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Two-dimensional lattice Boltzmann model for magnetohydrodynamics
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We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dyNiiig
flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square
lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD
used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In
our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the
resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow,
giving reasonable results.
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I. INTRODUCTION memory. ForN moving directions, this model needéx N
particle states. For example, the face-centered-hypercubic
During the last years, the lattice Boltzmann equation(FCHC) model has 24 different particle speeds resulting in at
(LBE) method evolved to an alternative method for the simudeast 576 particle states for a MHD model.
lation of fluid flows[1,2]. It originated from a Boolean fluid Martinez, Chen, and Matthae{i$3] reduced the number
model, the so-called lattice-gas automét&A) [3,4]. LGA of necessary particle states from 37 to 13 in the two-
simulate fluids directly as a system of discrete particles movdimensional case. This reduction makes a three-dimensional

ing on a regular lattice. The particles move from a lattice cellextension of the model possible. They applied the model to
to one of its nearest neighbors. The particles undergo collithe Hartmann flow and two-dimensional magnetic reconnec-
sions at the lattice cells conserving mass and momentuniion in a sheet pinch. The comparison with a spectral method
The macroscopic fluid variables such as density and flovghows reasonable results. However, the main difficulty of
speed are calculated by averaging over many lattice cells ariflis model is that it is confined to low-Reynolds numbers
time steps. A successful LGA model was the FHP gas, introbecause the values of the transport coefficients at the stability
duced by Frisch, Hasslacher, and Pomgﬂu It uses a hex- threshold are finite. This is caused by the use of the bidirec-
agonal lattice with six particle speeds. However, LGA havetional streaming rule. The transport coefficients of hydrody-
some shortcomings such as the lack of Galilean invariancBamic lattice Boltzmann models vanish at the stability
and statistical noise. Instead of following the dynamics ofthreshold, allowing, in principal, arbitrary high-Reynolds

individual particles, lattice Boltzmann methods use thenumbers. .
single-particle distribution function which removes the sta- Some other lattice Boltzmann models for MHD have been

tistical noise[6]. developed. Succi, Vergasola, and Befiz#] developed a

Shortly after the FHP gas, the first magnetohydrodynamidnodel which is a two-dimensional projection of the four-
LGA was deve|0ped by Montgomery and Doo[@hﬁ] Their dimensional FCHC model. It is also confined to two dimen-
model is an extension of the original FHP gas. It includessions. Fogaccia, Benzi, and Romangllb] presented a Lat-
additional degrees of freedom of the particles for the vectofice Boltzmann model for the simulation of three-
potential which has only one component in two dimensionglimensional plasma turbulence.
and satisfies a passive scalar equation similar to the tempera- In this paper, we demonstrate that the use of the bidirec-
ture. Therefore, the model is confined to two dimensionstional streaming rule is not necessary for a MHD model. In
Additionally, the Lorentz force is not included automatically Sec. Il, the model is described in detail and the model equa-
in the model. It must be included by hand as an externalions are derived. In Sec. Illl, we present the test simulations

force which needs some Space averages_ Of the Hartmann ﬂOW and in Sec. IV we giVe the COﬂC|u-
Another magnetohydrodynamic model was developed byions. Finally, in Appendix A, we present some tensorial re-
Chen and Matthaeus and Chen, Matthaeus, and K&irg].  lations used for the derivation of the model equations and in

In this model, a two-indexed particle distribution is used.Appendix B, we calculate the inverse of the collision matrix.
Each state is associated with two velocity vectors of the FHP

gas, i.e., there are 36 different states for the particles. During II. MHD MODEL

the streaming step, each particle moves along one of the two
vectors which is chosen randomly. This model includes the
Lorentz force by pure local operations and it is not confined The lattice Boltzmann equation describes the evolution of

A. Lattice Boltzmann equation

to two dimensions. the particle distribution functio;
This model has been extended to a lattice Boltzmann
model by Chenet al. [11,17. Although the model is not fi(x+v t+1) = fi(x, )=, (1)

confined to two dimensions, its extension to three dimen-
sions would require a large amount of computationalwherex are the lattice cells is the discret timey; are the
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velocities associated with the distribution functibn and K
Q; is the collision term. The densityand the velocity are p= f0+i2|< fii s (6)
obtained from the distribution function by b

p=2i i) ?) pv= > VS, 7

ihj,K

pv=2 fv;. 3 B= >, Viff. ®

ihj,K

For LBE, the Bathnagar-Gross-KroolBGK) [16] single  Because we use the standard streaming rule with propagation
time relaxation ansatz is often used for the collision termalongvr, the streaming part of the particle distribution func-
[17,1§ tion fﬁ satisfies the lattice Boltzman equation

Q== 2(fi =179, (4) KV D) = S (x ) =0F. 9
wheref{4is the equilibrium distribution function. It depends gor the nonstreaming paft, of the distribution function we

on the lattice and it is usually not uniquely defined. Forhave the equation
square and cubic lattices, the distribution function has the

form [18] fo(X,t+1)—fo(x,t)=Qy. (10

9= w;p[ 1+ 3v;v+ 3 (viv)2—302]. (5  Instead of the BGK collision term, we use a matrix collision
operator

w; is a function of|v;| and depends on the number of veloci-

ties included in the model. For two-dimensional simulations Qff == L(FK— 1509+ gmEK (FK - £K59) (1)

on a square lattice, a model with nine velocities, the so-

called D2Q9 model is often used. The model includes four Qo=—L(f — flea) (12)

componentsf;, i=1,....4 with velocitiesv, pointing to the om0 o

nearest neighbors, four componerits i=5,...,8 with ve- KK

locitiesv; pointing to the next-nearest lattice cells and a com-The matrixMijmn is given by

ponentf for rest particles with zero speed. The valuesvof KK’ K K _K' K

are 4/9, 1/9, and 1/36 fdw;| equal to 0, 1, and’2. Mijmn=TagysVial [V myVns - (13

B. General description of a MHD model The tensofm us,; has the form
In addition to their model on a hexagonal lattice, Mar- Tugys= — 35 0ag0ys™ 26 0ayOps™+ 16 OusO 5y 16 Oupys

tinez, Chen, and Matthae(i$3] presented a MHD model on (14

a square lattice. Our model is very similar to their model ) )

except that our model does not use the bidirectional streamVhere &, is the Kronecker delta and,z,s=1 only if «

ing. It is an extension of the D2Q9 model described in the=8=y= ¢ otherwise it is 0. Roman indices label the com-

previous section. Following Martinez, Chen and MatthaeugPonents of the particle distribution function and Greek indi-

[13], we divide the nine velocities and corresponding com-Ces label the spatial dimensions. For the latter, the Einstein

ponents of the particle distribution function of the D2Qg Summation convention is used. The matrix collision operator

model into three groups. The first group contains the compo@!/lows an independent control over the viscosity and the re-

nent f, with zero speed. The second group contains the!StVity.

four velocities pointing to the nearest neighbors which are The next step is the specification of the equilibrium dis-
now labeled asV!, i=1,.,4 with v!=(cos{-1)m2, {ribution function fi in such a way that the model repro-

duces the correct MHD equations. In addition it must be
compatible with the definition$6)—(8). A possible form of
the equilibrium distribution function is

sin(—1)w/2). The last group contains the velocitieé, [
=1,..,4 pointing to the next-nearest neighbors with
=v2((cos{—1/2)m/2, sinf—1/2)w/2). The components of
the particle distribution function in the second and third
groups are divided into two subcomponeriﬁs where K
=1, I, i=1,..,4, andj=i=1 (mod 4. There are now 17
components of the pf’;lrticle di(stribut?on function: a distribu- T - = Wk{p[1+3V/V+3(ViV)? = 30?1+ 3v[B—3(v['B)?

tion of rest particles‘o.and a st.reaming.pafﬁ. Each com- +3B2+ %(v}(Xvi'()(BXv)}, (16)
ponent of the streaming paffj is associated with two vec-

tors v and v where the component;; of the particle where the first term is the hydrodynamic part which has the
distribution function propagates aloné. The densityp, the  same form as for the D2Q9 model and the weighting factors
velocity v, and the magnetic-fielg are defined as arewy=4/9, w,=1/18, andw, =1/72.

f6?=wol p(1- $v?) — §B?], (15
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C. Model equations term conserves the macroscopic variables. Unsing(Eg).

Now, the model equations can be derived from the latticdOr the equilibrium distribution function and the tensor rela-
Boltzmann Eq.(9) using a Chapman-Enskog expansfdf ~ t1onS of Appendix A, we get
First, we expand the left-hand side of E§) up to second

(0)_1 + + 1Rp2 _
order in space and time o5=3p8aptpvavpt:B°0ap=BaBpg, (28
K A%=B,vz—Bu,. (29)
atf!}(x,t)+v{<ﬁaﬁfﬁ+%aff!‘jﬂ{(ﬁaﬁu _ _ o menp TR _ _
at Up to first order ine we get the following equations:

K. K K K
—l—%viﬁvwﬁﬂo" f ZQIJ .

bl 1%
o SV (pv)=0, (30
Next, we expand the particle distribution in a series of pow- ot
ers of a small parameter 5
v
FR= ROy KD (17) p|op H (V- V)v|==V|p+ =]+ (B-V)B+B(V-B),

31
wheref{{(®=f(*? and the higher terms ig are the depar- 3y

ture from the local equilibrium. These higher terms of the
particle distribution function do not contribute to the macro- -t = VX (vXB), (32
scopic variables such as density and momentum, i.e.,

with the equation of statp=p/3. To get the dissipative ef-
fgl)+i;K fﬁ(l)zo, (19  fects, we have to consider the second-order terms
It if O+ 305150 + dvig0 st O 50501 010,11

!( K(l): ’ ’
1 M0 =0 9 Fauf§ D +olam Y= AR, 33

KoK (D) First, we calculate the change of the densityp due to
_EK vi i =0. (200 dissipative processes. Summing over the velocity states in
b Eq. (33) we get

The time and space derivations are also expanded in powers

of €, Orop+ 30yl dup+ dg1(pv )1+ 391 (A (pv g) + 9711_[(507))
&t:E&tl—’_Ezath (21) +(9tlisz fﬁ(l)‘F&BJ_IIEK vﬂfﬁ(l)zo (34)

Using Eqgs.(25—(27) and Eqgs(18-20 we get

t1 captures the fast changes, for example, sound waves,

whereast2 is associated with the slower dissipative pro- r2p=0. (35
cesses. Inserting the expansi@h3), (21), and(22) into Eq.

(17) we get up to first order ire There are no second-order terms in the continuity equation.

Next, we calculated;»(pv,). Multiplying Eq. (33) by v,
ﬁtlfﬁ(O)JrviKgl?ﬁfﬁ(o):AKK’ fK'(l), 23) and summing over the velocity states, we get

ijmn'mn

1 (0)
where we introduced the collision matrix It2(PV o) T 291(0na(pv o) + g1l )

ARK! = L5 Sin Sk + OMEK . (24) + 301 dullip+ fm”_ZK viguigolo i
Multiplying Eg. (23) with 1,v;,, andv;, and summing over
i,j, andK one gets +O7t1i,jE,K Viaff ™+ aﬁliJZK viuisfii M =0.
dup+dg(pvg) =0, (25) (36)
G (pvia) + dpI15R=0, (26)  Again using Eqs(25)—(27) and Eqgs(18-20 this becomes
JuBat dpA =0, (27) Geo(pva)=—1dp ﬁuﬂioéﬁylisz oK oKk KO

whereII{Q=5,; ; (f£@p K vl is the momentum flux tensor

0 s TR K K -
andAaﬁ—EI,J,.Kfij Viulip 1S the magnetic momentum flu'x' _aﬁlz U!(avrﬁfﬁ(l) (37)
tensor. The right-hand sides vanish because the collision i"].K
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We calculatefS™) from Eg.(23) using the inverse collision fluid can be treated as incompressible. Additionally, the mag-

matrix of Appendix B and get netic field must be small enough that the magnetic pressure
is negligible. For an incompressible fluid and a divergence-

fﬁ(l): B T(‘ytlfi}}mbr Uiﬁaﬁlfﬁ(o)) free magnetic field,
672 : / , V.v=0, 46
+ 57 Mijmn(dufma” +Umpdpifrn ). (38) (46)
V-B=0, (47)

Inserting this into Eq(37) we get
the model equations simplify to

0 K_ K. KgK(0)
f7t2(Pva):f751((T—%)(&tln(a#”?yli]zl( Uiaviﬁviyfij( :

BZ
p+ 7) +5(B-V)B+vAy,
(48)

N v Vv=—tv
S (v V)v= -

o7° K K \KK £K'(0)
+ 1— g, lieliB ijmn(dt1fmn

B
o — =V X(VXB)+ uAB, (49)
o). @9 at

. . _ ‘where v is the kinematic viscosity ang is the resistivity.
Using the tensor relations of Appendix A, we see that there ishe values of the transport coefficients are

no contribution to the dissipative term of the momentum

equation due to the matrdd ;¢ and the other terms reduce v=3(7-1%), (50)
to
_ 1 67°
G pva) =3 (7= 1)l dua(pvg) + Ipa(pv )], (40 H=T 5 g (5D

Asimilar c_alculation gives the dissipative term in the induc--l-hey can be controlled independently by the parameters
tion equation and 6. There is no lower bound of the transport coefficients
1 672 because they vanish at the stability threshoidl/2 as in the

2 )
2B ,= ( T— 5-|- m) 331( 9p1B,— §(9a153) . (41)  hydrodynamic model fog=0.

Using Egs.(21) and(22) we combine the first- and second- IIl. HARTMANN FLOW

order terms to the following equations in vector form: Next, we apply our model to a very simple MHD prob-

lem, the Hartmann flowl19]. This is the stationary flow of an

‘;_’t)+v.(pv):0, (42)  incompressible, conductive fluid between two plates. Be-

p

tween the two plates, there is a homogenous magnetic field
perpendicular to them. The direction of the initial magnetic

_ —V( p+ B_Z) +(B-V)B+B(V-B) field is chosen as thg axis. We assume that the velocity of
2 the fluid has only one component along thxeaxis v
=(vy,0,0). The two plates are located y&=L and y=
—L. The flow produces an additional magnetic field. This
field also has only am component. The total magnetic field
)(AB—%V(VB)). is B=(By,Bg,0), whereBy is the constant strength of the
initial magnetic field. From the continuity equation and the
(44) divergence-free condition of the magnetic field we get
gvxlax=0 and B, /dx=0. Therefore, the nonlinear terms

v v
E—’_(V. )\

+3[(7=3)(Apv+V(V-pv))], (43

7_2

L,
T2 16~

aB—V>< XB)+
i (vXB)

This set of equations does not include the divergence-fre . . N
condition of the magnetic field. Building the divergence of " the Navier-Stokes equation reduce 1 7)v=0 and B

the induction equation, we see that the divergence of théV)B:(BO‘?BX/‘?y’_O'O)' They component and the com-
magnetic field satisfies a diffusion equation ponent of the Navier-Stokes equation reduce to

2
VB 1 1 67 o 45 9 p+B_):o (52)
a3\ T 2T1g)AVE it 2
The solenoidal part of the magnetic field diffuses away. If the B 5_2 -0 (53)
magnetic field is divergence free at the beginning, it is diver- 9z P 2)

gence free for all time, i.e., the divergence-free condition can
be added to the model as an initial condition. If the flow p+B?/2 depends only o®. Thex component of the Navier-
speed is small compared to the speed of saurdl3, the  Stokes equation is
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19 +BZ)_BOaBX azvx+8zvx) - 0.012[ T T T T T
pox\ P12 Ty M ) oY s

Because the left-hand side depends onlyxand the right-
hand side depends only grandz, both sides of the equation 0.008
must be constant. We set this constant equal to [
(1lp)al ax(p+ B?/2)= —g. This pressure gradient drives the

flow. The nonlinear term in the induction equation reduces to > 0.006
V X (vXB)=(Bgdvy/dy,0,0). Thex component of the in- [
duction equation is 0.004
) B, °B
B, ﬁyx + u( &y; + aTZ’X) -0 (55) 0.002
, ) 0.000 L
Assuming that all variables depend only gnthese equa- -1.0
tions reduce to the linear ordinary differential equations
B, dB, dzvy FIG. 1. Velocity profilev, vs y/L for different Hartmann num-
g + v ik g, (56) bers:H=0 (diamond$, H=1 (triangle, H=2 (squares H=5
p ay y (crossep H=10 (plus sign$, andH = 20 (asterisks The solid lines
are the theoretical results.
duy d?B,
Bod—y +u d—y2 =0. (57) .
parameterg’, v', andB’ is chosen. These parameters are
The velocity and thex component of the magnetic field van- set such that the boundary conditions are fulfilled. The evo-
ish at the plates lution of the system was computed until a steady state was
reached. To drive the flow, we used an external force instead
vy(y)=0 aty==L, (59) of a pressure gradient. The external force was realized by

replacingv in the equilibrium distribution function at the
right-hand side of the lattice Boltzmann equation\by 7g,
whereg is the acceleration of the fluid due to the external
force. For all simulations, we used an array of5® cells.
The other parameters are setite 0.6, #=0, andg=10°.

The Hartmann number was varied by changing the strength
of the constant vertical magnetic-fieB},. We simulated the

B,(y)=0 at y==*L. (59

The solution of Eqs(56) and(57) with the Boundary condi-
tions (58) and (59) is

B (y)= pgL sinr.(Hy“—)_ 4, (60)  Hartmann flow foH=0, 1, 2, 5, 10, and 20. Figure 1 shows
Bo | sinhH L the resulting velocity profiles and in Fig. 2, the correspond-
B [pm gl cosiiHy/L
UX(Y)— TB—OCOShH[l— W , (61) 0.0010
whereH=ByL/\uvp is the Hartmann number which is the g
ratio between the magnetic and the viscous forces. In the 0.0005 [ [lef

limit of zero Hartmann numbe(no external fieldl the solu-
tion reduces t@,=0 andv,= (gL%/2v)(1—y?/L?) which is
the parabolic velocity profile of the Poiseuille flow. For large o 0.0000
Hartmann numbers, the velocity profile is flattened. The ve-
locity is almost constant between the two plates except in a
thin boundary layer of thicknes$=L/H where the velocity -0.0005
rises from zero to the constant valug=\pu/v(gL/By).

Now, we present the results of the test simulation. The
initial condition of the system was an equilibrium state with —0.0010
constant density=1 and an uniform magnetic-fielB, in
the y direction. The velocity and th& component of the
magnetic field was zero at the start of the simulation. The
boundary conditions were realized by the method of Ina- F|G. 2. Horizontal magnetic-fiel®, vs y/L for different Hart-
muro, Yoshino, and Oging20], adopted for MHD. For the mann numbersH=1 (triangle$, H=2 (squarels H=5 (crossey
unknown components of the particle distribution function atH =10 (plus sign$, andH =20 (asterisks The solid lines are the
the boundary, an equilibrium distribution function with the theoretical results.

PR S WS R S S SR SR T R S S S | '. PR
-1.0 -05 0.0 0.5 1.0
y/L
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ing profiles of the horizontal magnetic-fieBly are shown.

. . . . K. K K.K_ K_ K. K._K
The lines are the analytic solutio80) and(61). The simu- IE viaviﬁviyvié_Z VialjgljyVis
lation results are in good agreement with the analytical solu- ) B
tions. =2ZkA o yst2YkO0pys,  (AB)
K. K K_K K _K_K_K
IV. CONCLUSIONS > viaviﬁviyvm:iEj ViU U fs=0, (A7)

In this paper, we presented a LBE model for two-
dimensional, incompressible MHD flows on a square lattice.
In contrast to earlier MHD models, it uses the standard > ViV o0 6= AR Bapdys— 2ZkA wpys— 2Y ik Bupys,
streaming rule. There is no need for using the bidirectional (A8)
streaming rule of the earlier LGA and LBE MHD models.
The flexibility of the LBE method allows us to get the cor- WhereA ,5,5= 8apSyst SuyOpst 0usOpys Supys=1 ONy if
rect form of the induction equation by an appropriate choicey= 3= y='5, otherwise it is 0, andA,=2, A,=4, Z,=0,
of the equilibrium distribution function only. The use of the 7 =4, v,=2, v, =—8. With the above relations, one can
standard streaming rule removes the lower bounds of thgajculate the lattice tensors including the weighting factors
transport coefficients which appeared in the model of Mar-
tinez, Chen, and Matthaeus. Additionally, we extended the K K 1
single time relaxation BGK collision term to a matrix colli- iJZK WkViaVip= 3 0ap (A9)
sion term allowing independent control of the transport co- o
efficients.

We applied the model to the Hartmann flow. The model > wo ol viS=36.py0 (A10)
gives accurate results for different values of the Hartmann LiK
number and the transport coefficients. This demonstrates that
the model shows the correct MHD behavior. The model K K K K_4 _1
should also be able to simulate highly turbulent MHD flows. i,jE,K WKV iV 13010= 3 apys™ §hapys-  (ALL
As the other MHD models based on the lattice Boltzmann
equation, the divergenceless property of the magnetic field is AppeNDIX B: INVERSION OF MATRIX COLLISION
not included in our model. However, this is not a real prob- OPERATOR
lem, because this property can be added as an initial condi-
tion for the magnetic field. Although, the model reproduces Our MHD model uses the following collision term:
the Hartmann flow, future applications of the model on other

more complicated MHD flows are needed to show its usabil- Qﬁ=Aﬁ,'§;(f§1,n— FR L) (B1)
ity. The extension of the model to three dimension is in o )
progress. with the collision matrix

Ai}?rlgn:_%gimﬁjn5KK’+0Mi§r}r<m' (B2

APPENDIX A: SOME TENSOR RELATIONS

. . KK' - .
Here, we present the tensor relatidig] that have been The matrixMjjy, , is given by
used for the derivation of the model equations in Sec. Il

Mﬁfqn:TQﬁy,;viKaverﬁyvﬁﬁ. (B3)
Z UiKa:z U}(a:O’ (A1) The tensoiT 4,5 is given by
i, i
Taﬁyﬁz - 3_12 5aﬁ575+ %5a7555+ llO 5&56ﬁ‘y_ % 5&,875'
(B4)
K. K _ K_ K _

.2;‘ Uicvviﬁ_iZj Vjajp=2Akap, (A2) " Multiplying the collision term with Lvje, vie, summing
overi,j,K and using the tensor relations of Appendix A, we
get

> viKavJKB=0, (A3)
] K_
ijEK Qij =0, (B5)
KKK = KoK oK =

IE] Vialigliy IE] VialjpV )y~ 0: (A4) > Qfivi=0, (B6)

1K

iEj: vravrﬁva=i§j} viKav}(ﬁv}(yzo, (A5) > Qﬁv}(=0. (B7)

i,j,K
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The collision operator conserves mass, momentum, and the K K K K
magnetic field. The calculation of the transport coefficients ©apy5= iEK Vialjpliyis
requires the inversion of the collision matrix. This can easily b

be done if the matriM Ky, satisfies =—80430y51T 120,035~ 80,50py 1 1264pys.
, Lo (B10)
Miifn= 2 M MG - (B8)
kol K" This can be verified directly. Using E¢B8), the inverse of
Th|s ho'ds |f the Tenso“'aﬁy6 has the property the CO”iSion matriX can be Ca|CU|ated to
Toapys=O apecTerno© noys (B9) 02
(AKK Y"1 s 5 St —— MKK(B11)
where the tenso 4,5 is defined as fjmn imTAnTKK T gr—q iimn-
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