 6x6 matrix in- fransfer in or out of an isolated particle
version need only be done when the map is updated. We note '

When two particle surfaces come within one grid spacing,
fluid nodes are excluded from regions between the solid sur-
nIraces[Fig 1(b)], leading to a loss of mass conservation. This
happens because boundary updates at each link produces a
mass transfer (chpoubcb/ci)Ax3 across the solid-fluid in-

that in the limit of {FYAt/m>1 only the fully implicit (« 2053

=1) version of Eq(27) reduces to the steady state force and AM=— > °olu. 2 ac,+ Q- 2 a%r,Xc,|=0,
torque balanceFy— £VU(t+At)=T,— ' Q(t+At)=0. Cs b b

The semi-implicit method ¢=13) produces an oscillating (28)
solution and the explicit methoda=0) a diverging solu-

tion. regardless of the particle’s size or shape.

An implicit update of the particle velocities requires two  Although the sum& ,ac, and>,ar,X c, are zero for
passes through the boundary nodes. On the first pass tlamy closed surface, when two particles are close to contact
population densities are used to calcul&eand To. The  some of the boundary nodes are missing and the surfaces are
implicit equations[Eq. (27)] are then solved folJ(t+ At) no longer closed. In this ca2eM #0 and mass conservation
and Q(t+At) for the given implicit parameterr. These is no longer ensured. Two particles that remain in close prox-
velocities are then used to calculate the new population denmity never reach a steady state, no matter how slowly they
sities in a second sweep through the boundary nodes. Thaove, since fluid is constantly being added or removed, de-
computational overhead incurred by the boundary node uppending on the particle positions and velocities. If the two
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particles move as a rigid body mass conservation is restorec 1000 T T
but in general this is not the case. i a=27
The accumulation or loss of mass occurs slowly, and in o 100 E 3
many dynamical simulations it fluctuates with changing par S i |
ticle configuration but shows no long-term drift. However, 10 A 7
we enforce mass conservation, particle-by-particle, by redis- ; L
tributing the excess mass among the boundary ntefe&q. 1 E—— e ——
(10)) 0.001 0.01 0.1 1
1000 T T
2a%vpoUy- Cy AM f a=45 1
ni,(r,t+At)=ni*(r,t)—C—g—aCbPOT, o 100 ; :
(29 = A ]
10 F ° 1
WhereA:AXSEbaCbpo_ 1 [ PP | NP | N
The force and torque arising from this redistribution of 0.001 0.01 0.1 1
mass are small, but not exactly zero;
1000 T T
Ax3po[  AM g a=82
= S Ch 100F W .
AF=— A Eb: a’c, |, (30) ©
~ 10} ° ]
AX3p0 AM i 1 1
= - Corp X Cp |. 1
AT="Fr | & = a®nXo S 0.001 0.01 0.1 1
hla

ky
They can be compactly included by a redefinition of the
friction coefficients, Eqgs.(19)—(22), replacingc, and ry,
X ¢, by their deviation from the mean,

FIG. 4. Normal force on a particle of input radiasettling onto
a horizontal planar surface at zero Reynolds number. The drag force
determined by lattice-Boltzmann simulation, normalized by the
drag on an isolated sphefg=6wna, U, is indicated by solid

E e 2 AT X G symbols: v*=1/6 (circles, v*=1/1_00 (trjangles), and v*
_ % b 5 b~ ~b =1/1200 (squares The hydrodynamic radii &,), taken from
,=—— and ryXg=——""—"—, (320 Tablell, were used to determine the dapetween the particle and
E ach E ach the w_aII (sge Fig. 3 Results including the lubrication correction _
b b described in Sec. V C are shown by the open symbols. The solid

line is the theoretical result from lubrication theds).

S0 thatc,—Cy,—Cp and r,X c,—r,Xc,—r,XC,. Then the

force and torque are correctly calculated from Ed$) and [ F1] [ An — B By
(16), even when mass is redistributed. T, B;y Ci; Cpo|[Ups
o To[=—| —Baz Cio Con|| 2|, (3
B. Lubrication forces S, Gy, Hy; Hy, Q,
When two particles are in near contact, the fluid flow in | s, | | —G,  Hy Hagl

the gap cannot be resolved. For particle sizes that are typi-
cally used in multiparticle simulationa&5Ax), the lubri-
cation breakdown in the calculation of the hydrodynamicwhereF,=—F;, U;,=U;—U,, and the friction matrices are
interaction occurs at gaps less thaned.However, in some as given in Ref[34]. We have made full use of the symme-
flows, notably the shearing of a dense suspension, qualitaries inherent in the friction matrices, but without assuming
tively important physics occurs at smaller separations, typithat the particle radii are the same. Most importantly, the
cally down to 0.04. Here we describe a method to imple- external flow field does not enter into the lubrication calcu-
ment lubrication corrections into a lattice-Boltzmann lation, which removes the need for estimates of the local
simulation. flow field.

For particles close to contact, the lubrication force, We have noted in previous lattice-Boltzmann simulations
torque, and stresslet can be calculated from a sum dR21,24 that the calculated forces follow the Stokes flow re-
pairwise-additive contributionsl8], and if we consider only sults down to a fixed separation, aroundXx5 and remain
singular terms, they can be calculated from the particle veroughly constant thereafter. The solid symbols in Fig. 4, for
locities alone[33]. In the grand-resistance-matrix formula- example, show this behavior for the normal force between a
tion [34] spherical particle and a plane wall. This suggests a lubrica-
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a=27 17

FIF,

FIF,

5 L) L

4 a=82 | J
< 3 1 & .
Y B o AN &~ J

2 i -

1 1 ]

0.001 0.01 0.1 1 1

h/a,,y

FIG. 5. Tangential force on a particle settling next to a vertical FIG. 6. Torque on a particle settling next to a vertical planar
planar surface at zero Reynolds number. The drag force determinesiirface at zero Reynolds number. The torque determined by lattice-
by lattice-Boltzmann simulation, normalized by the drag on an iso-Boltzmann simulation, normalized by the torque on an isolated
lated spheré,=677a,,U, is indicated by solid symbols. Results sphereTozswnaﬁyU, is indicated by solid symbols. Results in-

including lubrication are shown by the open symbols. cluding lubrication are shown by the open symbols.

tion correction of the form of a difference between the lubri- X2(h)y=X5(h)—X%(hy) h<hy,

cation force ath and the force at some cut off distance

hy; ie., X2(h)=0 h>hy, (35)

which vanishes at the cut-off distanbe=hy. We allow for

2,2
a8 1 1 ) - different cut off distances for each of the three types of lu-
Flup=—6mp———|-——|U1»r Ry5, h<h L :
tub (a;+ay)?2lh hy/ 127 N brication interaction.
C. Particle wall lubrication
= 0, h>hN, (34)

The hydrodynamic interactions between two moving sur-
faces have been calculated for the simplest geometry,
namely, a spherical particle adjacent to a planar wall. We
used three different particle sizes, with input radfiAx
=2.7, 4.5, and 8.2, chosen to minimize volume fluctuations

The friction coefficients in Eq(33) are all products of a (see Sec. Il with the exception of the results faa/Ax
scalar function of the gap between the particles, eitheiol/ =45 which were generated before the optimum radius
In(1/h), multiplied by a polynomial of the unit vector con- (4.8Ax) was determined. The hydrodynamic radii,
necting the particle centef84]. For two spheres of arbitrary any(a,v*), that are used to determine the positions of the
size, there are a total of 15 independent scalar coefficientypricating surfaces were taken from Table II. The location
which fall into three classes. Again using the notation of Ref.of the planar wall was shifted by (»*), corresponding to
[34] these are §;, XT;, X5, (normal force; Y71, Y31, Y5, thea— limit in Table Il (see Fig. 3. In this way we ensure
Y1, Y5, (tangential forcg and Y5y, Y5, Y5,, Y41, Yo,  that the lubricating surfaces are in the same position as the
Y51, Y5, (rotation. We implement our lubrication correction hydrodynamic boundaries in the lattice-Boltzmann simula-
by calculating a modified form of each scalar coefficient agions. The unit cell is periodic in four directions with a top
in Eq. (34); for example, and bottom wall, and cell length of ten times the particle

whereU;,=U;—U,, h=|R;J—a;—a, is the gap between
the two surfaces, and the unit vecR,=R;,/|R4.
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10° r r r :

S 10! | 3

[ 3
&

§ 102 | 1

* ]

TIT,

/T,

10
vt/a’,,,

0.001 0.01 0.1 1

h/a,“ FIG. 8. Settling of a spherea=4.8) onto a horizontal wall. The
) gap between the particle surface and willrelative to the hydro-
FIG. 7. Torque on a particle rotating next to a vertical planardynamic radius, is plotted as a function of the nondimensional time
surface at zero Reynolds number. The torque determined by latticéepen circles The solid line is based on the frictional force calcu-
Boltzmann simulation, normalized by the torque on an isolatedated from lubrication theory35].
sphereTO=87rnaﬁyQ, is indicated by solid symbols. Results in- L . .
cluding Iubrication are shown by the open symbols. deviations fom(ahy< 0.01. The S|mulay|on r.e.produces more
of the lubrication force at smaller viscosities because the
radius, which is sufficiently large that the effects of periodicsg':ttic'lré t:frfgzg;Od_%/r?ea?;arﬁ)'gnizlE?%f ;hea(;ggza?;(;)i{j;hgf
images were negligible. The simulation determines th% : . orap "
. . .2Ax was used to determine the lubrication cutbff(»*)
steady state force and torque on the particle for a given veg

locit d | locitv. which th dt lculat or each viscosity, and the numerical values are recorded in
ocity and angular velocity, which was theén used 1o calCulaleryp e |1 These lubrication corrections bring the simulated
the friction coefficient as a function of the gdpfrom the

. ) - normal force into agreement with theory for all the particle

wall. Simulation results for the frictional forces and torquesgjzes, interparticle gaps, and fluid viscosities studiegen
are shown in Figs. 4-7 for three different fluid viscositiessymbo|3 in Fig. 4 The corresponding result for the force
v* =1/6, 1/100, and 1/1200. ) ) and torque on a sphere sliding along the wall is shown in

The normal force shows the trend discussed in Sec. V g5 5 and 6. Again we see that the lubrication correction
for each particle size and fluid viscositifig. 4. The simu- g5 consistently accurate forces and torques, though not
lated force(solid symbol$ follows the exact resultsolid g ,jite as accurate as the normal force. The lubrication ranges
line) down to an interparticle gapy<Ax, that is indepen- ¢, tangential motion were found to be independent of the
dent of particle size. For larger particles the lattice-iq viscosity, as shown in Table IIl. We also noticed that the
Boltzmann method captures progressively more of the lubritecinrocal relations are obeyed: the force on a rotating sphere
cation force, but even fom==8.2Ax there are noticeable g gimilar to the data in Fig. 6. The calculated torque on a

o . ) o _ rotating spherdFig. 7) is in agreement with theory for the
TABLE Ill. Lubrication ranges for various kinematic viscosities, higher viscosities* =1/6 and »* =1/100, but not at the

determined for a sphere of radias-8.2Ax. The ranges are deter- |, yest viscosity »* = 1/1200. Here the lattice-Boltzmann
mined separately for the normh), tangentialh; and rotationahg method over predicts the torque on a rotating sphere by 20—

motions. 30 %. We think that the error is caused by the large differ-
ence between the hydrodynamic and input radid (
hy/A h/A hg/A - . . .

NTAX vAX RIEX =0.5%Ax) and it implies that viscosities* less than 0.01
v*=1/6 0.67 0.50 0.43 are not suitable for suspension simulations, at least with
v* =1/100 0.24 0.50 0.15 bounce-back boundary conditions. In practice this is not a
v*=1/1200 0.10 0.50 0.00 serious limitation: a viscosity* =0.01 allows simulations

with a Reynolds number up to ten per grid poimith a
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0 0.02 004 006 008 01 01
hyla

@ FIG. 11. Number of clusters as a function of the cluster cutoff
o gaphg/a at varying volume fractionse.

~0.02 by applying a constant force to the particle. The re-

sults show the expected exponential decay of the gap be-

®) tween the particle and wall over time, in quantitative agree-
ment with lubrication theory35] (shown by the solid ling

o D. Cluster implicit method

eo The lubrication forces complicate the update of the par-

° o e ticle velocity because they involve interactions between
many particles, especially at higher concentrations. For sim-

plicity we update the particle velocities in two steps; first the
lattice-Boltzmann forces and torquisg. (27)], followed by
the lubrication forces. The overall procedure is still first or-
© der accurate, but the lubrication forces can cause instabilities
whenever the particles are in near contact. The instability is
driven by the normal forces, and the stability criteria

£ 8 LB P B

FIG. 9. lllustration of the algorithm to determine the list of
clusters.

EAt  Bmma’At 9 pAt
m  fgpa’h 2 psah

Mach number~0.1), which is at or beyond the limit of 2 (36)
resolution of the flow. In other words, there is little practical
value in viscosities less than 0.01. o )

Finally, we examined the dynamic motion of a particle IS violated wherh is less than~0.1Ax.

(a=4.8Ax) settling onto a solid wal(Fig. 8). The lubrica- It is impractical to solve all the equations implicitly, so we
tion force was calculated using the ranges given in Table li1implemented an algorithm which uses an implicit update

The particle was given a finite mass and placed with an ini®nly where necessary. In our simulations we used the con-
tial gap of h=0.2a,, between the particle and wall. The servative criteria¢At/m<0.1. Schematically, we solve the

simulations were performed at a Reynolds number R&OUPled differential equations

1000 . x=—A-xtb (37)
o by splitting the dissipative matriA into regular and singular
2 1 componentsA=AR+AS. In our contextAS only contains
£ 100 3 components of the normal friction coefficient when the gap
S ] between particles is less than the stability cutbff, deter-
g ] mined from Eq. 36. Thué\R contains all the nonzero com-
§ 10 5 ponents of the lubrication correction but with the interpar-
§ ] ticle separation in the normal force regularizedyso that
= > = ] the larger ofh;; and hg is used to calculate the force. The
1 ! ! ! ! ! remaining normal force is included S, with the form of
0 002 004 006 008 0.1 0.1 Eq. (34), but with hy replaced byhs. Using a mixed
hla explicit-implicit differencing,
FIG. 10. The maximum cluster sizg as a function of the cluster X(t+AY—x(1) = —AR.x()—AS-x(t+At)+b, (39
cutoff gaphg/a at varying volume fractionsg. At
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we obtain the first-order update hg/a~1/a?, we find a minimum radius ofi=10Ax to keep
£At/m<0.5. A simulation of several hundred such particles
is possible on a personal computer or desktop workstation.

The important point is that, by a suitable relabeling of the In Fig. 11 we .ShOW the cqrre_spondlng number of clusters.
In general there is a steep rise in the number of clusters with

. . . S . .
particle indicesA” can be cast into a block diagonal form, increasinghg/a, leveling off to around 100 clusters. The

with the potential for an enormous reduction in the compu- > .
. . L . ; . sharp drop in the number of clusters at the highest volume
tation time for the matrix inversion. The relabeling is

achieved by a cluster analysis. First, all pairs of particles tha:(trzag'onl'g associated with the percolation transition, as seen
are closer than the stability cutoff are identified, and a list is g. 0.
made of all such pairs. An illustration is shown in Figa®
where pairs of particles with separations less tgnare
indicated by the solid lines. The cluster labels are initialized . ]
to the particle index; each particle is then relabeled by giving [N this work we have described and tested several exten-
it the smallest label of all the particles it is connected to.Sions to the lattice-Boltzmann method for particle suspen-
After one pass, the labels are as shown in Fig) @nd after ~ SIons, which enable regsona_lbly accurate force calc_ulauons to
two passes three distinct clusters have been identified, eaét® made even for particles in near contact. In particular, we
with a unique labe[Fig. %c)]. The algorithm stops when no have shown hqw to dea[ with problems of mass conservation
further relabeling takes place. Although more efficientWhen two particles are in near contact, and how to account
schemes are possible, this simple scheme is more than af the lubrication forces between closely spaced particles.
equate for our purposes. Once the clusters have been identlumerical tests show that the forces and torques between a
fied, the implicit equations can be solved for each cluster. warticle and a plane wall can be computed to within a few
use conjugate gradients to exploit the sparseneséf percent of the exgct result for Stokes flow. We note that thg
which is extensive even within each diagonal block. torque on a rotating sphere adjacent to a plane wall is seri-
The computational cost of the cluster-implicit algorithm OUsly in error(30%) when the fluid viscosity is very small
depends primarily on the maximum cluster size, which is(1/1200). This suggests that the callbratlon prqced_ure may
shown in Fig. 10 as a function of the cluster cutoff dap A break down when the hydrodyngmlc boundary is displaced
random distribution of 1000 particles was sampled in a periPy more thanAx/2 from the physical one.
odic box at volume fractions 0.10, 0.25, and 0.50. At low and Inclusion of the lubrication forces leads to large forces
moderate volume fractions the cluster size is only weaklyand stiff differential equations for the particle velocities. We
dependent oth,/a, ranging from 2—7, and clusters of this have developed a mixed explicit-implicit velocity update,
size impose a negligible computational overhead. Howevetvhich minimizes the number of linear equations that must be
at high volume fractions there is a percolation threshold af0lved, while maintaining absolute stability.
hs/a~0.02 beyond which a single cluster more or less spans
the whole volume. In this case the cluster will grow to en-
compass almost all the particles in the system. Thus at high
densities computational efficiency requires thata<0.02. This work was supported by the American Chemical So-
When combined with the stability criteria, which implies ciety Petroleum Research Fuf@4142-AC9.

(1+ASAt)-x(t+At)=x(t) — ARAt-x(t) + bAt. (39

VI. CONCLUSION
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