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Asymptotic solitons for a higher-order modified Korteweg-de Vries equation
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Solitary wave interaction for a higher-order modified Korteweg—de MieKdV) equation is examined.
The higher-order mKdV equation can be asymptotically transformed to the mKdV equation, if the higher-order
coefficients satisfy a certain algebraic relationship. The transformation is used to derive the higher-order
two-soliton solution and it is shown that the interaction is asymptotically elastic. Moreover, the higher-order
phase shifts are derived using the asymptotic theory. Numerical simulations of the interaction of two higher-
order solitary waves are also performed. Two examples are considered, one satisfies the algebraic relationship
derived from the asymptotic theory, and the other does not. For the example which satisfies the algebraic
relationship the numerical results confirm that the collision is elastic. The numerical and theoretical predictions
for the higher-order phase shifts are also in strong agreement. For the example which does not satisfy the
algebraic relationship, the numerical results show that the collision is inelastic; an oscillatory wavetrain is
produced by the interacting solitary waves. Also, the higher-order phase shifts for this inelastic example are
tabulated, for a range of solitary wave amplitudes. An asymptotic mass-conservation law is derived and used
to test the finite-difference scheme for the numerical solutions. It is shown that, in general, mass is not
conserved by the higher-order mKdV equation, but varies during the interaction of the solitary waves.
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I. INTRODUCTION When the higher-order coefficients are given by
The Korteweg—de VriegKdV) equation is the generic (C1,65,€3,C4,C5)=(1,35, 5,5 ,755), 2

model for the study of weakly nonlinear long waves. It arises

in physical systems which involve a balance between nonlinthen Eq.(1) is a member of the mKdV integrable hierarchy

earity and dispersion at leading order. For example, it deof equations, see, Matsurib]. Hence Eq(1) is a generali-

scribes surface waves of long wavelength and small amplization of the integrable higher-order mKdV equati@.

tude on shallow water and internal waves in a shallow Asymptotic transformations have been developed for the

density-stratified fluid. Many other applications for the KdV higher-order KdV equation

equation also exist, such as plasma waves, Rossby waves, 5

and magma flow. Also, the KdV equation is integrable. This 7t 877t mact aCin™ it aCanx it aCannay

means that a collision between KdV solitary waves is elastic; +aC,75,=0, a<l, 3

after the collision the solitons retain their original shape with

the only memory of the collision being a phase shift. Thepy Kodama[6]. More recently, Fokas and Li[7], showed

explicit solution for interacting KdV solitons was developed that asymptotic transformations can be developed by consid-

using the bilinear transformation method, by Hir13. ering the master symmetries of the associated integrable
The modified Korteweg—de VrieénKdV) equation(in  equation. Marchant[8] asymptotically transformed the

which the quadratic nonlinearity n, of the KdV equation is  higher-order KdV equatior(3) to the KdV equation. The

replaced by the cubic nonlinearity’»,) has many physical transformation used included a nonlocal term and allowed

applications also. These include electrodynamics, electrahe higher-order two-soliton solution for the higher-order

magnetic waves in size-quantised films, internal waves foKdV equation(3) to be constructed. The higher-order soli-

certain special density stratifications, elastic media, and traftary waves were found to be asymptotic solitons as the col-

fic flow. The mKdV equation occurs in two versions; the lision was elastic t@(«). Also, the higher-order corrections

cubic nonlinearity term can have either positive or negativao the phase shifts of the waves after collision were found.

sign. Hirota[2] found theN-soliton solution for the version The aim of this paper is to examine the nature of the

of the mKdV equation with positive sign. Both Perelman interaction of solitary waves governed by the higher-order

et al. [3] and Ono[4] developed theN-soliton solution for  mKdV equation(1). In §2 the asymptotic theory is devel-

the case with negative sign. Of particular interest in the negaoped and the theoretical results presented. The asymptotic

tive case is the elastic interaction of a soliton with a dissipatransformation used is nonlocal and is similar to the

tionless shock wave. _ . - . asymptotic transformation applicable for the higher-order
A higher-order mKdV equation with positive sign will be Kdv equation(3). A single higher-order solitary wave is de-
examined, rived from the mKdV one-soliton solution using the transfor-

mation. Then a special case, when the higher-order coeffi-
cients satisfy a given algebraic relationship, is identified, for
which the higher-order collisions are asymptotically elastic.
+ aCypyxt @Csms=0, a<l. (1) For this special case the mKdV two-soliton solution is used

3
Mt 2802 1+ Nat aCyn et aCy Myt aCan?yay
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to derive the two-soliton solution for the higher-order mKdV is satisfied themr’ =0 and Eq.(5) becomes the mKdV equa-
equation(1), and the higher-order phase shifts are found. Intion.
the case of arbitrary higher-order coefficients, the asymptotic
transformation is used to derive a formula for the higher- A. A single higher-order solitary wave
order phase shifts in terms of the phase shifts, found numeri-
cally in 83, for an inelastic example.

In 83 numerical solutions are presented for two examples. u=Asechd, 0=2A(¢—s—V7), @)
For the example of an elastic collision, the theoretical pre-
dictions of §2 are confirmed. In particular, the theoreticalyhereA is the amplitude, the velocity =4A2 and the soli-
and numerical values for the higher-order phase shifts are ifpn is at¢=s at =0. The exact solitary wave solution of

close agreement. For the example of an inelastic collision theq. (5) is Eq. (7). Using Eq.(7) in the transformation Eq4)
higher-order phase shifts are tabulated for a range of wavgjyes

amplitudes. The Appendix A has details of the finite-
difference scheme used to calculate numerical S°|Uti°n§7:Asech0+ai(304—cl—c2—c3— 160c5) A% sechd
while the Appendix B describes the application of o0

asymptotic theory to an alternative version of the higher- ;1 (¢, —4c,+ 16c;— 8C4+ 640c5) A3 sechPo+ - - -,
order mKdV equation.

The mKdV soliton solution is

_ PN 1 _
II. THE ASYMPTOTIC THEORY 0=2AX(1~ 5 C5A%) —s+ aA 5 (325~ Ca)

Consider the transformation X (tanhp+1) - Vi]. ®)
o The phasefd must be made explicit by expanding it in a
p=U+ ——(3C4—C;—Cy— C3— 160C5) Uyy Taylor series. Also the amplitude is rescaled by
40
A=A*(1+ a % csA*?), (9)

o
+——(12c3— 3¢, —8C,+4c,) U3,
120( * : 2 ) which gives(after dropping the stars

1 1 X n=Asechf+ aazA3 sechd+ aa,A3sechP+ - - -,
T:t+a§C5X,§:X+a§(32C5—C3)f u?(p,t)dp,a<1,
(4) 0=2A[Xx—s(1+ a3csA?) + aA £ (32c5—c3) — Vi,

whereu(x,t)—0 asx— ., This form of transformation is where V=4A%+ a16csA%,
appropriate for solutions which approach zero far up and
downstream, such as the solitary wave solutions considered a3= &5 (—Cy— Cy+19C5+ 3¢, — 720Cs),
here. For other forms of solution, such as periodic solutions,
the nonlocal term in the transformatiof) needs to be modi- a,= 135 (C,—4C,— 24c;— 8¢, + 192Q5), (10

fied slightly. If Eq.(4) is substituted into Eq(1), and terms

of O(a?®) are neglected, then(¢,7) is a solution of the for a single solitary wave of the higher-order mKdV equation
higher-order mKdV equation (1). Expression(10) is the same as that derived directly.
Moreover, the higher-order solitary wave has been shifted
from é=s at 7=0 to x=5(1+ a%csA?) — aA%(32c5—C3)
att=0.

U,+24u%Ug+ Uge+ a’ 4utug— a’ Ui+ a’ uug =0,

o
where o' = %(403— c,1—16c,+8c,—320c5)<1. (5)
B. The higher-order two-soliton solution

The particular transformatiort4) is chosen because the  Here the two-soliton solution of the higher-order mKdV
higher-order mKdV equatiofb) has exact solitary wave so- equation(1) is found for the case when the higher-order co-
lutions. Even though they have the same form as the mKd\éfficients satisfy Eq.(6). The two-soliton solution of the
soliton, the solitary wave solutions of E¢p) are not soli-  mKdv equation[(5) with a’=0] is
tons. The fact that the solitary wave solutions haved{e)
amplitude or velocity corrections makes E§) an ideal ex-
ample for the numerical simulations in §3. The asymptotic
theory and numerical results of 83 are linked together in
§2.3. _ _ o f=1+mhh,, h=exp2A(é—4A%7r—p;), =12,
Also, note that if the algebraic relationship, between the
higher-order coefficients,

u=¢;, tang= % where g=h;+h,,

11

A2_A1)2

cy+16c,—4c3—8c,+320c5=0, (6) Axt+Ay
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see Hirotg 2]. The velocity of theith soliton is 41-\i2, while
p; is an arbitrary phase constant. Well before interactem
7— — ) the two-soliton solutior(11) is

Séz—a%(3205—03)A2, T— — 0,

!

1
S1= —a (35— C3)Ay,
u=A,; sechd; +A,sechd,, 6,=2A,(£—s,—4A?7),

i=1,2. (12) sp=—a t(32%5—Cy)(2A1+A,), 7. (15

Expressior(12) is just the sum of two solitons; it satisfies the AS the nonlocal term in the transformation of the phéase
mKdV equation[Eq. (5) with a’=0] because the solitons 2" |_n_tegral from far behind the sol|.tary wave to the current
are a long distance apdq. (12) is obtained from Eq(11) position, an extra term, du_e to the integration over the t(all—
by following each soliton in turn and letting— —«]. Also N9 solitary wave, appears in the phase of the leading solitary
we chooseA,>A, ands,<s,; this means that the larger WaVe. The extra term appears in the phase of the smaller
soliton is behind the smaller one initially. The larger solitonWave before collision and the larger wave after collision.

travels faster: hence it will interact with the smaller soliton as! "' are two contributions to the higher-order phase shifts,

it overtakes it. To see the result of the collision the solution is€ integration termg15) and the amplitude scalingg).
considered well after interactiqas— ). After interaction ~COMPining these terms gives the phase shifts as
the solution is again Eq12), but with the phase shifts

1 [(A+A 1
1 [A+A; 1 [A+A; A, In(A—Z_Al —a3(40C5—C3)Ay,
AN AAl TA A B
1 [A+A; 1
for the larger and smaller solitons, respectively. Hence the A n(Az—A1> +a§(40c5—03)A2, (16)

collision is elastic, with no change in the solitons’ shapes
(hence mass and energy are conserved for each Sadit@h ) .
no dispersive radiation is produced as a result of the interad®r the larger and smaller higher-order solitary waves, re-
tion. The only memory of the collision is a phase shift for- _spectlvely. In the case of higher-order C(_)effluents which sat-
wards for the larger soliton and a phase shift backwards foisfy Ed. (6) and c;=40c; the phase shifts are unchanged
the smaller soliton. from the mKdV case. This is true of the integrable version of
The higher-order two-soliton solution, ©(«), describ- the higher-order mKdV equatiofEq. (1) with the coeffi-
ing the interaction of two higher-order solitary waves gov-cients Eq.(2)], hence the transformation correctly predicts
erned by Eq(1) is just the mKdV two-soliton solutiofil1) that there is no higher-order phase_ s_hn‘t in that_ case.
transformed by using Eq4). Due to the complicated form [N summary, when Eq(6) is satisfied, the higher-order
of Eq. (11) the explicit higher-order two-soliton solution will MKdV solitary wave collision is asymptotically elastic with
not be calculated; the nature of the collision can be found byphase shifts given by Eq16).
considering the solution well before and after interaction.
Expression(12) describes the mKdV two-soliton solution C. The higher-order phase shifts for arbitrary
(12) before and after interaction; substituting Ed2) into higher-order coefficients

the transformatiort4) gives
14) g What is the nature of the higher-order mKdV solitary

wave interaction when the algebraic relati@ is not satis-
fied? Inverse scattering for perturbed mKdV equations indi-
+ aa, Al seciP oy + aa,Aj sechPd,+ - - -, cates that there will be no amplitude chang®4étr) in these
cases. However the collision is not asymptotically elastic, as
radiation, of magnitudeD(«?), will be shed. There is no
simple analytical way to calculate the higher-order phase
) 4 shifts in this case. However, the asymptotic transformation
Vi=4A7+ albesAi't, (14 can be used to relate the phase shifts for the special(Base
o ) ) ) of the higher-order mKdV equation, to the phase shifts of the
which is just two single higher-order solitary waves as re-pigher-order mKdV equatiofil) with arbitrary coefficients.
quired. The solitary waves are unchanged in shape after the after an interaction governed by E¢p), the two higher-
collision and no dispersive radiation is generated, hence thgrder solitary waves are given by E(L4), except for the
collision is elastic. -~ _ unknown O(a) phase shifts and the radiation shed, of
The transformation modifies the phase shit8), which  o(42). Applying the transformation, and ignoring the radia-

occur after interaction, of the mKdV solitons. Before andijon of O(a?), gives theO(a) phase shifts, for Eq1) with
after interaction the phase constagtef each solitary wave  grpitrary higher-order coefficients, as

are

n=A, sechd; + A, sechd,+ aa;A> sechd; + aazA sechd,

0;=2A[x—s(1+a3csA?)—s —Vit], i=1.2,

—ai(40cs—Cy)A 1+ a's), a3 (40cs—cg)A,+a’s,,
;= — a5 (3205~ C3)(Ar+2A,), (17)
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for the larger and smaller waves, respectivelyandss are  are used for the numerical examples as they have (w)

the higher-order phase shifts for the special d&self the  amplitude or velocity corrections. The special c§2@ sat-
algebraic relationshifb) is satisfied them’ =0 and Eq(17) isfies(6), hence is asymptotically elastic and can be used to
reduces to the prediction of the asymptotic theory. The useverify the theoretical results. The special c§2&) does not
fulness of Eq(17) is that numerical estimates of the higher- satisfy (6), hence is not covered by the asymptotic theory.

order phase shifts need only be found for E5), as Eq.(17) For these special cases, the perturbapi@fter interaction
then allows the calculation of the higher-order phase shifts ironly represents the higher-order phase shifts and any inelas-
the case of arbitrary coefficients. tic effects. The higher-order solitary wave solution for the

special casef0) and(21) is the mKdV soliton

III. NUMERICAL RESULTS n=Asechd, O=2A(x— as—4A2), (22)

In this section the interaction of higher-order mKdV soli- ) ) )
tary waves is examined numerically. This allows the theoretWhere the soliton is located at=as att=0. Expanding Eq.
ical results, which apply when E¢g) is satisfied, to be veri- (22 in a Taylor series expansion gives
fied and allows the nature of the collision to be determined _ 2
for an example not covered by the asymptotic theory. 7=Asechd+ a2sA”sechd tanhd), (23

_ The numerical solution of higher-order KdV-type equa-pence if anO(«) phase shift ofs is applied to the solitary
tions is problematic. For example, Marchant and Smi#th  \yaye then the perturbation is given by the antisymmetric

solved the higher-order KdV equation numerically, using as,nction p=2sA2sechdtanhd. Hence the higher-order

hybrid Runge-Kutta method for time and centred finite dif- phase shifts can be deduced by measuring the amplitude of
ferences for the spatial coordinate. They reported that thg,q antisymmetric seofitanhg function.

numerical scheme was only stable for small valuesaof The higher-order mKdV equatiofl) has the asymptotic
large Ax and smallAt. The lack of spatial resolution in the ,555-conservation law
numerical solution made the determination of any small in-
elastic effects and small higher-order phase shifts extremely % 1
difficult. J n+t agag,n?’dx, as=C4—2C;—2C3, (24)

To overcome these shortcomings, the numerical method o
used herg(see, thg Appepdjx A for detajlss based on @ pance mass is only conservedaif=0. Any physically ap-
perturbation technique, similar to that used by Zou and Siyjicaple model equation would need to conserve mass, hence
[10]. They considered the interaction of higher-order KdVy__ ¢ \ould be a requirement. However, it is also of interest
solitary waves numerically, at second and third orders, b)fo note that the algebraic relatidf), for which asymptotic

using a perturbation expansion. The lowest-order solutiongyjisong exist, includes both mass-conserving and nonmass-
about which the perturbation was based, was the KdV tWOZ:onserving cases. The conservation @) can be evalu-

soliton solution. Their finite-difference scheme is uncondi- ;4 4
tionally stable so is ideal for accurately resolving inelastic
effects and higher-order phase shifts. I 1 2, a2
. X . . 57 (a5+12a5+6a,)(AT+AS), 25

The higher-order mKdV equatiofi) is expanded using T am 2 (3 3624 (AL AY) @9
by considering the interaction well before or after the colli-
sion, when the solitary waves are well separated. If the mass
of the system is written ag+aM,, then the equation for
the mass of the perturbatignis

n=v+ap, (18

wherev is the two-soliton solutiorf11) of the mKdV equa-
tion andp is the O(«a) correction term of interest here. The
expansion(18) is substituted into the higher-order mKdV o -
equation(1), which leads to a linear KdV-type equation with M= J’ pdx=7(2as+ a,) (AT +A))
forcing terms o

]

w(A§+A§)—4f

—o0

5
d + = 3dx|, 26
pt+245(vzp)+p3x=—f, where 24 v ) 26

wherev is the two-soliton solutiori11) of the mKdV equa-
f=C1vv,+ Covg+C30 %03+ Cavuxvy+ Csusx. (19)  tion. TheO(a) mass has been split into two parts. The first
part, associated with th®(«) corrections to the solitary
Before considering the interaction of higher-order mKdV wave’s profile, is constartand equal to zero for the special
solitary waves the contribution to the perturbatigrfrom a  cases considered herdroughout the collision. The second
single higher-order mKdV solitary wavel0) needs to be part, associated with the cubic term in the conservation law

considered. The parameter choices (24), varies through the interaction. The expresgi26), for
the mass of the perturbatiqn shall be used as an additional
(€1,C2,C3,€4,C5)=(20,-1,1,0,0, (200 check on the accuracy of the numerical results.
Example 1 is of the higher-order mKdV equation with
(¢cq,C5,C3,C4,C5)=(4,—1,0,1,0, (21 coefficients(20), hence it satisfies Ed6) and is asymptoti-
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FIG. 1. The perturbatiop att=5 for example 1. FIG. 2. The perturbatiop att=>5 for example 2.
cally elastic. Initially the perturbatiop=0 and timet=  |ated numerically from the finite-difference solution at each

—5, which corresponds to a time, well before interaction oftime step, by using Simpson’s method. The numerical results
the solitary waves. The forced linear KdV-type equati®® indicate, that for the spatial and time-discretisations used,
is solved numerically, front=—5 up untilt=>5, which rep-  that the magnitude of the perturbation mads is never
resents a time, well after interaction. The spatial and tempogreater than 1.910 6. This represents an extremely small
ral gridspacings used are\x=2.5x10"% and At=5  change to the total mass, of the interacting solitary waves.
X 1074, Moreover, Richardson extrapolation indicates the converged
Figure 1 shows the perturbatign for example 1 after mass of the perturbation is no greater tf@¢10 ). Hence
interaction, att=>5. The amplitudes of the two solitons are the numerical scheme conserves the mass of the perturbation
A,=1 and A;=0.5. It shows thafp comprises two, well extremely accurately throughout the interaction of the
separated, antisymmetric segtanhé functions, which rep-  higher-order mKdV solitary waves.
resent the higher-order phase shifts of the two solitary waves. In summary, it can be seen that the theoretical predictions
First, note that the leading antisymmetric wave represents have been confirmed for this example. The numerical results
phase shift forwards for the large solitary wave, while theshow that the collision is asymptotically elastic@§«) and
trailing antisymmetric wavedas the position of its positive the numerical estimates for the higher-order phase shifts are
and negative peaks have been reversegresents a phase very close to the theoretical predictiof®6). These results
shift backwards for the smaller solitary wave. also show that the numerical scheme is an extremely accu-
The numerical estimates of the phase shifts are obtainechte method of determining the higher-order phase shifts,
by measuring the peak amplitude of the antisymmetriavhich will now be used for the special ca&gl), which is
waves. The peak amplitudes are also measured using valugst asymptotically elastic.
of Ax and At double the values quoted above. Richardson Example 2 is of the higher-order mKdV equatigi with
extrapolation is then used to obtain a converged estimate @efficients(21), hence it does not satisfy E¢6) and the
the phase shifts. The numerically obtained phase shifts argsymptotic results of 82 do not apply. As for example 1, the
0.16 628 for the larger wave and0.33 333 for the smaller perturbationp=0 and timet=—5 initially. The results de-
wave. The theoretical predictiorid6) for the higher-order scribed here are fotr=12, longer than example 1, which
phase shifts in this example agefor the large wave and allows the dispersive wave train to completely separate from
— 5 for the small wave. Hence the errors in the numericalthe smaller antisymmetric wave. The spatial and temporal
phase shifts are 0.2% andkL0™ %, for the large and small gridspacings used here are the same as those in example 1.
solitary waves, respectively. Figure 2 shows the perturbatign for example 2 after
Examination of the free surface behind the antisymmetridnteraction, at=5. The amplitudes of the two solitons are
waves after interaction shows that it essentially flat, with noA,=1 andA;=0.5. The figure shows the wave train at an
dispersive wave train produced. The amplitude of the largestarlier time (=5 rather thant=12) simply for graphical
oscillation behind the antisymmetric wavesQ§10 °). Ri-  convenience, as at longer times the large antisymmetric wave
chardson extrapolation indicates the converged amplitude afioves well away from the smaller wave. It shows tpat
this oscillation isO(10 "), confirming that it is merely a comprises two, well separated, antisymmetric sgtzmho
result of the discretisation. Hence, no dispersive wave traifunctions, which represent the higher-order phase shifts of
occurs as a result of the collision, so it is elasticfa). the solitary waves and a dispersive wave train representing
Example 1 is mass conserving as=0. Hence, asai;  the inelastic effects of the collision. Note in this case that the
=a,=0 also, Eq.26) indicates that the mass of the pertur- antisymmetric waves represent a phase shift forwards, at
bation,M,, is zero throughout the interaction of the higher- higher-order, for both solitary waves. This is in contrast to
order solitary waves. The mass of the perturbation is calcuexample 1, where the higher-order phase shift for the large
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TABLE I. Numerical higher-order phase shifts for Ed) with
0.08 - _ the coefficientg21).
Amplitude, (A;) Phase shift: Phase shift:
0.06 . of smaller wave Larger wave Smaller wave
o 0.9 —0.164 0.397
= 04l ] 0.8 5.07 102 0.409
0.7 0.297 0.382
0.6 0.568 0.321
0.02 1 T 0.5 0.859 0.227
0.4 1.16 9.9K10 2
. 0.3 1.48 —5.11x10°?
0_4 2 0 2 4 0.2 1.80 —0.228
X 0.1 2.13 —0.434

FIG. 3. The change in the mass of the perturbadby, during

the interaction, for example 2. numerical calculation of the phase shift suffered by small

solitary wave was forwards and the phase shift for the smalfVave, is extremely lntenSI\ge. This is because the soliton ve-
solitary wave was backwards. locity is very small /=4A7) and the antisymmetric wave
Examination of the free surface behind the nonsymmetri@ssociated with the phase shift takes a very long time to
waves after interaction shows that a dispersive wave traigompletely separate from the dispersive wave train. For ex-
has been produced. The amplitude of the largest wave in th@mple, wherA;=0.1, the numerical simulation, beguntat
dispersive wave train is 1:810~2 with Richardson extrapo- = —15 must be continued unti=1135, for complete sepa-
lation indicating that this is very close to the converged am{ation to occur. . _
plitude (asAt, Ax—0). Hence this dispersive wave train is ~ The data shows that the higher-order phase shifts can both
a result of an inelastic solitary wave interaction and is note forwards, or one phase shift can be forwards with the
due merely to the numerical discretisation. The converge@ther backwards. Moreover, the higher-order phase shifts
numerical estimates for the higher-order phase shifts aréhow no simple functional dependence on the solitary wave
0.8585 for the larger wave and 0.2270 for the smaller waveamplitudeA;. Table | can be used to determine the phase
Richardson extrapolation shows that these estimates hawdifts of Eq.(1) with arbitrary coefficients, by using the ex-
converged to at least thréfor the larger waveand four(for pression(17).
the smaller wavedecimal places.
Figure 3 shows the perturbation mads, versus timet,
for the same parameters as Fig. 2. Shown is the solution of
Eq. (26). The direct numerical calculation ®fl ,, from the An asymptotic transformation has been developed for a
finite-difference solution of Eq19) is not shown as it is the higher-order mKdV equation. It is found that the higher-
same as Eq(26) to graphical accuracy. This example is not order solitary waves are asymptotic solitons when an alge-
mass-conserving throughout the collision as=3. The praic relationshig6) involving the higher-order coefficients
mass of the perturbatiod , increases from zero &t -5 to s satisfied. The higher-order phase shifts, after interaction of
a maximum at the center of the interaction; for positive timethe solitary waves, were also found using the asymptotic
M, decreases back to zero. Hence for this example, the magseory.
of the system increases as the solitary waves approach eachNumerical solutions of the higher-order mKdV equation
other and decreases back to the initial value as they separatgere used to confirm the asymptotic results, namely, the
The maximum mass of the perturbation, which occur$ at elastic nature of the collision and the value of the phase shift
=0, is predicted by Eq(26) to be 8.2545& 10 2. The  corrections. Moreover, numerical solutions, for an example
variation between this prediction for the maximum mass, andhot satisfying the relatioi6) show evidence of an inelastic
that from the numerical scheme, is very small, being onlycollision, via the generation of a dispersive wave train. The
5.5x10°° or 0.007%. Hence the numerical scheme accuhigher-order phase shifts, for this inelastic example, were
rately predicts the mass of the perturbation throughout thalso tabulated for a range of wave amplitudes. By using these
collision, for this nonmass-conserving example. tabulated values and the asymptotic transformation the
Table | shows the numerically obtained higher-orderhigher-order phase shifts can be determined for any choice of
phase shifts, for Eq) with the coefficientq21). The am- the higher-order coefficients.
plitude of the large solitary wave i8,=1 and the small Only higher-order versions of the mKdV equation with
solitary wave takes a range of different amplitudes. Richardpositive sign have been considered in this paper. The meth-
son extrapolation indicates that the phase shift estimatesds used here could be easily extended to higher-order ver-
have converged to at least the three significant figures presions of the mKdV equation with negative sign. In particular
sented. the interaction of a higher-order dissipationless shock wave
When the amplitude of the smaller wavg <0.2, the and solitary wave could be described by applying an

IV. CONCLUSION
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asymptotic transformation to the solution of Perelnedral.  which means the perturbation is zero initially and far ahead
[3]. and behind the location of the solitary waves.

In summary, the application of asymptotic theory may be The finite-difference scheme is constructed by using cen-
useful for analysing other higher-order model equationstred differences about the point,x)=[(i +0.5)At,jAx].
which represent small perturbations to an integrable equafFhe accuracy of the numerical method is second-order,
tion. The asymptotic theory allows the straightforward deter-O(At?,Ax?). Equation(A3) requires the solution of a pen-
mination of parameter choices, for which the higher-ordertadiagonal matrix at each time step . A fast algorithm for this
equation is asymptotically integrable, and of the higher-ordetask is detailed in Conte and deBddr].
phase shifts.

APPENDIX A: THE NUMERICAL SCHEME APPENDIX B: AN ALTERNATIVE HIGHER-ORDER
mKdV EQUATION
The numerical solutions of E@19) are obtained by using . . L
an implicit, two level, finite-difference scheme with second- AN alternative higher-order mKdV equation is
order accuracy. The perturbation at the titmés

- , . + 2472 pyt+ Moyt Syt +
pi’jzp(tZIAt,XZJAX), i=1,... N, (A1) Ui NNt Max T AC1 7" 1+ aCa My xx T AC37 M3
. . o =0, a<l], (B1)
and the two-soliton solution of the mKdV equation is
vij=v[t=(i+0.5At,x=jAx], (A2)  in which the higher-order nonlinearityy®7,, is quartic,

S ) ) compared to the quintic nonlinearity of E@L). One appli-
which is evaluated using E¢11). At andAx are the time  cation of Eq.(B1) is the modelling of internal waves. The

and space steps used in the discretisation. The two-solitamkd\y equation arises as a model describing internal waves
solution is calculated at the half time steps to maintaingf small amplitude and long wavelength when the density
second-order accuradgee below. The discretised version stratification is such that the leading-order nonlinearity,
of Eq. (19) is n7y, vanishes and a balance occurs between the leading-
order dispersion and the higher-order cubic nonlinearity. The

At higher-order mKdV equatioitB1) is obtained by retaining

(Pit1j+2=2Pi+1j+1t2Pit1j-1— Pit1j—2)

AAX3 the terms which occur at next order in the expansion; hence
it allows the description of steeper and shorter internal waves
N 6;“ 2 2 N than does the mKdV equation. Also, a higher-order mKdV
AX (Vi +1Pi+2j+17 Vi j-1Pi+1j-1) T Pisa equation is used to describe traffic congestion, see Komatsu
and Sas4l12].
At An asymptotic transformation can be found for EG1)
=Pi-1j— m(pi—l,j+2_2pi—1,j+1+ 2pi_1j-1 also. It is
6At
2 2
—Pi—1j-2)— H(Ui,j+1pifl,j+l_Ui,jflpifl,jfl) p=u+ a%(cs—cz)uz, =t
+Atfi,j1 j:2,"',N_2, (A3)
1 X
where §=x—a§cgf u(p,tydp, a<l, (B2)

_ % 4 C2 3
fi =iV vi -0+ gra(vijravij-1)
whereu(x,t)—0 asx— *. If Eq. (B2) is substituted into
cs Eq.(B1), and terms oD(«?) are neglected, them(&,7) is a
+ oAl (Vi 27 200 41t 2017 Vi j-2) solution of the mKdV equation if the relation between the

coefficients of the higher-order terms satisfy

c
+ ﬁﬁvi,j(vi,ﬁl_Ui,j—l)(Ui,j+l_2Ui,j+Ui,j—1) .
c1+ 3C3—8c,=0. (B3)
Cs
+ a0 (Vii+aT 20ij+37 20 42+ 6V j11 =6V g

8A This result is a generalization of Alexeyg¥3]. He showed

that Eq.(B1) with ¢;=0 andc;=3c, [which satisfies Eq.

+20 0205 3=V ira).
201220137 Vi j+a) (B3)] was approximately integrable by using a perturbation

The initial and boundary conditions used are method based on inverse scattering. _ _
Using the asymptotic theory the phase shifts can be writ-
Pij=0, j=12N—-1N, pg;=0, (A4)  ten in the form
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T mKdV soliton is independent of its amplitude. In the case of
—acgg, higher-order coefficients given bg;=8c, and c3=0 the
(B4) phase shifts are unchanged from the mKdV case.

Hence, when EqB3) is satisfied, the quartic mKdV soli-
for the larger and smaller higher-order solitary waves respedary waves are asymptotic solitons, the only memory of the
tively. In contrast to the higher-order phase shifts for @¢.  collision being the phase shiftd4). It is presumed that
the higher-order corrections to the phase shifts forB4) when Eq.(B3) is not satisfied, a dispersive wavetrain is pro-
are constant. They do not depend on the amplitudes of théuced by the collision, as is the case for E.when Eq.(6)
solitary waves, which is related to the fact that the mass of & not satisfied.

1

Az

A2+A1 " v 1
n —Az_Al a'ng, A_]_ n
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