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Exact solutions to the Mo-Papas and Landau-Lifshitz equations
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Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electro-
dynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with
constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical
charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to
obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate
of radiation can also be obtained, with independence of the equation of motion, from the well known fields of
a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation
in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the
two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the
Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge
and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering
the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical
electrodynamics.
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[. INTRODUCTION solutions and acausality that affect the Lorentz-Dirac equa-
tion, several alternative equations of motion have been pro-
According to the Maxwell equations a point charge inposed 3—8]. But, as has been noticed by Pari@&}, and in
motion emits, in general, radiation that carries away energgontrast with the Lorentz-Dirac equation, these alternative
and momentum, and that in consequence has an influence equations of motion have not been subjected to detailed scru-
the trajectory of the charge. Although this physical picture istiny. Notwithstanding, Huschilt and Baylig9] found evi-
rather obvious, its incorporation in the construction of a con-dence against the general validity of the Mo-Papas equation,
sistent equation of motion has been a matter of long debatend Comayf10] showed that the Mo-Pap#§], Bonnor[6],
that still remains nowadays. What lies behind this difficulty and Herrerd7] equations are incompatible with the principle
is the fact that the construction of an equation of motion forof energy conservation.
a point charge that takes into account the charge’s self-field All the alternative equations of motid8—8] are based on
is intimately linked with fundamental problems, such as thethe idea that in experiments where classical electrodynamics
infinite self-energy of a point charge and mass renormalizais applicable the effect of the radiation constitutes a small
tion, which have not been solved yet in a satisfactory way ircorrection to the acceleration, the latter being determined by
either classical electrodynamics or quantum electrodynamthe equation that completely neglects the radiation reaction
ics. force. Thus, it seems almost impossible to discriminate be-
The most prominent equation of motion for a point chargetween the different equations of motion by means of experi-
in classical electrodynamics is the Lorentz-Dirac equatiorments. Shefhll], for example, found that, for a charge mov-
[1,2]. This equation exhibits runaway solutions, where theing in a constant magnetic field, the Mo-Papas equdtign
charge accelerates even in the absence of an external fielgives the same observable results as the Lorentz-Dirac equa
These pathological solutions can be removed by imposingon. Therefore, the search for a correct equation of motion
the so called asymptotic condition, in which the acceleratiormust be carried out on theoretical grounds, that is, by exam-
is required to vanish after a long time. But this asymptoticining from a mathematical point of view the consistence of a
condition has as an unavoidable mathematical consequeng@sen equation of motion with basic principles like causality,
the existence of acausality or preacceleration, where thenergy conservation and the natural requirement that the rate
charge begins to accelerate before the force is applied. Thisf radiation associated with an equation of motion for a point
violation of causality involves very tiny intervals of time, of charge must coincide with the rate of radiation coming from
the order of 1023 s in the case of the electron, and thereforethe fields of a point charge; fields that in turn are determined
it cannot have any measurable effects in experiments whergy means of the Maxwell equations.
classical electrodynamics is applicable. Preacceleration is, An alternative equation of motion that has gained re-
nevertheless, considered unacceptable because it is incomewed interest recently is the Landau-Lifshitz equation. In
patible with the principle of causality, which is assumed toparticular, Rohrlich12] considers that the Landau-Lifshitz
be valid for any time interval, no matter how small it may be. equation is an exact equation of motion, and the correct one,
In order to avoid the embarrassing features of runawayor a point charge in classical electrodynamics. However, we
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will show below that the Landau-Lifshitz equation leads towhere A is a positive numberg is the usual Dirac delta

an incorrect rate of radiation for a point charge. ~ function,p is the radial cylindrical coordinate, arsldenotes
~We will study in this paper the rate of radiation associatedthe unit vector associated with the cylindrical coordinate
with the Mo-Papas and Landau-Lifshitz equations, by meangioreover, Gaussian units will be used throughout this work.
of the construction of exact solutions of these equations. Thehe Maxwell equations for the current densi®.1) and a
Mo-Papas and the Landau-Lifshitz equations determine thﬁensity of charge that vanishes everywhere can be solved
world line of a particle that is characterized only by its MasSexactly[14], and the solution fop>b is such that the mag-

and charge; therefore both equations are equations of motigietic field is identically zero, while the electric field is given
for a point charge. Now, for some particular solutions of apy

given equation of motion it is possible to obtain, starting

from the solution, a clear and conclusive result for the rate of 2m7Ab? .
radiation associated with that motion. On the other hand, the E(p.¢.2)=——F—¢. (2.2
cp

rate of radiation can also be obtained starting from the well

known fields of a point charge, by calculating the flux of the he magnitude of this electric field can be adjusted to any

Poynting vector across a sphere of very large radius th esired value by properly choosing the paramétén Eq.
encloses the charges. (

As we will show here, the Mo-Papas and Landau-Lifshitz 2.1

. : ) ) : Any idealized source can be, of course, realized experi-
equations ad”.“t as exact squ.t|ons., with appropriate eXtem"i"hentally only in an approximate way. However, we empha-
fields, the motion of a charge in a circular orbit with constant !

p I th i f two identical ch th ize that this paper deals only with fundamental theoretical
speed, as well as neé motion of two identical charges spects, that is, with mathematical properties of the equation
rotate with constant angular velocity at the opposite ends o

. ; f motion, and therefore experimental or practical aspects are
a diameter. For each solution the Mo-Papas and the LandaH b b P

Lifshit i h lead t A wiical f | ot pertinent here. In this context the relevance of the ideal-
lishitz_equations each fead 1o an exact analytical 1ormulg, o o rces js that they generate electromagnetic fields with
for the rate of radiation, which can be compared with the

. . a simple mathematical structure, which in turn allows the
calculation based on the Poynting vector. b

. . . _construction of exact solutions to the Lorentz-Difdd| as
In contrast to the case of the motion along a straight line fdel]

where the Mo-Papas equation does not consider any radiglv-e” as to the Mo-Papas and Landau-Lifshitz equations.

tion at all[9], in the case of a charge in circular orbit with

constant speed the rate of radiation associated with the Mo- lll. THE MO-PAPAS EQUATION
Papas equation is exactly the same as the rate of radiation The Mo-Papas equation is the following off:
that follows from the fields of a point charge. However, in

the case of the two identical charges, the Mo-Papas equation vk=(elmc)F# y,

fails to correctly describe the part of the rate of radiation that

corresponds to the interference of the fields of the two 2e® \- - 5

charges. On the other hand, in the case of the Landau- + 3m2c4(FM v~ FYo\v0*ct), (3.0

Lifshitz equation, both solutions lead to a rate of radiation

that do_es not coincide with the one obtained from the field$yheree and m denote the charge and mass of the particle,

of a point charge. respectively,c is the velocity of light, F*” is the field-

strength tensor, which contains the fields that act on the

charge,v* is the four-velocity, and the overdot ant* de-

notes the derivative with respect to the invariant proper time
The construction of the exact solutions of this paper re-r. The metric in Eq(3.1) is diag (—1,+1,+1,+1).

quires the assistance of external electromagnetic fields. They We will now apply Eq.(3.1) to the motion of a charge that

consist of a uniform, time-independent magnetic field, to-rotates with constant speed in a circular orbit that lies in the

gether with a time-independent electric field that is tangent tx-y plane, has its center at the origin of the coordinate sys-

a family of concentric circumferences contained in planegem, and has a radius In other words,

orthogonal to the magnetic field, and such that the electric 0 1 y -

field has a fixed magnitude over each circumference. The X“=ct, x’=acoswt, x*=asinwt, x’=0, (3.2

idealized source that gives rise to the uniform magnetic f'eldwherew is a time-independent parameter. In addition, it wil

is well known, and consists of a flat unbounded curren !
sheet, in which a current flows with constant density anm%e as;umed that_ th_e field-strength .tenEdf has only the
ollowing nonvanishing components:

direction everywher¢13]. The idealized source for the ex-

Il. THE EXTERNAL FIELDS

ternal electric field is not so well known, and consists of an FOl_ _pl0_E FO02— _p20_E
infinitely long solenoid of radius, less than the orbit radius x v
a, and whose axis coincides with tzexis, and that carries F1?= —F?l=p,. (3.3

a density of currend given by
Thus, the electric fielcE that acts on the charge does not

R have a component along tlzeaxis, and the magnetic field
J(p,t)=AtS(p—Db)e, (2.1 points along the axis. In this case the component=3 of
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According to Fig. 1, the components of the external elec-
tric field acting on the charge are

Ex=Esinot, E,=—E coswt. (4.7

; x Introducing these quantities and the uniform, time-
independent magnetic fieBl= Bk in Eqgs.(3.7 and(3.9), it
is immediately seen that they have the unique solution

g__MCAY. 4.2
FIG. 1. Circular orbit of radius of the chargee<0. The charge ae
moves in the counterclockwise direction with angular veloeity
and speed =wa. The external electric fieldE compensates the 28,6’3y4
radiation reaction force. We also show the tangential unit vegtor == . 4.3

2
at the electron position. 3a
Eg. (3.1) does not impose any restriction either on the differ-Due to the symmetries associated with the motion repre-
ent quantities that characterize the motion, or on the electrigented in Fig. 1, in this case it is easy to get the rate of
and magnetic fields given by E¢3.3. The componenj radiation that is implicit in the Mo-Papas equatihl). In

=1 of Eq.(3.1) is fact, Eqg.(4.3) can be written as follows:
coswt=—(ae/mcZB?y)(E,+ BB,coswt) + (2e3y?/3m?c?) 2e2c
. . ev-E=——p%y*~ 4.4
X(B,+ BE«coswt+ BEsinwt)sinwt, (3.9 v 332 By 4.9

and the component=2 is The quantityev - E represents the power that the external

Sinwt= —(ae/mczﬁzy)(Ey+ﬁBZsinwt)—(2e3y2/3mzc4) electr_ic fi_eld supplies to the charge. In_addition, in this case
the kinetic energy of the charge remains constant; and, be-
X(B,+ BE,coswt+ BE,sinwt)coswt, (3.5 cause of the rotational symmetry, the positions of the charge
_ _ at different times are indistinguishable. Therefore, assuming
where the parametgs denotes the quantigiw/c. To obtain  the conservation of the energy, all the power supplied by the
Egs.(3.4) and(3.9), the proper time derivatives that appear external electric field to the charge must be necessarily radi-
in Eq. (3.1) have been transformed into derivatives with re-ated away. In other words, the right hand side of E4)
spect to the ordinary timeby means of the relation represents, according to the Mo-Papas equation, the rate of
o 2 —1/2 radiation for a charge in circular motion. This result coin-
dvdr=y=(1-p%""* (3.6 cides with the one obtained by calculating the energy flux
The component =0 of Eq.(3.1) can also be obtained start- aCross the sgrface of a sphere of very large radius, using the
ing from Egs.(3.4) and(3.5). So, in what follows, it will be f|eIQS of a point charge that rotates at constant angular veloc-
ignored. Equationg3.4) and (3.5 can be cast in a more Ity in a circle of radiusa [15].
suitable form as follows:
5 V. AN EXACT SOLUTION OF THE MO-PAPAS EQUATION
B mc* B2y 3.7 FOR TWO CHARGES

E.cosot+Esinot=— BB, a6

In this section we will show that, for properly chosen
external fields of the kind used in the previous section, the

2 02 5,4
2e°p L 2eBy (3.8  Mo-Papas equatiof8.1) also admits as an exact solution the

Exsinwt—E coswt=

3mcta 3a? motion of two identical charges that rotate with constant an-

gular velocity at the opposite ends of a diameter. Of course,

IV. THE EXACT SOLUTION OF THE MO-PAPAS in this case the motion of one of the charges is influenced
EQUATION FOR ONE CHARGE also by the fields of the other charge. The electric fielg,

generated by a point charge at a poinand timet is given
In this section we will show that Eq¢3.7) and (3.8)  py the well known formula

admit as an exact solution the motion of a charge that rotates
with constant speed in a circular orbit. To this end we will

o _ 22
assume the existence of an external, uniform, time- Eret:e[(nﬂ);—lz'g)
independent magnetic fiel=Bk, along with the external s°R
electric fieldE given by Eq.(2.2). We will also assume that N T(R— B)X §
the particle has a negative chargeherefore, the charge will + € M ' (5.1)
move in a counterclockwise direction, as shown in Fig. 1. c s°R
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Y Mo-Papas equation given by Eg&.7) and (3.8) remains
v valid for the motion shown in Fig. 2.
¢ Figure 2 shows that
- A
E R=2a cosy; (5.5
ot A’
r A N while Eq. (5.2 becomes
o ““\ x s=1+Bsiny. (5.6)
A 7 e
r,f_’f ' P Now, the components of the retarded electric figld, , and
B B Erety acting over the charge are
SN Eret = (€l y?RES%){cog wt— ) — B sin( wt— 2¢))}
FIG. 2. Two identical charges rotating at constant angular ve- —(eB?laRs)(B+siny)sin(wt— ), (5.7
locity @ in a circular orbit centered at the origin and contained in )
the x-y plane. At the observation timethe charges are located at Erety=(€/ Y?R2s%){sin(wt— ¢) + B cog ot —24))}

points A and B, while at the retarded tim&' they are located at

pointsA’ andB’. +(eB?aRs)(B+siny)cod wt— i), (5.9

- . . while the retarded component of the magnetic fiBlg, , is
wheren is the unit vector that points from the retarded PO-given by

sition r(t") of the charge to the point; R is the retarded
distance defined br=|x—r(t')|; B and B are defined by Bret .= (€8 y’R?s%)cosy+ (e?/aRs) (B+siny).

(1/c)dr’/dt’ anddp/dt’, respectively, and both are evalu- (5.9
ated at the retarded tinté, which is implicitly defined by . o
t=t’+R/c; andsis the positive number Because of the superposition principle, the components of

the electric and magnetic fields that appear in the Mo-Papas
s=1-n-B. (5.2 Egs.(3.7) and (3.8 are the following:

The magnetic field,, is given by Ex=Esinot+Erex,

n E,= —Ecoswt+Eqy, 5.1
Bret=NXEet. (5.3 y w rety (5.10

. . =B+
The motion of the two charges takes place in %hg plane, B =B+ Bretz,
as shown in Fig. 2. where the magnitude of the external electric field is denoted

In what follows we will apply the Mo-Papas equation .\ =\ hile th itude of th t | tic field i
(3.1) to the charge located in the first quadrant of Fig. 2'dgno’t;\:j Ib?B € magnitude of the external magnetic Tield 1S

whose motion is described by E@.2). Figure 2 also shows It is easy to show that the Mo-Papas equatith3) and

the position (,)f the_charges at the r-etarded trhewhich is (3.9 are satisfied in this case by the following valuesBof
such that a light signal takes the timet’ to go from the ;. 4E:

retarded positiorB’ of the second charge to the present po-
sition A of the first charge where the retarded fie{8sl) and mcBy 1+psiny
(5.3 are evaluated. If the angle between the diamaéid B=— —
and the diameteA’-B’ is denoted by 7, then from Fig. 2 it

ae ﬂ Eretp_coswEretqzv

is immediately seen that the angleis related to the param- (5.17
eter B=aw/c by means of 26
Y= cosy. (5.4) B 32P Bt AN By, (12

Now, sincedB/d#>0, this equation implies a one-to-one whereE, is the component of Eq5.1) along the unit
relationship betweer and the anglej. Although the pa-  tangent vectokp of Fig. 2, that is,
rametersB and ¢ are not independent, in what follows we

will use both of them in the formulas. A e 25

It follows from Fig. 2 that the retarded electric figld.1), Ereto=Erer o= | = |\ 75
evaluated at the position of the charge in the first quadrant, 4a”) [ (1+Bsinyg)
has a vanishing component along theaxis, and that the 2 .
corresponding magnetic field.3) has a vanishing compo- _ (1= )(B+siny) (5.13
nent parallel to thex-y plane. Therefore, the form of the coy(1+ Bsiny)3
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and E¢;, is the component of5.1) along the unit radial By the same discussion that follows Hg.4), the right hand

vector p=coswti+sinetj, and is given by side of Eq.(5.16 represents, according to the Mo-Papas
equation, the rate of radiation for the system of two charges
- e 2Bsiny shown in Fig. 2. But the rate of radiation can also be deter-

Eretp=Eret = E cosy(1+ Bsiny)? mined with the help of the Ligard-Wiechert fields for a

point charge, Eqgs(5.1) and (5.3), by computing, for the
(1-p?) ] motion of Fig. 2, the energy flux across a spherical surface of

(5.14  avery large radius that encloses the charges. It turns out that
this procedure leads, by means of an analytical and rigorous

The dimensionless parameterthat appears in Eq5.12) is calculation[16], to the result that the rate of radiation is

cosy(1+ Bsiny)®

given by e_xactly given by only the first three terms of the righ_t h_and
side of Eq.(5.16. The fact that the total rate of radiation
2e? given by the right hand side of E5.16 is incorrect can
A= 3mca (5.19  also be seen from the fact that, for a given motion of the

charges, the rate of radiation has no relation to the mass of

and corresponds to 2/3 of the ratio of the classical electrofhe charges. However, the mass of the charges appears in Eq.

radius to the orbit's radius. It is therefore a very small num-(5.16 through the parametar. From Eq.(5.16 it is evident

ber for any macroscopic motion. that the Mo-Papas equation does not describe correctly the
When the Mo-Papas equation is applied to the secongart of the rate of radiation associated with the interference

charge, that is, to the charge that at titnis located in the of the fields of the two charges shown in Fig. 2.

third quadrant of Fig. 2, Eq$5.11) and(5.12 are obtained

again. This is, of course, an expected result on account of the

symmetries of the motion. In other words, the equation of VI. THE LANDAU-LIFSHITZ EQUATION

Mo and Papas admits as an exact solution the motion of two

identic_al charges rotz_;lting at constant ar_1gu|ar velocity at the Using the same notation as in Sec. II, the Landau-Lifshitz

opposite ends of a diameter. The magnitudes of the eXtem@huation is[4]

magnetic field and of the external electric field that make

possible this motion are given by Eqg&.11) and (5.12),

respectively. The effect of the second charge on the motion

of the first charge is described by the terms that involve v#=(e/mc)FH v,
Erety @andE,¢;, in Egs.(5.11) and(5.12. The solution re- 263
duces, of course, to the solution for one charge when the + [F“ ) + (e/MC)FHF, vP
retarded effects are thrown away. 3m?c* ?
In order to obtain the rate of radiation for the system of e o w2
two charges shown in Fig. 2, we note tit&t, , is negative +(e/mo)FF v v\v#c], (6.1
[14], and sincee<0, Eq.(5.12 can be written in the form
2e2c 2e2c where the overdot oR** denotes its derivative with respect
2ev-E= 322 B+ 332 B*y'—2ev-Ee, to the proper timer. When Eqs(3.2) and(3.3) are imposed,
a a the componentu=3 of Eq. (6.1) is identically satisfied,
+X\(2eCB%YE et ,)- (5.16  while the component.=1 becomes

coswt=—(ae/ ymc®5%)(Ex+ BB, coswt) — (2€%a/3m*c 8% y){ y(dE,/dt+ BdB,/dt coswt) + (e/mc)[ BE\N+B,(E,
+ BsinwtB,) + B sinwt(N?+ y?M?+28?B,M + 82y?B?)1}, 6.2

where the derivatives with respect to the proper timgave been transformed into derivatives with respect to the laboratory
time t by means of the relatiodt/d7= v, and where the following notation has been introduced:

M =E,coswt+E, sinwt,
(6.3

N=—E,sinwt+E, coswt.

Similarly, the component.=2 of Eq.(6.1) becomes
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sinwt=—(aelymc?B?)(E, + BB, sinwt) — (2e3a/3m?c®B2y){ y(dE, /dt+ BdB,/dt sinwt) + (e/mc)[ BE,N - B,(E,
+ B coswtB,) — B coswt(N2+ y*M?+ 28y?B,M + B2°B2)]}. (6.9

The component.=0 of Eq.(6.1) can be obtained as a com- (6.9) is expressed as a power series in parametehe fol-
bination of Eqs.(6.2) and (6.4) and therefore it will not re- lowing result is obtained for the magnitude of the external
ceive further consideration. electric field:

— 3.4 2
A. The exact solution for one charge E=—(2ep"y"/3a%)
Equations(6.2) and (6.4) admit as an exact solution the X{1-4p%y"\2+24p% N\ + -}, (6.11)

motion of a charge in a circular orbit in the presence of the hich sh licitlv that the d . ¢ the Land
external, uniform, time-independent magnetic fi€e- Bk meh shows explicily that fne depariure ot the Landau-

and of the external electric field given by E.2). The Lifshitz equation from the fields of a point charge is a small

. . one. Similarly, the external magnetic field is given b
expressions for the Cartesian components of the external Y g g y

fields B=—(mc®Bylea)
Ex=Esinot, E,=—-Ecoswt, B,=B (6.5 X{1-2B%2y"\2+ 10845\ 4+ - - -} (6.12

satisfy the equations . - .
B. The exact solution of the Landau-Lifshitz equation

sinwt dE,/dt—coswt dE, /dt=0, for two identical charges
) The motion shown in Fig. 2 can also be obtained as an
coswt dE/dt+sinwt dE,/dt=wE, (6.6 exact solution of the Landau-Lifshitz equation. The compo-

nents of the electric and magnetic fields are given by
M=0, N=—E,
E,=Esinwt+E e,
and therefore Eqg6.2) and(6.4) can be combined into the

equations Ey=—Ecoswt+Egy, (6.13
E=—(2e%3m?c*) 3y°B?, (6.7) B,=B+B, e,
yB%cla+ B(eB/mc) whereE ¢ x, Erery andBye;, are given by Eqs(5.7), (5.8),

+(26%3m2c) E{ yBcla— (eBime)} =0. and(5.9. From here it follows that

(6.8) sinot dE,/dt—coswt dE, /dt= — wE¢,,,

These equations, however, cannot be satisfied if the magni-  coswt dE,/dt+sinwtdE,/dt=—w(E e ,—E),
tude of the external electric field is given b=

—(2eB3y*3a?), that is, by the external field that leads to M=Eet,, N=Eet,—E, (6.14
the correct rate of radiation, namely, €2/3a%) 8*y* for a

charge performing the motion shown in Fig. 1. Thus, accordVhere the radial and tangential retarded fieflg;, and
ing to the discussion that follows Eq4.4), the Landau- Eret, are given by Egs(5.14 and(5.13), respectively. Us-
Lifshitz equation predicts an incorrect rate of radiation. N9 these results it is possible to cast the Landau-Lifshitz
Introducing an auxiliary variablea according to E  €duations(6.2) and(6.4) in a more convenient form. To this
= —(2e/3a2) B3y*a?, Eqs. (6.7 and (6.8 combine into a enq it is useful to mtrodpc;e dlmenS|pnIess electric and mag-
netic fields by explicitly factoring out the factor

cubic equation fowr:
(m&Bylae). Thus,

NB%y e =\ B2y a®+ a+1=0. (6.9 _
B=(mc®Bylae)B, (6.15
The solutions of the cubic equation are well kno\d]. The o o
condition for the existence of a real solution of E.9) is with similar expressions defining, Ee;,, Eer,, and

oo 4 ~aoa s B,et 2. INn terms of these quantities, the Landau-Lifshitz equa-
1+1INBoy" =N By -0 6.10 tions (6.2 and(6.4) can be cast in the following form:
27}\6186’}/12 ! '

E—Erety=A¥B{Eret (1~ B,)
a condition that is satisfied sinee3y?<1 for any macro- e — -
scopic motion ify is not too high. If the real solution of Eq. — By (Efet, T 2BE et ,B,+B3)}, (6.16
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B+E, e ,+ BB, of motion for a point charge in classical electrodynamics
e - Z_ - - [12]. The existence of the above difficulties does not mean,
+ABY(E—Eret ) (1— BE(et ,—B,)=0. however, that it is impossible to construct an equation of

6.17) motion for a point charge free of pathologies.

' The simplicity of the external fields has played a crucial
After substitution of Eq(6.16) in the right hand side of Eq. role in obtaining the results of this paper. Unfortunately, as is
(6.17) a cubic equation foB, is obtained. The real solution USu@l when one deals with highly idealized sources, these
of this equation determines the external magnetic f@ld external fields have an infinite flel_d energy _stored in them.
Also, when this solution is inserted in the right hand side ofNevertheless, we want to emphasize that this inconvenience
Eq. (6.16, an expression for the external electric field is does not affect the energy balance, which is the essential step
obtained. The results, expressed as power series in the p# obtain the rate of radiation.

rametern of Eq. (5.15, are In connection with the external fields, one may also won-
der about the interference effects between the fields of the
E=—(2e83y"3a){1-4B%y"\?+ -} +E(ery infinitely long solenoid and the fields of the charges in mo-
tion. It is not difficult to show that there is no radiation
+413375Eretp>\3 1+ %B[Eretp/(2913374/3a2)])\ escaping to infinity as a result of this interference. If we
denote byE and By the electric and magnetic fields of the

solenoid, and by, andB, the retarded fields of the charge
' (6.18 performing the motion in Fig. 1, then we must study the flux
of E¢XBg and EgX B, across a very large surface. Let us
B=—(mcBylae){l—2p2y\2+ -} study first the flux over a cap of the same radius as the
solenoid, centered on the solenoid’s axis and orthogonal to it,
—(1+Bsing) B Erer,— COSYE et o+ BY Erer N and located at— *<. Itis immediately seen that the flux of
.. 6.19 E¢X Bg across this cap is zero, sinégX B does not have
' ' any component along theaxis. The flux ofEsX B, over this

Formula(6.18 shows that the discrepancies between thef@P is also zero, since the area of the cap is finite and the
Landau-Lifshitz equation and the rate of radiation calculatedield Be—0.
starting from the fields of a point charge are contained not To study the flux of the vectoEsX B, outside the sole-
only in the term that describes the rate of radiation of onlynoid it is convenient to choose a closed surface formed by a
one charge, given by Eq6.11); they are also contained in cylindrical surface concentric with the solenoid and of a very
the term that describes the interference between the fields &drge radius, together with its caps parallel to g plane
the charges. and located ar— *=o. Let us consider first the flux across
the cap. We start by calculating the fluxB$x B, across the
VII. COMMENTS surface comprised between the ragiandp+dp. Then, the
surface element is proportional 8 a dependence that is
runaway solutions or preacceleration effects, as is the Ca%anceled out .by thp™* dependence oF,. Therefore, the
' Sfux across this surface is, roughly speaking, proportional to

with the Lorentz-Dirac equation. However, as has bee he fieldB,, which tends to zero when the caps are located at
clearly shown here, these equations lead to an incorrect rate e P

of radiation. It is interesting to point out in this context that Z_’ioo_' In_a similar way it can be shown that the ﬂ_ux across
the Lorentz-Dirac equation also admits the motions of Fig. 1th€ cvlindrical surface is zero. Therefore, there is no field
and 2 as exact solutiofi$4], but in contrast to the Mo-Papas €"€r9Y radiated to |nf|rj|ty due to .the interference between
and the Landau-Lifshitz equations, the rate of radiation assdhe fields of the solenoid and the fields of the charge shown
ciated with these motions is the same as the rate of radiatiof FIg. 1.

that follows from the fields of a point charge. In a certain  Finally, one may also wonder about the interference ef-
sense, it can be said that the Mo-Papas and the Landafects between the external homogeneous magnetic field and
Lifshitz equations solve the well known pathologies of thethe fields of the charge. In this context we must point out that
Lorentz-Dirac equation, but at the price of introducing anin the construction of the exact solutions of this paper it is
incorrect description of the rate of radiation. This departurenot necessary for the external magnetic field to extend to
from the correct rate of radiation is very small, as is theinfinity in the radial direction. In fact, by using an infinitely
violation of causality in the Lorentz-Dirac equation, since thelong solenoid of radiusl larger than the orbit radius and fed
former is proportional to the parametar of Eq. (5.15), by a time-independent current density we obtain a constant
which is a very small number for a macroscopic motion.homogeneous magnetic field that is identically zero gor
However, from a fundamental point of view, an incorrect>d. In addition, for similar reasons to the ones given in the
description of the rate of radiation is a defect as unsatisfacpreceding paragraphs, there is no flux of energy through the
tory as the existence of preacceleration. For this reason, ioaps located at— = . Therefore, the only field energy that
our opinion, the Landau-Lifshitz equation cannot be consid-escapes to infinity is the one associated with the fields of the
ered as a definitive answer in the quest for a correct equatiocharge.

+.o.

The Mo-Papas and Landau-Lifshitz equations do not hav
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