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Superluminal advanced transmission ofX waves undergoing frustrated total internal reflection:
The evanescent fields and the Goos-Ha¨nchen effect
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A study of X waves undergoing frustrated total internal reflection at a planar slab is provided. This is
achieved by choosing the spectral plane wave components of the incidentX wave to fall on the upper interface
at angles greater than the critical angle. Thus, evanescent fields are generated in the slab and the peak of the
field tunneling through the slab appears to be transmitted at a superluminal speed. Furthermore, it is shown that
for deep barrier penetration, the peak of the transmitted field emerges from the rear interface of the slab before
the incident peak reaches the front interface. To understand thisadvancedtransmission of the peak of the pulse,
a detailed study of the behavior of the evanescent fields in the barrier region is undertaken. The difference in
tunneling behavior between deep and shallow barrier penetrations is shown to be influenced by the sense of the
Goos-Hänchen shift.
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I. INTRODUCTION

In this work, we study the frustrated total internal refle
tion of a classical pulse; namely, theX wave @1–5#. Such a
wave field is a three-dimensional dispersion-free localiz
pulse that travels in free space without spreading out. ThX
wave is synthesized of a superposition of polychroma
plane wave components having wave vectors restricted
conic surface@6,7#. One can then choose the apex anglej of
the spectral conic surface characterizing theX wave to be
larger than the critical angle. Consequently, the spec
plane wave components of theX wave undergo total interna
reflection. Following this approach, it has been recently de
onstrated that the peaks ofX waves undergoing frustrate
total internal reflection on the upper surface of a planar s
appear to be transmitted at superluminal speeds@8#. Such a
behavior is analogous to theoretical results predicted in r
tion to the transmission of electromagnetic pulses thro
undersized waveguides@9# and in situations involving the
tunneling of photons@10,11#. Several of these theoretical re
sults have been confirmed in recent experiments@12–17#.
Similar predictions have been made in connection with fr
trated total internal reflection from the front surface of a th
slab @8,18,19# and for pulses propagating through electr
magnetic metamaterials@20#. The latter are materials chara
terized by equivalent permittivities and permeabilities th
are smaller than the free space values. The aforementio
superluminal tunneling effect is usually explained as a re
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of reshaping of the field transmitted through the tunnel
region before it emerges on the rear side of the barrier.
analysis used in Ref.@8# has been extended to the case ofX
waves tunneling through multilayered structures consist
of alternating layers of evanescent and free-propagation
gions@21#. The results obtained in Ref.@21# confirm that the
traversal times forX waves transmitted through multiple ba
riers separated by propagation-free regions are indepen
of the length of the barriers as well as the propagation-f
regions separating them@22,23#. For such multilayered struc
tures, it has been shown that the peak of theX wave appears
to be transmitted at a speed much larger than that of lig
Furthermore, it has been predicted that, for deep barrier p
etration,advancedtransmission of the peak of the pulse c
take place before the incident peak reaches the front sur
of the multilayered stack@21#.

Although the behavior of the evanescent fields in the b
rier region plays an important role in the reshaping of t
tunneling pulse, such fields were not studied in Refs.@8# and
@21#. These earlier investigations have emphasized the na
of the transmitted pulse when it emerges from the slab. O
the transmitted fields beyond the rear surface of the slab w
calculated@8,21#. In this work, we are primarily interested i
the behavior of the evanescent fields inside the barrier
gion. The Goos-Ha¨nchen effect will be used to explain th
advancedtransmission of the peak of theX wave and its
superluminality@24,25#. Furthermore, the time dependen
of the buildup of the evanescent field in the barrier reg
will be examined. Along similar lines, a recent study of t
evanescent fields associated with a Bessel beam tunn
through a planar slab predicted that the speed of the tr
mission of the field is extremely fast@26#. That prediction
was based on phase velocity calculations. In contradist
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tion, the current study establishes that the ultrafast trans
sion of theX wave is related to the temporal position of th
maximum of the evanescent field. In addition, the appro
used in this work highlights several interesting features
the evanescent fields associated with the tunneling pulse

In an earlier investigation dealing with the reflection a
refraction of an acousticX wave from a planar interface
separating two media, an exact closed-form expression
the evanescent field in the lower half-space has been ded
@27#. Along the axis of propagation, the time dependence
the evanescent field shows that the amplitude increases
maximum, starts decaying until it acquires negative valu
goes through a minimum, and finally decays to zero asym
totically. A key attribute of such behavior is that, for a
points inside the second medium, the maximum of the e
nescent field is attained before the peak of the incident p
arrives at the interface. Understanding this behavior is c
cial for explaining theadvancedtransmission of the peak o
a tunnelingX wave. This is the case because evanesc
fields in a semi-infinite half-space can approximate the fie
generated in a slab for situations involving deep barrier p
etration. Therefore, theadvancedformation of the maximum
of the evanescent field, at all points along the axis of pro
gation, alludes to the possibility that the same behav
might be observed for a pulse tunneling through a thick s
~deep barrier penetration!. The details of this point are ex
plored in this work, and conditions for deep barrier penet
tion are established

The plan of this work is as follows: The analysis used
determine the evanescent field in the barrier region is in
duced in Sec. II. Furthermore, formulas are provided for c
culating the incident and transmittedX waves. In Sec. III, the
special case of a semi-infinite half-space is considered
closed-form expressions for the evanescent fields due t
incident electromagneticX wave are derived. Also, the be
havior of the evanescent fields in a semi-infinite half-sp
and in a finite-width slab is compared. In Sec. IV, t
evanescent-antievanescent series approximation of the
inside the slab is examined and several features of its t
dependence are elucidated. The Goos-Ha¨nchen effect associ
ated with theX wave field in the slab is discussed in Sec.
It is shown, specifically, that the sense of the Goos-Ha¨nchen
shift determines whether the tunneling pulse undergoes d
or shallow-barrier penetration. Concluding remarks are m
in Sec. VI.

II. THE TOTAL X WAVE FIELDS IN A THREE-LAYER
MEDIUM

Consider the case of frustrated total internal reflection o
three-dimensionalX wave normally incident on the sla
shown in Fig. 1. Regions 1 and 3 have refractive indic
equal ton1 and the refractive index of region 2 isn2 . By
choosing the axicon anglej1 of the incidentX wave to be
larger than the critical angleuc5sin21(n2 /n1), all spectral
plane wave components of theX wave will undergo total
internal reflection and evanescent fields will be generate
region 2. For propagation along the positivez direction,
transverse electric~TE! polarization of the plane wave com
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ponent of theX wave is achieved by working with the Her
zian potential

PW TE~rW,t !5C~rW,t !uW ~z!, ~2.1!

whereuW (z) denotes a unit vector along the1z direction. The
electric field intensity can be readily obtained, viz.,

EW ~rW,t !52Z0¹W 3]ctPWTE~rW,t !. ~2.2!

Here,Z5Am0 /« andc51/Am0« assuming that the medium
is nonmagnetic. For anX wave normally incident on the slab
the Hertzian potential is defined in terms of a fourfold Fo
rier superposition as

C~ i !~rW,t !5E
R1

d~v/c1!E
R3

d3kW Â1~kW ,v!e2 ivt

3ei ~kxx1kyy1kzz!d„~v/c1!22kx
22ky

22kz
2
…,

~2.3!

wherec15c0 /n1 is the wave speed in region 1, andc0 is the
speed of light in vacuum. The spectral amplitude of the
cidentX wave is given by

Â1~kW ,v!5
A1

p
~v/v0!me2~v/c1!ad„kz2~v/c1!cosj1…,

~2.4!

whereA1 is a constant amplitude,a.0, andj1 is the axicon
angle. The three integrations overd3kW are carried out ana
lytically to give

FIG. 1. X wave incident on a slab of widthh.
6-2
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C~ i !~rW,t !5A1E
0

`

d~v/c1!~v/v0!mJ0„~v/c1!r sinj1…

3e2~v/c1!@a2 i ~z cosj12c1t !#. ~2.5!

For integer values ofm, the integration over (v/c1) yields
the closed form of themth orderX wave @1,3–5,21#. Using
the analysis described in Sec. 2.1 in Ref.@28#, we calculate
the total field in region 1 by adding a term due to the m
tiple reflections from the region 2; specifically,

C1~rW,t !5A1E
0

`

d~v/c1!~v/v0!mJ0„~v/c1!r sinj1…

3$e2~v/c1!@a2 i ~z cosj12c1t !#

1R̃12e
2~v/c1!@a1 i ~z cosj11c1t !#%. ~2.6!

The first term in the integrand represents the incident wa
In the second term,R̃12 is the generalized reflection coeffi
cient for the three-layer medium that relates the backwa
traveling and the forward-propagating wave amplitudes
region 1. It includes the effect of rear surface reflection
well as the reflection from the front surface of the slab. T
reflection coefficient is given explicitly by@28#

R̃125R121
T12R23T21e

2ik2z~d22d1!

12R21R23e
2ik2z~d22d1! . ~2.7!

Here,Ti j andRi j are the Fresnel transmission and reflect
coefficients at the interface separating regionsi and j. For a
TE wave incident on an interface separating two electrica
different nonmagnetic media, the Fresnel coefficients
equal to

Ri j
TE5

kiz2kjz

kiz1kjz
, ~2.8!

Ti j
TE5

2kiz

kiz1kjz
, ~2.9!

where

kiz5A~v/ci !
22~v/c1!2 sin2 j15~v/ci !cosj i ,

i 51,2,3.

In analogy to Eq.~2.4!, the spectral amplitude in region
depends only onkz andv. Using the results of Ref.@28#, we
can associate a Hertzian potential with the field in region
viz.,

C2~rW,t !5pE
R1

d~v/c1!E
R1

dkzJ0„rA~v/c2!22kz
2
…

3Â2~kz ,v!~eikzz1R̃23e
2ikzd22 ikzz!e2 ivt.

~2.10!

The first term of the integrand represents the forwa
propagating wave, whileR̃235R23 in the second term is the
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Fresnel reflection coefficient in region 2 due to the reflect
by region 3. To ensure the continuity of the amplitude of t
field across the interfacez5d1 , the spectral amplitude in
region 2 is chosen as

Â2~kW ,v!5
A2

p
~v/v0!me2~v/c1!ad„kz2~v/c2!cosj2…,

~2.11!

wherej2 is the apex angle of the spectral cone of the tra
mitted pulse in the second layer. In the case of total inter
reflection, we have

cosj25 iAsin2 j1

n21
2 21, n215

n2

n1
5A«2

«1
. ~2.12!

The amplitudeA2 in the region 2 is related toA1 through the
following expression@28#:

A25
A1T12e

i ~k1z2k2z!d1

12R21R23e
2ik2z~d22d1! . ~2.13!

In Eq. ~2.10!, the integration overkz reduces the total field in
region 2 to the form

C2~rW,t !5E
0

`

d~v/c1!A2~v/v0!mJ0„~v/c1!r sinj1…

3$e2~v/c1!~a1zAsin2 j12n21
2

1 ic1t !

1R̃23e
2~v/c1!@a2~z22h!Asin2 j12n21

2
1 ic1t#%,

~2.14!

whereh is the thickness of the barrier; i.e.,h5d22d1 .
Analogously, we can express the field in the third region

C3~rW,t !5E
0

`

d~v/c1!A3~v/v0!mJ0„~v/c1!r sinj1…

3e2~v/c1!~a2 i ~z cosj12c1t !!, ~2.15!

whereA3 is given by@28,8#

A35
A1T23T12e

i ~k1z2k2z!d1ei ~k2z2k3z!d2

12R21R23e
2ik2z~d22d1!

5
iA12Kk1z

~k1z
2 2K2!sinh~Kh!1 i2Kk1z cosh~Kh!

. ~2.16!

Here,K5(v/c1)Asin2 j12n21
2 andk1z5(v/c1)cosj1. To il-

lustrate the possibility of advanced transmission of the p
of the X wave, consider anX wave normally incident on a
planar slab of refractive indexn251, while the two sur-
rounding media have refractive indicesn15n353. We
choose anX wave of apex anglej1585° and parametera
50.2 mm. Note thatj1@sin21 n21519.47°; therefore, all
spectral plane wave components of theX wave undergo frus-
trated total internal reflection at the front interface. The to
field in all three layers is displayed in Fig. 2 form50. The
6-3
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width of the barrier region is chosen to equalh51 mm. The
fields are plotted at five different times,c1t529 cosj1,
25 cosj1, 0, 15 cosj1, and 19 cosj1 mm. At time c1t5
29 cosj1 mm, the peak of the transmitted field, shown ma
nified by a factor of 2, has already emerged from the r
surface of the slab. The evanescent fields inside the ba
region are displayed in the insets included in the figure. T
plots show clearly that for deep barrier penetration, the p
of the transmitted pulse appears on the rear side of the ba
before the incident peak reaches the front interface. This
havior does not exist for small axicon angles, i.e., whenj1 is
slightly larger than the critical angle@8#. It should be noted
that the insets show that the evanescent field displays a
tinuous decay in amplitude as one moves from the fron
the rear interface. Forc1t.29 cosj1 mm, the amplitude of
the evanescent field atz51 mm falls constantly with time.
This indicates that the peak is transmitted into region 3.
contrast, the initial increase in the amplitude of the evan
cent field at the front interface (z50), followed by a nega-
tive flip, is a sign of the arrival of the incident pulse and
subsequent reflection. Consequently, the time at which
evanescent field attains its maximum amplitude can be u

FIG. 2. Advanced transmission of the axial profile of the He
zian potential of anX wave incident on a slab of widthh51 mm.
The refractive indices of the three regions are equal ton251 and
n15n353. The incidentX wave is characterized byj1585°, a
50.2 mm, and m50. The total fields are plotted atc1t5
29 cosj1, c1t525 cosj1, c1t50, c1t515 cosj1, and c1t5
19 cosj1 mm. The amplitude of the transmitted field is multiplie
by a factor of 2 to emphasize the shape of the peak in region 3.
insets show enlargements of the Hertzian potential associated
the evanescent field at different times.
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to predict when the peak of the transmitted pulse emer
from the barrier region and to determine when doesad-
vancedtransmission occur.

In Fig. 3~a!, the time dependence of the Hertzian potent
associated with the evanescent field is shown at the rea
terface of various slabs having different widths, i.e., az

-

he
ith

FIG. 3. The time dependence of the Hertzian potential ass
ated with the evanescent field at the rear surfaces of slabs ha
different widths. The incidentX wave and the planar slab are th
same as in Fig. 2. The apex angle of theX wave equals~a! j1

585° and~b! j1540°.
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5h. One should note that for all widths the evanescent fie
attain their maximum amplitudes at negative times, i.e.
times prior to the arrival of the peak of the incident pulse
the front interface. This behavior determines the condit
for deep barrier penetration, viz.,j1@sin21 n21. To appreci-
ate the importance of such a condition for attaining de
barrier penetration, we have calculated the time depende
of the evanescent field forj1540°. The Hertzian potentials
associated with the resulting evanescent fields are show
Fig. 3~b!. For the chosen barrier widths, the maxima of t
evanescent fields occur at positive values of time. T
means that, forj1540°, the peak of the transmitted fiel
will appear after the incident peak reaches the front interf
and noadvancedtransmission takes place. Nevertheless,
peak of the pulse is transmitted at a superluminal speed
cause the peak arrival time (c1 /cosj1)tp,h for the four bar-
rier widths considered in Fig. 3~c!.

III. THE EVANESCENT X WAVES

Consider the case of an electromagneticX wave normally
incident on a planar surface of discontinuity separating t
different media with refractive indicesn1 and n2 , respec-
tively. Assume that the interface separating the two medi
situated atz50. Choosingn1.n2 , the spectral plane wav
components of theX wave will undergo total internal reflec
tions and evanescent fields will be generated in region 2.
Hertzian potential associated with the transmitted field
be derived directly from Eq.~2.15! after removing the term
responsible for the reflection from the rear interface (R23
50), specifically,

C tran~rW,t !5E
0

`

d~v/c1!A1T12J0„~v/c1!r sinj1…

3e2~v/c1!~a1zAsin2 j12n21
2

1 ic1t !. ~3.1!

Here, the Fresnel transmission coefficient, which is
pressed explicitly as

T125
2k1z

k1z1k2z
5

2~v/c1!cosj1

~v/c1!cosj11~v/c2!cosj2

5
2 cosj1

cosj11 iAsin2 j12n21
2

, ~3.2!

does not depend onv. Consequently, the integration in Eq
~3.1! can be evaluated using formula~6.611! in Ref. @29#,
yielding the closed-form expression

C tran~rW,t !5
2A1 cosj1

~cosj11 iG!Ar2 sin2 j11~a1zG1 ic1t !2
,

~3.3!

where G5Asin2 j12n21
2 . This evanescent field exhibits

transverse wave motion along the interface through the t
r2 sin2 j12(c1t)

2 appearing in the square root in the denom
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nator. As for the axial time evolution of the evanescent fie
consider the real part of the expression given in Eq.~3.3! for
r50, specifically,

Re$C tran~r50,z,t !%

5
2A1@a cos2 j11G cosj1~z cosj12c1t !#

@~c1t !21~a1zG!2#~12n21
2 !

. ~3.4!

This function has a null that propagates at a speed equa
c1 /cosj1. In Fig. 4~a!, the time dependence of the Hertzia
potential associated with the evanescent field is shown
the semi-infinite half-space at different depthsz from the
interface. One should note that for all distances from
interface the evanescent fields attain their maximum am
tudes at negative times, i.e., at times prior to the arrival
the peak of the incident pulse at the front interface. T
shapes of the Hertzian potentials shown in Fig. 3~a! differ
from those shown in Fig. 4~a! because of the effect of th
antievanescent components reflected from the back inter
of the finite-width slab. It appears from Figs. 3~a! and 4~a!
that the reflection from the interface separating regions 2
3 affects primarily the trailing edge of the field. On the oth
hand, the time dependence around the rising edge and
field’s maximum has the same shape in both cases con
ered in Figs. 3~a! and 4~a!. The crucial point, here, is that th
maximum amplitudes of the evanescent fields are attaine
negative times. Forj1540°, the Hertzian potentials assoc
ated with the evanescent fields are shown in Fig. 4~b!. Unlike
the evanescent fields associated with the finite-width slab@cf.
Fig. 3~b!#, one should note that for the semi-infinite ha
space all maxima are attained at negative times.

To establish the conditions leading toadvancedtransmis-
sion, we have calculated the axial time dependence of
evanescent field at different points inside a slab of widthh
54 mm. Figure 5~b! shows the time dependence of the ev
nescent field forj1585° at distancesz51, 2, 3, and 4 mm.
Apart from expected differences in amplitudes, one sho
note the similarity between the temporal profiles of the
plots and the ones provided in Fig. 4~a!. A striking feature
that should be pointed out is the peaking of the evanes
field at deeper distances inside the slab before occurrin
distances closer to the front interface. This behavior, whic
an attribute of evanescent fields formed in a semi-infin
half-space, is the reason foradvancedtransmission. In Fig.
5~b!, the time dependence of the evanescent field associ
with an incidentX wave havingj1540° is plotted at differ-
ent distances inside a slab of width 4 mm. It is interesting
note that, similar to the semi-infinite half-space, the evan
cent field peaks at negative times forz51, 2, and 3 mm. This
behavior is expected to take place when the barrier is w
enough to be approximated by a semi-infinite half-spa
However, at the rear surface of the slab (z5h54 mm) the
maximum amplitude is achieved at a positive time. Furth
more, in contrast with thej1585° case, the peaking of th
evanescent field occurs first at distances closer to the f
6-5
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interface and moves forward towards the rear surface of
barrier.

In a study of the tunneling of Bessel beams, it has b
predicted that, immediately after the front interface of t
slab, the wave motion is extremely fast when compared
the wave speed at the rear surface, i.e., atz5h @26#. For X

FIG. 4. Same as Fig. 3 but for anX wave incident on a semi
infinite half-space. The time dependences are calculated at diffe
distances from the interface separating two regions having ref
tive indicesn153 andn251. The apex angle of theX wave equals
~a! j1585° and~b! j1540°.
04662
e
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to

waves havingj1540°, negative-timeadvancedformation of
the peak of the evanescent field takes place over most o
slab, except for a small region close to the rear interfa
This result agrees in essence with the predictions mad
Ref. @26#; namely, that wave transmission through an evan

nt
c-

FIG. 5. Same as Fig. 3 but for anX wave incident on a slab o
width h54 mm. The time dependences are calculated at differ
distances from the interface. The refractive indices of the three
gions aren15n353 and n251. The apex angle of theX wave
equals~a! j1585° and~b! j1540°.
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cent channel is initially very fast over most of the slab un
the antievanescent components become significant clos
the rear surface. However,advancedpeaking of the evanes
cent field within the slab was not discussedper se in the
aforementioned reference. Such a phenomenon reflects
extraordinary speed of peak transmission ofX waves through
the evanescent channel. This behavior was not capture
the phase~or group! velocity analysis used in Ref.@26# for
continuous wave Bessel beams. For largej1 angles,ad-
vancedpeaking of the evanescent field of anX wave extends
over the whole slab with the field peaking first at the re
interface. As such, the peak of the evanescent field appea
be anomalously moving backwards with time from the re
to the front surface of the slab. The two situations conside
in Figs. 5~a! and 5~b! show distinct behaviors as far as th
peaking times are concerned. Forj1585°, the peaking times
are negative for all distances from the front interface, a
there is a negative shift in the temporal position of the pe
asz increases, i.e., the peak of the evanescent field appea
be moving backwards. As forj1540°, forward motion of
the peak takes place. Figure 5~b! shows that the peaking tim
of the evanescent field occurs initially at a negative tim
henceforth, it exhibits positive shifting with distance until
acquires maximum amplitude at a positivec1tp value at the
surfacez5h.

The preceding discussion indicates that the time at wh
the evanescent fields acquire their maxima determines ifad-
vancedtransmission will take place. To clarify this point, w
have calculated the dependence of the peaking timec1tp of
the evanescent field on the axicon anglej1 . From the dis-
cussion in the preceding section, we expect that for an in
mediate value 40°,j1,85°, a zero peaking time atz5h
will occur. This is confirmed in Fig. 6~a! that displays the
peaking time as a function ofj1 at the rear edge of the sla
for different barrier widths. It is interesting to note thatc1tp
acquires negative values forj1.48.19° independently of the
barrier width. The same result holds even when the bar
width is increased to the relatively large valuez5h51 m.
This suggests that deep barrier penetration depends on
the axicon angle, i.e., transmission through a thick barrie
not sufficient to cause theadvancedtunneling of the peak of
a X wave. Furthermore, one can show that the peaking t
is also independent of the value of the parametera charac-
terizing the incidentX wave. To establish this point, plots o
the peaking time for differenta values are provided in Fig
6~b!.

IV. THE EVANESCENT-ANTIEVANESCENT SERIES
APPROXIMATION

To be able to differentiate between deep and shallow b
rier penetration, we have to determine why the peaking t
changes from positive values for smallj1 angles to negative
values forj1.48.19°. One also has to figure out what is
special about the angle forj15j1

(0)548.19° corresponding
to zero-tunneling time. Specifically, why is it independent
both the width of the barrier and the parametera? Along
such direction, we examine an approximation of Eq.~2.14!
that involves the first order evanescent-antievanescent c
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ponents. This is done by expressing the amplitude given
Eq. ~2.13! in terms of a series expansion, viz.,

A25A1T12e
i ~k1z2k2z!d1$11R21R23e

2ik2z~d22d1!

1R21
2 R23

2 e4ik2z~d22d1!1¯%. ~4.1!

Retaining only the first term, Eq.~2.14! acquires the follow-
ing form:

FIG. 6. Peaking timec1tp vs j1 for different ~a! slab widthsh
and ~b! parametera values. The circles and squares repres
sample points calculated using Eq.~4.6! for h51 and 4 mm, re-
spectively.
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C2
~1!~rW,t !5E

0

`

d~v/c1!A1T12e
i ~k1z2k2z!d1~v/v0!mJ0„~v/c1!r sinj1…$e

2~v/c1!~a1zAsin j12n21
2

1 ic1t !

1R̃23e
2~v/c1!@a2~z22h!Asin2 j12n21

2
1 ic1t#%. ~4.2!
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C2
(1)(rW,t) is the first order approximation ofC2(rW,t) when

only the first term in the series given in Eq.~4.1! is retained.
Physically, this approximation is equivalent to working on
with the first order evanescent and the antievanescent fie
All other higher order pairs arising due to successive refl
tions are neglected. Although this approximation may not
accurate for all parameter values of interest, working w
the first order of evanescent-antievanescent pair clarifies
eral aspects ofadvancedpeak transmission.

The integration given in Eq.~4.2! can be carried out to
give a sum of two terms analogous to the one given in
~3.3! for a semi-infinite half-space. Specifically, form50,
the approximate Hertzian potential along the axis of pro
gation is given as

C2
~1!~r50,z,t !5

2A1 cosj1

~cosj11 iG!~a1zG1 ic1t !

2
2A1 cosj1~cosj12 iG!

~cosj11 iG!2@a2~z22h!G1 ic1t#
.

~4.3!

Rearranging terms, the real part of the above expression
comes equal to

Re$C2
~1!~r50,z,t !%

5
2A1 cos2 j1

~12n21
2 !2 H ~12n21

2 !@a1G~z2vet !#

~c1t !21~a1zG!2

1
~cos2 j123G2!@2~a12hG!1G~z1vat !#

~c1t !21@a2~z22h!G#2 J , ~4.4!

where the velocities of the evanescent and antievanes
nulls, denoted byve andva , are given by

ne5
c1

cosj1
, ~4.5a!

na52
~3 cos2 j12G2!

G~cos2 j123G2!

c1

cosj1
. ~4.5b!

The peak of the time dependence of the evanescent fie
the rear edge of the barrier region (z5h) can be deduced by
equating the time derivative of Eq.~4.4! to zero. This proce-
dure yields the following expression for the peaking time

c1tp5~a1zG!
~cosj12G!

~cosj11G!
. ~4.6!
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Sampled values ofc1tp calculated using Eq.~4.6! are shown
in Fig. 6~a!. The zero-tunneling-time anglej1

(0) can be cal-
culated by settingc1tp50 in Eq. ~4.6!, thus, obtaining

cosj1
~0!5A12n21

2

2
, ~4.7!

which is independent of bothh anda, as anticipated by the
plots shown in Figs. 6~a! and 6~b!. For n215

1
3 , Eq. ~4.7!

yields j1
(0)548.19° as predicted by Figs. 6~a! and 6~b!. The

expression for the anglej1
(0) given in Eq.~4.7! could also be

obtained upon settingne5na . Although the expression
given in Eq. ~4.7! is derived within the limits of the first
order evanescent-antievanescent approximation, we c
that it can be used as a condition for deep barrier penetra
of an X wave tunneling through a planar slab. This claim
valid because all higher order pairs satisfy the same co
tion. To improve this first order approximation, we can i
clude higher order pairs. Using the series expansion give
Eq. ~4.1!, we obtain the following expression for the tim
dependence of the evanescent fields at the rear edge o
barrier region:

C2~r50,z5h,t !

5
4A1G cotj1

~12n21
2 ! (

,51

`
exp~2 iF,!

@a1~2,21!hG1 ic1t#
.

~4.8a!

Here,

F,5~4,22!tan21~G/cosj1!1~p/2!. ~4.8b!

This is a particularly simple expression describing the ti
dependence of the evanescent field at the rear surface o
barrier. The summation in Eq.~4.8! is over terms represent
ing the time variations of all multiply reflected evanesce
antievanescent pairs. Apart from the phase factor, the i
vidual terms have simple time dependence analogous to
of the half-space evanescent field. The (2,21)hG term in
the denominator of each term represents the different
tances traversed by the,th order evanescent-antievanesce
pairs after undergoing multiple reflections at the front a
rear interfaces of the barrier. This factor is also respons
for reducing the amplitudes of the higher order terms a
increasing their temporal spread.

Notice that all terms in the series given in Eq.~4.8! peak
at c1t50 when the following condition is satisfied:

F,[~4,22!tan21~G/cosj1!1~p/2!5,p. ~4.9!
6-8
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After some manipulation, it can be shown that Eq.~4.9! re-
duces to the same condition given in Eq.~4.7!. The evanes-
cent field on the rear interface peaks atc1tp50 when j1

5j1
(0)548.19°. This condition applies separately to ea

evanescent-antievanescent pair in the series~4.8!.

V. THE GOOS-HÄ NCHEN SHIFT AND ADVANCED
TRANSMISSION

It has been recently pointed out that the Goos-Ha¨nchen
shift causes the superluminal transmission of pulses in s
ations involving frustrated total internal reflection at a dou
prism @24,25#. In this section, we apply a similar procedu
to the pulsed plane wave representation ofX waves@3,30# in
order to understand how the transmitted peak is formed.
demonstrate that, besides being responsible for the sup
minality of the transmission, the Goos-Ha¨nchen shift ac-
counts for the difference between deep and shallow ba
penetrations.

It is well established that theX wave solutions can be
synthesized as a superposition over Bessel beams@30#. Ad-
ditionally, it has been recently shown that anX wave can be
represented as an angular superposition of pulsed fields
eling at a tilted anglej1 with respect to the axis of propaga
tion of the peak of theX wave @3,30#. This view leads to a
wave representation in the form of a superposition of til
pulsed fields, viz.,

C~x,y,z!5E
0

2p

dfF~f!g1@c1t2z cosj1

2~x cosf1y sinf!sinj1#, ~5.1a!

over the azimuthal anglef in the plane normal to the direc
tion of propagation of the synthesized pulse@30#. Here,

g1~z!5
1

p E
0

`

d~v/c1!ei ~v/c1!zG~v/c1!, Im~z!.0

~5.1b!

is a complex analytic signal, withz5c1t2z cosj1
2(xcosf1ysinf)sinj1. For the case of axisymmetricX
wave solutions, we haveF(f)51. The incident and trans
mitted X waves, considered in Sec. II, have the spec
Ginc(v)5(A1/2)(v/v0)me2(v/c1)a, and Gtran(v)5(A3/2)
3(v/
v0)me2(v/c1)a, respectively. The azimuthal superpositio
given in Eq.~5.1! can be used to calculate the Goos-Ha¨nchen
shift for all pulsed field components. In particular, the Goo
Hänchen shiftD can be calculated by evaluating the deriv
tive of the phase shift exhibited by the azimuthally puls
fields transmitted into region 3. Specifically, we need
evaluate@24#

D52
]F

]x
, ~5.2a!

wherex5(v/c1)sinj1 is the wave vector component para
lel to the interface. The phase shiftF of the various spectra
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amplitudes of the azimuthal pulsed components is dedu
from Eq. ~2.16!, viz.,

F5arctanH cos2 j12G2

2G cosj1
tanh~Kh!J . ~5.2b!

The derivative in Eq.~5.2a! yields

D52
2dG2 cotj1~cos2 j12G2!

cosh2~Kh!$~2G cosj1!
21@~cos2 j12G2!tanh~Kh!#2%

.

~5.3!

No terms in this expression for the Goos-Ha¨nchen shift can
acquire negative values except the quantity (cos2 j12G2) in
the numerator. Consequently, the Goos-Ha¨nchen shift alters
its sign depending on whether

cos2 j12G2.0⇒Negative shift

or

cos2 j12G2,0⇒Positive shift.

The borderline condition, cos2 j1
(0)5G25sin2 j1

(0)2n21
2 , leads

directly to the result given in Eq.~4.7!.
In order to understand the reason that the sense of

Goos-Hänchen shift leads to the condition given in Eq.~4.7!,
we introduce in Fig. 7 a schematic representation ofX waves
that clarifies theiradvancedtunneling. We have previously
shown thatX waves can be synthesized of pulsed wav
traveling along the propagation vectors lying on a circu
cone @3,30#. In the case under consideration, the half ap
angle of the cone is equal toj1 . This is illustrated in Fig.
7~a! where only two propagation vectors are shown in a v
tical section of the conic surface. The peak of theX wave is
formed at the intersection of the pulsed wave components
region 1, two intersecting pulsed waves (W1i ,W1i8 ) and
(W2i ,W2i8 ) are sketched at different timest1 and t2 . In the
sketch, we have chosent2 to be the time at which the trans
mitted pulse appears at the rear interface of the barrier
gion. The evanescent fields associated with the obliquely
cident plane wave components are represented
(W1e ,W1e8 ) and (W2e ,W2e8 ). The transmitted pulsed plan
wave components are indicated by (W1t ,W1t8 ) and
(W2t ,W2t8 ). The negative and positive Goos-Ha¨nchen shifts
are illustrated in Figs. 7~a! and 7~b!, respectively. In both
figures, we have assumed that the time taken by the eva
cent fields to tunnel through the barrier is much smaller th
the propagation times in regions 1 and 3@25#. For the nega-
tive Goos-Ha¨nchen shift~whenj1,j1

(0)), the intersection of
the incident pulsed plane waves att2 is well beyond the front
surface of the barrier slab. This indicates that the incid
pulse has already passed the front interface before the tr
mitted pulse exits the barrier region. The intersection of
dashed pulsed plane waves inside region 2 specifies the
sition of the peak of theX wave traveling in free space. Th
X wave pulse transmitted into region 3 is shown to
slightly ahead of the free-space one. However, there is
advancedtransmission in this case because the transmi
pulse exits the barrier region after the peak of the incid
6-9
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pulse has passed through the front interface of region 2
contradistinction, Fig. 7~b! shows that for the positive Goos
Hänchen shift~when j1.j1

(0)) the transmitted pulse att2

emerges from the rear side of the barrier before the incid
pulse reaches the front surface.

VI. CONCLUDING REMARKS

We have established thatX waves tunneling through a
planar slab can produceadvancedtransmission. Specifically
that the peak of the transmitted pulse emerges from the
rier before the incident peak reaches the front surface. T

FIG. 7. Ultrafast transmission of the peak of anX wave pulse
exhibiting ~a! negative and~b! positive Goos-Ha¨nchen shifts.
ct

t.
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behavior is due to classical wave transmission through e
nescent channels. It has been argued that in this respeX
waves fall in the same category as plane waves go
through resonant media, or undersized waveguides@31#. This
kind of behavior cannot violate special relativity in a glob
sense, because the transmitted peak is formed inside the
ing portion of the extended field structure of theX wave.
Moreover, the wave front of theX wave propagates at th
speed of light@31–33#. The point that we would like to stres
here is that the ultrafast transmission of the peak is a non
titious effect and is accompanied by an observable transfe
the electromagnetic energy surrounding the peak. Whethe
not such peaks can carry signals is a matter of debate@31–
36#.

A crucial point in our analysis is that for anX wave inci-
dent on a semi-infinite half-space, the evanescent field a
axial points inside the barrier becomes maximum before
incident peak reaches the interface separating the two e
trically different media. Thus, one expects a similar behav
to be observed for anX wave tunneling through a barrier o
large width. However, it is established in Sec. IV thatad-
vancedtransmission of a tunnelingX wave is independent o
the width of the barrier, but depends on the axicon angle
the X wave and the refractive indices of the various regio
The condition given in Eq.~4.7! can thus be used to differ
entiate between deep and shallow barrier penetrations
which j1.j1

(0) andj1,j1
(0) , respectively. We have also es

tablished that the Goos-Ha¨nchen shift plays a crucial role in
the ultrafast transmission of the peak of the pulse through
barrier region. In particular, we have shown that the sens
the Goos-Ha¨nchen shift determines whether the tunnelingX
wave will undergo deep or shallow barrier penetration. Co
sequently, this condition decides whether advanced trans
sion of the peak takes place or not.

For deep barrier penetration (j1.j1
(0)), the advanced

peaking of the evanescent field of anX wave extends over
the whole slab, with the field peaking first at the rear int
face. Subsequently, the peak of the evanescent field app
to be anomalously moving backwards with time from t
rear to the front surface of the slab. This unusual behavio
similar to negative group velocities associated with lig
propagation in media exhibiting anomalous dispersion@37–
39#. The interesting point here is that the slab through wh
theX wave is tunneling is nondispersive. The backward m
tion of the peak of the evanescent field of anX wave is
purely an interference effect.
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