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Multiple scattering by two impenetrable cylinders: Semiclassical theory
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Scattering of waves and particles by two identical, impenetrable, and parallel cylinders is studied here. The
characteristic determinant of the scattering matrices is expanded in terms of simple traces that are semiclassi-
cally evaluated in order to extract the periodic orbits. Generalized formulas are derived for all the contributions
that are purely geometrical or compositecluding a creeping sectionAll the scattering resonances, inter-
preted as periodic orbits, are in excellent agreement with the exact results. The scalar problem of scattering by
two impenetrable cylinders can be considered as a canonical problem.
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[. INTRODUCTION developed by emphasizing the role of the symmetries of the
scatterer. The two-cylinder system hag.,3 symmetry[19]

Scattering problems by open systems have been extemith four one-dimensional irreducible representations la-
sively investigated in many fields of physiffer instance in  beled A, A,, B;, and B,.. The scattering resonances are the
quantum mechanics, electromagnetism, optics, and acousomplex zeros of the characteristic determinants of the fol-
tics). Many semiclassical methods have been carried out ifPwing matrices:
the past to study such problems. A very powerful one is the
geometrical theory of diffractiofGTD) developed by Keller
[1] in order to describe the evolution of waves in terms of .
rays. Another useful method is the semiclassical trace forith @=A1, Az, By, Or B, and where
mula introduced by Gutzwillef2,3] and extended by other

M@ =1+Al), (1)

authors[4-8], using cycle (_axpansions of zeta functions or Agf?)l)z — %(—1)q[8q(ka)—1]

guantum Fredholm determinants. Afterwards, the GTD has

been incorporated by Vattay, Wirzba, Rosenqvist, and STHD (kd)+ (= 1)PHD (kd 2

Whelan[9-13] in the Gutzwiller trace formula in order to [HaZp(kd)+(~1)"Hg p(ka)], @

take account of the diffraction effects due to creeping waves. 1

This periodic orbit theory of diffraction improves previous A;’?)z): — S (—1)9[Sy(ka)—1]

results, but errors still exidtll]. Furthermore, a nonscalar 2

example in elastodynamics has been investigated by the au- (1) o avp(D)

thors of Ref[14]. X[Hg2p(kd) = (= 1) Hgip(kd)], ©®
In this paper, we propose a semiclassical approach to ex- 1

tract and interpret all the scattering resonances of the two AGD— 4 (1) Sy(ka)—1]

impenetrable cylinders scattering problem. The characteristic ap 2

determinant of the scattering matrices involved in the prob- X[Hgl,)p(kd)—(—1)"Hgl+)p(kd)], 4

lem is expanded in terms of simple traces which are evalu-
ated using the Watson transformatidtb]. Generalized for-
mulas are obtained for. all .the cqntributions th.at are purely AB2 ﬁ(_ 1) S,(ka)—1]
geometrical or composite, i.e., with a geometrical garte ap 4

or more reflectionsand a diffractive parfcreeping sections

It should be noted that Wirzba gives a semiclassical approxi-

mation and some generalized formulas interpreted in term|§|ere v, denotes the Neumann factor given ly=1 and
. =

of periodic orbits for any geometry of a finite number of
. : . . Yp=2 (p>0). The vectorSy(ka) reads as follows for the
nonoverlapping diskg3], meanwhile we provide here a more particular boundary conditior@C),

detailed analysis for the particular two-dimensional scatter* (i) Dirichlet BC in quantum mechanics, in acoustics, and

ing problem by two impenetrable cylinders. . . . . ;
We consider two infinite, identical, impenetrable, and par-m electromagnetism(particle scattering by hard disks

allel cylinders of radius with a center-to-center distande E:?o_vig\’/ta’sg;ttrtz\:‘icr)\ n'cbw?r\]/:t;ﬁ?t:g:%gug%;%f; disks, and mi-
In previous paper$l16-18, an exact formalism has been 9 by '

X[HE(kd) +(~1DPHE (k)] (5)

H{(ka)
e N Sq(ka)=——s—. ©)
Email address: gabrieli@univ-corse.fr Fax: 6133-4-0545- Hg '(ka)
0034.
"Email address: mercier@univ-corse.fr Fax: ®BB-4-9545- (i) Neumann BC in acoustidsiltrasonic wave scattering
0034. by hard diskg
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HP' (ka) -
Sy(kay=— —d——— (7) detM =dell +A)= > Qq(A), (10)
H{Y (ka) a=0
. ' with
(iii ) Impedance BC in electromagnetigimansverse mag-
netic(TM) and transverse electri@E) scattering by conduc- Qu(A)=1, (12)

tors with a given constant impedangd21]],

Qo

q
(HP' (ka) +iHP(ka) . Qu(A)=5 2 (=)™ 'Qqm(A)THA™)  for g=1.
(HD' (ka)+iH P (ka) ® (12

{ntroducing the notations

Sy(ka)=—

In connection with the above relation, it should be noted tha
the impedance BC are taken into account with a unit normal fo=Tr(A%) for g=1, (13
vector pointing in the direction of the exterior medium.
The scattering resonances of the two-cylinder system arghe first three cumulants read
the zeros of the characteristic determinantsMié? with o
=A;, A,, By, or B, (see Refs[6,18]) in the complexka Qi(A)=fy, (14
plane and they are classified according to the four irreducible
representations af,, . We propose here a semiclassical ap- B 2
proach based on the cumulant expansion of the mattiges Qa(A) =~ E[fz_(fl) it
involved in the problem, the Watson transformation, the
method of steepest descent, and high-frequency approxima- 1
tions [6,7]. Each term of the cumulant expansion is inter- Qs(A)=3|fs= 5fafa+ E(fl)s : (16)
preted in terms of periodic orbits by applying once or several
times the usual Watson transformation and by solving muly, what follows, we extract all the periodic orbits from the
tiple mtegr_als_ over_complex varlat_)les. Our method providesirst three terms of the cumulant expansion.
all the periodic orbits for the considered scattering problem.
Therefore, we can postulate that, in the scalar case, the scat-
tering of a point particle—or in analogy the scattering of an
(electromagnetic or acoustiwave—from two identical, im- Using Egs.(2) and (13), the first-order cumulant14)
penetrable and parallel cylinders is a canonical problem. reads
In Sec. Il, we extract all the periodic orbits of the two-
cylinder system for the first three orders of the cumulant
expansion in case of the;Aepresentation. A generalization
for any truncation order of the cumulant expansion and for
the four irreducible representations of tidg, symmetry X[HEV(kd) + (= 1)PHE) (kd)]. 17
group is given in Sec. Ill. Furthermore, all the scattering .
resonances are expressed by generalized formulas. Secti¥fg apply the usual Watson transformatifdtb] to convert
IV is devoted to the physical interpretation of the periodicthe previous partial wave series into a contour integral,
orbits. The exact gquantum-mechanical resonance data are

(15

A. The first term of the cumulant expansion

. L
fi=2 App=—7 2 7p(— 1) Sp(ka)—1]
p=0 p=0

+ o0 .
compared to the predictions of our semiclassical approach. 1P _ '_f F(v,ka)

pzo( DPFp(ka)= 3 | Gty 9% (18)

II. SEMICLASSICAL THEORY
therefore
The aim of this section is to extract all the periodic orbits .

of the two-cylinder scatterer in a natural way using the Wat- 1 [ Sy(ka)=1_ iy (1)
son transformation15], the method of steepest descent 1= 72 c sin(mv) [Ho (kd)+e"™H3, (kd)Jdv,
[22,23, the residue theorer24], and high-frequency ap- (19)

proximations. We present here our method for therépre-

sentation. It will be shown in Sec. Il that the results arewheresS,(ka) andH$)(kd) are the analytic functions in the
easily generalized to the three other representationsBd,  complexv plane, interpolatingS,(ka) andH(z};)(kd)- In Eq.
B, of C;,. The A; scattering resonances are the complex(19), the contourC encircles the real positive axis in the

solutions of the characteristic determinas¢e Ref[6]), clockwise sensésee Fig. 24 of Appendix A It should be
noted that the integration takes into account the Cauchy prin-
detM*)=0. (9)  ciple value at the origin. In what follows, thea dependence

of the S, function will be suppressed so as to keep the nota-
From now on, to simplify the notation, the,Alependence is tion simple, thereforeS,=S,(ka). According to Appendix
suppressed. We use the cumulant expangddn A, the deformation of the contou€ permits one to extract
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from Eq. (19) a purely geometrical contributiofy ; and a
purely diffractive contributiorf y
fr="Fg1+fair 1, (20)

with

1 . ‘
fg1=— ZLSVe"”V[Hgl)(kd)Jr e HE)(kd)]dv,

(21
eI‘ITVrI
fd'f 1= ”TEn rVn 1— e2|77vn
X[HED(kd) +e'™HE) (kd)]. (22)

Here v, denotes the poles of th®, function in the complex
v plane andr, is the residue of5, at the polesy=wv,. It
should be noted that the notatiéy  refers to contributions
including a creeping section. Fqe=1, fy¢; corresponds to a
purely diffractive contribution, whereas fog>1, fgq
stands for composite contributio@ geometrical part and a
diffractive one.

1. Purely diffractive contribution

The residue-series contributig@2) reads

fair. 1= Fair 1+ P2 (23
with
) explimy,)
f::iif,l:_lﬂ-vz ranZi;WHg)(kd), (24)
exp2i mv,)
faif 1= wE r “—HE) (kd). (25

"nl—exp2imTy,)

Replacing H"(kd) and I-glv)n(kd) by their Debye asymptotic
expansiong32) and using the approximation

vh=ka, (26)
which is valid for large values dfa, we obtain
/2' explimy,)
| _ n
Faira= exmkd)z "nl—exp2imy,)’
(27)
2i
it 1= \/27 exqd ik\d?—4a?]
d
2a
exp iv,| 27— 2 arccos—
d
X2, (28)

n 1—expimy,)

Vn
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2. Purely geometrical contribution

The purely geometrical contributiq21) can be written as

fg1= flg,l+ fg 1 (29
with
f=— [ semHP kv (30
9,1 4 r 3 0 ’
fil =— 3 f HY(kd)dw. (31)
9.1 4

Each integral is approximated, in the high-frequency limit
ka>1 andkd> 1, using the method of steepest des¢eai.

We insert the Debye asymptotic expansions for the Hankel
functions[25]

2

+im\zZ%—1?
. 14
xexpg *=i| Vz2— v®— v arccos
z

H (172)( z)~

for |z|>v,

(32)
and theS,(x) function reads

14

S, (X)~— iR(v,x)exr{ —2i ( N G arccoi—) }
(33

We have introduced in Eq33) the reflection coefficient
R(»,x) which is defined according to the boundary condition
(BC)

R(v,x)—+1 (Dirichlet BC), (39

R(v,x)——1 (Neumann B, (35
(P x

R(v,x)— — (impedance B¢ (36)

X2 =12+ X

with x=ka. By using the steepest descent method, the inte-
grals(30) and(31) asymptotically reduce to

= 1R(0ka) \/ g exik(d—2a)],
1~ 1R(0ka) \ /z(d%Za) exfik(d—2a)].  (39)

Finally, the first cumulant is asymptotically approximated
by

(37)

Q1(A)=fg 1+ T, (39

with

046629-3
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fg’1=f l-|—fg1,

faif 1= fdlf 1t fdlf 1-

The previous contributions are given by E@&7), (28), (37),
and (38). In this part, four contributiongtwo purely geo-
metrical and two purely diffractijehave been extracted
from Q.(A). They will be interpreted in terms of periodic
paths in Sec. IV.

B. The second term of the cumulant expansion

We focus in this part on the second cumul@i(A) de-
fined by Eq.(15). The term §,)? is directly deduced from the
first-order cumulant20),

(f1)2=(fg1+far1)?

whereas we have to evaluate the tdgngiven by Eq.(13),

(40)

(41)

,=Tr(A?) =2 > ALA
p=0 q=0

The expressions of the matrix eleme(2sare inserted in the
previous relation, thu§, reads

R

=3 3 F DS D DS DX,
(42
where
X(p,a@)=[H (k) +(=1)9HEY (kd)]
X[H® j(kd)+ (= 1)PHL (k). (43)

Using the Watson transformati@h8), we replace in Eq(42)
the two sums over the integepsq by two contour integrals
over the complex numberns, , v,

- i [ F(vy.ka)
pzo (_ 1)pr(ka): EJClevl, (44)
= i [ F(vy,ka)
> (—1)qu(ka):§fCZdeZ. (45)

The contoursC; andC, encircle the real positive axis in the
clockwise sense in the corresponding compigxplane and
v, plane. We then obtain

S,,—1
f c,Sin(7vy)

whereX(vq,v,), S, andS are the analytic functions in-
terpolatingX(p,q), S andS The functionX(vq,v,) has

X(vy,vp)dv,|dyy,

(46)

1 S, -1
fo=—— f -
2 16)c,sin(7vy)
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moreoverX(vq,v,) reduces to

X(v1,vp)=2€"1HT, | (kd)H(Y, (kd)
+2el it HM (kd)]2 (48)

1t 7o

Indeed, four terms appear in the expansion of @§), but
the calculation of the double integr&l6) over the complex
numbersv,, v, only provides two different contributions.

In order to evaluate Eq46), we independently proceed to
the modifications of th€, contour in the complex, plane
and of theC; contour in the complex, plane, following the
method described in Appendix A. We define

8,1

F(Vl):fc2 mx(vl,w)dw, (49
1 S,,—1

f2:_1_6fcl —Sir](’]TVl) F(Vl)dVl. (50)

Using EQ.(47) and according to Appendix A, the integral
(49) reads

F(vy)=Fg(v1) +Fqg(rv1), (51

with
Fg(v1)=—if S,,ZeX[X—iﬂ'VZ)X(Vl,VZ)dVZ, (52
)

explimy,)
nl—exp2imTy,)

Fa(vy)= 4772 X(vq,vy). (53

HereI', corresponds in the complex plane to the contour
I' of Fig. 24. Using Eq(47), F(v,) presents the necessary

property
F(—vy)=F(vy)

in order to apply the method described in Appendix A40
Therefore, Eq(50) reads

fo=fg[F(vy) ]+ f[F(v1)],

(54)

(59

with
fo[F(vy)]= 1I_6fr S,,leXF(—iﬂ'vl)F(vl)dVl, (56)

explimyy)

"11—exp2imvy) F(vy).

(57)

I'; corresponds to the contolirof Fig. 24 in the complex,

Fol=-7 2

useful symmetry properues required to evaluate the doublglane. Consequently, inserting Eq$1)—(53) in Egs. (56)

integral (46),

X(£ vy, Tvy)=X(vq,v2),

(47

and(57), three different contributions are obtained fgr

fo=falFa(ve) ]+ 2f[Fy(v) 1+ f[Fg(v)]. (58

046629-4
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For the sake of simplicity, Ed58) can be written again such
as

fo=fga2t 2fgir 2t g2, (59
with
faa2=— % ;n ryn%
X 477V2n ryn%x(vn.vn) , (60
fdif,zzizw VZH fvn%

Xf S,,lexr(—iﬂ'vl)X(vl,Vn)dvl, (61)
Iy

1 :
fg'zzl_GJrlsvlqu_ iTvy)

X

fS,,ZeX[X—iwvz)X(ul,w)dvz dv,. (62
I

Now we have to evaluate the previous contributions.

1. Purely diffractive contribution
faa2 is @ purely diffractive contribution. Using E@43),
Eq. (60) reads
. explimy,)
faa.2= _”T% Cvn 1= exp(2i mvm)

2

X[HE(kd) +expimv)HE) (kd) ]|, (63)
and from Eq.(22), we directly obtain
faa2= (fair1)?. (64)

2. Composite contribution

fair2 IS @ composite contribution, i.e., it contains a geo-
metrical part and a diffractive one. After inserting relation

(48) in Eq. (61), two different terms have to be evaluated,

fair2=fair 2+ Foir.2 (65)
with
i explimv,)
fl- =X M, ———=
dit2™ 2 VEn nl—exp2imTy,)
xf S, HE,, (kH., (kd)dvy,  (66)
ry n "
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T
fgifz:? E

Vn

exp2i wvy)
1= exp(2imvy)
xf Syl[HS}lLV (kd)]?dv;. (67)
ryq n

fyir» and i, contain a diffractive partthe residue serigs
and a geometrical pafthe integration in the complex;
plane evaluated by applying the method of steepest descent
[22]. We obtain after calculations

iTa

a
exp[ 2iv, w—arcco% —)
d
1—exp2imv,)

X R(0ka \/

(04 k(\d2—a2—a)\d2—a2
X exf 2ik(Vd?—a’—a)],
w—arcco%— ]

exp{ 2iv, _
T 2 r - d7a
dif,2 = 1—exp2imy,)

iTa
ng K —
nd—a"® N kayd(d—2za)
X exd 2ikyd(d—2a)].

3. Purely geometrical contribution

L
fairo=— > r,
Vn

(68)

a

XR

(69

fy2 given by Eq.(62) is a purely geometrical contribution
obtained applying twice the method of steepest descent on
the variablesv, and v, (see details in Appendix B We
obtain
foo=fg2tfg.2, (70

with

fy 2= 3R(0ka)? exg2ik(d—2a)], (71

a
2(d—a)

fy .= 3R(0ka)? exf 2ik(d—2a)]. (72

a
2d(d—2a)

Finally using Eqs(40), (59), and(64), the second cumu-
lant Q,(A) reads

1
Qa(A)=—5[fg2~ (fg 0?1+ faitafg1—far2, (79
with

fg‘1=f'g’1+fg‘1,

4l I
fait,1=Foir 2+ Fair 10

046629-5
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foa=fl o+, S
g2~ Tg2t g2 f=TrAY=2 > > X AjAgrAmp. (74
p=0 G=0 M=0 m=0

faif 2= fdlf 2t fdlf 2

The previous terms are given by the relatié8®, (38), (27), Inserting the definition of the matrix elemen®, f; reads

(28), and(68)—(72) and will be physically interpreted in Sec. ® e oo

IV. It should be noted that only purely geometrical contribu- fa=— >, 2 2 ( DP(S, _1)_
tions and diffractive(or composite¢ contributions appear in =0 g=0 m=0

Q2(A). We refer to the terméy; 4 by diffractive (or com-

posite contributions composed by one diffractive péaesi- X (— 1)q(5q_1)ﬁ(_ 1)™Sy—1)Z(p,q,m),

due seriesand (—1) geometrical part$evaluated by the 4

method of steepest descent (75)
C. The third term of the cumulant expansion where
. : ; _ry@ _ (1)

Eq?n(ltg)l,s part we study the third cumula@z(A) given by Z(p,q,m)=[H  (kd)+ (= 1)HY (kd)]

X[HE (k) +(=1)™HY, (k)]
Qs(A)=3[fg— 3f,f,+ 5(f1)°].

The evaluation of; will provide new contributions, whereas

the terms {;f,) and @;)° are directly deduced from the re- The three sums over the integgrg),m are replaced, thanks
sults of Q4(A) andQ,(A). Using Eq.(13), the termf; is of  to the Watson transformatigii8), by three contour integrals
the form in the v, ,v,,v3 complex planes, thus

X[HE (kd)+(— 1)PHE (kd)]. (76)

5,1 5,1
J' . f . Z(Vl,Vz,V3)dV3 dV2 dVl, (77)
C C

,Sin(7v,) ;Sin(mvg)

i S, —1
f3:_J' "
64)c, sin(7vq)
andZ(vq,v,,v3) reduces to

Z(vy,vp,v5)=4HI  (kd)H®E, (kd)H®Y, | (kd)e' ™19+ a1, (kd)HEY, | (kd)HY, , (kd)el (1t r2tra),

V1= Vy v+v v+v v+1/ v+v v+v
(78
We define
S,,s— 1
FVS(Vlsz):fCSWZ(Vl-Vles)dvs- (79
SVZ— 1
Fo(v)= fczsm(T) vy(V1,72)dV2, (80)
i S, —1
f3 64JC15|I’\(7TV1) VZ( Vl)dV]_y (81)
and with the following properties:
Z(iVl,iV2,iV3):Z(V1,V2,V3), (82)
F, (—Vl,—Vz) F, (Vl,Vz) (83
sz(i Vl)z FVZ( Vl)! (84)

the method described in Appendix A can be successively appli€d (0’1,v2), F,(v1), andfs. After simplifications, we
obtain four different contributions,

f3="f4403t+ 3fgaq3t 3fairstfg3 (85)

046629-6
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with
i explimv,) explimy,) explimy,)
faddz=— r, —_4772 r, —_4772 r, ——————Z2(vy,Vn,Vn), (86)
T 165, M—exp2imv,) b, "l—exp2imv,) 5, "l—exp2imy,)
1 _ explimy,) explimy,)
fgdd,3—ZLlS,,lexr(— | ’lTVl) szn rvnm’ﬁ;ﬂ rvan(Vl,Vn ,Vn) dVl, (87)
fyra= ”Tf s i f s )| S, ST dv,|d 88
dif,3— 16 r, Vlexq |7TV1) r, Vzexq |7TV2) -~ rV”l—eXFXZi 7TVn) (Vl!VZ!Vn) Vo |UVyq, ( )
1 . . .
fg3=— —f S, exp—imvy) f S, exp—imvy) f S,.exXp —imva)Z(vy,vs,v3)dvs|dy,|dyy. (89
’ 64 r, 1 r, 2 Iy 3
The previous contributions have now to be evaluated.
1. Contributions deduced from previous results
fadq 3 is @ purely diffractive contribution. Using relatio®2) and(76), Eq. (86) reads
faaas= (fair1)>. (90
fy4q3 can be written from previous results. Indeed from E@®), (43), (61), and(76), we deduce
foda3= fairfair2- (91

2. Composite contribution

fair 3 given by Eq.(88) is a composite contribution composed by a diffractive part and two geometrical parts evaluated using
twice the method of steepest descent. We obtain

fair 3= fldif,3+ fldlif,3= (92

where

I
V1’3+ Vh

™ arcco{

o |

X R(v} 3,ka)2ext 2i \y2— (vy+ vh 92— 4i X2~ (v} 52+ iy]

: =) (1)2 s 93
- +— —lz with v; 5= v, ——, 93
W= (gt k92 =92 Y] Y L3 M2d-a

046629-7
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I
V1’3+ Vn

y

m— arcco{

p{Zivn ]
d|f3 \/TE Iy {(Ny?—(2v 2 2 y2— (vn+v 21 -172

X R(v! 5,ka)2exi] 2i Y2 — (vt vl 52— 4i VX2~ (1] 2+ iNy?— (20} 7]

1—exp2imv,)

( 1 2 1 )2 ( 1 )2]1/2 | a
+ N [— with ! 4= vy——.
Wt 192 V-2 2202 |y (202 2d-3a

(94)

In the previous relations we have introduced the saddle point (i) All the contributions of the cumulant expansion up to
notations which will be used later in the generalized formu-the orderq=3 have been determined.

las (see the following section For mstance;u13 stands for (i) Each new cumulant provides only two purely geo-
the first (and the only one at this ordesaddle point for a metrical contributions and two diffractive contributions, as
third-order composite contribution of type I, anfj, , stands ~ mentioned in Ref{9].

for themth saddle point for @-order composite contribution _ We can note that some results have direct counterparts in
of type Il. Refs.[6,7] in the Dirichlet case, especially the purely geo-

metrical contributions up to the third order and the first-order
3. Purely geometrical contribution diffractive contribution.

The termfy 5 given by Eq.(89) is a purely geometrical
contribution. We successively apply the method of steepest
descent three tlmeS fOIlOWIng the method used at the second In the precec“ng Sec‘“on we have extracted all the contri-
order for the evaluation ofy, (see Appendix B Alterna-  putions from the first three orders of the cumulant expansion.
tively, we can also apply the multiple integrals formi@2) e derive here the generalization of the purely geometrical
given in Appendix C. The two methods lead to the sameand the diffractive(or composité contributions that provide

IIl. GENERALIZATION

results, scattering resonances. Consequently, we obtain an
| asymptotic approximation of ddt, for any truncation order
fg.a=fgatfys, (99 g of the cumulant expansiofi0).
with A. Purely geometrical contributions
. , /& a To evaluateg-order geometrical contributions, the method
2R0ka)*\/ 5554733 of steepest descent dstimes successively applied. Thus, we
generalize the procedure used for the first three orfjgrs
Xexd3ik(d—2a)], (96)  fy,, fy3. The corresponding generalized formula reads
o 3\/T a fg.q=3(Gy+Gy)R(0ka)%exd qik(d—2a)] for g=1,
_1 _ 99
fga= 2ROk N 5052  2d=a 9
. where we have defined the following recurrence relatidns
X exp 3ik(d—2a)]. ©7  stands for I or 1): ’ (
Finally the third-order cumulan®s(A) is given, after sim- =g.G! (100
age . q-gq—27
plification, by
|
1 3 1 | a®[gq-l
= 3 = . (101
Q)= { 93~ lastezt 5(fad) } %" 2(a-a)0lg} ,1-anld, ]

5 The functionsN[z] and D[ z], respectively, correspond to
§[f9,2_(f911) Taira—fgafair2tfairs- (98)  the numerator and to the denominatorzog is the radius of
the cylinders andd is the center-to-center separation dis-

As for Q,(A), only purely geometrical contributiorig, and ~ tance. The initial coefficients are given by

diffractive contributiond 4 4 are involved inQ3(A).
The main results obtained in this section are summarized G = /@ gh= a
in the two following points. ! 2d’" 7% 2d-3a’
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-1
Gl= a n__ @ C'—ql_[ [
1= V2d-2a) % 2d-a’ o= 11 angq

)2 q-2 (bl )2
Gl a ,_a(d—-a) 1— 2 q 1— 2 | kqu ,
2_2(d—a)' g4_2(d_a)2_a2’ i=1 a] an_lq k=j+2 Ay, q%+14q
(106
1] a 1l a
Gr=—F7——, W= : (102 with
* 2Jdd—2a) = 2(d-a)
Therefore, each purely geometriogdorder contribution is 1 2
given by formula(99). For example, in the case gq&=3, we > >
deduce from Egs(100 and (102 \/y m 1q+Vm ) \/X _(Vm )
1
_ g~ /a a + , (107
G3=9561= V232d—3a’ VY2~ (Vg + ¥ 1)’

Gl = & a (103 | 1
—9s 2(d—2a)2d-a’ bin o= F—— : (108

\/y - (Vm,q+ Vm+ l,q)2

thus we obtain with Eq(99)
Herex=ka, y=kd and the superscriptdenotes | or Il. The

saddle pointszz'm’q are defined at theg order by

. a a a a
9572\ V2d2d-3a * V2(d-2a)2d-a |
(S 109
X R(0ka)3ex 3ik(d—2a)]. (104 Yma” Pnma (109
This result is in good agreement with the one obtained fronvhere vn stands for the poles of th§, function. The coef-
Eq. (95) in Sec. Il f|C|entscmq are given by the following recurrence relations:
- - B. Composite-contribu.tion.s g ag[cllq ] 110
The diffractive(or compositg contributionsf i , are com- 14 2(d—a)i)[c'1q 2]—a‘ﬁ[c'1q ] '

posed by one diffractive part andj{ 1) geometrical parts.

Their evaluation is carried out applyingj{ 1) times the

method of steepest descent. We give different formulas

whetherq is even or odd, generalizing the results for all the c'm =

diffractive contributions. 4
First of all, we give some coefficient definitions that are

valid for g even or odd. We define the determinazi; of

am[cl'nfl,qu]
2(d—a)D[cl -] -aNfcyg o]’

order (q—1) given by for 1<m=p with q=2p or q=2p+1. (111
aj, by 0 0 0 . : .|
L | | At the g order,q saddle points are involved i@, but onlyp
big 8q b2g O 0 of them are different in modulus.
0 bh, as, b, 0 . N
. t t
C|q= 0 0 b|3’q a|4,q o o 0 , | | \{en .runca ion order &= p.
) Diffractive contributions forg=2p are given by the gen-
| | eralized formula
ag-29 Pg-29
0 0 0 0 bl ., ay_
a-2a %q-1q 105 fait.2p= Fait 2p T Tt 2p (112
which can be written as where

046629-9
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| _ exp(2i vp{ 7 — arcco@(v'lyzp+ va)ly1}) R( V|p,2p ka)
fdif,2p:_ \/2'772 I‘,,n 1_ 2 ]
” exp(2imvy) ‘/—Czp
Xt 2i Y2~ (V1 gt P 2p)2 = 20 X2~ (4 20)7]
Vy2- (Vp—1.20™ Vp2p)?
exp 2i\y>— (vh_ Lop Vinop) 2~ 4 VX2 Vmzp)’]

\/y2 — (V- 120F Vlm,zp)2

p—1
X T | R(¥hzp ka)?
m=1

We use the following relations for the saddle points:

| _ | ;
Vzp,j'zp— Vj,2p for 1$J $p_ l,

|
V0,20~ Vn>»

| _
Vop2p™ Vns

and the initial coefficients are

so we deduce with Eq$110) and(112)

2(d—a)2—a?’

2. Odd truncation order g=2p+1
Diffractive contributions forg=2p+1 are given by the generalized formula

4l I
fait.2p+1= Fair 2p+ 1+ Tair 2p+1

where

. : exXp(2i vo{ m—arcco(vy 1+ vn) Y1} R(Vp o 1.ka)?
faitopr1=— V2im> M, - X
v 1—exp2imv,) \ /C|2p+1

- i i - i - i i
exp 2i \/yz_(vp—l,aa+1+ Vpopr1) 4 = Vpopr1) \/yz_ (Vp2pr1T Vpr12p+1)’]

2 I I 2ry,2 I I 2
\/\/y _(Vp,2p+1+Vp+1,2p+1) [y _(fol,a)+l+yp,2p+1) ]

5 exy 2i \/yz_ ( V|m—1,2p+1+ VIm,2p+ P-4 \/Xz_ (Vlm,2p+ V7]

, for p=1

p—1

X R(v! ka

rrl;[l (Vmap+1.ka) \/2_ I 1) 2
y (Vm—1,2p+1 Vm,2p+1)

046629-10
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TABLE |. Generalization of the purely geometrical and diffrac-

tive contributions for the four irreducible representations ofdhe
symmetry group §=1,2,3 ... ).

Aq Az B1 B,

fi.a,q _(_l)qfl.;,q _f|g,q (_1)qfi.a,q
fiq +(—1)%y, +fyq (— 1)y 4
fldif,q —(- 1)qf|dif,q —fir q (- 1)qfliif,q
flc;if,q +(- 1)qf|c:if,q +fir, q (- 1)quif,q

We use the following relations for the saddle points:

| _ :
Vop+1-jop+1= ~ Vjgp+1 fOr 0<j=p,

Vo.2p+1= Vn (119
Vgp+1—j,2p+1:1}}l,2p+1 for O<j=p,
V02p+1= Vn- (120
The initial coefficients are
c! — Cia= 2 (121
137 2d—a’ 1% 2d-3a°

Equations(113) and (118 provide all the diffractive con-
tributionsf o for any truncation ordegq=2. The first-order

diffractive contributions are given in Sec. Il.

C. Semiclassical approximation of detM

PHYSICAL REVIEW E 66, 046629 (2002

Fundamental domain

l d |

FIG. 1. Fundamental domain of tlig, symmetry group.

As a result, the previous relatiofi25 permits one to
semiclassically evaluate dgt for the A, representation of
the C,, symmetry group for any truncation ordgr

D. Extension to the A ,B;,B, irreducible representations

All the studies have been realized in the case of the A
representation of thé,, symmetry group. The method de-
scribed in the case of the;Aepresentation of thé,, sym-
metry group can be easily extended to the three other irre-
ducible representations,A B;, and B. The corresponding
results are deduced by introducing in the expression dfidet
(125 the simple modifications reported in Table I. In this
section, we have given the generalized formulas that allow
us to evaluate dédl for any truncation ordeq in the cumu-
lant expansion and for the four irreducible representations of
C,, . Furthermore, all the scattering resonances of the two
impenetrable cylinders system are determined and inter-
preted in the following section.

IV. NUMERICAL RESULTS AND PHYSICAL
INTERPRETATION OF RESONANCES

The aim of this section is to provide a physical interpre-
tation for all the scattering resonances of the two-cylinder
system as periodic paths. We use the expressions obtained in

Generalizing previous results concerning the cumulant$€cs. Il and il for the A representation and we particularly

determined up to the third ordésee Eqgs.(39), (73), and
(98], ag-order cumulant can be approximated by

q
Qq(A)=Qqq+ > M=1(—1)""Qq ¢ mfait.m
(122

wherefg; o, is the m-order composite contribution given by

Egs. (113 and (118 and we defineQg  as the “geometri-
cal” cumulants

Qgo=1, (123

1 q
Qu=g mzl (-1)™ Qg ¢ nfgm for q=1, (124

andfy , stands for them-order purely geometrical contribu-

tion given by relation99). Finally, inserting Eq(122) in Eq.
(10), detM is approximated by

+ o q
dEtM:qZ:O Qg,q"'mz;l (= 1)m+1Qg,qufdif,m .
(125

focus on the exponential terms yielding the periodic orbit
interpretation. The contributions of the three other represen-
tations A,B;,B, of C,, do not provide new geometrical
paths because the exponential terms are identical for all the
representations. The periodic paths should be displayed in
the fundamental domain of the scattefeee Fig. 1 but they

are presented in the entire domain where they appear more
clearly.

A. Purely geometrical contributions

Using the results of Sec. Il, the geometrical contributions
fqq Up tog=3 are given by

_1( a a
f91=2| V2a' V2d=2a

XR(0ka)exd ik(d—2a)],

(126

FIG. 2. Periodic orbit of the geometrical contributiofys, .

046629-11
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1 a a
fgyzz—( + )
2\2(d-a) 2.d(d-2a)

X R(0ka)%exy 2ik(d—2a)], (127
fo5=3| Vg d2d 3a’ V 2(d— 2a)2d a
X R(0ka)3exd 3ik(d—2a)], (128
and from formula(99), we can write
fqq* exdqgik(d—2a)] for g=1, (129

where the exponential term provides the periodic orbit inter-
pretation. These contributions are obviously associated with
the closed geometrical path described in Fig. 2. More pre-
cisely, g corresponds to the number of reflections on the
cylinder in the fundamental domain.

The prefactors of the geometrical contributions involved
in Egs. (126—(128 are the well-known stability factors
given in Ref.[7]. It is important to note that they are differ-
ent from those obtained following Rdf26], in the case of
acoustic scattering by two spheres, where the geometrical
theory of diffraction involving a single scatterer is directly
applied to a system composed by two objects. This latter
method only provides the first-order stability factors.

B. Composite contributions

From the results obtained in Secs. Il and Ill, we can write
that all composite contributionl!%mq (I=1or Il) are of the
form

figs, > €XP(ikt) expli v 8), (130
wheret denotes the geometrical path between the two cylin-
ders andB stands for the angle of the creeping section. The
reflection angles are directly deduced from the saddle-point
values. We display the interpretation of the diffractive con-
tributions as periodic paths up to third order.

For instance, Fig. 3 displays the periodic orbit deduced
from the first-order diffractive contributiofﬁ,if'1 given by Eq.
(27). In this case, the geometrical path between the two cyl-
inders ist=d and the angle of the creeping sectionds
= . Figure 4 shows the path deduced from the other first-
order diffractive contrlbutlorfdlfl given by EQq.(28) with t

= \Jd?—4a? and B=27— 2 arccos(2/d).

Figures 5, 6, 7, and 8 display the periodic orbits, respec-
tlvely, deduced from the composite contributidfs, , fdlfz,
fdm, andfdlf 3 given by Eqs(68), (69), (93), and(94). These
periodic orbits present creeping sections around the cylinders

)

FIG. 3. First-order periodic orbit deduced frdm,l.

PHYSICAL REVIEW E66, 046629 (2002

(>0

FIG. 4. First-order periodic orbit deduced frdﬁ}vl.

FIG. 5. Second-order periodic orbit deduced fréj, .

FIG. 6. Second-order periodic orbit deduced fréj, .

FIG. 7. Third-order periodic orbit deduced fromys.

FIG. 8. Third-order periodic orbit deduced froﬁﬂ}m.

FIG. 9. Limit periodic orbit of the composite contributioﬂﬁq

(I=1orll.
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MULTIPLE SCATTERING BY TWO IMPENETRABIE . .. PHYSICAL REVIEW E 66, 046629 (2002

0 ¥ L] ! L] 0 T T T T
-0.3:8’Q-.~’~9f;‘~~’~9~~‘~‘~‘-§’~’~.~’~9~~‘~‘f~‘~.-'~.~.~’§~'~.~‘~‘~.~'- _0.3:.?.9,ﬁ.Q,!..E,.O..o..o..o......io.o‘o..‘...o..qfn...o.o...oé.o..o.....,o.._

* : : : : : : :

SR | e | | :
: : y % NP PP ORI USROS SORURRT 4
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Re(ka)
FIG. 10. Exact resonances (*) and first-order asymptotic reso-
nances(O) in the complexka plane. (Neumann BC, separation FIG. 12. Exact resonances (*) and third-order asymptotic reso-
distanced=6a, A; representatioi. nances(O) in the complexka plane. (Neumann BC, separation

distanced=6a, A, representatioi.

and a number of reflections growing up with the ordeosf
the composite contribution. In the limit of higivalue, the The exact scattering resonances are the zeros &fl it
composite contributions go to the limit periodic path dis-with a=A;,A;,B;,B,. Exact numerical calculations have
played in Fig. 9. Note that the periodic orbits deduced frombeen performed by replacing the infinite matridd§® by
the two first-order contributionéFigs. 2—6 already appear the associated matrices of ralk with
in Refs.[6,7]. s

It should be noted that all the composite contributions N=sufi8,(ka+4(ka)™+1)]. (131
contain the denominatdrl —exp(27v,)]. This term results
from the additional creeping paths, which correspond to sec
tions of length pma (p=1) around one cylinder, in addi-
tion to the primary creeping patlisee also Ref§6—9,24).

The above truncation ordé& has been chosen from the nu-
merical discussions of Young and Bertrdi&¥] and Nissen-
zveig[28], and it has been numerically tested. The scattering
resonances have been determined in the restricted domain
0=<Re(ka)=<50 and —1.8< Im(ka)=<0 using the “argu-
ment principle”[29].

We present here a comparison between the exact reso- The asymptotic formulas obtained in Sec. Il are inserted
nances and the asymptotic resonances calculated from oim the truncated cumulant expansi@0) in order to calcu-
semiclassical theorysee Sec. )l Neumann, Dirichlet, and late the asymptotic resonances. The functiynand the re-
impedance BC are investigated for the center-to-center didtection coefficientR(»,ka) involved in the asymptotic cal-

C. Exact versus asymptotic scattering resonances

tanced=6a in the complexka plane. culus are, respectively, given by Edg), (8), and(34)—(36)
0 ; T T T 0 ; T T T
b B B N B B
*20 sade i : : : : : :
0.3} ® 3 ,n..,o,...o,;'.o,.......Q..:,c.....o...o.:...q.a.o.o.o_ 03 B P R TP p
E : : : 1
*e | 5 5 KT : | ;

—0.6} Q.ﬁ.~’~ ......................... .................. i 0.6/ W:; ’ “ AAAAAAAAAAAAAAAAAA 4
- 9 ‘%J . : E - oéo ¢°’M0&Q s:&%:‘%:QQOQ
§,_0_9.*. ............... SRS 99' *‘M‘W ;**f; o, §.—-0.g-...é llllllllllll S - SR o 2oy ....0,:9..’_,99,“,,”
£ : P a:dbooQIP e R : : : 5

5 Wt °o'o ; %o 5 5 ;
T | P ............... *‘ .................... .................... ,,,,,,,,,,,,,,,,,, i —12F e o AAAAAAAAAAAAAAAAAAAA .................... AAAAAAAAAAAAAAAAAA ]
e | | Coe seseee
_1.5_“*; ............ ,** ............. .................... \ AAAAAAAAAAAAAAAAAA 4 _1.5-....,‘ ,,,,,,,,,, o, ................... .................... ........ Q‘Q‘ .................. -

o  * : § ' : © : o ¢ :

18 *. ; M ; 18 L. ; P ;

) 10 20 30 40 50 ) 10 20 30 40 50
Re(ka) Re(ka)

FIG. 11. Exact resonances (*) and second-order asymptotic FIG. 13. Exact resonances)(and third-order asymptotic reso-
resonancefO) in the complexka plane.(Neumann BC, separation nances ¢ ) in the complexka plane.(Neumann BC, separation
distanced=6a, A, representation. distanced=6a, A, representation.
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0 ; ! ! ! 0 ! T T T
_0.3a .................. , ................... .................... .. .................. . _0.3<_5Aaeooo§eoeeeooi.eoecoeio 0....0‘?00.0.0.
- 5 :
e T 5 :
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xx O ; ;
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A B X ................... .................... .......... o T U U 4
[ o : ‘gt
‘o ; e
B ;o i LI i
18 10 0 30 40 50
Re(ka)

FIG. 14. Exact resonancex( and third-order asymptotic reso-
nances [J) in the complexka plane.(Neumann BC, separation
distanced= 6a, B, representation.

FIG. 16. Exact resonances (*) and third-order asymptotic reso-
nancegO) in the complexka plane.(Dirichlet BC, separation dis-
tanced=6a, A; representation.

according to the BC. The poles, and the re:siduelsun of the detM 2~ Qo(A) +Q1(A) + Q,(A) (133
S, function are given in Appendix D. We only take into
account the first pole of the, function in the asymptotic detM 5= Qo(A) + Q1(A) + Qu(A) +Qa(A), (134

calculus. We can note that a comparison of the exact and

semiclassical resonances in the Dirichlet case has been pef, A)=1 andO+(A A d OA(A )
formed in Refs[9,10] using “the periodic orbit theory of spee(:tei}v(g?; g)iven E; E?qé((39))' ((%)( gﬁdatgs)(_%( ) are, re

diﬁractipn," in a more restricted frequ_ency domain. Similar Figure 10 displays the comparison between exact and
comparisons have been performed in R¢&11] for the first-order asymptotic resonancgthe zeros of Eq(132)].
three-disk system. We observe a good agreement for the resonances lying on the
N line close to the reaka axis. They are associated with the
1. Neumann boundary condition first-order geometrical contributiofy ; presented in Fig. 2.
The exact resonances are compared to resonances obne first-order approximation provides a second asymptotic
tained with our semiclassical approach for the first three culine whose resonances do not match the exact ones. They are
mulants in the case of Neumann BC. At the first, second, an@ssociated with the purely diffractive contributiéy ; plot-
third truncation orders, the expansion of Meteads ted in Figs. 3 and 4. It should also be noted that the second
asymptotic line is located deeper inside tke plane and
contains fewer resonances than the exact second line. The

detM1)=Qo(A) + Qu(A), (132 first approximation of de¥1 does not provide the complete
location of exact resonances in the studied region. We must
0 ; 3 ; ; therefore take into account the second cumulant.
* i Figure 11 displays a comparison between exact and
03f  Frarsarsasassos e e r e e n st sy second-order asymptotic resonanfbe zeros of Eq(133)].
A The first asymptotic line still matches the exact data. The
—06+" *m.";s“;‘aﬂu ,,,,,, b SRR SRS - second resonances line is well approximated up tokRe(
- » ¥ T Ph =25. The corresponding asymptotic resonances are associ-
S goly S i..'.'.fﬁ“gfw%%.wﬁ;@fg‘;,&»; . ated with the diffractive contributiorfg, , fi> (Figs. 3-6,
kS P T res® and with the second-order geometrical contributigp (Fig.
+ ;‘ 2). A third exact line is not displayed by the second-order
T P AAAAAAAAAAAAAAAA . P AAAAAAAAAAAAAAAAAAAA .................. J expansion of da¥l. We therefore take into account the third-
o, . order cumulant.
—1.8F i"“i'* ,,,,,,,,,, P T i Figure 12 displays comparison between exact and third-
- ® order asymptotic resonancibe zeros of Eq(134)]. A very
Y PR i i i good agreement is obtained in the whole studied domain.
0 10 0 Re(ka) 3 40 50 Nevertheless, a weak discrepancy is observed in the region

Re(ka)=8 and Imka)= — 1.2 where the asymptotic expan-
FIG. 15. Exact resonances-{ and third-order asymptotic reso- Sions used are not very efficient. Moreover, the second pole
nances ) in the complexka plane. (Neumann BC, separation Of the S, function should be taken into account. The third
distanced=6a, B, representatioi. line, coming from Reka)=8, Im(ka)=—1.7, and joining
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0 ; ; ; ; 2(r-6)
ooooaooégooooeipooooeéoooooogoooooo /'\9 9/‘\
_0.3-... ................ . ................... , ................... . .................. - / N
C e E.e o E E : <
0 o Ol "% % grap o : : AN /
Oe® R YO O H H s
06f 0T S R e TR SUTROr- 3}
| B e X
S °® i : ° :
%_099 ................... ," ....... s ST - FIG. 19. First-order periodic orbit deduced frdf ;5.
= : : : :
o’
=12 .............. ;.q AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA p
o :
1.5 g %..6,9. ....................................................................... -
%, °9
1% 10 50

. . FIG. 20. First-ord iodic orbit deduced frdip ;5.
FIG. 17. Exact resonancé®) and third-order asymptotic reso- Irst-order periodic orbit deduced Ir &'}'15

nances () in the complexka plane.(Impedance BC{= —5, sepa-
ration distancel=6a, A; representation.

2(m—6+y)

the second line near Ried) =25, Im(ka)=—0.9, is associ-

ated with the third-order geometrical contributifyy (Fig. a >

2) and with the diffractive contributiofiy; 3 (Figs. 7 and & - T3, ( ~
Similar results are obtained for the three other irreducible -

representations A B, B, in the case of the Neumann BC

(see Figs. 13-15 The third-order asymptotic resonances
match the exact ones except in the small region of high nega-
tive ka imaginary part and lovka real part.

FIG. 21. Second-order periodic orbit deduced frdmzs.

2. Dirichlet and impedance boundary conditions 2 (-0+4)

The exact resonances are compared to those obtained with
our semiclassical approach for the third-order expansion of
detM (134 in the cases of Dirichlet and impedance BC. ““m >)
Figures 16 and 17, respectively display the results for Dirich-
let and for impedance BC with the reduced impedatiee

—5. A good agreement is observed. For the Dirichlet case, FIG. 22. Second-order periodic orbit deduced frifjyys.
Fig. 16 can be compared with Fig. 2 of RE9].

D. Additional periodic orbits in the case [
of a particular impedance 02 »

As mentioned by Keller and Kar@B0], in order for the o’ 5 : 5 :
surface to support a surface wave, it is necessaryéﬂm_ —0.4). R E .............. B L) ........... l ....... - i

isfy the conditions I ’ ‘ : :
~—0.61, - e 4

Re({)=0,Im(¢)>0. (139 & o
._§ 08k X el 3 PP PHY SO PP OP P PPPIUPS SRRSO J
a o, :
A0k é ............................ g a ...................................... i
L I
B - oSOt SRR PO OO SOPOPUROPOPRORY: e P S ]
* 3
1Ak Fi Fo ...................................... J
0 2 4 6 8 10

Re(ka)

FIG. 18. Excitation of a surface wave on a circular cylinder. The  FIG. 23. Exact resonances (*) and second-order asymptotic
angled between the incident complex ray and the exterior nommal resonances[{]) in the complexka plane.(Impedance BC{=0.2
is defined by Eq(138. +0.3, separation distancd= 6a, A, representation.
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In this particular case, a new pole; appears on the right- Inserting Eqs(139, and(140 in Egs.(24) and(25), taking
hand side oka (|vg>ka) in the first quadrant of the com- into account the substitutiaid36), and following the method
plex v plane. In order to take into account the contributionsdescribed in Sec. Il A1, we then obtain two new first-order
due to this supplementary pole;, it suffices to make the composite contributions associated with the pode
substitution

cosd [2mexd2ivg(m—6)]
| = — — —
VEH Hyn%s (139 fairas=~2ka G5 Vi 1—exd 2i mrg]
that corresponds to xexdik(d—2acosf)], (141
fldif,q_>f!jif,q+f|dif,q5’ fOF qu W|th | = |, ” (137)

. . . . cosé 2
in the generalized formulas given previously for the compos- flls 1= — 2ka—
ite contributions(see Sec. I). The characteristic impedance ’ sin®  V jk\d?>—(2asin)?

{ is related to the complex angte the propagation velocity )
cin the medium, and the phase velodityof the wave along « exg2ivg(m—6+p)]
the cylinder surfacésee Fig. 18 by 1—exd 2i mvg]

C
c050=—§*1,sin0=\/1—§*7=C—. (1398
1

Using the appropriate Debye asymptotic expansions and
the approximation

x exp{ik[ Vd?— (2asin§)?—2a cosd]}

] _2asiné
vs~kasiné, (139 with ,8=arcsmd—. (142
the residue v at the polevg reads
Similarly, inserting Eqs(139 and (140 in Egs. (66) and
o . _ (67) and taking into account the substituti¢i36), we then
exp(—2ikacost)exfive(m=26)]. obtain two new second-order composite contributions asso-
(140  ciated with the polevg,

cog6
sing

r,.~—2ika
S

y ’ cogd \/ ma ’ exf 2ivg(m— 6+ )]
anzs siné ik Vd2— (asin @) Vd2—(asing)2—a] 1-exg2imvg]
asiné
X exp{2ik[ Vd?— (asing)?—a(1+cosh)]}, with y:arcsind—, (143

Vs

I cogo ma a exf2ivs(m— 0+ ¢)]
fair 2s= — 2ka— : - R e
sind VvV ikdy(d—a)2—(asin6)?

d—a 1—exd2imvg]
asiné
X exp{2ik[ V(d—a)?— (asin#)?—acosd]}, with ¢= arcsinﬁ. (144)

The complex periodic orbits associated with these four cometrable cylinders. They correspond then to internal surface
posite contributiong141)—(144) are displayed in Figs. 19— waves associated with Wait polésixed or fluid BQ [31],
22. Rayleigh, and Whispering Gallery poléscattering by solid

All the composite periodic orbits obtained here in the caseelastic cylinders immersed in a flQifi32].
of impenetrable objects are associated with external surface Figure 23 displays a comparison between exact and
waves. We can note that the periodic orbits involving ansecond-order asymptotic resonangé® zeros of Eq(133
excitation angle also exist in the case of scattering by penincluding the substitutio137)] in the case of the impedance

046629-16



MULTIPLE SCATTERING BY TWO IMPENETRABIE . .. PHYSICAL REVIEW E 66, 046629 (2002

——————————— Co APPENDIX A: CONTOUR DEFORMATION
Imv eI hy IN THE COMPLEX PLANE
T N We consider the integral
+ C \\
. ~ 1 S,—1
Rev F(v,ka)=| = H(v,ka)dv, (A1)
C. // csin(mv)
d
r- 7’ where the contouC encircles the real positive axis in the
=7 G clockwise sensésee Fig. 24 The functionH(»,ka) must

satisfy the symmetry property
FIG. 24. Contour deformation in the complexplane where
C=C,+C_andl'=T,+T_. H(—v,ka)=H(vka), (A2)

and the functionS, is given by Eq.(6), Eq. (7), or Eq.(8)

BC with {=0.2+0.3. The t li I i ; " :
C with £=0.2+0.3 e two resonances lines located in according to the boundary condition. Let us write

the region—1.2<Im(ka)<0 have been previously inter-
preted and they are associated with the contributigns c=C,+C_, (A3)
fg2, fair1, andfye, (see Figs. 2—6 A new resonances line,

located deeper inside tHea plane and extended to ReH) and introduce the expansions

=2.5 and Imka)=— 1.4, is associated with the new com-

posite contributionsfy 15, fuir1s, fuiros, and fi,s (Figs. 1 o onen
19-22. A good agreement is obtained in the studied domain, sin(7v) _2';0 e ™) for Im(v)>0, (A4)
except in the region R&@) =2 where the asymptotic expan-
sions are not very efficient. 1 +o
———=2i >, e ™+ for |m(v)<0, (A5)
V. CONCLUSION sin(mv) 50

In this paper, we have entirely solved the two-cylindersrespectively, orC, andC_, so
scattering problem for Dirichlet, Neumann, and impedance
boundary conditions. All the scattering resonances for the
first three terms of the cumulant expansion have been ex-
tracted. Generalized formulas have been derived at any trun-

+ oo

F(v,ka)=—2i >, (S,— 1)@+ D7 (y ka)dv
p=0 JC,

cation order for all the contributions that are purely geo- _ = in2p+1)

metrical or composite. We have then obtained a semiclassical +2i ZO c (S,=1)e”MPTHTH (v ka)dw.
approximation of the characteristic determinant for each ir- P N

reducible representation of tlig, symmetry group. All the (A6)

contributions have been interpreted in terms of periodic or- h idue th it ¢ it
bits. Moreover, our semiclassical approach provides scatte;[ € residue theorem permits one to write
ing resonances in excellent agreement with the exact resultsf

We can then postulate that, in the scalar case, scattering of Ildv-l—f Ildv+f Z,dv=2imresidue (Z;)

- : A . - [v=w_
waves and particles by two identical, impenetrable cylinders “ €+ Ce Ty i
is a canonical problem. (A7)
The semiclassical formalism developed in this paper is
actually extended to the scattering problem by two pen- f Izdy—l—f Izdv-l—f Z,dv=0, (A8)
etrable cylindergscattering of a transverse electric wave by o r_ Co

dielectric cylinders in electromagnetism, fluid BC in acous- ) .

tics, or mixed BC in quantum physicdn this case, the poles vyher_eIl andZ,, respectively, denotg the integrands of the
associated with the internal wavésr with the interior po- ~ first integral and of the second one in H#6). v, are the
tentia) must be taken into account. The main difficulty Poles of theS, function in the complex- plane. They are
comes from the slow convergence of the Debye series expagymmetrically distributed with respect to the origin, so we
sion introduced to evaluate the geometrical contributiond'ave to only consider them in the right half-plane located
(each incident ray gives rise to an infinite series of multipleclose to the curvéa,. This curveh, cuts the real axis at
internal reflections It should be noted that multiple scatter- ¥»=Kka, at an angle ofr/3. The tangent to this curve tends to
ing problems by penetrable objects have never been senfibe vertical direction fofv|—x= (see Fig. 24 This poles

classically treated. distribution is valid in the three cases treated in the paper,
i.e., for the Dirichlet, Neumann, and impedance boundary
ACKNOWLEDGMENT conditions. The dominant behavior in E&\6) is dictated by

(S,—1)e'™ in the first integral and by§,—1)e """ in the
The authors would like to thank Antoine Folacci for use- second one. Following the methods of $8enzveig33], we
ful discussions. obtain
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J (S,—1)e'™H(v,ka)dv—0 forim(»)>0,
Cs

PHYSICAL REVIEW E66, 046629 (2002

The contourl’=T", +T"_ displayed in Fig. 24 is chosen in
order to apply the method of steepest descent.

(A9)
APPENDIX B: THE PURELY GEOMETRICAL
CONTRIBUTIONS OF THE SECOND ORDER
L (S,—1)e”"""H(v,ka)dv—0 forIm(»)<0, We consider here the purely geometrical contribution,
? (A10) given by Eq.(62), extracted from the second cumulant,

as|v|—, so using Eqs(A7) and (A8), Eq. (A6) reads

+ o

F(v,ka)=2i > (S,—1)e'™PrUH(p ka)dv
p=0 JI',

1 : :
f J S,,le_'wl[f S,,ze_'"”2X(v1,1/2)dV2 dvy.
)

92" 16 r

Replacing X(vq,v,) by relation (48), two different terms

+ oo
. have to be evaluated
+am Yy, > r, ™Dy ka)
p=0 v, n
—2i> f (S,—1)e~ ™2+ DH(4 ka)dy, foo=Tootfo2. (B1)
p=0 JI'_
(A11)  with
whererVn is the residue of the&, function at the poles
=v,. We change the sign af in the second integral over 1
the contourd”_ . Using the symmetry propertiéé2) and flg 2:§J SV1“ Syze*"wz
Y Iy Iz
S ,=e2ms,, (A12) XHE,, (kdH, (kd)dv,|dvy, (B2
Eqg. (A1l) becomes
. ; 1 (1) 2
F(v,ka)=—2|fr S,e”"™H(v,ka)dv f=g rlSvl SVZ[HVW2 kd)]°dv,|dv,. (B3
+4772 >, '””n(z"“)H(vn,ka). Equations(B3) and (B3) are composed by an integration
=0 o, with respect to the variable;, which contains another inte-
(A13) gration with respect to the variable,. Thus, we succes-

Finally, after a last contour modification in E¢A13),

integral of the form/Al) with the symmetry propertyA2) is
written as a sum of a geometrical contributieg(»,ka) and

a residue-series contributidfy(v,ka),

sively twice apply the method of steepest descent: the first
time to perform thev, integration and the second one to
perform thev, integration. We present the detailed resolution
of f' 2 and the main results Concernlrﬁb2 The notations
X= ka andy=Kkd are used.

an

1. Evaluation of f; ,

F(v,ka)=Fg4(v,ka)+Fqy(v,ka), (A14)

_ a. Integration with respect ta,

with In Eq. (B2), we define the inner integral
Fg(y,ka)z—if S,e '"™H(v,ka)dy (A15)

g vaf S,,e” e HD, | (kdHE., (kd)dv,. (B4)
(K7
Fyv,ka)=47> 1, ———H(v, ka). (A16) Using the Debye asymptotic expansion for the Hankel func-
_e2|71'1/n

Vn

tions (32) and forS,, (33), F,, is approximated by
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2 R(v,,ka) p[ , . vy
o~ —— expl — 2i\X2— 12+ 2i v,arccos— —i v
2 [y2 - (vt )Ty (v )2 S
) . vitvy . V1~ V;
Xexp i \/yz—(vl+ Vz)z—l(vl-l- vz)arccosy— +i \/yz—(vl— Vz)z—l(vl— vz)arccosy— dv,. (Bb5)
We define
() 2 R(v,,ka) 36
Vo)== —— y
T [y?=(v1+ )1V y* = (v1— o) ?]Y
i 5 > Vo > > V1+ Vo
g(vy) = " —2\X* =5+ 2v2arccos; — vyt Y — (vt o) — (vt vz)arccosy—
" =rp
Y= (v—vp)2— (v — vz)arccosy— . (B7)
We calculate the first and second derivativeg6#,) with respect tov, (labeled by® and ®®),
° ag( 2) i v+ vy Vi— Vs
g% vy)= 2arccos— arccos——2 + arccos——= — (B8)
vy X y y
g(vy) i [ 2 1 1 ]
o0 _ _
g~ " (v2) - - + . (B9)
vh X \/Xz— v3 \/yz_(V1+ v)? \/y —(vi—v)
|
The saddle poinv_z is determined by ;1
fg,2:§f S, F,dvy (B13)
Iy

9®(v2)=0&1,=0. (B10)

F,, is approximated bysee Refs[22,23)
— exiixg()]
F,=\-2nf(vy)—aae——r, (B11)
g Ixg®®(v)]"2

so the integration with respect tg gives the result

X
F, = —2R(0ka) \/
? i m(\y2— v2—x) \y2— 12
14
Xexr{Zi\/yz—vi—Zivlarccos—l—Zix :
y

(B12)

b. Integration with respect tar,

Equation(B2) can be written as

and we replaceFV2 by Eg. (B12) and SV2 by its Debye
asymptotic expansiofB3), so

1
f! ~—f R(0Oka)R(v,,ka
92" 4 r, ( JR(vy,ka)

iX
X
\/w(\/yz—vf—X)\/yz—ﬁ

V1
X ex;{ = 2ix—2i Vx?— v2+ 2i v arccos—
X

dv,. (B14)

V1
X ex;{ 2i\y?—v2—2iv,arccos—
y

We define
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1
f(vy)= ZR(O,ka)R( vy,ka)

ix
X ,
\/r( VY2 = 2= x)\y? - v2

g(vy)= X

2i V1
—x—}2— 13+ V1arccos - + N

V1
— p,arccos—
y

We calculate the first and second derivativegy6#,) with
respect tov, labeled by’ and”. The saddle point is deter-

mined by
9'(v1)=0v;=0. (B17)
fy, » is approximated by
— exixg(vy)]
flo= V2w (ry) ——— (B19)

[xg"(vy) 1Y%

Finally the first purely geometrical contribution of the sec-

ond order is

fl, = 3R(0ka)?

exd2ik(d—2a)]. (B19)

a
2(d—a)

2. Evaluation of f,

The second geometrical contribution is given by EBB).
We apply the same procedure as fég. We call

F,- LZSVZ[HS}B+ ,,(kd) T2, (820

and the integration with respect ig gives us

2 _
F, =——R(ry,ka)

V2
Vi

1

— 1 1
Ny2=(v1+v)? \/

V=12 Ny (o0

X

X exd — 2i \/xz—v_22+ 2i \/yz_(V1+V_2)2]

(B15)

. (B16)

PHYSICAL REVIEW E66, 046629 (2002

V1+V_2
exg —2iviarccos——|, (B21)
y

with

— a
Vo=V .
2 1d_a

(B22)

Afterwards the integration with respect iq of the expres-
sion

(B23)

is carried out taking into account thg dependence of,.
Finally, the second purely geometrical contribution of the
second order reads

fy 2= 3R(0ka)? 5

mGXF{ZIk(d—Za)].

(B24)

APPENDIX C: MULTIPLE INTEGRALS

In this appendix, the real multiple integrals formula, given
by Felsen[22], is extended to the case of integration in the
complex plane. Let us consider the multiple integration with
respect tog complex variables ¥y, v,, . . . ,vg) for g=1,

S O TP

Xexgxg(vy, vy, ... ,vg)ldvidy,- - -dyg, (Cl)

which can be approximated by

| (27T>QI2f(__ _) equg(y_l,v_z, e ,V_q)]
=\ V]_1V21 1] [}
! (-1
(C2
where the saddle poinIE are the roots of
a9(v1,va, « .. ,vg) B
v |(Vi= i)_o' (€3

Dy is the followingq determinant:
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9°g 9%g 0 0 9%g
ayi dv1dv, Iv1dvg
s 9 9
g 79 g 0 0
dvydvy 5,,5 dvydvs
9 9
0 g —2 . 0 0
Dqy= dvzdvy  gvg (C9
pr: 72
0 0 0 E g
Ivg_q IVq—19vq
7 @ 7
9 0 0 L9 79
Ivgdvy Ivqdvg—1 (91,(21

defined forv,=v,(i=1,2,3 ... ,q). It should be noted that fay=1, Eq.(C2) is equivalent to the formuléB11) used in the
case of simple integration.
The resolution of multiple integrals such %52 has been performed using the method of steepest descent successwely on
v, and afterwards om; (see Appendix B We apply here the multiple mtegral formul@2) with g=2 to the contr|but|orf
given by Eq.(B3). Using the Debye asymptotic expansid3®) and (33), f , reads

R(vy, ka)R(v,,ka) vy &
fy ~——f f expg — 2i Vx2— vi+ 2i v,arccos— — 2i Vx?— v3+ 2i v arccos—
LT jary2— (v + vy)? X X

Vl+ Vo
X exp 2i Vy2— (vq+ v,)?—2i (v, + vy)arccos—— |d v dv,. (CH
y
|
We define #g 2 1 1 1
—=%|" + . (C10
2 2_ 2 7_ 2
1 R(vy,ka)R(v,,ka) avi X[ =i Wy = (nit )
f(VlaVz):_Z. > >’ (C6)
PNy = (vt ) 9°g d g(vl,vz) 2i 1
i ” é’vlo'?vz dvodvy X VY2 = (v1+ 1)? '
9(vy,v2)= | —2 x2—v5+2vlarccos;—2\/x2—v§ (C11)
" g 2i 1 1
2 2 2
+2v,arccos—+2\y — (vy+vy) = , (C12
x vy X \/X -5 \/y — (vt vp)?
vit+ v, S — .
—2(vi+ vz)arccosy— . (C7) andv,, v, are determined as follows:
) o J9 —
We evaluate the first and second derivativesgé¥,,v,) a—|(vlzy—1)=0<:> =vagT (C13
with respect tov; and v,, 1
ag — a
d 2| 121 1tv -y
9 arccos— — arccos—} (C8) v, oy lrm =0 V2= lg—a (€19
(?Vl X y
. We obtain
&g _ 2| Vo V1+ Vo Cg
v, arccos; arccosy— , (C9 1= 7,=0 (15
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and
——  2i
g(v1,v2)= S (y=2%). (C16
The second-order determinant reads
7°g g
o ov? dv1dvy 20\ y-2x|(1
2 g g “Ux) Uxy i)
A0V, 92
V20V1  Jvs 17
(C17
Finally, fgyz is given by formula(C2) with q=2,
27— — exxg(v1,vy)]
nm __ =" RTIN L Teld
fg,z— ” f(vy,v0) [D2]1/2 , (C18
therefore
I} 1 2 a
fy = 2R(0ka)* —————=ex{d 2ik(d—2a)].
oz 2\/d(d—2a)
(C19

The result is the same as the one obtained in(Bg4) of

PHYSICAL REVIEW E66, 046629 (2002

ka —-1/3

2

2
71 Q23
60 107,

‘ 13
v,=ka— 7,€ 77/3( 7) +

(D3)

The residue of the&, function at the poleg=v,, is approxi-
mated by

1/3

B exp( —im/6) 04)

rvn - B 2
27 A (77)

ka

2

where 7, (ne N*) is the nth zero of the derivative of the
Airy function Ai’(x).

3. Impedance boundary conditions

Here, the poles of theS, function are the zeros of
[(HY (ka)+iH(Y(ka)] and are given by two different
asymptotic formulas whethét|>1 or|¢|<1.

For[¢|>1,

ka 2/3

2

14%(73-1)—-1  11+9072
v,=ka—i 33 - 3
140° 7, 902" 7,
8(3°—1)72-15
J’_
48747}

im/6

ka
2

Appendix B by applying twice the method of steepest de-

scent. Consequently, we consider that the forn{@a) can
be applied for any truncation ordgr

APPENDIX D: ASYMPTOTIC FORMULAS

In this appendix, we give the asymptotic formulas, used in

Sec. V, for the poleg, and the residuesvn of the S, func-
tion (see, for example, Ref§21,24,33).

1. Dirichlet boundary conditions

The poles of th&, function are the zeros off]lf(ka) and
are given by

2 -1/3
ﬂ 2i /3, k_a (Dl)
60 '

1/3
— /3 a
vp=ka—u,e'™ =| + >

2

The residue of the&, function at the poles= v, is approxi-
mated by

113
: (D2)

ka

exp(—i/6)
- 2

Yy~
"2m A (pn)?

where u, (neN*) is the nth zero of the Airy function
Ai(x).
2. Neumann boundary conditions

The poles of theS, function are the zeros offﬁl(ka)
and are given by

1/3

- 3+273+280 98+ 14L%(3+ 273 i3
28007,
7¢%(7,—6)—3
420027,

For|¢|<1,

ka
2

ka —-1/3

2

2i /3, (DS)

1/3 —1/3

ka

2
ka

2

2
Mo oinm
60
23 gg2
20

vo=ka—il— u,e "/3( >

ka -1

2

28

5i /6
5 wn€

(D6)

These two asymptotic formuld®5) and(D6), providing the

location of the polew,, for the impedance BC, have been

established following the method of Streifer and Kod84].
The residue of the, function at the poles= v,, is approxi-
mated by(for [£|>1 or|Z|<1)

exp( —im/6) ka3
r, ~ : - - (D7)
o 2a[AI’(2)2-zAi'(2)?]\ 2
wherez is defined by
a —-1/3 .
z=<7) e '™3(ka—,). (D8)
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