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Gray optical dips in the subpicosecond regime
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Narrow optical dip solutions are investigated when, besides self-phase modulation and group velocity
dispersion, also third-order dispersion, nonlinear dispersion, and stimulated Raman scattering are taken into
account. By using the inverse scattering transform for the higher-order optical nonlineadiSgbréHNLS)
equation under Hirota parameter conditions, the ddudoliton solution is constructed. The explicit forms of
the one- and two-soliton solutions are investigated in detail. The results show an interesting property of the
gray two-soliton solution. Two gray dips do not interact provided their modulation depths are appropriately
chosen. In addition, when generalizing the HNLS equationregions beyond the Hirota parameter condi-
tiong), it can be shown that also quite stable generalized two-dip solitary wave solutions exist. The latter,
although not belonging to integrable systems, approximately preserve most of the interesting properties de-
tected for the integrable Hirota equation.
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[. INTRODUCTION increasing interest. The black solitary wave solution and the
so-called combined solitary wave solutions for the HNLS
Since the invention of the optical solitgh,2] in the early  equation under nonzero boundary condition have been found
seventies, optical soliton physics turned out to be one of thg8,26—28. Very recently, Mahalingam and Porsezig28|
fastest growing fields in the modern science. The solitarynvestigated the integrability of the HNLS equation by em-
light waves are of particular interest in optical fiber systemsploying a Painlevanalysis. They constructed an explicit Lax
because of their enormous potential for telecommunicatiofair for the HNLS equation under specific conditions for its
and ultrafast signal-routing systeni8]. The concept has coefficients. In that case the HNLS equation is called Hirota
demonstrated already a huge potential for applications, and &quation. The Hirota bilinear form was used to generate the
promises fundamental progress in basic research as well. Fdark (black) one and two solitons. The gray-soliton solu-
example, bright solitons are well established in optical teletion of the Hirota equation has not been reported yet. As we
communication; dark solitons may play a new interestingshall demonstrate, the inverse scattering transf@8wm) can
role in guiding light by light. be used to construct new solutions that show interesting
From the theoretical point of view, the success of opticalproperties in itself.
solitons is based on the properties of the one-dimensional In this paper, we work out the details of the IST for the
cubic nonlinear Schidinger (NLS) equation as the generic Hirota equation under nonzero boundary conditions. The for-
and robust model. The NLS equation can be used for invesmnalism will be used to construct th@eneral dark (gray)
tigating pulses in the picosecond regime. Obviously, narN-soliton solution. The dark one- and two-soliton solutions
rower optical solitary pulses are candidates for higher bitwill be presented in explicit forms. Interesting physical ap-
rates. Also the faster switching is supported by smalleplications will arise from the characteristics of the gray two-
widths. Thus, during the last years very short pulses becamsoliton solution. After discussing the peculiarities of the lat-
a topic of growing interest. In the subpicosecond regimeter, we pose the question whether the new phenomena will
(=100 fs), higher-order effects, such as third-order disperalso prevail in the nonintegrable regime. For that we extend
sion(TOD), self-steepening, and self-frequency shift becomethe model beyond the Hirota conditions, i.e., we consider the
important[4]. Considering these effects, Kodama and HaseHNLS equation without further restrictions of its coeffi-
gawa [5] derived a higher-order optical nonlinear Schro cients. We shall obtain égeneralizedl dark (gray) solitary
dinger (HNLS) equation. Subsequently, many authors havewave solution. Numerically, we shall demonstrate that also in
analyzed the HNLS equation, preferentially under zerathe nonintegrable regime noninteracting gray two-dip solu-
boundary conditions and from different points of view. Theytions exist.
obtained new exact solutions, such as optical shocks and the The manuscript is organized as follows. In Sec. Il, we
bright N-soliton solution[6—16]. briefly present the general model. In Sec. Il the specific
In contrast to the bright solitary wave solutions, the char-Hirota conditions are assumed. The IST formalism will be
acteristics of dark solutions of the HNLS equatiomder  worked out in detail in order to use it for constructing gen-
nonzero boundary conditionss less known. In the picosec- eral solutions. The general dakksoliton solution follows in
ond regime, dark solitary waves or solitons follow from the Sec. IV for reflectionless potentials. Special attention is
NLS equation. They have been studied by several authorgiven to the gray two-soliton solution. After a generalization
[1,17-253 in both, theory and experiment. In recent years,to the nonintegrable case in Sec. V, the paper is concluded in
the femtosecond dark solitary waves or solitons became ddec. VI by a short summary and discussion.
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Il. THE MODEL Ill. THE IST METHOD FOR THE HIROTA EQUATION

The standard model for localized ultrashort light waves in  Generally, Eq(3) is not integrable, except for some spe-
the subpicosecond(or femtosecond regime is the cial cases. The latter have been identified by several authors,
(1+1)-dimensional HNLS equation. The latter describes theand the original ideas of Hirote] as well as Sasa and Sat-
propagation of an optical mode iA-direction. When the suma[7] have been confirmed. In the following, we shall
mode is localized, we use its typical length in timiefor =~ concentrate on the Hirota equation. The latter is obtained
normalization. Linear as well as nonlinear group velocityfrom the HNLS equatioril) when the parameters satisfy the
dispersion (GVD), the Kerr nonlinearity[via self-phase conditions:
modulation(SPM)], and stimulated Raman scatterif®RS
are taken into account. In a frame moving with the group astas=0, (4)
velocity, the HNLS equation is written 45]

a1a4—3a2a3=0. (5)
E —i 2 2
2= (@Bt @olE"E) + asBrrrt aul (B E)r We shall call these restrictions Hirota conditiorison-
+asE(|E[)7, (1) straint3. Hirota [6] has presented exact envelope solutions
under the conditions mentioned above. He also showed that
whereE is the slowly varying envelope of the electric field, the solutions reveal the close relation between classical soli-
the subscriptZ and T denote the spatial and temporal partial tons and envelope solitons. Subsequently, many authors dis-
derivatives in retarded time coordinates, respectively, angyssed the integrability of the Hirota equation, including
ay, ay, as, ay, and as are coefficients following from sych interesting topics as the Painlegst, Lax pairs, bound-
GVD, SPM, TOD, self-steepening, and self-frequency shiftary conditions, and so on.
(arising from SR respectively. The Hirota equation can be solved by the IST method. In

For picosecond light pulses, the last three terms on thene following, we shall work out the details of that procedure
right-hand side of Eq(1) can be omitted, and E¢l) reduces  for nonzero boundary conditions. The idea is to use that for-
to the NLS equation. The NLS equation includes only themalism to construct gray solitofdip) solutions. Under Hi-
linear GVD and the SPM. It admits bright or dark soliton- rota conditions, by settingEo|2= —6as/ay, K=—a;0?
type pulse propagation in the anomalous or normal dispers. 4,03+ 1?|Eg|?(ap,— a,Q) and employing the 2
sion regimes, respectivefy1,2,29,3Q. The NLS equation is  AKNS method[31], the Lax pair for Eq(3) follows from
the generic model for envelope solitons. In numereous cases,

it has been used to describe the dominating balance between V=LV, (6)
nonlinearity and dispersion to produce stable localized solu-
tions. However, as has been mentioned already, for ultrashort v,=MW, (7)

light pulses, whose duration is shorter than 100 fs, the last
three terms on the right-hand side of Ed) are important where
and should be retained.
By employing appropriate scaling transformations, @g. W ( ‘1’1) ®
can be reduced to a two-parameter canonical form. In the - ’
following, however, we shall keep the original formulation
with five parameters in order to better identify the roles ofin the form
the various physical effects. _
Searching for general solutions, let us first apply a Gal- —IN q
ilean transforn{16] L _< ) ' ©)
E(Z,T)=Ewq(Z,T—2Z/V)exdi(KZ—QT)], (2 1 0
—i 2 3 2
whereV is the group velocity shift{) is the frequency shift, M=1(bA+bz0 "+ boh )<0 —1) (Ba+bah+bah™)
andK represents the phase shift. An additional parangger
has been introduced he(# will be fixed laten in order to %
simplify some notations.
After this transformation, the functiog(z,t) (with argu- . PP
mentsz=Z andt=T—2Z/V) satisfies 1 ( a* g —aq 2lal*a—2u%q qtt)

~ b
47°\ 2|q/%q* —2p2q* — g5 qq; —g*qy

0 q
q* 0

|~ u? — 0
ar —|ql?+ u?

1
+§i(b2+b3)\)(

0+ i Bod+ B10:— i B2l — B3 —i Bnldl?d— Balal?q

—Bsa(|al?)=0, 3)

Here, b;=—V 1= 20,0+ 3a30%+2u’az, b,=—2(a;
where  Bo=K+ a;0%2— a30°8, B1=—-V 1=2a;Q0  —3Qas3), by=4az and\ is the spectral parameter. Con-
+3a302%, Br=a;—3a3Q, Bn=|Eol?(a;—a,Q), B;  sidering nonzero boundary conditions for dark solitons, we
=ag, Bs=a4Eol?, and Bs=(ay+ as)|Ey|%. Equation(3)  have introduced a positive constani’ denoting the
is the starting point for the following investigation. asymptotic value of the dark-soliton intensity|q|? as time

(10
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t approaches infinityi.e., |g|?2— u? as|t|—o). Using the 1
compatibility conditionL,—M+[L,M]=0, one can easily K= E(é—ﬂzi_l)- (20)
derive Eq.(3) under the Hirota conditions. The present Lax
pair is basically the same as that presented in R&]. In ¢ is easy to verify that for reaf the parameters and« are
the following, it will turn out that the present form is more 554 real, with \?= 42 The Jost solutions¥(t,¢) and
convenient to solve the Lax equatiof@® and(7) under non- ®(t,¢) for Eq. (6) can be expressed as
zero boundary conditions.

The construction of the Lax pair suggests that Bj.is %
integrable under nonzero boundary condition. However, the ‘I’(I,§)=E(t,§)+f K(t,s)E(s,{)ds (21)
existence of a Lax pair does not always ensure to solve Eqs. !
(6) and (7) in an explicit form. Therefore, the general and
N-soliton solution under nonzero boundary condition still re-
quires to work out the details of the IST. t

Having in mind that a dark soliton solution may exist with d(t,)=E_(t,0)+ f K(t,s)E_(s,{)ds. (22
different asymptotic behaviors in phasetat £, without o
':ifz)enéozzqclf)ie;strili/o\;\(eavxggeiri;f géfflazengg:é;ondlﬂere, the kernel func_tio_rK(t,s) is a 2X2 matrix, being
is an arbitrary constant to allow for phase differences. Fronindependent of. It satisfies
the asymptotic behavior of the operatofsee Eq.(9)],

K(t,t)— 05K (t,H) o5+ U(t)—Ug=0, (23)
Ki(t,5) + 03K (t,8) s — U(DK(L,S)
L=L-=—ihogt U ast——, (12 +03K(1,8)05Uo=0 for t<s, (24
where K(t,5)=0 for t>s, K(t,+%)=0, (25)
0 1 10
Uo=pon,on=|, ool _,| (13 and
and K(t,s):O'lK(t,S)O'l. (26)

_ - _ ige The scattering data for the operatbrform the sets
U-=QIAURQ B QA= g j=12,... ), where 1(0)=b(8)/a(0) s

i i i 2_ 2_
we find that in the limitt— +, the Lax equation6) re- the reflection coefficient witha(¢)|*—[b(£)[*=1, a(¢) can

duces to be analytically continued to the upper-half plane/D, ¢;
are the discrete eigenvalues determined by the zera$)f
E(t,\)=LoE(t,\). (15 Wwith [¢j|=x and Im;>0, c; are the asymptotic character-
istics of the functions. Within the IST, we find that the scat-
Its solution is tering datas(z) evolve according to
1 —ip =R a(z,¢)=a({), (27)
E(t,)\): R e Iktog
in " (N—k) 1 _ 5
b(Z,§)= b(§)672lk(b1+b2)\+b3)\ )Z’ (28)
for real numbers. and\?=pu?, (16) ' ,
I’(Z,g) — r({)e’ 2ik(by+byh+bgh )z’ (29)
where k= \\%2— u2.
In the opposite limit— —o, we have {i(9=¢0)=¢;, (30)
E_’t(t,)\): L_E_(t,)\) (17) Cj(z):Cje—Zin(bl+b2)\j+b3)\j2)Z. (31)

with the solution The canonical formalism of the IST enables us to obtain

E_(x,0)=Q(B)E(t,\). (18) the Gel'fand-Levitan-Marchenko integral equation for recon-
struction of the kerneK(t,s;z) from the scattering data
Generally,x is a double-valued function of. By employing ~ S(2). We have
an auxiliary parametef instead of introducing a Riemann .

surface, we rewrite the parametersand « [32], K(t,s;z)+F(t+s;z)+J K(t,72)F(7+s,2)d7=0
t

)\=E(§+ 2 (19

2 T H ’ for t<s, (32
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where IV. N-SOLITON SOLUTIONS

N In principle, we could now follow the general solution
. K NP strate rescribed by the IST to solve any well-posed
Ft2)=5 jzl CJ(Z)(ié«_)(l_'“gi yert initial-?/glupe problem inz. Starting with an arbitrary initial
: distribution int, during the dynamical evolution i solitons
1 (+=r(z,0) | m 1 it and radiation may appear. Here, we concentrate on the sim-
+ 4m)_. 0L i (1—ipg ")ede. pler problem of determining only the possible soliton solu-
tions. As is known from other cases, solitons correspond to
(33)  the discrete spectrum. Thus, when we start with certain types
of initial distributions leading only to the discrete spectra at
From the Eqs(23) and (26) we find the solutiom(t,z) of  z=0, we can expect to determine the soliton solutions di-
Eq. (3) in the form rectly.

q(t,z)=pu—2K,(t,t;2). (34) A. General expressions for reflectionless potentials

For the case of reflectionless potentials, i.e., f¢z, )
This concludes the explicit solution of the initial-value prob- =0, the Gel'fand-Levitan-Marchenko equati@82) reduces
lem. to

n

_ . 1 M C =1y pik(t+) o . M i =1\ piki(7+9)
O_K(t’S’ZHE,Zl Cj(z)(ig“j)(l_l’u“gj el +Jt K(t,r,z)EZ Ci(z)(ig’j)(l gy m)e'r dr. (35

n

j=1

As is well known, one can solve that integral equation with é ( —ig_jcm(z)e‘(”m+ ﬂj)t)
the ansatz Aoy (t
n EN T 2ty )PV
Ku(t,8:2)= 2 Cn(2)A,,m(DE*™,  u,v=12, . pCp(2z)e” (rm* )t
m=1 + 2 5jm+ A22m(t)
(36) m=1 2(mm* ;)
A straightforward calculation leads to T
=— E,(,Le i, (40
é Sim+ pom(2)e” () Apm(t
| Cim 2(m+ 7)) 1m(t) forj=1, 2,...,n, wherelm=&n+i7m, |{ml=w, and
=—iky, form=1, 2,--, n.
" iZjen(z)e (Tt 1 The complex conjugates of the Eq&7) and (38) are
+mE:1 20t ) Apzm()=—sue ", consistent with Eqs(39) and (40). Therefore, in the follow-

ing we need only to proceed with Eq87) and(38). This is
(37)  a set of algebraic equations which can be written in matrix

— form
N = (m+ mpt '
iZicm(z)e™ {mT 7
2 ( §12r(71( )+ ) )All,m(t) -~ ~ 1
m=1 It 7] (I+ uB)Ay+IBAL= — 5 uf, (41)
n — .
ucn(z)e (7m+ 7t
+ 2 (5,-m+ T Aszi(t) . -1
m=1 (7m+ 7;) IBA+ (14 uB)As=— 51, (42)
1
- Ei e (38 where
zn: (5 +MCm(Z)e(”m+”j)t)A “ B=(Bjmnxn-A11=(A1m)nx1.A12= (Azm)nx1,
m=1 | " 2( 1t 1)) 2um J=idiag{1,42, - - n). (43
N = (nm+ 7t The matrix components are
i{iCm(z)e™ Im™ 7] 1 p
b3 (Mo Azom(t) == 5igje ",
] 22m 2°°]
m=1 2(1mt mj) f e e . B fifm ”
=4/Ci(z)e” i, = —
(39) S M 2(nm+ 7))
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Aim= V(DA (1),  Arzm=VCm(2)Arzpm(t).
(45)
Solving these equations systematically, we arrive at

~ 1
Aqp=— 5 p?(I+ pIB+uBY) . (46)

Substituting the solutiof46) into Eq. (36), we can evaluate
the right-hand side of Eq34) to obtain the dark\-soliton
solution in the general form

det(J+ uJB+ uBJ+ uffh)
detJ+ uJB+ uBJ)

dn(t,2)=p (47)

For n=1 this simplifies to the darKgray) one-soliton
solution

E1—im

ai(t,z)= (&timtant 7,6:(t,2)]), (48)
where u?= &2+ 57 with 7,>0, and 6,(t,z)=t—t;— (b,
+hyé+bgéd)z with wc,/2p,=e~?1. The solution pos-
sesses the asymptotic behaviors

PHYSICAL REVIEW 66, 046616 (2002

g1(t,z)— u ast— + oo, (49

ql(t,z)—>,u? ast— —oo, (50

1

The amplitude of the dark one soliton is given by
|01(8,2)| = {(£2+ 72) — misech[ 9,6,(t,2)]}¥% The mini-
mum and maximum amplitudes afe and \/§Zl+ 1721, respec-
tively. It should be pointed out that the dark one-soliton so-
lution (48) is more general than that one presented in Ref.
[28] by the Hirota method. The latter solution is a black
soliton solution, for which the minimum of the amplitude
lg.(t,2)| is zero. The present solutio@8) includes gray
solitons,

B. Properties of a gray two-soliton solution

Forn=2, Eq.(47) leads to the explicit form of a general
dark two soliton

{118

4p(014(t,2) + 1t 2) —2u) — 4 m—(q“(t’z) —m)(AuAt,2) — )

+ 7

O2(t,2)=p| 1+

Here, q11(t,2)=0q1(t,z;{1) and qix(t,.2)=0qs(t,z;{>) are
dark one-soliton solutions with parametéisand{, [see Eq.
(48)], respectively. The asymptotic behaviors are

gy(t,2)—u ast— +oo, (52
Lt
go(t,2)—u L0 ast— — oo, (53

Although not strictly valid, a two-soliton solution may be

interpreted as the superposition of two interactieffective

one-soliton solutions approaching each other from infinity.
This interpretation leads to scenarios for soliton-soliton in-

Lt
m+n

2
) (d11(t,2) = ) (@1At,2) — 1)

(51)

in the femtosecond domain is effectively repulsive. Since
there is no possibility to form a bound state, this is an im-
portant feature in favor of dark solitons when compared to
bright solitons. Because of the repulsive interaction, in the
future dark solitons may become of interest also in long-
distance communication systems.

It is important to note that it is possible to construct a
two-soliton solution that effectively does not show any inter-
action between the dips, i.e., the distance between the two
(effective one-soliton solutions does not change during
propagation ire. This happens if the modulation depths sat-
isfy é&,=—(&1+b,/bs). Figure 2 presents such an evolution
of a gray two-soliton solution. The plot shows that the dis-
tance between the two dips remains unchanged if the modu-

teractions. The latter are important issues, e.g., for estmatingltion depths are chosen appropriately. This property is, e.g.,

bit—errpr rate;(BER). In .the foII_owing, we may therefore very interesting for optical communication with low BER or
draw interesting conclusions by inspecting details of the twoz,, guiding light by light

soliton solution(51). From the latter, we can clearly recog-
nize that, similar to the characteristics of dark solitons in the
picosecond domain, the femtosecond dark soliton solutions
retain their shapes after interaction. Only slight changes in
their phases occur. The interaction of dark solitons is elastic.
Figure 1 shows graphically an interaction derived from the In the preceding section, we investigated tResoliton

dark two-soliton solutior(51). From this plot, we conclude solution under Hirota condition&) and (5). However, the

that the interaction force between the two déeske solitons  Hirota conditions may not be satisfied in real wave guides.

V. THE GENERAL MODEL AND ITS SOLITARY
SOLUTIONS

046616-5
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FIG. 2. Plot of the dark two-soliton solutighl). The parameter
values are the same as in Fig. 1 except for= —(&,+b,/bs)
=0.6.

FIG. 1. Plot of the dark two-soliton solutiddl). The parameter
values aret;=2.5, t,=—-2.5, b;=0, b,=-1.0, b3=1.0, u
=1.0, £,=0.4, andé,=0.1; », and 7, are determined fronu?
= g2+ p2=¢2+ 73, respectively.

any case, we shall considerand() as free parameters. In
One could therefore argue that it will be difficult to observethe Hirota case, in addition, can be freely chosen.
the proposed solutions in the experiment. As we shall dem- Under the conditionas(3a,+2as5)<0 and for (g
onstrate, fortunately the Hirota constraifdg and(5) are not  + as) #0, we determine the parametgrs\, x, andK as

needed for the existence of interesting solutions. In the fol-
lowing, we shall construct dark solitary dip solutions for the / —6ag
P=7 3(14"' 26(5,

general HNLS equation, and not only for tiimtegrable (59
Hirota equation. Thus, now we return to the HNLS equation
without the Hirota constraints. We shall present dark solitary
dip solutions in explicit forms. - [ —6az (Q— ay(3ay+ 2“5)—3a2a3)

In order to proceed, we make an ansatz similar to the ~ V3a,+2as| 6as(a,+ as) ’
(integrable dark one-soliton solutioi48), (60)

q(z,t)=e?{\+iptant n(t—x2)]1}. (54)

x=(—2a;Q43a30%) +2a37°+ (ay— a,Q)\pl 7y
Here, ¢ is introduced to take care of a possible constant

, ; — ay\?, (62)
phase,n and y are the pulse width and the inverse group
velocity shift, respectively, and finally designates the depth _ ) 3 >, 2
of modulation of the dark solitary wave. The solitary wave K=—a10%+a30%+ (e~ agQ)(\"+p%).  (62)

amplitude is given by|q(z,t)|={(\2+ p?)— p?sech[ y(t
—x2)1}¥% the minimum and maximum amplitudes axe

and A%+ p?, respectively.
Substituting the ansai®4) into Eq. (3) and equating the

From Eq.(59), we recognize that the condition for a dark
solitary wave solution(54) is

coefficients of independent terms, we find that the param- as(3as+2as5)<0. (63
eters have to satisfy
If we force the frequency shiff) to satisfy

6837+ (Ba+2Bs5)p*=0, (55)

28,77+ 2B\ mp-+ Bap?=0, (56 _ 18as+2a5) = 3aza (64

6as(ay+ as) ’
X~ B1n—pP\Bn—2B3n>+ Bam\*=0,  (57)
. the dark solitary wave solutiofb64) becomes a black one.
Bo~= Ba(N"+p%)=0. (58 The latter is consistent with the dark solitary wave solution

o . presented in Ref26] (settinga; = a,=a3=1, a,=c4, and
For the reason of simplicity, we sB=1. Next, we substi- as=Cy).
tute .for,Bj.the expressions in terms afk.. Thesg algebraic For the Hirota equation, i.e. whem,+ a5=0 andajay
manipulations lead to four equations being equivalent to Eqs._ 3ayas, the solution(60) is no longer valid. Insteady

(55)_(58)' o becomes a free parameter. Equat{6f) now reads

At first we observe that the second equatiff) is iden-
tically satisfied under the Hirota constraint$) and (5).
Thus, the integrable case will allow for one additional free (65)
parameter compared to the situation wiil, ¢ as) #0. In ay

046616-6
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of the dips in the presence of perturbations, the existence of
stable attractors, and the characterization of the basins of
attraction are new questions to be discussed elsewhere.

= W
e VI. SUMMARY AND DISCUSSION

In summary, in the first part we have solved the Hirota
equation by employing the IST method and obtained the dark
N-soliton solution. The one- and two-soliton solutions have
been presented in explicit forms. The interaction of dark soli-
tons was discussed. These results show that there is an inter-
0.0 35 0 esting property of the gray two-soliton solution. The distance

time t between the two gray solitons remains unchanged with the
) ) ) _normalized distance, provided the modulation depths are ap-
FIG. 3. Plot of the evolution of a dark two-dip solitary solution

in the nonintegrable case. Compared to Fig. 2, we have modified thf(?sr()priately chosen. This property may be used in optical
: F e ommunication systems to increase the bit rate. In the second
parametersy, and as by 10% and used,=0.4, £,=0.0545, Q) Y

: art, we have investigated the general HNLS equation.
=—0.9697,b,=0.2355, b, = —0.4545, andbs=1.0. Otherwise, ,‘Z\gain, a generalized dgrk solitary \?vave solution exi:gts. The
the parameter values are the same as in Fig. 2. . - L ;

analytical form of a general dark-soliton solution is still
unknown. Numerically, we have shown that also for the gen-
eral case interesting gray two-soliton solutions exist, which
(approximately possess similar behaviors as the integrable
nes.
It should be noted that the condition for the existence of
femtosecondlark solitary wave solutions is3(3a,+ 2as)
<0. The existence criterion depends on the properties of
third-order dispersion, self-steepening, and self-frequency
a30,<0. (66)  shift. This result complements previous findings. It was
shown in Ref.[14] that femtosecondright solitary wave
On the other hand, making use of the second conditipn  solutions exist fora3(3a4+2as)>0. As the value of &,
one finds + 2«5 is generally negative, it means that femtosecond dark
(bright) solitary waves can be realized in the positinega-
a10,<0. (67)  tive) TOD regime.
Finally, we should remind the reader that there appears

This condition agrees with the condition for dark solitons 5nother constraint for the existence of dark solitary waves in
known from the(integrable NLS equation. It is worth men- o practical systems. In fact, the frequency shifshould

tioning that the latter inequality is not necessary for the soyo 1uch smaller than the carrier frequenay to maintain

lutions (59)—(62). However, we expect that far,a;>0 the  he validity of the model3) under the quasimonochromatic

solutions become unstable. N approximation. This requirement can be satisfied in the nor-
So far nothing is known about the stability of the general, ;| group velocity dispersion regime:{<0). For demon-

solitary dip solutions when the Hirota conditio® and(S)  gyration, let us take a typical single mode optical fiber as an
are not satisfied. The question of robustness, together wit kample. If one chooses the optical fiber parametefigihs
the investigation ofa genera}I solitaydip solution, requires ay=—10 p€/km, a,=20 W~ Y/km, and s
plenty of numerical simulations. Here we only demonstrate_ 0.02 p&/km, one can estimatf ~4x 102w, from Eq.

on one example that, when deviating from the Hirota con(gy for plack optical pulses of 100 fs with wavelength
straints(4) and (5), the above mentioned interaction proper- 1.06 um. Therefore, the femtosecond dark solitary wave

:!ez ar:e still(approximate(;y true. In Fig(.j 3 V\r’]e havi modi'- should exist in optical fibers with positive TOD in the normal
ied the parametera, and o5 compared to those shown in group velocity dispersion regime.

Fig. 2 (a4 has been increased by 10% ang has been
decreased by 10%othey do not fulfill anymore the Hirota
cons_traints. Then we start a §imulation with an initial two-dip ACKNOWLEDGMENTS

solution where the modulation depths haven been chosen

appropriately. No principal differences to Fig. 2 occur, ex- This research was supported by the National Natural Sci-
cept for an enhanced radiation. More simulation results willence Foundation of China, Grant No. 10074041, and Provin-
be presented separately, together with the form as with theial Natural Science Foundation of Shanxi, Grant Nos.
well as structural stability considerations. By the latter, we991004 and 20001003. Zhonghao Li wishes to thank the
mean that thégeneral HNLS equation can be further gen- Deutsche Forschungsgemeinschaft for support through the
eralized by taking into account additional terms describingGraduiertenkolleg at the Heinrich-Heine-Universitissel-
e.g., filters, amplification, attenuation, etc. Then the behaviodorf.

amplitude |q|
o —
[o0] no

I
~

For y and K we can use Egsi61) and (62), respectively,
taking into account the Hirota constrairi® and(5). These
results agree with the solutio@8) constructed by the IST
for reflectionless potentials.

Besides the free parameter for the Hirota equation an-
other point is worth mentioning. The existence condition
(63) simplifies for Eq.(4) to
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