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Exact solutions to the Mo-Papas and Landau-Lifshitz equations
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Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electro-
dynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with
constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical
charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to
obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate
of radiation can also be obtained, with independence of the equation of motion, from the well known fields of
a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation
in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the
two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the
Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge
and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering
the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical
electrodynamics.
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I. INTRODUCTION

According to the Maxwell equations a point charge
motion emits, in general, radiation that carries away ene
and momentum, and that in consequence has an influenc
the trajectory of the charge. Although this physical picture
rather obvious, its incorporation in the construction of a co
sistent equation of motion has been a matter of long de
that still remains nowadays. What lies behind this difficu
is the fact that the construction of an equation of motion
a point charge that takes into account the charge’s self-fi
is intimately linked with fundamental problems, such as
infinite self-energy of a point charge and mass renormal
tion, which have not been solved yet in a satisfactory way
either classical electrodynamics or quantum electrodyn
ics.

The most prominent equation of motion for a point char
in classical electrodynamics is the Lorentz-Dirac equat
@1,2#. This equation exhibits runaway solutions, where
charge accelerates even in the absence of an external
These pathological solutions can be removed by impos
the so called asymptotic condition, in which the accelerat
is required to vanish after a long time. But this asympto
condition has as an unavoidable mathematical consequ
the existence of acausality or preacceleration, where
charge begins to accelerate before the force is applied.
violation of causality involves very tiny intervals of time, o
the order of 10223 s in the case of the electron, and therefo
it cannot have any measurable effects in experiments w
classical electrodynamics is applicable. Preacceleration
nevertheless, considered unacceptable because it is in
patible with the principle of causality, which is assumed
be valid for any time interval, no matter how small it may b

In order to avoid the embarrassing features of runaw
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solutions and acausality that affect the Lorentz-Dirac eq
tion, several alternative equations of motion have been p
posed@3–8#. But, as has been noticed by Parrott@8#, and in
contrast with the Lorentz-Dirac equation, these alternat
equations of motion have not been subjected to detailed s
tiny. Notwithstanding, Huschilt and Baylis@9# found evi-
dence against the general validity of the Mo-Papas equat
and Comay@10# showed that the Mo-Papas@5#, Bonnor@6#,
and Herrera@7# equations are incompatible with the princip
of energy conservation.

All the alternative equations of motion@3–8# are based on
the idea that in experiments where classical electrodynam
is applicable the effect of the radiation constitutes a sm
correction to the acceleration, the latter being determined
the equation that completely neglects the radiation reac
force. Thus, it seems almost impossible to discriminate
tween the different equations of motion by means of exp
ments. Shen@11#, for example, found that, for a charge mo
ing in a constant magnetic field, the Mo-Papas equation@5#
gives the same observable results as the Lorentz-Dirac e
tion. Therefore, the search for a correct equation of mot
must be carried out on theoretical grounds, that is, by ex
ining from a mathematical point of view the consistence o
given equation of motion with basic principles like causali
energy conservation and the natural requirement that the
of radiation associated with an equation of motion for a po
charge must coincide with the rate of radiation coming fro
the fields of a point charge; fields that in turn are determin
by means of the Maxwell equations.

An alternative equation of motion that has gained
newed interest recently is the Landau-Lifshitz equation.
particular, Rohrlich@12# considers that the Landau-Lifshit
equation is an exact equation of motion, and the correct o
for a point charge in classical electrodynamics. However,
©2002 The American Physical Society18-1
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will show below that the Landau-Lifshitz equation leads
an incorrect rate of radiation for a point charge.

We will study in this paper the rate of radiation associa
with the Mo-Papas and Landau-Lifshitz equations, by me
of the construction of exact solutions of these equations.
Mo-Papas and the Landau-Lifshitz equations determine
world line of a particle that is characterized only by its ma
and charge; therefore both equations are equations of mo
for a point charge. Now, for some particular solutions o
given equation of motion it is possible to obtain, starti
from the solution, a clear and conclusive result for the rate
radiation associated with that motion. On the other hand,
rate of radiation can also be obtained starting from the w
known fields of a point charge, by calculating the flux of t
Poynting vector across a sphere of very large radius
encloses the charges.

As we will show here, the Mo-Papas and Landau-Lifsh
equations admit as exact solutions, with appropriate exte
fields, the motion of a charge in a circular orbit with consta
speed, as well as the motion of two identical charges
rotate with constant angular velocity at the opposite end
a diameter. For each solution the Mo-Papas and the Lan
Lifshitz equations each lead to an exact analytical form
for the rate of radiation, which can be compared with t
calculation based on the Poynting vector.

In contrast to the case of the motion along a straight li
where the Mo-Papas equation does not consider any ra
tion at all @9#, in the case of a charge in circular orbit wit
constant speed the rate of radiation associated with the
Papas equation is exactly the same as the rate of radia
that follows from the fields of a point charge. However,
the case of the two identical charges, the Mo-Papas equa
fails to correctly describe the part of the rate of radiation t
corresponds to the interference of the fields of the t
charges. On the other hand, in the case of the Land
Lifshitz equation, both solutions lead to a rate of radiati
that does not coincide with the one obtained from the fie
of a point charge.

II. THE EXTERNAL FIELDS

The construction of the exact solutions of this paper
quires the assistance of external electromagnetic fields. T
consist of a uniform, time-independent magnetic field,
gether with a time-independent electric field that is tangen
a family of concentric circumferences contained in plan
orthogonal to the magnetic field, and such that the elec
field has a fixed magnitude over each circumference.
idealized source that gives rise to the uniform magnetic fi
is well known, and consists of a flat unbounded curr
sheet, in which a current flows with constant density a
direction everywhere@13#. The idealized source for the ex
ternal electric field is not so well known, and consists of
infinitely long solenoid of radiusb, less than the orbit radiu
a, and whose axis coincides with thez axis, and that carries
a density of currentJ given by

J~r,t !5Atd~r2b!ŵ, ~2.1!
04661
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where A is a positive number,d is the usual Dirac delta
function,r is the radial cylindrical coordinate, andŵ denotes
the unit vector associated with the cylindrical coordinatew.
Moreover, Gaussian units will be used throughout this wo
The Maxwell equations for the current density~2.1! and a
density of charge that vanishes everywhere can be so
exactly@14#, and the solution forr.b is such that the mag
netic field is identically zero, while the electric field is give
by

E~r,w,z!52
2pAb2

c2r
ŵ. ~2.2!

The magnitude of this electric field can be adjusted to a
desired value by properly choosing the parameterA in Eq.
~2.1!.

Any idealized source can be, of course, realized exp
mentally only in an approximate way. However, we emph
size that this paper deals only with fundamental theoret
aspects, that is, with mathematical properties of the equa
of motion, and therefore experimental or practical aspects
not pertinent here. In this context the relevance of the ide
ized sources is that they generate electromagnetic fields
a simple mathematical structure, which in turn allows t
construction of exact solutions to the Lorentz-Dirac@14# as
well as to the Mo-Papas and Landau-Lifshitz equations.

III. THE MO-PAPAS EQUATION

The Mo-Papas equation is the following one@5#:

v̇m5~e/mc!Fmlvl

1
2e3

3m2c4
~Fmlv̇l2Flav̇lvavm/c2!, ~3.1!

wheree and m denote the charge and mass of the partic
respectively,c is the velocity of light, Fmn is the field-
strength tensor, which contains the fields that act on
charge,vm is the four-velocity, and the overdot onvm de-
notes the derivative with respect to the invariant proper ti
t. The metric in Eq.~3.1! is diag (21,11,11,11).

We will now apply Eq.~3.1! to the motion of a charge tha
rotates with constant speed in a circular orbit that lies in
x-y plane, has its center at the origin of the coordinate s
tem, and has a radiusa. In other words,

x05ct, x15a cosvt, x25a sinvt, x350, ~3.2!

wherev is a time-independent parameter. In addition, it w
be assumed that the field-strength tensorFmn has only the
following nonvanishing components:

F0152F105Ex , F0252F205Ey ,

F1252F215Bz . ~3.3!

Thus, the electric fieldE that acts on the charge does n
have a component along thez axis, and the magnetic fieldB
points along thez axis. In this case the componentm53 of
8-2
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EXACT SOLUTIONS TO THE MO-PAPAS AND LANDAU- . . . PHYSICAL REVIEW E 66, 046618 ~2002!
Eq. ~3.1! does not impose any restriction either on the diff
ent quantities that characterize the motion, or on the elec
and magnetic fields given by Eq.~3.3!. The componentm
51 of Eq. ~3.1! is

cosvt52~ae/mc2b2g!~Ex1bBzcosvt !1~2e3g2/3m2c4!

3~Bz1bExcosvt1bEysinvt !sinvt, ~3.4!

and the componentm52 is

sinvt52~ae/mc2b2g!~Ey1bBzsinvt !2~2e3g2/3m2c4!

3~Bz1bExcosvt1bEysinvt !cosvt, ~3.5!

where the parameterb denotes the quantityav/c. To obtain
Eqs. ~3.4! and ~3.5!, the proper time derivatives that appe
in Eq. ~3.1! have been transformed into derivatives with r
spect to the ordinary timet by means of the relation

dt/dt5g5~12b2!21/2. ~3.6!

The componentm50 of Eq.~3.1! can also be obtained star
ing from Eqs.~3.4! and~3.5!. So, in what follows, it will be
ignored. Equations~3.4! and ~3.5! can be cast in a more
suitable form as follows:

Excosvt1Eysinvt52bBz2
mc2b2g

ae
, ~3.7!

Exsinvt2Eycosvt5
2e2b2g

3mc2a
Bz2

2eb5g4

3a2
. ~3.8!

IV. THE EXACT SOLUTION OF THE MO-PAPAS
EQUATION FOR ONE CHARGE

In this section we will show that Eqs.~3.7! and ~3.8!
admit as an exact solution the motion of a charge that rot
with constant speed in a circular orbit. To this end we w
assume the existence of an external, uniform, tim
independent magnetic fieldB5Bk̂, along with the externa
electric fieldE given by Eq.~2.2!. We will also assume tha
the particle has a negative chargee; therefore, the charge wil
move in a counterclockwise direction, as shown in Fig. 1

FIG. 1. Circular orbit of radiusa of the chargee,0. The charge
moves in the counterclockwise direction with angular velocityv
and speedv5va. The external electric fieldE compensates the

radiation reaction force. We also show the tangential unit vectoŵ
at the electron position.
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According to Fig. 1, the components of the external el
tric field acting on the charge are

Ex5E sinvt, Ey52E cosvt. ~4.1!

Introducing these quantities and the uniform, tim
independent magnetic fieldB5Bk̂ in Eqs.~3.7! and~3.8!, it
is immediately seen that they have the unique solution

B52
mc2bg

ae
, ~4.2!

E52
2eb3g4

3a2
. ~4.3!

Due to the symmetries associated with the motion rep
sented in Fig. 1, in this case it is easy to get the rate
radiation that is implicit in the Mo-Papas equation~3.1!. In
fact, Eq.~4.3! can be written as follows:

ev•E5
2e2c

3a2
b4g4. ~4.4!

The quantityev•E represents the power that the extern
electric field supplies to the charge. In addition, in this ca
the kinetic energy of the charge remains constant; and,
cause of the rotational symmetry, the positions of the cha
at different times are indistinguishable. Therefore, assum
the conservation of the energy, all the power supplied by
external electric field to the charge must be necessarily r
ated away. In other words, the right hand side of Eq.~4.4!
represents, according to the Mo-Papas equation, the ra
radiation for a charge in circular motion. This result coi
cides with the one obtained by calculating the energy fl
across the surface of a sphere of very large radius, using
fields of a point charge that rotates at constant angular ve
ity in a circle of radiusa @15#.

V. AN EXACT SOLUTION OF THE MO-PAPAS EQUATION
FOR TWO CHARGES

In this section we will show that, for properly chose
external fields of the kind used in the previous section,
Mo-Papas equation~3.1! also admits as an exact solution th
motion of two identical charges that rotate with constant
gular velocity at the opposite ends of a diameter. Of cou
in this case the motion of one of the charges is influen
also by the fields of the other charge. The electric fieldEret
generated by a point charge at a pointx and timet is given
by the well known formula

Eret5eF ~ n̂2b!~12b2!

s3R2 G
1

e

c F n̂3$~ n̂2b!3ḃ%

s3R
G , ~5.1!
8-3
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R. RIVERA AND D. VILLARROEL PHYSICAL REVIEW E 66, 046618 ~2002!
wheren̂ is the unit vector that points from the retarded p
sition r(t8) of the charge to the pointx; R is the retarded
distance defined byR5ux2r(t8)u; b and ḃ are defined by
(1/c)dr8/dt8 and db/dt8, respectively, and both are evalu
ated at the retarded timet8, which is implicitly defined by
t5t81R/c; ands is the positive number

s512n̂•b. ~5.2!

The magnetic fieldBret is given by

Bret5n̂3Eret . ~5.3!

The motion of the two charges takes place in thex-y plane,
as shown in Fig. 2.

In what follows we will apply the Mo-Papas equatio
~3.1! to the charge located in the first quadrant of Fig.
whose motion is described by Eq.~3.2!. Figure 2 also shows
the position of the charges at the retarded timet8, which is
such that a light signal takes the timet2t8 to go from the
retarded positionB8 of the second charge to the present p
sition A of the first charge where the retarded fields~5.1! and
~5.3! are evaluated. If the angle between the diameterA-B
and the diameterA8-B8 is denoted by 2c, then from Fig. 2 it
is immediately seen that the anglec is related to the param
eterb5av/c by means of

c5b cosc. ~5.4!

Now, sincedb/dc.0, this equation implies a one-to-on
relationship betweenb and the anglec. Although the pa-
rametersb and c are not independent, in what follows w
will use both of them in the formulas.

It follows from Fig. 2 that the retarded electric field~5.1!,
evaluated at the position of the charge in the first quadr
has a vanishing component along thez axis, and that the
corresponding magnetic field~5.3! has a vanishing compo
nent parallel to thex-y plane. Therefore, the form of th

FIG. 2. Two identical charges rotating at constant angular
locity v in a circular orbit centered at the origin and contained
the x-y plane. At the observation timet the charges are located a
points A and B, while at the retarded timet8 they are located a
pointsA8 andB8.
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Mo-Papas equation given by Eqs.~3.7! and ~3.8! remains
valid for the motion shown in Fig. 2.

Figure 2 shows that

R52a cosc; ~5.5!

while Eq. ~5.2! becomes

s511b sinc. ~5.6!

Now, the components of the retarded electric fieldEret x and
Eret y acting over the charge are

Eret x5~e/g2R2s3!$cos~vt2c!2b sin~vt22c!%

2~eb2/aRs3!~b1sinc!sin~vt2c!, ~5.7!

Eret y5~e/g2R2s3!$sin~vt2c!1b cos~vt22c!%

1~eb2/aRs3!~b1sinc!cos~vt2c!, ~5.8!

while the retarded component of the magnetic fieldBret z is
given by

Bret z5~eb/g2R2s3!cosc1~eb2/aRs3!~b1sinc!.
~5.9!

Because of the superposition principle, the components
the electric and magnetic fields that appear in the Mo-Pa
Eqs.~3.7! and ~3.8! are the following:

Ex5E sinvt1Eret x ,

Ey52E cosvt1Eret y , ~5.10!

Bz5B1Bret z ,

where the magnitude of the external electric field is deno
by E, while the magnitude of the external magnetic field
denoted byB.

It is easy to show that the Mo-Papas equations~3.7! and
~3.8! are satisfied in this case by the following values ofB
andE:

B52
mc2bg

ae
2

11b sinc

b
Eret r2coscEret w ,

~5.11!

E52
2e

3a2
b3g41Eret w2bglEret r , ~5.12!

where Eret w is the component of Eq.~5.1! along the unit
tangent vectorŵ of Fig. 2, that is,

Eret w5Eret•ŵ5S e

4a2D H 2b

~11b sinc!2

2
~12b2!~b1sinc!

cos2c~11b sinc!3J , ~5.13!

-

8-4
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EXACT SOLUTIONS TO THE MO-PAPAS AND LANDAU- . . . PHYSICAL REVIEW E 66, 046618 ~2002!
and Eret r is the component of~5.1! along the unit radial
vector r̂5cosvt î1sinvt ĵ , and is given by

Eret r5Eret•r̂5S e

4a2D H 2b sinc

cosc~11b sinc!2

1
~12b2!

cosc~11b sinc!3J . ~5.14!

The dimensionless parameterl that appears in Eq.~5.12! is
given by

l5
2e2

3mc2a
~5.15!

and corresponds to 2/3 of the ratio of the classical elec
radius to the orbit’s radius. It is therefore a very small nu
ber for any macroscopic motion.

When the Mo-Papas equation is applied to the sec
charge, that is, to the charge that at timet is located in the
third quadrant of Fig. 2, Eqs.~5.11! and ~5.12! are obtained
again. This is, of course, an expected result on account o
symmetries of the motion. In other words, the equation
Mo and Papas admits as an exact solution the motion of
identical charges rotating at constant angular velocity at
opposite ends of a diameter. The magnitudes of the exte
magnetic field and of the external electric field that ma
possible this motion are given by Eqs.~5.11! and ~5.12!,
respectively. The effect of the second charge on the mo
of the first charge is described by the terms that invo
Eret w and Eret r in Eqs. ~5.11! and ~5.12!. The solution re-
duces, of course, to the solution for one charge when
retarded effects are thrown away.

In order to obtain the rate of radiation for the system
two charges shown in Fig. 2, we note thatEret w is negative
@14#, and sincee,0, Eq. ~5.12! can be written in the form

2ev•E5
2e2c

3a2
b4g41

2e2c

3a2
b4g422ev•Eret w

1l~2ecb2gEret r!. ~5.16!
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By the same discussion that follows Eq.~4.4!, the right hand
side of Eq. ~5.16! represents, according to the Mo-Pap
equation, the rate of radiation for the system of two char
shown in Fig. 2. But the rate of radiation can also be de
mined with the help of the Lie´nard-Wiechert fields for a
point charge, Eqs.~5.1! and ~5.3!, by computing, for the
motion of Fig. 2, the energy flux across a spherical surface
a very large radius that encloses the charges. It turns out
this procedure leads, by means of an analytical and rigor
calculation @16#, to the result that the rate of radiation
exactly given by only the first three terms of the right ha
side of Eq.~5.16!. The fact that the total rate of radiatio
given by the right hand side of Eq.~5.16! is incorrect can
also be seen from the fact that, for a given motion of t
charges, the rate of radiation has no relation to the mas
the charges. However, the mass of the charges appears i
~5.16! through the parameterl. From Eq.~5.16! it is evident
that the Mo-Papas equation does not describe correctly
part of the rate of radiation associated with the interfere
of the fields of the two charges shown in Fig. 2.

VI. THE LANDAU-LIFSHITZ EQUATION

Using the same notation as in Sec. II, the Landau-Lifsh
equation is@4#

v̇m5~e/mc!Fmlvl

1
2e3

3m2c4
@ Ḟmlvl1~e/mc!FmlFlrvr

1~e/mc!FlaFarvrvlvm/c2#, ~6.1!

where the overdot onFml denotes its derivative with respec
to the proper timet. When Eqs.~3.2! and~3.3! are imposed,
the componentm53 of Eq. ~6.1! is identically satisfied,
while the componentm51 becomes
tory
cosvt52~ae/gmc2b2!~Ex1bBz cosvt !2~2e3a/3m2c5b2g!$g~dEx /dt1bdBz /dt cosvt !1~e/mc!@bExN1Bz~Ey

1b sinvtBz!1b sinvt~N21g2M212bg2BzM1b2g2Bz
2!#%, ~6.2!

where the derivatives with respect to the proper timet have been transformed into derivatives with respect to the labora
time t by means of the relationdt/dt5g, and where the following notation has been introduced:

M5Excosvt1Ey sinvt,
~6.3!

N52Exsinvt1Ey cosvt.

Similarly, the componentm52 of Eq. ~6.1! becomes
8-5



R. RIVERA AND D. VILLARROEL PHYSICAL REVIEW E 66, 046618 ~2002!
sinvt52~ae/gmc2b2!~Ey1bBz sinvt !2~2e3a/3m2c5b2g!$g~dEy /dt1bdBz /dt sinvt !1~e/mc!@bEyN2Bz~Ex

1b cosvtBz!2b cosvt~N21g2M212bg2BzM1b2g2Bz
2!#%. ~6.4!
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The componentm50 of Eq.~6.1! can be obtained as a com
bination of Eqs.~6.2! and ~6.4! and therefore it will not re-
ceive further consideration.

A. The exact solution for one charge

Equations~6.2! and ~6.4! admit as an exact solution th
motion of a charge in a circular orbit in the presence of
external, uniform, time-independent magnetic fieldB5Bk̂
and of the external electric field given by Eq.~2.2!. The
expressions for the Cartesian components of the exte
fields

Ex5E sinvt, Ey52E cosvt, Bz5B ~6.5!

satisfy the equations

sinvt dEx /dt2cosvt dEy /dt50,

cosvt dEx /dt1sinvt dEy /dt5vE, ~6.6!

M50, N52E,

and therefore Eqs.~6.2! and ~6.4! can be combined into the
equations

E52~2e3/3m2c4!bg2B2, ~6.7!

gb2c/a1b~eB/mc!

1~2e3/3m2c4!E$gbc/a2~eB/mc!%50.

~6.8!

These equations, however, cannot be satisfied if the ma
tude of the external electric field is given byE5
2(2eb3g4/3a2), that is, by the external field that leads
the correct rate of radiation, namely, (2e2c/3a2)b4g4 for a
charge performing the motion shown in Fig. 1. Thus, acco
ing to the discussion that follows Eq.~4.4!, the Landau-
Lifshitz equation predicts an incorrect rate of radiation.

Introducing an auxiliary variablea according to E
52(2e/3a2)b3g4a2, Eqs. ~6.7! and ~6.8! combine into a
cubic equation fora:

l2b2g4a32l2b2g4a21a1150. ~6.9!

The solutions of the cubic equation are well known@17#. The
condition for the existence of a real solution of Eq.~6.9! is

1111l2b2g42l4b4g8

27l6b6g12
.0, ~6.10!

a condition that is satisfied sincelbg2!1 for any macro-
scopic motion ifg is not too high. If the real solution of Eq
04661
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~6.9! is expressed as a power series in parameterl, the fol-
lowing result is obtained for the magnitude of the extern
electric field:

E52~2eb3g4/3a2!

3$124b2g4l2124b4g8l41•••%, ~6.11!

which shows explicitly that the departure of the Landa
Lifshitz equation from the fields of a point charge is a sm
one. Similarly, the external magnetic field is given by

B52~mc2bg/ea!

3$122b2g4l2110b4g8l41•••%. ~6.12!

B. The exact solution of the Landau-Lifshitz equation
for two identical charges

The motion shown in Fig. 2 can also be obtained as
exact solution of the Landau-Lifshitz equation. The comp
nents of the electric and magnetic fields are given by

Ex5E sinvt1Eret x ,

Ey52E cosvt1Eret y , ~6.13!

Bz5B1Bret z ,

whereEret x , Eret y andBret z are given by Eqs.~5.7!, ~5.8!,
and ~5.9!. From here it follows that

sinvt dEx /dt2cosvt dEy /dt52vEret r ,

cosvt dEx /dt1sinvt dEy /dt52v~Eret w2E!,

M5Eret r , N5Eret w2E, ~6.14!

where the radial and tangential retarded fieldsEret r and
Eret w are given by Eqs.~5.14! and ~5.13!, respectively. Us-
ing these results it is possible to cast the Landau-Lifsh
equations~6.2! and~6.4! in a more convenient form. To this
end it is useful to introduce dimensionless electric and m
netic fields by explicitly factoring out the facto
(mc2bg/ae). Thus,

B5~mc2bg/ae!B̄, ~6.15!

with similar expressions definingĒ, Ēret w , Ēret r , and
B̄ret z . In terms of these quantities, the Landau-Lifshitz equ
tions ~6.2! and ~6.4! can be cast in the following form:

Ē2Ēret w5lgb$Ēret r~12B̄z!

2bg2~Ēret r
2 12bĒret rB̄z1B̄z

2!%, ~6.16!
8-6
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b1Ēret r1bB̄z

1lbg~Ē2Ēret w!~12bĒret r2B̄z!50.

~6.17!

After substitution of Eq.~6.16! in the right hand side of Eq
~6.17! a cubic equation forB̄z is obtained. The real solution
of this equation determines the external magnetic fieldB.
Also, when this solution is inserted in the right hand side
Eq. ~6.16!, an expression for the external electric field
obtained. The results, expressed as power series in the
rameterl of Eq. ~5.15!, are

E52~2eb3g4/3a2!$124b2g4l21•••%1Eret w

14b3g5Eret rl3H 11
gb

4
@Eret r /~2eb3g4/3a2!#l

1•••J , ~6.18!

B52~mc2bg/ae!$122b2g4l21•••%

2~11b sinc!b21Eret r2coscEret w1bg2Eret rl2

1•••. ~6.19!

Formula~6.18! shows that the discrepancies between
Landau-Lifshitz equation and the rate of radiation calcula
starting from the fields of a point charge are contained
only in the term that describes the rate of radiation of o
one charge, given by Eq.~6.11!; they are also contained i
the term that describes the interference between the field
the charges.

VII. COMMENTS

The Mo-Papas and Landau-Lifshitz equations do not h
runaway solutions or preacceleration effects, as is the c
with the Lorentz-Dirac equation. However, as has be
clearly shown here, these equations lead to an incorrect
of radiation. It is interesting to point out in this context th
the Lorentz-Dirac equation also admits the motions of Fig
and 2 as exact solutions@14#, but in contrast to the Mo-Papa
and the Landau-Lifshitz equations, the rate of radiation as
ciated with these motions is the same as the rate of radia
that follows from the fields of a point charge. In a certa
sense, it can be said that the Mo-Papas and the Lan
Lifshitz equations solve the well known pathologies of t
Lorentz-Dirac equation, but at the price of introducing
incorrect description of the rate of radiation. This depart
from the correct rate of radiation is very small, as is t
violation of causality in the Lorentz-Dirac equation, since t
former is proportional to the parameterl of Eq. ~5.15!,
which is a very small number for a macroscopic motio
However, from a fundamental point of view, an incorre
description of the rate of radiation is a defect as unsatis
tory as the existence of preacceleration. For this reason
our opinion, the Landau-Lifshitz equation cannot be cons
ered as a definitive answer in the quest for a correct equa
04661
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of motion for a point charge in classical electrodynam
@12#. The existence of the above difficulties does not me
however, that it is impossible to construct an equation
motion for a point charge free of pathologies.

The simplicity of the external fields has played a cruc
role in obtaining the results of this paper. Unfortunately, as
usual when one deals with highly idealized sources, th
external fields have an infinite field energy stored in the
Nevertheless, we want to emphasize that this inconvenie
does not affect the energy balance, which is the essential
to obtain the rate of radiation.

In connection with the external fields, one may also wo
der about the interference effects between the fields of
infinitely long solenoid and the fields of the charges in m
tion. It is not difficult to show that there is no radiatio
escaping to infinity as a result of this interference. If w
denote byEs and Bs the electric and magnetic fields of th
solenoid, and byEe andBe the retarded fields of the charg
performing the motion in Fig. 1, then we must study the fl
of Ee3Bs and Es3Be across a very large surface. Let u
study first the flux over a cap of the same radius as
solenoid, centered on the solenoid’s axis and orthogonal t
and located atz→6`. It is immediately seen that the flux o
Ee3Bs across this cap is zero, sinceEe3Bs does not have
any component along thez axis. The flux ofEs3Be over this
cap is also zero, since the area of the cap is finite and
field Be→0.

To study the flux of the vectorEs3Be outside the sole-
noid it is convenient to choose a closed surface formed b
cylindrical surface concentric with the solenoid and of a ve
large radius, together with its caps parallel to thex-y plane
and located atz→6`. Let us consider first the flux acros
the cap. We start by calculating the flux ofEs3Be across the
surface comprised between the radiir andr1dr. Then, the
surface element is proportional tor, a dependence that i
canceled out by ther21 dependence ofEs . Therefore, the
flux across this surface is, roughly speaking, proportiona
the fieldBe , which tends to zero when the caps are located
z→6`. In a similar way it can be shown that the flux acro
the cylindrical surface is zero. Therefore, there is no fi
energy radiated to infinity due to the interference betwe
the fields of the solenoid and the fields of the charge sho
in Fig. 1.

Finally, one may also wonder about the interference
fects between the external homogeneous magnetic field
the fields of the charge. In this context we must point out t
in the construction of the exact solutions of this paper it
not necessary for the external magnetic field to extend
infinity in the radial direction. In fact, by using an infinitel
long solenoid of radiusd larger than the orbit radius and fe
by a time-independent current density we obtain a cons
homogeneous magnetic field that is identically zero forr
.d. In addition, for similar reasons to the ones given in t
preceding paragraphs, there is no flux of energy through
caps located atz→6`. Therefore, the only field energy tha
escapes to infinity is the one associated with the fields of
charge.
8-7
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