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Asymptotic solitons for a higher-order modified Korteweg–de Vries equation
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Solitary wave interaction for a higher-order modified Korteweg–de Vries~mKdV! equation is examined.
The higher-order mKdV equation can be asymptotically transformed to the mKdV equation, if the higher-order
coefficients satisfy a certain algebraic relationship. The transformation is used to derive the higher-order
two-soliton solution and it is shown that the interaction is asymptotically elastic. Moreover, the higher-order
phase shifts are derived using the asymptotic theory. Numerical simulations of the interaction of two higher-
order solitary waves are also performed. Two examples are considered, one satisfies the algebraic relationship
derived from the asymptotic theory, and the other does not. For the example which satisfies the algebraic
relationship the numerical results confirm that the collision is elastic. The numerical and theoretical predictions
for the higher-order phase shifts are also in strong agreement. For the example which does not satisfy the
algebraic relationship, the numerical results show that the collision is inelastic; an oscillatory wavetrain is
produced by the interacting solitary waves. Also, the higher-order phase shifts for this inelastic example are
tabulated, for a range of solitary wave amplitudes. An asymptotic mass-conservation law is derived and used
to test the finite-difference scheme for the numerical solutions. It is shown that, in general, mass is not
conserved by the higher-order mKdV equation, but varies during the interaction of the solitary waves.

DOI: 10.1103/PhysRevE.66.046623 PACS number~s!: 05.45.Yv, 02.30.Jr
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I. INTRODUCTION

The Korteweg–de Vries~KdV! equation is the generic
model for the study of weakly nonlinear long waves. It aris
in physical systems which involve a balance between non
earity and dispersion at leading order. For example, it
scribes surface waves of long wavelength and small am
tude on shallow water and internal waves in a shall
density-stratified fluid. Many other applications for the Kd
equation also exist, such as plasma waves, Rossby wa
and magma flow. Also, the KdV equation is integrable. T
means that a collision between KdV solitary waves is elas
after the collision the solitons retain their original shape w
the only memory of the collision being a phase shift. T
explicit solution for interacting KdV solitons was develope
using the bilinear transformation method, by Hirota@1#.

The modified Korteweg–de Vries~mKdV! equation~in
which the quadratic nonlinearityhhx of the KdV equation is
replaced by the cubic nonlinearityh2hx) has many physica
applications also. These include electrodynamics, elec
magnetic waves in size-quantised films, internal waves
certain special density stratifications, elastic media, and t
fic flow. The mKdV equation occurs in two versions; th
cubic nonlinearity term can have either positive or negat
sign. Hirota@2# found theN-soliton solution for the version
of the mKdV equation with positive sign. Both Perelma
et al. @3# and Ono@4# developed theN-soliton solution for
the case with negative sign. Of particular interest in the ne
tive case is the elastic interaction of a soliton with a dissi
tionless shock wave.

A higher-order mKdV equation with positive sign will b
examined,

h t124h2hx1h3x1ac1h4hx1ac2hx
31ac3h2h3x

1ac4hhxhxx1ac5h5x50, a!1. ~1!
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When the higher-order coefficients are given by

~c1 ,c2 ,c3 ,c4 ,c5!5~1, 1
12 , 1

12 , 1
3 , 1

480 !, ~2!

then Eq.~1! is a member of the mKdV integrable hierarch
of equations, see, Matsuno@5#. Hence Eq.~1! is a generali-
zation of the integrable higher-order mKdV equation~2!.

Asymptotic transformations have been developed for
higher-order KdV equation

h t16hhx1h3x1ac1h2hx1ac2hxhxx1ac3hh3x

1ac4h5x50, a!1, ~3!

by Kodama@6#. More recently, Fokas and Liu@7#, showed
that asymptotic transformations can be developed by con
ering the master symmetries of the associated integr
equation. Marchant@8# asymptotically transformed the
higher-order KdV equation~3! to the KdV equation. The
transformation used included a nonlocal term and allow
the higher-order two-soliton solution for the higher-ord
KdV equation~3! to be constructed. The higher-order so
tary waves were found to be asymptotic solitons as the
lision was elastic toO(a). Also, the higher-order correction
to the phase shifts of the waves after collision were foun

The aim of this paper is to examine the nature of t
interaction of solitary waves governed by the higher-ord
mKdV equation~1!. In §2 the asymptotic theory is deve
oped and the theoretical results presented. The asymp
transformation used is nonlocal and is similar to t
asymptotic transformation applicable for the higher-ord
KdV equation~3!. A single higher-order solitary wave is de
rived from the mKdV one-soliton solution using the transfo
mation. Then a special case, when the higher-order co
cients satisfy a given algebraic relationship, is identified,
which the higher-order collisions are asymptotically elas
For this special case the mKdV two-soliton solution is us
©2002 The American Physical Society23-1
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to derive the two-soliton solution for the higher-order mKd
equation~1!, and the higher-order phase shifts are found.
the case of arbitrary higher-order coefficients, the asympt
transformation is used to derive a formula for the high
order phase shifts in terms of the phase shifts, found num
cally in §3, for an inelastic example.

In §3 numerical solutions are presented for two examp
For the example of an elastic collision, the theoretical p
dictions of §2 are confirmed. In particular, the theoreti
and numerical values for the higher-order phase shifts ar
close agreement. For the example of an inelastic collision
higher-order phase shifts are tabulated for a range of w
amplitudes. The Appendix A has details of the finit
difference scheme used to calculate numerical soluti
while the Appendix B describes the application
asymptotic theory to an alternative version of the high
order mKdV equation.

II. THE ASYMPTOTIC THEORY

Consider the transformation

h5u1
a

240
~3c42c12c22c32160c5!uxx

1
a

120
~12c323c128c214c4!u3,

t5t1a
1

3
c5x,j5x1a

1

3
~32c52c3!E

2`

x

u2~p,t !dp,a!1,

~4!

whereu(x,t)→0 asx→6`. This form of transformation is
appropriate for solutions which approach zero far up a
downstream, such as the solitary wave solutions consid
here. For other forms of solution, such as periodic solutio
the nonlocal term in the transformation~4! needs to be modi-
fied slightly. If Eq. ~4! is substituted into Eq.~1!, and terms
of O(a2) are neglected, thenu(j,t) is a solution of the
higher-order mKdV equation

ut124u2uj1u3j1a84u4uj2a8uj
31a8uujujj50,

where a85
a

20
~4c32c1216c218c42320c5!!1. ~5!

The particular transformation~4! is chosen because th
higher-order mKdV equation~5! has exact solitary wave so
lutions. Even though they have the same form as the mK
soliton, the solitary wave solutions of Eq.~5! are not soli-
tons. The fact that the solitary wave solutions have noO(a)
amplitude or velocity corrections makes Eq.~5! an ideal ex-
ample for the numerical simulations in §3. The asympto
theory and numerical results of §3 are linked together
§2.3.

Also, note that if the algebraic relationship, between
higher-order coefficients,

c1116c224c328c41320c550, ~6!
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is satisfied thena850 and Eq.~5! becomes the mKdV equa
tion.

A. A single higher-order solitary wave

The mKdV soliton solution is

u5A sechu, u52A~j2s2Vt!, ~7!

whereA is the amplitude, the velocityV54A2 and the soli-
ton is atj5s at t50. The exact solitary wave solution o
Eq. ~5! is Eq.~7!. Using Eq.~7! in the transformation Eq.~4!
gives

h5A sechu1a 1
60 ~3c42c12c22c32160c5!A3 sechu

1a 1
120 ~c124c2116c328c41640c5!A3 sech3u1•••,

u52A@x~12 4
3 c5A2!2s1aA 1

6 ~32c52c3!

3~ tanhu11!2Vt#. ~8!

The phaseu must be made explicit by expanding it in
Taylor series. Also the amplitude is rescaled by

A5A* ~11a 4
3 c5A* 2!, ~9!

which gives~after dropping the stars!

h5A sechu1aa3A3 sechu1aa4A3 sech3u1•••,

u52A@x2s~11a 4
3 c5A2!1aA 1

6 ~32c52c3!2Vt#,

where V54A21a16c5A4,

a35 1
60 ~2c12c2119c313c42720c5!,

a45 1
120 ~c124c2224c328c411920c5!, ~10!

for a single solitary wave of the higher-order mKdV equati
~1!. Expression~10! is the same as that derived directl
Moreover, the higher-order solitary wave has been shif

from j5s at t50 to x5s(11a 4
3 c5A2)2aA 1

6 (32c52c3)
at t50.

B. The higher-order two-soliton solution

Here the two-soliton solution of the higher-order mKd
equation~1! is found for the case when the higher-order c
efficients satisfy Eq.~6!. The two-soliton solution of the
mKdV equation@~5! with a850] is

u5fj , tanf5
g

f
, where g5h11h2 ,

f 511mh1h2 , hi5exp 2Ai~j24Ai
2t2pi !, i 51,2,

m52S A22A1

A21A1
D 2

, ~11!
3-2
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see Hirota@2#. The velocity of thei th soliton is 4Ai
2 , while

pi is an arbitrary phase constant. Well before interaction~as
t→2`) the two-soliton solution~11! is

u5A1 sechu11A2 sechu2 , u i52Ai~j2si24Ai
2t!,

i 51,2. ~12!

Expression~12! is just the sum of two solitons; it satisfies th
mKdV equation@Eq. ~5! with a850] because the soliton
are a long distance apart@Eq. ~12! is obtained from Eq.~11!
by following each soliton in turn and lettingt→2`]. Also
we chooseA2.A1 and s2,s1; this means that the large
soliton is behind the smaller one initially. The larger solit
travels faster; hence it will interact with the smaller soliton
it overtakes it. To see the result of the collision the solution
considered well after interaction~ast→`). After interaction
the solution is again Eq.~12!, but with the phase shifts

1

A2
lnS A21A1

A22A1
D , 2

1

A1
lnS A21A1

A22A1
D , ~13!

for the larger and smaller solitons, respectively. Hence
collision is elastic, with no change in the solitons’ shap
~hence mass and energy are conserved for each soliton! and
no dispersive radiation is produced as a result of the inte
tion. The only memory of the collision is a phase shift fo
wards for the larger soliton and a phase shift backwards
the smaller soliton.

The higher-order two-soliton solution, toO(a), describ-
ing the interaction of two higher-order solitary waves go
erned by Eq.~1! is just the mKdV two-soliton solution~11!
transformed by using Eq.~4!. Due to the complicated form
of Eq. ~11! the explicit higher-order two-soliton solution wi
not be calculated; the nature of the collision can be found
considering the solution well before and after interactio
Expression~12! describes the mKdV two-soliton solutio
~11! before and after interaction; substituting Eq.~12! into
the transformation~4! gives

h5A1 sechu11A2 sechu21aa3A1
3 sechu11aa3A2

3 sechu2

1aa4A1
3 sech3u11aa4A2

3 sech3u21•••,

u i52Ai@x2si~11a 4
3 c5Ai

2!2si82Vit#, i 51,2,

Vi54Ai
21a16c5Ai

4t, ~14!

which is just two single higher-order solitary waves as
quired. The solitary waves are unchanged in shape after
collision and no dispersive radiation is generated, hence
collision is elastic.

The transformation modifies the phase shifts~13!, which
occur after interaction, of the mKdV solitons. Before a
after interaction the phase constantssi8 of each solitary wave
are

s1852a 1
6 ~32c52c3!~A112A2!,
04662
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s2852a 1
6 ~32c52c3!A2 , t→2`,

s1852a 1
6 ~32c52c3!A1 ,

s2852a 1
6 ~32c52c3!~2A11A2!, t→`. ~15!

As the nonlocal term in the transformation of the phaseu is
an integral from far behind the solitary wave to the curre
position, an extra term, due to the integration over the tr
ing solitary wave, appears in the phase of the leading soli
wave. The extra term appears in the phase of the sma
wave before collision and the larger wave after collisio
There are two contributions to the higher-order phase sh
the integration terms~15! and the amplitude scaling~9!.
Combining these terms gives the phase shifts as

1

A2
lnS A21A1

A22A1
D2a

1

3
~40c52c3!A1 ,

2
1

A1
lnS A21A1

A22A1
D1a

1

3
~40c52c3!A2 , ~16!

for the larger and smaller higher-order solitary waves,
spectively. In the case of higher-order coefficients which s
isfy Eq. ~6! and c3540c5 the phase shifts are unchange
from the mKdV case. This is true of the integrable version
the higher-order mKdV equation@Eq. ~1! with the coeffi-
cients Eq.~2!#, hence the transformation correctly predic
that there is no higher-order phase shift in that case.

In summary, when Eq.~6! is satisfied, the higher-orde
mKdV solitary wave collision is asymptotically elastic wit
phase shifts given by Eq.~16!.

C. The higher-order phase shifts for arbitrary
higher-order coefficients

What is the nature of the higher-order mKdV solita
wave interaction when the algebraic relation~6! is not satis-
fied? Inverse scattering for perturbed mKdV equations in
cates that there will be no amplitude change atO(a) in these
cases. However the collision is not asymptotically elastic,
radiation, of magnitudeO(a2), will be shed. There is no
simple analytical way to calculate the higher-order pha
shifts in this case. However, the asymptotic transformat
can be used to relate the phase shifts for the special cas~5!
of the higher-order mKdV equation, to the phase shifts of
higher-order mKdV equation~1! with arbitrary coefficients.

After an interaction governed by Eq.~5!, the two higher-
order solitary waves are given by Eq.~14!, except for the
unknown O(a) phase shifts and the radiation shed,
O(a2). Applying the transformation, and ignoring the radi
tion of O(a2), gives theO(a) phase shifts, for Eq.~1! with
arbitrary higher-order coefficients, as

2a 1
3 ~40c52c3!A11a8sl , a 1

3 ~40c52c3!A21a8ss ,
~17!
3-3
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for the larger and smaller waves, respectively.sl andss are
the higher-order phase shifts for the special case~5!. If the
algebraic relationship~6! is satisfied thena850 and Eq.~17!
reduces to the prediction of the asymptotic theory. The u
fulness of Eq.~17! is that numerical estimates of the highe
order phase shifts need only be found for Eq.~5!, as Eq.~17!
then allows the calculation of the higher-order phase shift
the case of arbitrary coefficients.

III. NUMERICAL RESULTS

In this section the interaction of higher-order mKdV so
tary waves is examined numerically. This allows the theo
ical results, which apply when Eq.~6! is satisfied, to be veri-
fied and allows the nature of the collision to be determin
for an example not covered by the asymptotic theory.

The numerical solution of higher-order KdV-type equ
tions is problematic. For example, Marchant and Smyth@9#
solved the higher-order KdV equation numerically, using
hybrid Runge-Kutta method for time and centred finite d
ferences for the spatial coordinate. They reported that
numerical scheme was only stable for small values ofa,
largeDx and smallDt. The lack of spatial resolution in th
numerical solution made the determination of any small
elastic effects and small higher-order phase shifts extrem
difficult.

To overcome these shortcomings, the numerical met
used here~see, the Appendix A for details! is based on a
perturbation technique, similar to that used by Zou and
@10#. They considered the interaction of higher-order Kd
solitary waves numerically, at second and third orders,
using a perturbation expansion. The lowest-order solut
about which the perturbation was based, was the KdV tw
soliton solution. Their finite-difference scheme is uncon
tionally stable so is ideal for accurately resolving inelas
effects and higher-order phase shifts.

The higher-order mKdV equation~1! is expanded using

h5v1ap, ~18!

wherev is the two-soliton solution~11! of the mKdV equa-
tion andp is theO(a) correction term of interest here. Th
expansion~18! is substituted into the higher-order mKd
equation~1!, which leads to a linear KdV-type equation wit
forcing terms

pt124
]

]x
~v2p!1p3x52 f , where

f 5c1v4vx1c2vx
31c3v2v3x1c4vvxvxx1c5v5x . ~19!

Before considering the interaction of higher-order mKd
solitary waves the contribution to the perturbationp, from a
single higher-order mKdV solitary wave~10! needs to be
considered. The parameter choices

~c1 ,c2 ,c3 ,c4 ,c5!5~20,21,1,0,0!, ~20!

~c1 ,c2 ,c3 ,c4 ,c5!5~4,21,0,1,0!, ~21!
04662
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are used for the numerical examples as they have noO(a)
amplitude or velocity corrections. The special case~20! sat-
isfies ~6!, hence is asymptotically elastic and can be used
verify the theoretical results. The special case~21! does not
satisfy ~6!, hence is not covered by the asymptotic theory

For these special cases, the perturbationp after interaction
only represents the higher-order phase shifts and any ine
tic effects. The higher-order solitary wave solution for t
special cases~20! and ~21! is the mKdV soliton

h5A sechu, u52A~x2as24A2t !, ~22!

where the soliton is located atx5as at t50. Expanding Eq.
~22! in a Taylor series expansion gives

h5A sechu1a2sA2 sechu tanhu, ~23!

hence if anO(a) phase shift ofs is applied to the solitary
wave then the perturbation is given by the antisymme
function p52sA2 sechu tanhu. Hence the higher-orde
phase shifts can be deduced by measuring the amplitude
the antisymmetric sechu tanhu function.

The higher-order mKdV equation~1! has the asymptotic
mass-conservation law

E
2`

`

h1a
1

6
a5h3dx, a55c422c222c3 , ~24!

hence mass is only conserved ifa550. Any physically ap-
plicable model equation would need to conserve mass, he
a550 would be a requirement. However, it is also of intere
to note that the algebraic relation~6!, for which asymptotic
solitons exist, includes both mass-conserving and nonm
conserving cases. The conservation law~24! can be evalu-
ated as

p1ap 1
24 ~a5112a316a4!~A1

21A2
2!, ~25!

by considering the interaction well before or after the co
sion, when the solitary waves are well separated. If the m
of the system is written asp1aM p , then the equation for
the mass of the perturbationp is

M p5E
2`

`

pdx5
p

4
~2a31a4!~A1

21A2
2!

1
a5

24S p~A1
21A2

2!24E
2`

`

v3dxD , ~26!

wherev is the two-soliton solution~11! of the mKdV equa-
tion. TheO(a) mass has been split into two parts. The fi
part, associated with theO(a) corrections to the solitary
wave’s profile, is constant~and equal to zero for the specia
cases considered here! throughout the collision. The secon
part, associated with the cubic term in the conservation
~24!, varies through the interaction. The expression~26!, for
the mass of the perturbationp, shall be used as an addition
check on the accuracy of the numerical results.

Example 1 is of the higher-order mKdV equation wi
coefficients~20!, hence it satisfies Eq.~6! and is asymptoti-
3-4
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cally elastic. Initially the perturbationp50 and time t5
25, which corresponds to a time, well before interaction
the solitary waves. The forced linear KdV-type equation~19!
is solved numerically, fromt525 up until t55, which rep-
resents a time, well after interaction. The spatial and tem
ral gridspacings used areDx52.531023 and Dt55
31024.

Figure 1 shows the perturbationp for example 1 after
interaction, att55. The amplitudes of the two solitons a
A251 and A150.5. It shows thatp comprises two, well
separated, antisymmetric sechu tanhu functions, which rep-
resent the higher-order phase shifts of the two solitary wa
First, note that the leading antisymmetric wave represen
phase shift forwards for the large solitary wave, while t
trailing antisymmetric wave~as the position of its positive
and negative peaks have been reversed! represents a phas
shift backwards for the smaller solitary wave.

The numerical estimates of the phase shifts are obta
by measuring the peak amplitude of the antisymme
waves. The peak amplitudes are also measured using va
of Dx and Dt double the values quoted above. Richards
extrapolation is then used to obtain a converged estimat
the phase shifts. The numerically obtained phase shifts
0.16 628 for the larger wave and20.33 333 for the smaller
wave. The theoretical predictions~16! for the higher-order
phase shifts in this example are1

6 for the large wave and
2 1

3 for the small wave. Hence the errors in the numeri
phase shifts are 0.2% and 131025%, for the large and smal
solitary waves, respectively.

Examination of the free surface behind the antisymme
waves after interaction shows that it essentially flat, with
dispersive wave train produced. The amplitude of the larg
oscillation behind the antisymmetric waves isO(1026). Ri-
chardson extrapolation indicates the converged amplitud
this oscillation isO(1027), confirming that it is merely a
result of the discretisation. Hence, no dispersive wave t
occurs as a result of the collision, so it is elastic toO(a).

Example 1 is mass conserving asa550. Hence, asa3
5a450 also, Eq.~26! indicates that the mass of the pertu
bation,M p , is zero throughout the interaction of the highe
order solitary waves. The mass of the perturbation is ca

FIG. 1. The perturbationp at t55 for example 1.
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lated numerically from the finite-difference solution at ea
time step, by using Simpson’s method. The numerical res
indicate, that for the spatial and time-discretisations us
that the magnitude of the perturbation massM p is never
greater than 1.931026. This represents an extremely sma
change to the total mass,p, of the interacting solitary waves
Moreover, Richardson extrapolation indicates the conver
mass of the perturbation is no greater thanO(1028). Hence
the numerical scheme conserves the mass of the perturb
extremely accurately throughout the interaction of t
higher-order mKdV solitary waves.

In summary, it can be seen that the theoretical predicti
have been confirmed for this example. The numerical res
show that the collision is asymptotically elastic toO(a) and
the numerical estimates for the higher-order phase shifts
very close to the theoretical predictions~16!. These results
also show that the numerical scheme is an extremely a
rate method of determining the higher-order phase sh
which will now be used for the special case~21!, which is
not asymptotically elastic.

Example 2 is of the higher-order mKdV equation~1! with
coefficients~21!, hence it does not satisfy Eq.~6! and the
asymptotic results of §2 do not apply. As for example 1,
perturbationp50 and timet525 initially. The results de-
scribed here are fort512, longer than example 1, whic
allows the dispersive wave train to completely separate fr
the smaller antisymmetric wave. The spatial and tempo
gridspacings used here are the same as those in examp

Figure 2 shows the perturbationp for example 2 after
interaction, att55. The amplitudes of the two solitons ar
A251 andA150.5. The figure shows the wave train at a
earlier time (t55 rather thant512) simply for graphical
convenience, as at longer times the large antisymmetric w
moves well away from the smaller wave. It shows thatp
comprises two, well separated, antisymmetric sechu tanhu
functions, which represent the higher-order phase shifts
the solitary waves and a dispersive wave train represen
the inelastic effects of the collision. Note in this case that
antisymmetric waves represent a phase shift forwards
higher-order, for both solitary waves. This is in contrast
example 1, where the higher-order phase shift for the la

FIG. 2. The perturbationp at t55 for example 2.
3-5
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solitary wave was forwards and the phase shift for the sm
solitary wave was backwards.

Examination of the free surface behind the nonsymme
waves after interaction shows that a dispersive wave t
has been produced. The amplitude of the largest wave in
dispersive wave train is 1.831022 with Richardson extrapo
lation indicating that this is very close to the converged a
plitude ~asDt, Dx→0). Hence this dispersive wave train
a result of an inelastic solitary wave interaction and is
due merely to the numerical discretisation. The conver
numerical estimates for the higher-order phase shifts
0.8585 for the larger wave and 0.2270 for the smaller wa
Richardson extrapolation shows that these estimates
converged to at least three~for the larger wave! and four~for
the smaller wave! decimal places.

Figure 3 shows the perturbation massM p versus timet,
for the same parameters as Fig. 2. Shown is the solutio
Eq. ~26!. The direct numerical calculation ofM p , from the
finite-difference solution of Eq.~19! is not shown as it is the
same as Eq.~26! to graphical accuracy. This example is n
mass-conserving throughout the collision asa553. The
mass of the perturbationM p increases from zero att525 to
a maximum at the center of the interaction; for positive tim
M p decreases back to zero. Hence for this example, the m
of the system increases as the solitary waves approach
other and decreases back to the initial value as they sepa
The maximum mass of the perturbation, which occurs at
50, is predicted by Eq.~26! to be 8.25 45031022. The
variation between this prediction for the maximum mass, a
that from the numerical scheme, is very small, being o
5.531026 or 0.007%. Hence the numerical scheme ac
rately predicts the mass of the perturbation throughout
collision, for this nonmass-conserving example.

Table I shows the numerically obtained higher-ord
phase shifts, for Eq.~1! with the coefficients~21!. The am-
plitude of the large solitary wave isA251 and the small
solitary wave takes a range of different amplitudes. Richa
son extrapolation indicates that the phase shift estim
have converged to at least the three significant figures
sented.

When the amplitude of the smaller waveA1,0.2, the

FIG. 3. The change in the mass of the perturbationM p , during
the interaction, for example 2.
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numerical calculation of the phase shift suffered by sm
wave, is extremely intensive. This is because the soliton
locity is very small (V54A1

2) and the antisymmetric wave
associated with the phase shift takes a very long time
completely separate from the dispersive wave train. For
ample, whenA150.1, the numerical simulation, begun att
5215 must be continued untilt51135, for complete sepa
ration to occur.

The data shows that the higher-order phase shifts can
be forwards, or one phase shift can be forwards with
other backwards. Moreover, the higher-order phase sh
show no simple functional dependence on the solitary w
amplitudeA1. Table I can be used to determine the pha
shifts of Eq.~1! with arbitrary coefficients, by using the ex
pression~17!.

IV. CONCLUSION

An asymptotic transformation has been developed fo
higher-order mKdV equation. It is found that the highe
order solitary waves are asymptotic solitons when an a
braic relationship~6! involving the higher-order coefficient
is satisfied. The higher-order phase shifts, after interactio
the solitary waves, were also found using the asympto
theory.

Numerical solutions of the higher-order mKdV equatio
were used to confirm the asymptotic results, namely,
elastic nature of the collision and the value of the phase s
corrections. Moreover, numerical solutions, for an exam
not satisfying the relation~6! show evidence of an inelasti
collision, via the generation of a dispersive wave train. T
higher-order phase shifts, for this inelastic example, w
also tabulated for a range of wave amplitudes. By using th
tabulated values and the asymptotic transformation
higher-order phase shifts can be determined for any choic
the higher-order coefficients.

Only higher-order versions of the mKdV equation wi
positive sign have been considered in this paper. The m
ods used here could be easily extended to higher-order
sions of the mKdV equation with negative sign. In particu
the interaction of a higher-order dissipationless shock w
and solitary wave could be described by applying

TABLE I. Numerical higher-order phase shifts for Eq.~1! with
the coefficients~21!.

Amplitude, (A1) Phase shift: Phase shift:
of smaller wave Larger wave Smaller wave

0.9 20.164 0.397
0.8 5.0731022 0.409
0.7 0.297 0.382
0.6 0.568 0.321
0.5 0.859 0.227
0.4 1.16 9.9131022

0.3 1.48 25.1131022

0.2 1.80 20.228
0.1 2.13 20.434
3-6



b
ns
u
er
e

de

d

lit
ai

ad

en-

er,
-
his

e
ves
ity

ity,
ing-
he

nce
ves
dV
atsu

he

ion

rit-

ASYMPTOTIC SOLITONS FOR A HIGHER-ORDER . . . PHYSICAL REVIEW E66, 046623 ~2002!
asymptotic transformation to the solution of Perelmanet al.
@3#.

In summary, the application of asymptotic theory may
useful for analysing other higher-order model equatio
which represent small perturbations to an integrable eq
tion. The asymptotic theory allows the straightforward det
mination of parameter choices, for which the higher-ord
equation is asymptotically integrable, and of the higher-or
phase shifts.

APPENDIX A: THE NUMERICAL SCHEME

The numerical solutions of Eq.~19! are obtained by using
an implicit, two level, finite-difference scheme with secon
order accuracy. The perturbation at the timet i is

pi , j5p~ t5 iDt,x5 j Dx!, j 51, . . . ,N, ~A1!

and the two-soliton solution of the mKdV equation is

v i , j5v@ t5~ i 10.5!Dt,x5 j Dx#, ~A2!

which is evaluated using Eq.~11!. Dt and Dx are the time
and space steps used in the discretisation. The two-so
solution is calculated at the half time steps to maint
second-order accuracy~see below!. The discretised version
of Eq. ~19! is

Dt

4Dx3
~pi 11,j 1222pi 11,j 1112pi 11,j 212pi 11,j 22!

1
6Dt

Dx
~v i , j 11

2 pi 11,j 112v i , j 21
2 pi 11,j 21!1pi 11,j

5pi 21,j2
Dt

4Dx3
~pi 21,j 1222pi 21,j 1112pi 21,j 21

2pi 21,j 22!2
6Dt

Dx
~v i , j 11

2 pi 21,j 112v i , j 21
2 pi 21,j 21!

1Dt f i , j , j 52,•••,N22, ~A3!

where

f i , j5
c1

2Dx
v i , j

4 ~v i , j 112v i , j 21!1
c2

8Dx3 ~v i , j 112v i , j 21!3

1
c3

2Dx3 v i , j
2 ~v i , j 1222v i , j 1112v i , j 212v i , j 22!

1
c4

2Dx3 v i , j~v i , j 112v i , j 21!~v i , j 1122v i , j1v i , j 21!

1
c5

8Dx5 ~v i , j 1422v i , j 1322v i , j 1216v i , j 1126v i , j 21

12v i , j 2212v i , j 232v i , j 14!.

The initial and boundary conditions used are

pi , j50, j 51,2,N21,N, p0,j50, ~A4!
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which means the perturbation is zero initially and far ahe
and behind the location of the solitary waves.

The finite-difference scheme is constructed by using c
tred differences about the point (t,x)5@( i 10.5)Dt, j Dx#.
The accuracy of the numerical method is second-ord
O(Dt2,Dx2). Equation~A3! requires the solution of a pen
tadiagonal matrix at each time step . A fast algorithm for t
task is detailed in Conte and deBoor@11#.

APPENDIX B: AN ALTERNATIVE HIGHER-ORDER
mKdV EQUATION

An alternative higher-order mKdV equation is

h t124h2hx1h3x1ac1h3hx1ac2hxhxx1ac3hh3x

50, a!1, ~B1!

in which the higher-order nonlinearity,h3hx , is quartic,
compared to the quintic nonlinearity of Eq.~1!. One appli-
cation of Eq.~B1! is the modelling of internal waves. Th
mKdV equation arises as a model describing internal wa
of small amplitude and long wavelength when the dens
stratification is such that the leading-order nonlinear
hhx , vanishes and a balance occurs between the lead
order dispersion and the higher-order cubic nonlinearity. T
higher-order mKdV equation~B1! is obtained by retaining
the terms which occur at next order in the expansion; he
it allows the description of steeper and shorter internal wa
than does the mKdV equation. Also, a higher-order mK
equation is used to describe traffic congestion, see Kom
and Sasa@12#.

An asymptotic transformation can be found for Eq.~B1!
also. It is

h5u1a
1

6
~c32c2!u2, t5t,

j5x2a
1

3
c3E

2`

x

u~p,t !dp, a!1, ~B2!

whereu(x,t)→0 asx→6`. If Eq. ~B2! is substituted into
Eq. ~B1!, and terms ofO(a2) are neglected, thenu(j,t) is a
solution of the mKdV equation if the relation between t
coefficients of the higher-order terms satisfy

c11 8
3 c328c250. ~B3!

This result is a generalization of Alexeyev@13#. He showed
that Eq.~B1! with c150 andc353c2 @which satisfies Eq.
~B3!# was approximately integrable by using a perturbat
method based on inverse scattering.

Using the asymptotic theory the phase shifts can be w
ten in the form
3-7
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1

A2
lnS A21A1

A22A1
D1ac3

p

6
, 2

1

A1
lnS A21A1

A22A1
D2ac3

p

6
,

~B4!

for the larger and smaller higher-order solitary waves resp
tively. In contrast to the higher-order phase shifts for Eq.~1!
the higher-order corrections to the phase shifts for Eq.~B1!
are constant. They do not depend on the amplitudes of
solitary waves, which is related to the fact that the mass
s.

04662
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mKdV soliton is independent of its amplitude. In the case
higher-order coefficients given byc158c2 and c350 the
phase shifts are unchanged from the mKdV case.

Hence, when Eq.~B3! is satisfied, the quartic mKdV soli
tary waves are asymptotic solitons, the only memory of
collision being the phase shifts~B4!. It is presumed that
when Eq.~B3! is not satisfied, a dispersive wavetrain is pr
duced by the collision, as is the case for Eq.~1! when Eq.~6!
is not satisfied.
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