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Collapse arrest and soliton stabilization in nonlocal nonlinear media
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We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal
nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear
Schrödinger type equation. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlin-
earity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions.
The nonlocal nonlinear response must be symmetric and have a positive definite Fourier spectrum, but can
otherwise be of completely arbitrary shape and degree of nonlocality. We use variational techniques to find the
soliton solutions and illustrate the stabilizing effect of nonlocality.
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I. INTRODUCTION

Collapse is a fundamental physical phenomenon w
known in the theory of waves in nonlinear media. It refers
the situation when strong contraction or self-focusing o
wave leads to a catastrophic increase or blowup of its am
tude after a finite time or propagation distance~see@1–3# for
reviews!. Wave collapse has been observed in plasma wa
@4# ~the famous Langmuir wave collapse!, electromagnetic
waves or laser beams@5# ~also called self-focusing!, Bose-
Einstein condensates~BEC’s! or matter waves@6#, and even
capillary-gravity waves on deep water@7#. The effect of col-
lapse appears also in astrophysics, where the gravitati
attraction plays the same role as the self-focusing of elec
magnetic waves, tending to compress stars of suffic
mass, eventually leading to their collapse into a black h
@8#.

Typically the contraction must be able to act freely in tw
or more dimensions to be strong enough to generate a
lapse. Moreover, the so-called norm, which is the power
electromagnetic and plasma waves, the atom density
BEC’s, and the mass for stars, must be above a certain c
cal value for a collapse to occur. Most commonly the c
lapse has been discussed in the context of the nonli
Schrödinger~NLS! equation, which is a universal model fo
dispersive~or diffractive! weakly nonlinear physical system
@9#. The NLS equation models, e.g., all systems mentio
above, in which a wave collapse has been predicted and
fied experimentally.

The collapse singularity is an artifact of the model a
signals the limit of its validity. Close to the singularity, whe
the amplitude is extremely high and the temporal and spa
scales are extremely short, different physical processes
come into play@1–3#. A common effect is nonlinear dissipa
tion, such as two-photon absorption of electromagne
waves and inelastic two- and three-body recombination
matter waves, which efficiently absorbs the collapsing par
the wave. Thus collapse acts as aneffective nonlinear loss
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mechanism, as is well known in, e.g., Langmuir turbulenc
@11# and BEC’s@12#. Effects such as discreteness@13#, non-
paraxiality @14#, and saturation of the nonlinearity~see@3#
for references to all the different types of saturation, such
exponential, threshold, logarithmic, etc.! will also com-
pletely eliminate the possibility of a collapse singularity a
pearing. In contrast, effects such as weak linear loss@3#,
temperature fluctuations@15#, and spatial incoherence@16#,
cannot eliminate the collapse, only change the critical va
of the norm. In any case the collapse effect represen
strong mechanism for energy localization, which it is impor-
tant to study to understand the properties of a given phys
system.

The inherent nonlocal character of the nonlinearity h
attracted considerable interest as a means of eliminating
lapse and stabilizing multidimensional solitary waves. No
locality appears naturally in optical systems with a therm
@17# or diffusive@18# type of nonlinearity. Nonlocality is also
known to influence the propagation of electromagne
waves in plasmas@19–22# and plays an important role in th
theory of BEC’s, where it accounts for the finite-range man
body interaction@12,23–25#.

In this work we consider NLS equations with a gene
nonlocal form of the nonlinearity. Turitsyn proved the a
sence of collapse for three particular shapes of the nonl
nonlinear response@26#. The analysis of the collapse cond
tions for general response functions is difficult and has b
carried out only numerically@24#. However, in many sys-
tems, such as BEC’s, one has no knowledge of the partic
response function. Furthermore, the degree of nonlocalit
the relative width of the response function and the wa
packet and thus it changes dynamically when the w
packet spreads or contracts. Therefore it is important
maintain the generality of the nonlocal response function
the model. Here we prove rigorously that nonlocality elim
nates collapse in all physical dimensions for arbitrary sha
of the nonlocal response, as long as the response functio
symmetric and has a positive definite Fourier spectrum.
©2002 The American Physical Society19-1
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II. GENERAL MODEL

We consider the evolution of a wave fieldu5u(rW)
5u(rW,t) described by the general nonlocal NLS equation

i
]u

]t
1¹2u2V~rW !u1N~ I !u50, ~1!

whereV5V(rW) is an external~linear! confining potential,I
5I (rW)5I (rW,t)5uuu2, t is the evolution coordinate andrW
5(r 1 ,r 2 ,r 3) spans aD-dimensional ‘‘transverse’’ coordinat
space. By virtue of being a confining potential,V(rW) has a
finite global minimum, which can be set to zero without lo
of generality due to the gauge invariance of Eq.~1!. Thus
V(rW).0. The nonlinear termN5N(I ) is represented in the
general nonlocal form

N~ I !5E R~rW82rW !I ~rW8!drW8, ~2!

where the integral*drW is over all transverse dimensions. W
consider only response functionsR(rW) that are real~i.e., no
nonlinear loss or gain! and symmetric~e.g., excluding the
asymmetric Raman response—see@28# and references
therein!. We further assume the response function to be
calized or L1 integrable like all physically reasonable r
sponse functions. In this case Eq.~1! may always be rescale
so that

E R~rW !drW51 ~3!

without any lack of generality. In media with, e.g., a therm
or diffusive type of nonlinearity the response profile is
exponential function,R(rW)5(1/2s)exp(urWu/s) @17,18#, where
s determines the degree of nonlocality.

Because the response function is real Eq.~1! conserves
the power~in optics! or number of atoms~for BEC’s! P,

P5E IdrW ~4!

for localized waves. Because the response function is
symmetric Eq.~1! conserves the HamiltonianH,

H5E F u¹uu21VI2
1

2
NIGdrW. ~5!

In opticsu is the envelope of the electric field with inten
sity I andV represents a guiding structure~waveguide!. Here
Eq. ~2! represents a general phenomenological model
self-focusing Kerr-like media, in which the change in t
refractive index induced by an optical beam involves a tra
port process. This includes heat conduction in materials w
a thermal nonlinearity@17# or diffusion of molecules or at-
oms in atomic vapors@18#. A nonlocal response in the form
~2! appears naturally due to many-body interaction proces
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in the description of BEC’s@12,24,25,27#, if the assumption
of a zero-range interaction potential is relaxed@27#. For
BEC’s with a negative scattering length Eq.~1! is the nonlo-
cal Gross-Pitaevskii~GP! equation for the collective wave
function u(t is time!, with I representing the density of a
oms andV representing the magnetic trap.

III. SIMPLE KNOWN LIMITS

In the limit when the response function is a delta functio
R(rW)5d(urWu), the nonlinear response is local@see Fig. 1~a!#
and simply given by

N~ I !5I , ~6!

as in local optical Kerr media described by the standard N
equation and in BEC’s described by the standard GP eq
tion. In this local limit multidimensional optical beams wit
a power higher than a certain critical value will experien
unbounded self-focusing andcollapseafter a finite propaga-
tion distance@1–3#. It is also well known that BEC’s will
collapse when the total number of atoms is larger tha
critical number@12#.

With increasing width of the response functionR(rW) the
wave intensity in the vicinity of the pointrW also contributes
to the nonlinear response at that point. In case of weak n
locality, whenR(rW) is much narrower than the width of th
beam@see Fig. 1~b!#, one can expandI (rW8) aroundrW85rW and
obtain the simplified model

FIG. 1. Degrees of nonlocality, as given by the relative width
the response functionR and the intensity profileI in the x plane.
Shown is the local~a!, the weakly nonlocal~b!, the general~c!, and
the strongly nonlocal~d! response.
9-2



pe
n

t

e

o

si
ar

n-
r
g
e

rs

ng
ct
om

LS
a
d

’s
it-

ee
d

ch
s

id
e
is

on-
ard

ply

t
si-
ter,
ed

m
tity
p-
ve-
,

re-
with

er
q.
lk

ym-

COLLAPSE ARREST AND SOLITON STABILIZATION . . . PHYSICAL REVIEW E66, 046619 ~2002!
N~ I !5I 1g¹2I , g5
1

2E r 2R~r !drW, ~7!

where the small positive definite parameterg measures the
relative width of the nonlocal response. The diffusion ty
model~7! of the nonlocal nonlinearity is a model in its ow
right in plasma physics, whereg can take any sign@19,20#. It
was also applied to BEC’s@25#, nonlinear optics@29#, and
energy transfer in biomolecules@30#. In weakly nonlocal me-
dia with N(I )5I 1g¹2I it is straightforward to show tha
collapse cannot occur. This was first done for plasmas@20#,
and later for BEC’s@25#.

In the limit of a strongly nonlocal response much broad
than the characteristic width of the wave function@see Fig.
1~d!#, one can instead expand the response function and
tain ~to lowest order!

N~ I !'P~R01R2r 2!, ~8!

whereR05R(0W ) andR25 1
2 ¹2R(0W ). The evolution of opti-

cal beams in such a strongly nonlocal medium was con
ered in@31#. Since this relation is linear, the highly nonline
effect of collapse cannot occur.

So in the two extreme limits of a weakly and highly no
local nonlinear response the collapse is prevented. For a
trary degree of nonlocality it is difficult to prove anythin
rigorously. Just saying that the dynamics is described by
ther the weakly nonlocal model~7! or the linear oscillator
model~8!, which both have no collapse, is not enough. Fi
of all the degree of nonlocality is therelative widthof the
response function and the wave packet and thus it cha
dynamically when the wave packet spreads or contra
Thus, the system may dynamically switch state, e.g., fr
being in the local limit~6! to the highly nonlocal limit~8!.
Furthermore, as is well known from studies of general N
equations, the typical singularity is a so-called blowup fe
turing the amplitude locally going to infinity on a broa
background localized structure@1#. Such a two-scale field
distribution, which was also recently observed in BEC
@24#, is clearly described by neither of the two simple lim
ing systems.

IV. PROOF OF ABSENCE OF COLLAPSE
AND SOLITON STABILITY

The stabilizing effect of nonlocality of an arbitrary degr
was proven by Turitsyn for three specific examples, inclu
ing Coulomb interaction @R(rW)51/urWu# @26#. Turitsyn
bounded the Hamiltonian from below for fixed power, whi
proves that a collapse cannot occur and that the soliton
lutions are stable in the Liapunov sense. Here we cons
the general case ofarbitrarily shaped, nonsingular respons
functions and prove rigorously that the Hamiltonian
bounded from below in all dimensions.

Introducing the D-dimensional Fourier transform~de-
noted with a tilde!
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Ĩ ~kW !5E I ~rW !exp~ ikW•rW !drW ~9!

and its inverse

I ~rW !5
1

~2p!DE Ĩ ~kW !exp~2 ikW•rW !dkW , ~10!

it is straightforward to show that forN(I ) given by Eq.~2!
the following relations hold:

uI ~kW !u5U E I ~rW !eikW•rWdrWU<E IdrW5P, ~11!

E NIdrW5
1

~2p!DE R̃~kW !u Ĩ ~kW !u2dkW . ~12!

With these relations we can bound the Hamiltonian by c
served quantities, which is necessary for employing stand
Liapunov stability theory@32# ~first applied by Rosen@33#
for the standard NLS equation!. For response functions with
a finite degree of nonlocalityR0,` and a positive definite
spectrumR̃(kW )>0, we obtain the following bound of the
Hamiltonian:

R0,`, R̃~kW !>0: H>uu¹uuu2
22

R0

2
P2, ~13!

where uuuuup
p[* uuupdrW.0 and we have used thatV(rW).0.

In the local limit whenR(rW)5d(rW) and thusR05`, the
well-known properties of the standard NLS equation ap
@1,2,9#.

The inequality~13! is the main result of this article. I
shows that, for all symmetric response functions with a po
tive definite Fourier spectrum and a finite value at the cen
the Hamiltonian is bounded from below by the conserv
quantity 2 1

2 R0P2, or conversely, that the gradient nor
uu¹uuu2

2 is bounded from above by the conserved quan
H1 1

2 R0P2. According to standard Liapunov theory this re
resents a rigorous proof that a collapse with the wa
amplitude locally going to infinity cannot occur in BEC’s
plasma, or optical Kerr media with a nonlocal nonlinear
sponse, for any physically reasonable response function
a positive definite spectrum.

V. ILLUSTRATION THROUGH THE VARIATIONAL
APPROACH

The stabilizing effect of the nonlocality can be furth
illustrated by the properties of the stationary solutions of E
~1!. As a simple example we consider nonlocal optical bu
Kerr media with a Gaussian response

R~rW82rW !5S 1

ps2D D/2

expS 2
urW82rWu2

s2 D . ~14!

The ground-state stationary solutions are then radially s
metric bell shaped, nodeless solutions of the formu(rW,z)
9-3
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5f(r)exp(ilz), where the profilef(r ) is found from the
Euler-Lagrange equations for the Lagrangian

L5E Flf21u¹fu22
1

2
N~f2!f2GdrW. ~15!

To capture the main physical effects we use the approxim
variational technique with a Gaussian trial profilef(r )
5aexp@2(r/b)2#, in view of the fact that the Gaussian pro
file is an exact solution in the strongly nonlocal limit wit
N(I ) given by the parabolic potential~8!. Inserting this an-
satz into the Lagrangian~15!, with N given by the genera
expression~2!, the Euler-Lagrange equations give the amp
tude a25(l1D/b2)(212s2/b2)D/2 and width b25@4
2D1A(42D)2116ls2#/(2l). In Fig. 2 we show the
powerPs5(p/2)D/2a2bD and Hamiltonian of the stationar
solutions in two dimensions~2D!. The dashed lines give th
results of the weakly nonlocal approximation withN given
by Eq.~7!, from whicha254l andb252/l12s2 is found,
resulting in the power

Ps54p~11s2l!, ~16!

where 4p is the (l-independent! power of the Gaussian ap
proximation to the soliton solution of the standard 2D NL
equation, recovered in the local limits50.

In the 2D NLS equation the collapse is critical and t
stationary solutions are ‘‘marginally stable’’ withdPs /dl
50 @1,2,9#. Typically, perturbations act against the se
focusing, with several effects, such as nonparaxiality a
saturability, completely eliminating collapse@3#. This is also
the case with nonlocality, as evidenced from Fig. 2 and
simplified expression~16!, which shows that any finite width
of the response function~nonzero value ofs) implies that
dPs /dl becomes positive definite. According to the~neces-
sary! Vakhitov-Kolokolov ~VK ! criterion @34# the soliton so-
lutions therefore~possibly! become linearly stable.

For smalll the soliton widthb decreases as 1/l. Thus
the assumption of weak nonlocality, i.e., that the soliton

FIG. 2. 2D variational results with Gaussian response and
function. Left: Soliton power~solid! versus eigenvaluel for differ-
ent degrees of nonlocality,s50, 0.2, 0.4, and 0.6. Dashed line
show the weakly nonlocal approximation. Right: Correspond
Hamiltonian versus power diagrams.
04661
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much wider than the response function, applies only to s
ficiently small values ofl satisfyingls2!1, which is also
clearly seen from Fig. 2. The accuracy of the assumption
weak nonlocality is further discussed in Ref.@35# in terms of
modulational instability.

The 3D case shown in Fig. 3 is more interesting, beca
the nonlinearity is much stronger than in 2D. The collapse
the local 3D NLS equation is so-called supercritic
@1,2,9,10#. Again the soliton widthb decreases as 1/l, so a
threshold width should exist, below which the nonlocality
not strong enough to stabilize the soliton. This is exac
what is observed in Fig. 3: Forl,l th the solitons are still
linearly unstable withdPs /dl,0, but above threshold the
nonlocality is strong enough to bend the curve and m
dPs /dl.0, i.e., the solitons become linearly stable acco
ing to the VK criterion. From the definitiondPs(l

th)/dl
50 the variational results givel th51/(2s2), corresponding
to a threshold in the soliton power~dashed curve in Fig. 3!
and width

Ps
th5~5p!3/25s/4, b th52s, ~17!

which are both proportional to the degree of nonlocalitys.
Thus, sufficiently broad and high-power solitons are stab
In the Hamiltonian versus power diagram in Fig. 3 the low
~upper! branches correspond to stable~unstable! solutions
while the threshold is represented by the cusp@36#. This
stable solution branch was recently found numerically in
context of BEC’s with a nonlocal negative scattering pote
tial @25#. It corresponds to high-density, self-bound states
the condensate.

VI. CONCLUSION

In conclusion we studied the properties of localized wa
packets in nonlocal NLS equations. We have presente
simple, butrigorous proof that nonlocality of anarbitrary
shapeeliminates collapse inall physical dimensions. The
only requirement is that the nonlocal response funct
should have a positive definite Fourier spectrum, as do m
physically reasonable response functions.

We also demonstrated that multidimensional soliton so

al

g

FIG. 3. 3D variational results with Gaussian response and
function. Left: Soliton power~solid! versus eigenvaluel for differ-
ent degrees of nonlocality,s50, 0.2, 0.4, and 0.6. Dashed line
show the threshold power~17!. Right: Corresponding Hamiltonian
versus power diagrams.
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tions of the NLS equation may be stabilized by the nonloc
ity. This opens a new interesting discussion as to wha
actually observed in collapse experiments in nonlocal s
tems. It seems clear that it all comes down to oscillatio
between opposite extreme states and how strong and r
they are. Such oscillations were recently found to occur
BEC’s through numerical and variational studies@24#.
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@24# V. M. Pérez-Garcı´a, V. V. Konotop, and J. J. Garcı´a-Ripoll,

Phys. Rev. E62, 4300~2000!.
@25# A. Parola, L. Salasnich, and L. Reatto, Phys. Rev. A57, R3180

~1998!.
@26# S. K. Turitsyn, Teor. Mat. Fiz.64, 226 ~1985!.
@27# D. V. Fedorov and A. S. Jensen, Phys. Rev. A63, 063608

~2001!.
@28# G. P. Agrawal,Nonlinear Fiber Optics, 2nd ed.~Academic

Press, San Diego, 1995!; J. Wyller, Physica D157, 9 ~2001!.
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