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Collapse arrest and soliton stabilization in nonlocal nonlinear media
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We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal
nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear
Schralinger type equation. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlin-
earity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions.
The nonlocal nonlinear response must be symmetric and have a positive definite Fourier spectrum, but can
otherwise be of completely arbitrary shape and degree of nonlocality. We use variational techniques to find the
soliton solutions and illustrate the stabilizing effect of nonlocality.
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I. INTRODUCTION mechanismas is well known in, e.g., Langmuir turbulence
Collapse is a fundamental physical phenomenon wel[ll] a_nd_ BEC's[12]. Effects .SUCh as dlscret_eneia_ss], non-

. . ! : paraxiality [14], and saturation of the nonlinearitgee[3]
know_n n f[he theory of waves in nor_lllnear media. It r_efers ©for references to all the different types of saturation, such as
the situation when strong _co_ntract|0n or self-focus_mg of %xponential, threshold, logarithmic, etowill also com-
wave leads to a catastrophic increase or blowup of its ampligietely eliminate the possibility of a collapse singularity ap-
tudg after a finite time or propagation d|stanj§ee[1—3] for pearing. In contrast, effects such as weak linear [@&s
reviews. Wave collapse h_as been observed in plasma Wav&emperature fluctuationsl 5], and spatial incoherendé 6],

[4] (the famous Langmuir wave collapseelectromagnetic  cannot eliminate the collapse, only change the critical value
waves or laser beani$] (also called self-focusingBose-  of the norm. In any case the collapse effect represents a
Einstein condensatdBEC's) or matter wave$6], and even  strong mechanism for energy localizatjomhich it is impor-
capillary-gravity waves on deep watet]. The effect of col-  tant to study to understand the properties of a given physical
lapse appears also in astrophysics, where the gravitationaystem.
attraction plays the same role as the self-focusing of electro- The inherent nonlocal character of the nonlinearity has
magnetic waves, tending to compress stars of sufficienattracted considerable interest as a means of eliminating col-
mass, eventually leading to their collapse into a black holdapse and stabilizing multidimensional solitary waves. Non-
[8]. locality appears naturally in optical systems with a thermal
Typically the contraction must be able to act freely in two [17] or diffusive[18] type of nonlinearity. Nonlocality is also
or more dimensions to be strong enough to generate a coknown to influence the propagation of electromagnetic
lapse. Moreover, the so-called norm, which is the power fomwaves in plasmagl9-22 and plays an important role in the
electromagnetic and plasma waves, the atom density faheory of BEC's, where it accounts for the finite-range many-
BEC's, and the mass for stars, must be above a certain critbody interaction12,23—-23.
cal value for a collapse to occur. Most commonly the col- In this work we consider NLS equations with a general
lapse has been discussed in the context of the nonlineaonlocal form of the nonlinearity. Turitsyn proved the ab-
Schralinger (NLS) equation, which is a universal model for sence of collapse for three particular shapes of the nonlocal
dispersive(or diffractive) weakly nonlinear physical systems nonlinear responsg26]. The analysis of the collapse condi-
[9]. The NLS equation models, e.g., all systems mentionedions for general response functions is difficult and has been
above, in which a wave collapse has been predicted and verarried out only numerically24]. However, in many sys-
fied experimentally. tems, such as BEC’s, one has no knowledge of the particular
The collapse singularity is an artifact of the model andresponse function. Furthermore, the degree of nonlocality is
signals the limit of its validity. Close to the singularity, when the relative width of the response function and the wave
the amplitude is extremely high and the temporal and spatigbacket and thus it changes dynamically when the wave
scales are extremely short, different physical processes wippacket spreads or contracts. Therefore it is important to
come into play{1-3]. A common effect is nonlinear dissipa- maintain the generality of the nonlocal response function in
tion, such as two-photon absorption of electromagnetithe model. Here we prove rigorously that nonlocality elimi-
waves and inelastic two- and three-body recombination fonates collapse in all physical dimensions for arbitrary shapes
matter waves, which efficiently absorbs the collapsing part obf the nonlocal response, as long as the response function is
the wave. Thus collapse acts as efifective nonlinear loss symmetric and has a positive definite Fourier spectrum.
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Il. GENERAL MODEL ‘ } }
(a) R(x'-x) (b) R(x'-x)
We consider the evolution of a wave fieldzu(F)
=u(F, 7) described by the general nonlocal NLS equation
I(x") I(x)

au -
i—+V2u—V(r)u+N()u=0, (1)
aT

whereV=V(r) is an externallinean confining potential , >
=1(r)=I(r,7)=|ul?, 7 is the evolution coordinate and 0 x X 0 x X
=(rq,r,,r3) spans &-dimensional “transverse” coordinate
space. By virtue of being a confining potentiHI(F) has a
finite global minimum, which can be set to zero without loss
of generality due to the gauge invariance of Ef). Thus
V(F)>0. The nonlinear ternfN=N(1) is represented in the
general nonlocal form

I(x")
N(|)=f R(r'—r)l(r")dr’, 2

where the integraJdr is over all transverse dimensions. We

consider only response functioﬁ%{F) that are reali.e., no
nonlinear loss or gajnand symmetric(e.g., excluding the FIG. 1. Degrees of nonlocality, as given by the relative width of
asymmetric Raman response—s¢28] and references the response functioR and the intensity profilé in the x plane.
therein. We further assume the response function to be loShown is the locafa), the weakly nonlocalb), the generalc), and
calized orL?! integrable like all physically reasonable re- the strongly nonlocald) response.

sponse functions. In this case Ed) may always be rescaled
so that in the description of BEC'$12,24,25,27, if the assumption

of a zero-range interaction potential is relaxggl’]. For
. - BEC's with a negative scattering length Ed) is the nonlo-
j R(rydr=1 (3 cal Gross-Pitaevskii{GP) equation for the collective wave
function u( 7 is time), with | representing the density of at-
without any lack of generality. In media with, e.g., a thermaloms andV representing the magnetic trap.
or diffusive type of nonlinearity the response profile is an

exponential functionR(r) = (1/20)exp(r|/o) [17,18, where lIl. SIMPLE KNOWN LIMITS

o determines the degree of nonlocality. o o ]
Because the response function is real Ek).conserves In the limit when the response function is a delta function,

the power(in optics or number of atomgfor BEC's) P, R(r)=45(|r]), the nonlinear response is lodake Fig. 1a)]

and simply given by

P=f|dr 4 N(D) =1, ®)

for Iocall_zed waves. Because the response function is alsgs in local optical Kerr media described by the standard NLS
symmetric Eq(1) conserves the Hamiltoniad, equation and in BEC’s described by the standard GP equa-
tion. In this local limit multidimensional optical beams with
Hzf dr. (5) @ power higher than a certain critical value will experience
unbounded self-focusing arabllapseafter a finite propaga-
tion distance[1-3]. It is also well known that BEC’s will
In opticsu is the envelope of the electric field with inten- Co||apse when the total number of atoms is |arger than a
sity I andV represents a guiding structufwaveguide. Here  critical number{12].
Eq. (2) represents a gener'al phenqmenological mo.del for  \with increasing width of the response functi®gr) the
self-focusing Kerr-like media, in which the change in the . o _ = :
refractive index induced by an optical beam involves a trans//aVe Intensity in the vicinity of the point also contributes
port process. This includes heat conduction in materials witt© the nonlinear [esponse at that point. In case of weak non-
a thermal nonlinearity17] or diffusion of molecules or at- locality, whenR(r) is much narrower than the width of the
oms in atomic vaporgl8]. A nonlocal response in the form beam[see Fig. 1b)], one can expant{r’) aroundr’=r and
(2) appears naturally due to many-body interaction processesbtain the simplified model

1
|Vu|2+VI—§NI
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N(1)=1+yV2, =5fr2R(r)dF, 7) (E)=f I(r)exp(ik-r)dr 9)

2

and its inverse
where the small positive definite parametemeasures the
relative width of the nonlocal response. The diffusion type - 1 ~ e e
model(7) of the nonlocal nonlinearity is a model in its own 1(r)= WJ I (k)exp(—ik-r)dk, (10
right in plasma physics, whergcan take any sigl9,20. It
was also applied to BEC'E25], nonlinear optic§29], and it is straightforward to show that fa¥(l) given by Eq.(2)
energy transfer in biomolecul¢30]. In weakly nonlocal me-  the following relations hold:
dia with N(1)=14+ yV?l it is straightforward to show that

collapse cannot occur. This was first done for plash24s, - Sl -
and Elter for BEC'Y25]. P |I(k)|:j |(r)e'dr gJ ldr=Pp, (1)
In the limit of a strongly nonlocal response much broader
than the characteristic width of the wave functi@mee Fig. . L
1(d)], one can instead expand the response function and ob- f Nldr= 5 Df R(K)[T(K)|*dk. (12
tain (to lowest order (27)
With these relations we can bound the Hamiltonian by con-
N(1)~P(Ry+ R,r2), (8)  served quantities, which is necessary for employing standard

Liapunov stability theory[32] (first applied by Rosef33]
for the standard NLS equatiprFor response functions with
whereR,=R(0) andR,=2V2R(0). The evolution of opti- & finite degree of nonlocalitR,<> and a positive definite
cal beams in such a strongly nonlocal medium was considspectrumR(k)=0, we obtain the following bound of the
ered in[31]. Since this relation is linear, the highly nonlinear Hamiltonian:
effect of collapse cannot occur.

So in the two extreme limits of a weakly and highly non-
local nonlinear response the collapse is prevented. For arbi-
trary degree of nonlocality it is difficult to prove anything
rigorously. Just saying that the dynamics is described by eiwhere |u|[F= f|u|’d r>0 and we have used that(r)>0.
ther the weakly nonlocal mode¥) or the linear oscillator | the |ocal limit whenR(r)=8(r) and thusR,=c, the

model(8), which both have no collapse, is not enough. Firstye|l.known properties of the standard NLS equation apply
of all the degree of nonlocality is thelative widthof the 7 > g

response function and the wave packet and thus it changes The inequality(13) is the main result of this article. It

dynamically when the wave packet spreads or contractgpows that, for all symmetric response functions with a posi-
Thus, the system may dynamically switch state, e.g., froMjye definite Fourier spectrum and a finite value at the center,

being in the local limit(6) to the highly nonlocal limit(8).  the Hamiltonian is bounded from below by the conserved
Furthermore, as is well known from studies of general N'-Squantity —1R,P?, or conversely, that the gradient norm

equations, the typical singularity is a so-called blowup fea“Vqu is bounded from above by the conserved quantity

turing the amplitude locally going to infinity on a broad |, , 15 p2 A ; ; ;

X : 3RoP~. According to standard Liapunov theory this rep-
gackgropnd Iorc]_al;]zed strulctur[a]. SUICh %two-sga_le geEI?; resents a rigorous proof that a collapse with the wave-
2|Ztr|_ut|<|)n, IWdIC Y‘E)asd ‘ESO r.eﬁent%/ r? Servec ml imi Samplitude locally going to infinity cannot occur in BEC's,
[24], is clearly described by neither of the two simple limit- 254 “or optical Kerr media with a nonlocal nonlinear re-

Ing systems. sponse, for any physically reasonable response function with
a positive definite spectrum.

= ) 2. R,
Ro<®, R(k)=0: H>||Vu||2—7P, (13

IV. PROOF OF ABSENCE OF COLLAPSE
AND SOLITON STABILITY V. ILLUSTRATION THROUGH THE VARIATIONAL

APPROACH
The stabilizing effect of nonlocality of an arbitrary degree o _
was proven by Turitsyn for three specific examples, includ-_II Tthet S(;att))llltzlfl]ng eﬁeci. of t?(tahno?lct)pal|ty car|1 tt?e furtth(Ear
ing Coulomb interaction [R(F)=1/r|] [26]. Turitsyn o >aarcd bY e Propertes o the stationary Soutons of 4.

o ; . (1). As a simple example we consider nonlocal optical bulk

bounded the Hamiltonian from below for fixed power, yvh|ch Kerr media with a Gaussian response
proves that a collapse cannot occur and that the soliton so-
lutions are stable in the Liapunov sense. Here we consider 1 \P~? |F’—F|2
the general case @frbitrarily shaped, nonsingular response R(F’ _F)=<_2) exp( — 5 ) . (14)
functions and prove rigorously that the Hamiltonian is T o
bounded from below in all dimensions. ) _ _

Introducing the D-dimensional Fourier transfornide- ~ The ground-state stationary solutions are then radially sym-

noted with a tilde metric bell shaped, nodeless solutions of the far(n,z)
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FIG. 2. 2D variational results with Gaussian response and trial FIG. 3. 3D variational results with Gaussian response and trial
function. Left: Soliton powe(solid) versus eigenvaluk for differ- function. Left: Soliton powe(solid) versus eigenvaluk for differ-
ent degrees of nonlocalityr=0, 0.2, 0.4, and 0.6. Dashed lines ent degrees of nonlocalityr=0, 0.2, 0.4, and 0.6. Dashed lines
show the weakly nonlocal approximation. Right: Correspondingshow the threshold powef 7). Right: Corresponding Hamiltonian
Hamiltonian versus power diagrams. versus power diagrams.

much wider than the response function, applies only to suf-
ficiently small values ok satisfying\ o<1, which is also
clearly seen from Fig. 2. The accuracy of the assumption of
weak nonlocality is further discussed in RES5] in terms of

_ ) , 1 o 2|z modulational instability.

L‘f Np“+|V | _§N(¢’ )¢°|dr. (19 The 3D case shown in Fig. 3 is more interesting, because
the nonlinearity is much stronger than in 2D. The collapse in
the local 3D NLS equation is so-called supercritical

To capture the main physical effects we use the approximatﬂ,zygqu. Again the soliton width3 decreases asX/ so a
variational technique with a Gaussian trial profig(r)  threshold width should exist, below which the nonlocality is
= aex —(r/B)?], in view of the fact that the Gaussian pro- not strong enough to stabilize the soliton. This is exactly
file is an exact solution in the strongly nonlocal limit with \what is observed in Fig. 3: For<A™ the solitons are still
N(I) given by the parabolic potenti&8). Inserting this an-  jinearly unstable withdPs/d\<0, but above threshold the
satz into the Lagrangiafl5), with N given by the general nonlocality is strong enough to bend the curve and make
expressior(2), the Euler-Lagrange equations give the ampli-qp_/d\>0, i.e., the solitons become linearly stable accord-
tude a’=(\+D/B%(2+20%p%)P? and width B°=[4  ing to the VK criterion. From the definitionl Po(A")/d\
—D+(4-D)*+16\o”]/(2)). In Fig. 2 we show the =0 the variational results give"=1/(252), corresponding

power Ps= (7/2)?"?a?8P and Hamiltonian of the stationary to a threshold in the soliton powédashed curve in Fig.)3
solutions in two dimension&D). The dashed lines give the and width

results of the weakly nonlocal approximation withgiven
by Eq.(7), from whicha?= 4\ and %= 2/\+ 242 is found, Ph—(5m)¥%54/4, g'=20, (17)
resulting in the power

=¢(r)expi\2), where the profile¢(r) is found from the
Euler-Lagrange equations for the Lagrangian

which are both proportional to the degree of nonlocadity
P=4m(1+02\), (16)  Thus, sufficiently broad and high-power solitons are stable.
In the Hamiltonian versus power diagram in Fig. 3 the lower
(uppep branches correspond to stakfienstable solutions
where 4 is the (\-independentpower of the Gaussian ap- while the threshold is represented by the cii8g]. This
proximation to the soliton solution of the standard 2D NLSstable solution branch was recently found numerically in the
equation, recovered in the local limit=0. context of BEC'’s with a nonlocal negative scattering poten-
In the 2D NLS equation the collapse is critical and thetial [25]. It corresponds to high-density, self-bound states of
stationary solutions are “marginally stable” witdPg/dA the condensate.
=0 [1,2,9. Typically, perturbations act against the self-
focusing, with several effects, such as nonparaxiality and
saturability, completely eliminating collap$®]. This is also
the case with nonlocality, as evidenced from Fig. 2 and the In conclusion we studied the properties of localized wave
simplified expressioli16), which shows that any finite width packets in nonlocal NLS equations. We have presented a
of the response functiofnonzero value ofr) implies that simple, butrigorous proofthat nonlocality of amarbitrary
dPs/dN\ becomes positive definite. According to ttreeces-  shapeeliminates collapse irall physical dimensionsThe
sary Vakhitov-Kolokolov (VK) criterion[34] the soliton so- only requirement is that the nonlocal response function
lutions thereforgpossibly become linearly stable. should have a positive definite Fourier spectrum, as do most
For small\ the soliton widthB decreases asX/ Thus  physically reasonable response functions.
the assumption of weak nonlocality, i.e., that the soliton is We also demonstrated that multidimensional soliton solu-

VI. CONCLUSION
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