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Structure of best possible strategies for finding ground states
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Finding the ground state of a system with a complex energy landscape is important for many physical
problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are
usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected
examples. We present a proof that for a wide range of objective functions threshold accepting is the best
possible strategy within a large class of algorithms that simulate random walks on the landscape. In particular,
it can perform better than simulated annealing, Tsallis and Glauber statistics.
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I. INTRODUCTION Il. A CLASS OF OPTIMIZATION ALGORITHMS

The problem of finding the ground state of a complex We consider systems specified by a finite set of st@tes
system arises in many areas of modern science. Relate?j{a}’ ||=L, an objective(energy function assigning a

problems of global optimization are important for engineer-numbng(ag. t;: eacrl:c. stattr? an? ‘i nte|tghborhood relation

ing design and for everyday implementations of countles (2)CQ which specifies (e set of stales oneé move away
business decisions. In the realm of physics, such problem om a. The class of algorithms discussed here l_ml'z.es ran-
occur in the study of complex systems, such as spin glass m walks on the state space of the system: Being in a cer-

[1], neural network$2], and protein foldind3]. The devel- f[aln Statha, .thhebrandom vye;llker chboosﬁsle]x new (sjtatﬁom
opment of algorithms for the solution of such complex opti—'tS set of neighborsl(a) with a probabilityll 5, and accepts

mization problems began with local search heuristics baseH‘e new state as the next .s-tatTe in the random walk with a
certain acceptance probabilify;,. The acceptance prob-

on physical analogies, notably simulated anneali4¢]. h e
Given the large, and continually growing number of variants@Pility depends on a parametgrwhich in simulated anneal-

of this algorithm, its importance to the body of knowledge inNd is called the temperature in analogy to the physical pro-
physics is permanently increasing. The present paper, whilg€Ss: Foif =< all moves are accepted. For any fixgdmost
not really providing a constructive improvement for solving known algorithms share the foII_o_WlTng three properties:
these problems, proves a surprising theorem regarding the (Al) The acceptance probabiliy,, depends only on the
structure of the optimal way one should search for suctenergy differenc\E=E(B8)—E(a), i.e.,Pj,=PT(AE).
ground states. (A2) For energy differencesAE<O0, the functions

The theorem we prove concerns algorithms of the randonP'(AE)=1, i.e., downward moves in energy are always ac-
walk type, i.e., where randomly generated states are consig¢epted.
ered by an acceptance rule for possible adoption as the next (A3) For energy difference&E>0, the functionP"(AE)
state of the walk. Our theorem asserts that for algorithms o monotone decreasing, i.e., it is more likely to accept small
this type that make their decisions solely based on the valuesfeps upwards in energy than large steps.
of the objective functions, threshold accepting is the optimalt turns out that propertyA2) is not needed, if propertA3)
acceptance strategy. Given the number of variants of this extended to nonpositive energy differences. _
type of acceptance rule in the literat@-10], the impor- T(A3 ) For all energy differencesAE, the function
tance of the present type of structure theorem concerninff (AE) is monotone decreasing. _
optimal strategies within classes of local search heuristics i&/¢ here extend the arguments of REf1] to algorithms
evident. sharing only propertieéA1) and (A3').

The present paper extends the preliminary result along
these lines which appeared as a leffiel]. The development
in that letter is extended in two ways: We weaken the as- lll. EXAMPLES OF ALGORITHMS IN THE CLASS
sumptions required on the type of algorithm and we greatly
extend the class of objectives to which the theorem applies. The premier example of algorithms in the class consid-
The present version of the theorem covers essentially all okered is the original simulated annealing algorithm, intro-
jectives that are standardly used to measure the efficacy ofduced by Kirkpatricket al. [4] and Gerny [5], in which the
search algorithm. acceptance probability is based on the Metropolis algorithm.
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For fixed T, this algorithm has a Boltzmann distribution on energy from an exponential to a step function, i.e.,
Q) for its stationary distribution. Its acceptance probability is

1 if AEST
PABI=| o i A>T @
1 if AE<O '
PL,e(AE) = AE . (1) This early modification was introduced as a “poor man’s”
e~ T Iif AE>0, simulated annealing to make the algorithm faster by remov-

ing the necessity to compute values of the exponential func-
) . . . tion. Surprisingly, it seems to yield the same if not better
where for convenience is measured in terms of energy, i.e., gg|utions than the Metropolis algorithm when used as an
kg=1. optimization algorithm. The algorithm with acceptance prob-
In the implementation of the algorithm the computation of apjlities (2) is called threshold accepting.

the acceptance probability needs the evaluation of an expo- Another related technique was introduced in the context
nential function for each step of the random walker. Dueckof generalized thermodynami¢42]. Penna[8] and Tsallis
and Scheuel6] and Moscato and Fontandi] changed the and Stariolo[9] introduced an acceptance probability of the
Metropolis acceptance probability when stepping upwards irfiorm

1 if AE<O

1-(1 —E e if AE>0 and (1 —AE 1

— — - =

PI(AE)= -7 T AE=0 and (1~aq)7 3)

, AE
0 it AE>0 and (1-q)=>1,

depending on an additional parametgt 1. We refer to the random walk with these acceptance probabilities as the Tsallis
algorithm below. Fog=1, Eq.(3) is not defined, but one can show that in the ligit-1 the acceptance probabilit)
converges to the Metropolis probabilitg).

Franz and Hoffmanf10] modified the Tsallis acceptance probabilities for parameget to

1 if AE<O
T e e LS
- — —=<
BI(AE) - 2-q T hAE=b Ay T (@)
0 it AE>0 and o924
| an ﬁ? .
|
For fixed g, this is equivalent to Eq(3) with the rescaled IV. OPTIMAL ALGORITHMS

temperature paramet@’ =T(2—q). The advantage of this

modified transition probability is twofold. First for every The purpose of the random walk is to bring the walker as

far down in the energy landscape as possible, controlling the

<2 the new acceptance probabilit#) has, analogously to . I
Metropolis and threshold accepting, the propertyra”dom walk by choosing the probabiliti® (AE) at each
time stepte{1,2, ... S} in the algorithm § denoting the

o _yT _ L
Jo _P_q(x)dx—T and _secondly the thre_sh_o_ld acceptance IorObduration of the random walk This amounts to choosing a
ability can then be interpreted as a limiting cage — of

Eq. (4). Note that in the limitg— 1 the acceptance probabil- cooling scheduld (t) and thus a corresponding sequence of

T(t) t
ity (4) still converges to the Metropolis probabilityt). acceptance ruleB ', denoted byP" further on.

. . When comparing different algorithms a yardstick is
Another example of a known acceptance rule is provided X . . .
by Glauber dynamick13] which uses needed, which somehow should quantify this desire to come

close to the global minimum of the energy function during
the annealing. Accordingly, we are interested in choosing

P&(AE) _ 1 . (5) acceptance ruleB' which optimize some measure of how far

1+erET down the random walker goes. We introduce the notagpipn
for the probability that the random walk visits staieat time

This acceptance rule has been used in global optimization b= {0,1,2 . .. ,S} (pg denoting a given starting distribution
Szu and Hartley14] as part of the implementation known as for all « € ). The most common objective functions used to
fast simulated annealing. measure the quality of an annealing run are:
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(01) The final mean energdE(a(S))) should be as small dom walk which turns states at or below enekgynto ab-

as possible. sorbing stateg§17]. Specifically, we modify the transition
(02) The final |orobabilitypéS of ending up in the ground probabilitiesf“aﬁ in the following fashion: We introduce a
state should be as large as possible. modified transition probability matriftaﬁ;E
(O3) The expected number of visits to the ground state
should be as large as possible. . 8a,B) If E(B)<E
(O4) The probability of visiting the ground state during Uope= r, it E(8)>E. (10

the annealing should be as large as possible.

(O5) The mean final Best So F&4BSF energy[15,16]
should be as large as possible. The BSF energy of a giv
sequence or path(t) up to stepSis given as

Note that these modifications still keep the dependence on
&he acceptance probabiliti€® linear in all of thel“‘aﬁ;E.
As an example, consider the following transition probabil-

EgsH(S) = Ming==s{E(a(1)} (6) 'ty matrix,
and describes the lowest energy found along that path. 01 01 0
While both objectivegO1) and (02) are linear functions 5= 0.9 0.8 0.1 (12
of the final state probabilitiepi, this is not the case for the 0 01 0

objectives(03)—(05). In Ref.[11] we showed that for any

objective being a linear function gf$ (thus including(O1)  petween states 1,2,3 with energi& <E,<Es. Then
and (02) as special casgshreshold accepting is the best T s, will be

strategy to use. In the following we will prove that this ap- ot

plies for any objective which is a linear function of the state 1 01 0

probabilitiespta during the whole process and not onlytat

=S. This extends the theorem to cover objecti@S). Fur- Iupe,=| 0 08 01, (12)
thermore, we show that this is true not only for the given 0 0.1 O

random walk but also for a class of Markov chains which can
be constructed from the random walk and which enables uendl“a,g;E2 will be
to include objectiveg04)—(05) in the cases to which the

theorem applies. 1 0 O
=0 1 01
V. A MATHEMATICAL DESCRIPTION Fape, ' (13
OF THE DYNAMICS 0 0 09
The time development of the probabilipj, that the ran- In this way each random walker reaching a state with
dom walk is in a stater at time stept is described by the energy less or equal $is trapped at that state. Evolving the
master equation associated probability distributiqnfa;E
t= t -1 t t t-1
Pa ﬁ;ﬂ Fa,Bp,B ’ (7) pa;E—lggQ Faﬁ;EpB;E , (14)

with the transition probabilities gives the probability to be in state of the modified chain

t _ pt _ aftert steps. FOE(«)>E this is the same as the probability
Pap=Tlap PE(@)~E(B) for a#p ®) of being in statex in the unmodified random walk and not

having visited any states with an energy less than or equal to

and E before timet. The probability to have visited a state with
. . energy less than or equal Ebup to timeSin the unmodified
Faazl—;a I (9 random walk is thus,
The prob_abilitiesHaB of choosing a ne_ighboae N(,B) as BSE)= > pi;E- (15)
the candidate for a move froff are a given stochastic ma- a:E(a)<E
trix such thatll, ;=0 if ¢ N(B). We note that the entries
of " are linear functions of the acceptance probabilifés In order to determine the full distribution of the BSF en-
ergy we use the finiteness of the state space: We sort the
VI. THE PROBABILITY DISTRIBUTION finite number of different energy values in ascending order
FOR THE BSE ENERGY and label thenEy, ke{1,2,...K}. Then for everyk the

correspondindS(E,) is determined and the probability that
We now turn to the problem of obtaining the probability the lowest energy visite#, is given by
BS(E) to have seen an ener@yor better up to timeS. This
probability can be obtained by considering a modified ran- bS(Ey) =BS(Ey) —BS(Ey_1), (16)
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whereE, is an arbitrary energy valuEy,<E;. For such a VIl. THE THEOREM

t _ At t _7t
valueEo _We have!oa;EO—pa andFaB?Eo_Faﬁ In a preceding papdrll] we proved that among accep-
Equation(16) yields the mean BSF enerd¥gs{(S)) as  tance rules with propertigé1)—(A3), the optimal strategy is

K to use only threshold accepting rules. This optimality of
_ S threshold accepting was already seen eafli€f while com-
(Besi(S) glb (BB 19 paring different acceptance rules numerically using the

modified Tsallis statisticé4), which includes Metropolis and
Summarizing the above, for eaéhthe master equation threshold accepting as limiting casgk0]. Another partial
with corresponding modified transition probabilitiﬁé,ﬁ;Ek result in this directiori19] showed that an optimal annealing
needs to be iterated. This can be presented in a compact waghedule begins and ends with a number of threshold steps.

by introducing a vector/matrix notation for the master equa- In the present paper, we extend the previous theorem in
tion (7), several ways. First, we do away with the assumption of prop-

erty (A2). Second, we extend the class of objective functions
p'=TI"p!, (18)  to which the theorem applies. The previous proof was con-
fined to objective functions that are linear in the final state
where p' is the vector of probabilitie$)ta representing the probabilitiespj Here we extend this work by investigating
state of the random walk at timeandI'! is the transition also objective$01)—(05), and more generally, any objective

matrix, consisting of the valuek', ;. Similarly, Eq.(14) is  function which is a linear function o .

expressed as Theorem For any optimization algorithm satisfying prop-
t - erties(Al) and (A3’), and any objective function which is
Pe =L, PE, - (19 linear in the probabilitesq, ie{1,...L(K+1)},
T e{l,....S} of the extended random walk constructed as
Combining all the probability vectors ptEk (k  above, the optimal acceptance strategy is threshold accept-
€{0,1, ... K}) into one vector, we find B ing.
P, g, 0 -- 0 [P VIll. THE PROOF
ptEtl 0 l“tEl .. 0 p}El The proof hinges on the fact that all of the entries in the
Etﬂ: T transition matrixI'* are linear functions of the acceptance
1 . . probabi_lities. We begin by introducing vector notation for
Pe, 0 o - FEK Pe, convenience. Just as we changed from denoting the vector of
_ = N probabilities p!, as an L-dimensional vectorp!, and the
=T'q", (200 L(K+1)-dimensional state vectors lof, we associate a se-
- quence of vectors! of L(K+1) elements to any linear
Thus fOWE{l . L} andke{0, ... K}, we haveqi,,,  function of the stafe vectors', t=1, ... S. Our theorem
=P, Hence the time development of the unmodifiedconcerns any objective function linear in thé i.e., mini-
chain is contained i} ,i=1, ... L. The mean BSF energy mizing any function of the form
can be expressed as
S S L(K+1)
K F(a*q? )=2, (FY"q'=2 > Fig—min,
(Epse(S))= 2, ElBS(E)—B(E-1)] - e
k=1 (23
B E S S where () denotes transpose and the minimum is taken over
= Ek( wEC =<k, pa;Ek_a:E(a)SEk_l PaE,_, all possible sequences of acceptance rlfeg=1,... S. A

sequence of acceptance rules is an optimal schedule for the
(21)  problem(23), if for this sequence the minimum in E¢@3) is
achieved. The vectorE' may be any arbitrant (K+1)-

or tuples of numbers. For instance, note the following:
(1) For maximizing the final ground state probabilfigs,
(EgsH(S))= Z Ek( Obks o F'=0 unlesst=S andi=GS in which casd&ge=—1;
(a)=E (2) when minimizing the mean final energy,
S t .
- > Q. a). (22) Fi=0 fort<sS;
a:E(a)<Eg_q Lik=1)+ !
S_ (i P
Note that all our objective function€D1)—(O5) are linear FP=E(i) for i<L;
functions of the probabilitiesy}, ie{1,... L(K+1)}, t < .
e{1,... .S}, afact which is central to the arguments below. Fr=0 for i>L;
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For I [©
q° q' g g g g q°
= 1 2 t S

tr tr tr tr
g —> g —> > F'qg' —>—>F¢ —>

FIG. 1. Dynamic programming problem with control given by the acceptance@]dévery stept takes as input the state vecgirl,
and transforms it into an outpuft according to the controP!. The outputs determine the objective functibig®,q?, ... .q5) of the
dynamic programming problem>” - - -

(3) when minimizing the mean BSF energy, solved by dynamic programming. The scheme of our dy-
namic programming problem is illustrated in Fig. 1.
Fl=0  for t<S: In every stegt, an inputq'~? is transformed into the out-

! put ' under the influence of the contr®!, which is the

acceptance rule at timte Finally, the output for the steps

FPeqa=0 for kef{0,... K—1}, is used to determine the optimality criterion
F(q,q?, ....,9%. In this case the Bellman principle holds
aef{l, ... L} and E(a)>Ey; [20]. This means that the optimal control can be computed

backwardg¢=S, S—1, ... 1L
Let us first consider the last st&p For any given input

Fokea=Ex—Exs1 for ke{0,... K—1}, g5 %, we have to solve the optimization problem
S S-1
aefl, ... L} and B(a)<E; tytr, ot tytr, ot S\tr. ¢S
> (FY"-g'= 2 (FY"q'+(F9)" g°=constant
=1 — - =1 - = = =

FEK+a:EK for ae{l, Ce ,L}. +(FS)”FSqS‘1—>min, (24)

Let M<L(L—1) be the number of distinct values of the
energy difference& () — E(a) between neighboring states. where, as noted above, the matrix elemdrisgiven in Eq.
Then the acceptance rule' can be considered as an (20) depend linearly on the control vect®®. The possible
M-dimensional vector of numbers [,1]. For convenience range forPS is the simplex described inthe preceding sec-
we assume that thil different AE values are sorted in in- o Hengce we have to find the minimum of a linear function
creasing order and thus the monotonicity propéA$’) as- o 3 simplex. By the fundamental theorem of linear pro-
sures us that the entries in the vecEirare nonincreasing.  gramming[21], this minimum is found at one of the vertices
The possible range for the' vectors is a simplex in the in v, i.e., at a threshold acceptance function. Call this vertex
M-dimensional space. Let us recall that a simplex in real, S, Of course this vertex® depends on the input® 2, i.e.,
n-dimensional space is the smallest convex set contaiming ;5= S(qS1). - -
+1 points in general position, i.e., not all lying in a hyper- — Ny Tet us continue with the second to last s&p1. For
plane. For example, favl =3, i.e., for three different values any given inpugS ™2, we have to solve
of AE, the set of allowedP' values is the tetrahedron -
{1=PY(AE;)=P'(AE,)=P'(AE;)=0}. The vertices of
this simplex are those vectors for which three of the four
inequalities hold with equality. These are precisely the vec-
tors P! containing an initial sequence of ones followed by a
sequence of zeros. In general, let the set of vertices of this . -
simplex in theM-dimensional space be denoted\yThe set  Where we now already know th@s(ﬂ ) is a transition ma-
V is exactly the set of all possible threshold acceptance ruledlix corresponding to a threshold acceptance function. Since

The optimization task23) for the dynamic process de- we do not know in advance the vectqP~* which deter-
scribed by Eq(20) is a discrete control problem, where the minesv S, we considetV| different objective functions, one
controls are the acceptance vectBfs Such problems can be for every vertexvSeV. For fixed vS the optimization

constant- (Es‘l)”. fs— 152+ (ES)"FS(US)FS‘ 193—2

—min, (25
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problem(25) is again a linear problem with the same struc- X. CONCLUSIONS
ture as Eq(24) over the same range, thus also here an opti-
mal control is found at one of the vertices \fj i.e., at a
threshold acceptance function. Call this veriex 1. This

In the present paper, we considered the problem of finding
the ground state of a system whose energy landscape con-
~ ) a — tains many local minima. We examined search strategies
yerterS " depends on the |_npm_15 * and on the \{ert_egs, based on visiting states of the problem according to a ran-
e, v t=v°"1(g% %,v9). Since the vertex sel is finite,  jom walk. We formulated the general propertiad)—(A3)
there is a vertex > which gives the minimum over alV|  which characterize “reasonable” acceptance rules and
pOSSible minimum VaIUeS in proble(ﬁS) It fO”OWS that in Showed that among all search Strategies Obeym and
the last two steps threshold acceptance functions are optimgla3’), optimal strategies always exist consisting entirely of
In a similar way, we process all the remaining steps ofthreshold accepting. The proof holds not just for finding the
the dynamical optimization problem from the end to theground state, but for any objective that depends linearly on
beginning. At each step, we find a linear optimizationthe state probabilities. Furthermore, except for highly trivial
problem over the same simplex range that attains its miniproblems for which all acceptance rules do equally well,
mum at one of the vertices. Hence in every step a thresholgrategies that employ acceptance probabilities strictly be-
acceptance function is optimal. The finitenes$ois crucial  tween 0 and 1, such as those satisfyi#gl), cannot be
here to guarantee that the number of possible vertic®i®f  optimal. In particular, strategies based on Metropolis, Tsallis
finite. or Glauber acceptance rules cannot be optimal. While this
does not exactly establish uniqueness of threshold accepting
as the optimal strategy for all problems, it does establish
IX. UNIQUENESS such uniqueness for all but a negligible class of problems.
Knowledge that the best performance can be achieved
using threshold accepting is of limited use without knowing

of acceptance rule®!, t=1,... S is of the threshold : : S
accepting form, it does not assert thadit optimal sequences the optimal sequence of thresholds which will in general
' depend on the initial distribution. In particular, even though

of acceptance rules are of this form, i.e., by our argumentgve have shown that Metropolis, Tsallis or Glauber based
thus far, other strategies may do equally wébut not

better). In the following, we show that threshold accepting acceptance rules cannot achieve the optimum performance of

actually does better than other strategies except 0the algorithm, it may still be better to use acceptance rules

. . ?or which a good cooling schedule is known rather than us-
trivial problems for which the acceptance rule makes nao . ; .
difference. ing threshold accepting with a poor schedule. Thus, the issue

In terms of the linear programming problem at eacthe of comparing schedules using different strategies remains

existence of other strategies that do equally well means thahsettied. _ o
a face or edge of the simplex is degenerate, i.e., that there '€ freedom to use any linear objective includes most
exist energy changesE for which an acceptance probability but nqt all possible objectlve_s of interest. The constructhn
of zero or one or anything in between does equally well.used in the present paper significantly extended the family
Conversely, if an optimal acceptance probability is strictlyof objective functions that could be considered in this
between 0 and 1 for someE>>0, then setting this probabil- class and to which the theorem applies. In particular, it
ity equal to 0 or 1 would do equally well, i.e., for such extended the theorem sufficiently to cover all of the objec-
values of AE, the algorithm does as well whether or not it tives (01)—(05).
accepts such moves. Our proof had to assume that the state space is finite. It is
To see the full implications of this fact, consider the classour belief that a similar proof can be pushed through for
of acceptance rules for which the following property holds. larger state spaces but we postpone the exploration of this
(A4) The acceptance probabilit'(AE) is strictly be-  problem to a future effort. We remark, however, that the
tween 0 and 1 for alAE with 0<AE<<co, realities of finite arithmetic on a digital computer forces ev-
Note that Metropolis, Tsallis as well as Glauber accep-ery state space to be finite.
tance rules belong to this class. It follows from our argument Our result does not prove that threshold accepting is
above, that if an acceptance rule satisfyidgt) is optimal, the best possible algorithm for finding ground states. In
then so isany acceptance rule, since in that case for/sl particular, there may be better algorithms outside the
>0 the vertices always accepting that move and always rebroad class of well-studied Monte Carlo methods considered
jecting that move must be degenerate. In the language dfere. For the algorithms in this class, which are often termed
Metropolis based annealing, this means that a quémgect-  local search heuristic§22], proven results are rare. Our
ing all moves withAE>0) and a random rufeccepting all  result establishes the structure of the optimal implementation
moves would both be optimal. This can only happen for within this class of heuristics. As such, it is an important
very special, rather trivial problems. In summary, if for a advance in global optimization, moving the subject from the
certain problem an acceptance rule satisfyiAg) is opti-  realm of empiricism toward the realm of provably optimal
mal, then all acceptance rules do equally well for that prob-algorithms. The theorem proved is powerful and simple: a
lem. Similar considerations apply to the other acceptancenove is either good or bad so one should accept it always or
rules discussed above. never.

The proof above establishes thah optimal sequence

046706-6



STRUCTURE OF BEST POSSIBLE STRATEGIES RO. .

[1] K.H. Fischer and J.A. HertSpin Glasse¢Cambridge Univer-
sity Press, Cambridge, 1991

[2] J.A. Hertz, A. Krogh, and R. Palmeintroduction to the
Theory of Neural ComputatioffAddison-Wesley, Redwood
City, CA, 199)).

[3] K.D. Ball, R.S. Berry, R.E. Kunz, F.Y. Li, A. Proykova, and
D.J. Wales, Scienc271, 259 (1996.

[4] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Scierz20, 671
(1983.

[5] V. Cerny, J. Optim. Theory AppH5, 41 (1985.

[6] G. Dueck and T. Scheuer, J. Comput. PH@.161(1990.

[7] P. Moscato and J.F. Fontanari, Phys. Lettl46 204 (1990.

[8] T.J.P. Penna, Phys. Rev.d, R1 (1995.

[9] C. Tsallis and D.A. Stariolo, Physica 233 395(1996.

[10] A. Franz and K.H. Hoffmann, Appl. Math. Letfto be pub-
lished.

[11] A. Franz, K.H. Hoffmann, and P. Salamon, Phys. Rev. [8§t.
5219(200D.

[12] C. Tsallis, J. Stat. Phy$2, 479(1988.

PHYSICAL REVIEW E 66, 046706 (2002

[13] R.J. Glauber, J. Math. Phy4, 294 (1963.

[14] H. Szu and R. Hartley, Phys. Lett. 222, 157 (1987).

[15] M.O. Jakobsen, K. Mosegaard, and J.M. Pedersttel Op-
timization in Exploration Geophysics, Iedited by A. Vogel
(Friedr. Vieweg & Son, Braunschweig, 198%. 361.

[16] K.H. Hoffmann, P. Sibani, J.M. Pedersen, and P. Salamon,
Appl. Math. Lett.3, 53 (1990.

[17] J.G. Kemeny and J.L. Snekinite Markov ChaingVan Nos-
trand, Princeton, 1960

[18] A. Franz and K.H. Hoffmann, J. Comput. Phyk76, 196
(2002.

[19] P. N. Strenski and S. Kirkpatrick, Algorithmida 346 (1991).

[20] R.E. Bellman and S.E. Dreyfu#pplied Dynamic Program-
ming (Princeton University Press, Princeton, 1862

[21] D.G. LuenbergerLinear and Non-linear Programming2nd
ed. (Addison-Wesley, Reading, MA, 1984

[22] R. Garey and D.S. Johnso@pmputers and Intractabilify(W.
H. Freeman & Co., New York, 1979p. 22.

046706-7



