
China
ina

PHYSICAL REVIEW E 66, 046616 ~2002!
Gray optical dips in the subpicosecond regime
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Narrow optical dip solutions are investigated when, besides self-phase modulation and group velocity
dispersion, also third-order dispersion, nonlinear dispersion, and stimulated Raman scattering are taken into
account. By using the inverse scattering transform for the higher-order optical nonlinear Schro¨dinger~HNLS!
equation under Hirota parameter conditions, the darkN-soliton solution is constructed. The explicit forms of
the one- and two-soliton solutions are investigated in detail. The results show an interesting property of the
gray two-soliton solution. Two gray dips do not interact provided their modulation depths are appropriately
chosen. In addition, when generalizing the HNLS equation~to regions beyond the Hirota parameter condi-
tions!, it can be shown that also quite stable generalized two-dip solitary wave solutions exist. The latter,
although not belonging to integrable systems, approximately preserve most of the interesting properties de-
tected for the integrable Hirota equation.
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I. INTRODUCTION

Since the invention of the optical soliton@1,2# in the early
seventies, optical soliton physics turned out to be one of
fastest growing fields in the modern science. The solit
light waves are of particular interest in optical fiber syste
because of their enormous potential for telecommunica
and ultrafast signal-routing systems@3#. The concept has
demonstrated already a huge potential for applications, a
promises fundamental progress in basic research as well
example, bright solitons are well established in optical te
communication; dark solitons may play a new interest
role in guiding light by light.

From the theoretical point of view, the success of opti
solitons is based on the properties of the one-dimensio
cubic nonlinear Schro¨dinger ~NLS! equation as the generi
and robust model. The NLS equation can be used for inv
tigating pulses in the picosecond regime. Obviously, n
rower optical solitary pulses are candidates for higher
rates. Also the faster switching is supported by sma
widths. Thus, during the last years very short pulses bec
a topic of growing interest. In the subpicosecond regi
(<100 fs), higher-order effects, such as third-order disp
sion~TOD!, self-steepening, and self-frequency shift beco
important@4#. Considering these effects, Kodama and Ha
gawa @5# derived a higher-order optical nonlinear Schr¨-
dinger ~HNLS! equation. Subsequently, many authors ha
analyzed the HNLS equation, preferentially under ze
boundary conditions and from different points of view. Th
obtained new exact solutions, such as optical shocks and
bright N-soliton solution@6–16#.

In contrast to the bright solitary wave solutions, the ch
acteristics of dark solutions of the HNLS equation~under
nonzero boundary conditions! is less known. In the picosec
ond regime, dark solitary waves or solitons follow from t
NLS equation. They have been studied by several auth
@1,17–25# in both, theory and experiment. In recent yea
the femtosecond dark solitary waves or solitons becam
1063-651X/2002/66~4!/046616~8!/$20.00 66 0466
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increasing interest. The black solitary wave solution and
so-called combined solitary wave solutions for the HNL
equation under nonzero boundary condition have been fo
@8,26–28#. Very recently, Mahalingam and Porsezian@28#
investigated the integrability of the HNLS equation by em
ploying a Painleve´ analysis. They constructed an explicit La
pair for the HNLS equation under specific conditions for
coefficients. In that case the HNLS equation is called Hir
equation. The Hirota bilinear form was used to generate
dark ~black! one and two solitons. The grayN-soliton solu-
tion of the Hirota equation has not been reported yet. As
shall demonstrate, the inverse scattering transform~IST! can
be used to construct new solutions that show interes
properties in itself.

In this paper, we work out the details of the IST for th
Hirota equation under nonzero boundary conditions. The
malism will be used to construct the~general! dark ~gray!
N-soliton solution. The dark one- and two-soliton solutio
will be presented in explicit forms. Interesting physical a
plications will arise from the characteristics of the gray tw
soliton solution. After discussing the peculiarities of the la
ter, we pose the question whether the new phenomena
also prevail in the nonintegrable regime. For that we exte
the model beyond the Hirota conditions, i.e., we consider
HNLS equation without further restrictions of its coeffi
cients. We shall obtain a~generalized! dark ~gray! solitary
wave solution. Numerically, we shall demonstrate that also
the nonintegrable regime noninteracting gray two-dip so
tions exist.

The manuscript is organized as follows. In Sec. II, w
briefly present the general model. In Sec. III the spec
Hirota conditions are assumed. The IST formalism will
worked out in detail in order to use it for constructing ge
eral solutions. The general darkN-soliton solution follows in
Sec. IV for reflectionless potentials. Special attention
given to the gray two-soliton solution. After a generalizati
to the nonintegrable case in Sec. V, the paper is conclude
Sec. VI by a short summary and discussion.
©2002 The American Physical Society16-1
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II. THE MODEL

The standard model for localized ultrashort light waves
the subpicosecond~or femtosecond! regime is the
(111)-dimensional HNLS equation. The latter describes
propagation of an optical mode inZ-direction. When the
mode is localized, we use its typical length in timeT for
normalization. Linear as well as nonlinear group veloc
dispersion ~GVD!, the Kerr nonlinearity @via self-phase
modulation~SPM!#, and stimulated Raman scattering~SRS!
are taken into account. In a frame moving with the gro
velocity, the HNLS equation is written as@5#

EZ5 i ~a1ETT1a2uEu2E!1a3ETTT1a4~ uEu2E!T

1a5E~ uEu2!T , ~1!

whereE is the slowly varying envelope of the electric fiel
the subscriptsZ andT denote the spatial and temporal part
derivatives in retarded time coordinates, respectively,
a1 , a2 , a3 , a4, and a5 are coefficients following from
GVD, SPM, TOD, self-steepening, and self-frequency s
~arising from SRS!, respectively.

For picosecond light pulses, the last three terms on
right-hand side of Eq.~1! can be omitted, and Eq.~1! reduces
to the NLS equation. The NLS equation includes only t
linear GVD and the SPM. It admits bright or dark solito
type pulse propagation in the anomalous or normal disp
sion regimes, respectively@1,2,29,30#. The NLS equation is
the generic model for envelope solitons. In numereous ca
it has been used to describe the dominating balance betw
nonlinearity and dispersion to produce stable localized s
tions. However, as has been mentioned already, for ultras
light pulses, whose duration is shorter than 100 fs, the
three terms on the right-hand side of Eq.~1! are important
and should be retained.

By employing appropriate scaling transformations, Eq.~1!
can be reduced to a two-parameter canonical form. In
following, however, we shall keep the original formulatio
with five parameters in order to better identify the roles
the various physical effects.

Searching for general solutions, let us first apply a G
ilean transform@16#

E~Z,T!5E0q~Z,T2Z/V!exp@ i ~KZ2VT!#, ~2!

whereV is the group velocity shift,V is the frequency shift,
andK represents the phase shift. An additional parameterE0
has been introduced here~it will be fixed later! in order to
simplify some notations.

After this transformation, the functionq(z,t) ~with argu-
mentsz5Z and t5T2Z/V) satisfies

qz1 ib0q1b1qt2 ib2qtt2b3qttt2 ibnuqu2q2b4uqu2qt

2b5q~ uqu2! t50, ~3!

where b05K1a1V22a3V3, b152V2122a1V
13a3V2, b25a123a3V, bn5uE0u2(a22a4V), b3
5a3 , b45a4uE0u2, and b55(a41a5)uE0u2. Equation~3!
is the starting point for the following investigation.
04661
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III. THE IST METHOD FOR THE HIROTA EQUATION

Generally, Eq.~3! is not integrable, except for some sp
cial cases. The latter have been identified by several auth
and the original ideas of Hirota@6# as well as Sasa and Sa
suma @7# have been confirmed. In the following, we sha
concentrate on the Hirota equation. The latter is obtain
from the HNLS equation~1! when the parameters satisfy th
conditions:

a41a550, ~4!

a1a423a2a350. ~5!

We shall call these restrictions Hirota conditions~con-
straints!. Hirota @6# has presented exact envelope solutio
under the conditions mentioned above. He also showed
the solutions reveal the close relation between classical s
tons and envelope solitons. Subsequently, many authors
cussed the integrability of the Hirota equation, includi
such interesting topics as the Painleve´ test, Lax pairs, bound-
ary conditions, and so on.

The Hirota equation can be solved by the IST method
the following, we shall work out the details of that procedu
for nonzero boundary conditions. The idea is to use that
malism to construct gray soliton~dip! solutions. Under Hi-
rota conditions, by settinguE0u2526a3 /a4 , K52a1V2

1a3V31m2uE0u2(a22a4V) and employing the 232
AKNS method@31#, the Lax pair for Eq.~3! follows from

Ct5LC, ~6!

Cz5MC, ~7!

where

C5S C1

C2
D , ~8!

in the form

L5S 2 il q

q* il D , ~9!

M5 i ~b1l1b2l21b3l3!S 1 0

0 21D 2~b11b2l1b3l2!

3S 0 q

q* 0D 1
1

2
i ~b21b3l!S uqu22m2 2qt

qt* 2uqu21m2D
2

1

4
b3S q* qt2qqt* 2uqu2q22m2q2qtt

2uqu2q* 22m2q* 2qtt* qqt* 2q* qt
D .

~10!

Here, b152V2122a1V13a3V212m2a3 , b2522(a1
23Va3), b354a3, and l is the spectral parameter. Con
sidering nonzero boundary conditions for dark solitons,
have introduced a positive constantm2 denoting the
asymptotic value of the darkN-soliton intensityuqu2 as time
6-2
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t approaches infinity~i.e., uqu2→m2 as utu→`). Using the
compatibility conditionL z2M t1@L ,M #50, one can easily
derive Eq.~3! under the Hirota conditions. The present L
pair is basically the same as that presented in Ref.@28#. In
the following, it will turn out that the present form is mor
convenient to solve the Lax equations~6! and~7! under non-
zero boundary conditions.

The construction of the Lax pair suggests that Eq.~3! is
integrable under nonzero boundary condition. However,
existence of a Lax pair does not always ensure to solve E
~6! and ~7! in an explicit form. Therefore, the gener
N-soliton solution under nonzero boundary condition still
quires to work out the details of the IST.

Having in mind that a dark soliton solution may exist wi
different asymptotic behaviors in phase att→6`, without
the loss of generality we write the nonzero boundary con
tions asq→m ast→1`, andq→meif ast→2`. Here,f
is an arbitrary constant to allow for phase differences. Fr
the asymptotic behavior of the operatorL @see Eq.~9!#,

L→L052 ils31U0 as t→1`, ~11!

L→L252 ils31U2 as t→2`, ~12!

where

U05ms1 ,s15S 0 1

1 0D , s35S 1 0

0 21D ~13!

and

U25Q~b!U0Q21~b!, Q~b!5eibs3/2, ~14!

we find that in the limitt→1`, the Lax equation~6! re-
duces to

Et~ t,l!5L0E~ t,l!. ~15!

Its solution is

E~ t,l!5S 1 2 im21~l2k!

im21~l2k! 1 D e2 ikts3

for real numbersl andl2>m2, ~16!

wherek5Al22m2.
In the opposite limitt→2`, we have

E2,t~ t,l!5L2E2~ t,l! ~17!

with the solution

E2~x,t !5Q~b!E~ t,l!. ~18!

Generally,k is a double-valued function ofl. By employing
an auxiliary parameterz instead of introducing a Rieman
surface, we rewrite the parametersl andk @32#,

l5
1

2
~z1m2z21!, ~19!
04661
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1

2
~z2m2z21!. ~20!

It is easy to verify that for realz the parametersl andk are
also real, with l2>m2. The Jost solutionsC(t,z) and
F(t,z) for Eq. ~6! can be expressed as

C~ t,z!5E~ t,z!1E
t

`

K~ t,s!E~s,z!ds ~21!

and

F~ t,z!5E2~ t,z!1E
2`

t

K~ t,s!E2~s,z!ds. ~22!

Here, the kernel functionK(t,s) is a 232 matrix, being
independent ofz. It satisfies

K~ t,t !2s3K~ t,t !s31U~ t !2U050, ~23!

Kt~ t,s!1s3Ks~ t,s!s32U~ t !K~ t,s!

1s3K~ t,s!s3U050 for t,s, ~24!

K~ t,s!50 for t.s, K~ t,1`!50, ~25!

and

K~ t,s!5s1K~ t,s!s1 . ~26!

The scattering data for the operatorL form the sets
5$r (z);z j ,cj , j 51,2, . . . ,n%, where r (z)5b(z)/a(z) is
the reflection coefficient withua(z)u22ub(z)u251, a(z) can
be analytically continued to the upper-half plane Imz>0, z j
are the discrete eigenvalues determined by the zeros ofa(z)
with uz j u5m and Imz j.0, cj are the asymptotic characte
istics of the functions. Within the IST, we find that the sca
tering datas(z) evolve according to

a~z,z!5a~z!, ~27!

b~z,z!5b~z!e22ik(b11b2l1b3l2)z, ~28!

r ~z,z!5r ~z!e22ik(b11b2l1b3l2)z, ~29!

z j~z!5z j~0!5z j , ~30!

cj~z!5cje
22ik j (b11b2l j 1b3l j

2)z. ~31!

The canonical formalism of the IST enables us to obt
the Gel’fand-Levitan-Marchenko integral equation for reco
struction of the kernelK(t,s;z) from the scattering data
s(z). We have

K~ t,s;z!1F~ t1s;z!1E
t

1`

K~ t,t;z!F~t1s;z!dt50

for t,s, ~32!
6-3
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where

F~ t;z!5
1

2 (
j 51

n

cj~z!S m

i z j
D ~12 imz j

21!eik j t

1
1

4pE2`

1`r ~z,z!

i z S m

i z D ~12 imz21!eiktdz.

~33!

From the Eqs.~23! and ~26! we find the solutionq(t,z) of
Eq. ~3! in the form

q~ t,z!5m22K12~ t,t;z!. ~34!

This concludes the explicit solution of the initial-value pro
lem.
ith

04661
IV. N-SOLITON SOLUTIONS

In principle, we could now follow the general solutio
strategy prescribed by the IST to solve any well-pos
initial-value problem inz. Starting with an arbitrary initial
distribution int, during the dynamical evolution inz, solitons
and radiation may appear. Here, we concentrate on the
pler problem of determining only the possible soliton so
tions. As is known from other cases, solitons correspond
the discrete spectrum. Thus, when we start with certain ty
of initial distributions leading only to the discrete spectra
z50, we can expect to determine the soliton solutions
rectly.

A. General expressions for reflectionless potentials

For the case of reflectionless potentials, i.e., forr (z,z)
50, the Gel’fand-Levitan-Marchenko equation~32! reduces
to
05K~ t,s;z!1
1

2 (
j 51

n

cj~z!S m

i z j
D ~12 imz j

21!eik j (t1s)1E
t

1`

K~ t,t;z!
1

2 (
j 51

n

cj~z!S m

i z j
D ~12 imz j

21!eik j (t1s)dt. ~35!
trix
As is well known, one can solve that integral equation w
the ansatz

Kmn~ t,s;z!5 (
m51

n

cm~z!Amn,m~ t !eikms, m,n51,2.

~36!

A straightforward calculation leads to

(
m51

n S d jm1
mcm~z!e2(hm1h j )t

2~hm1h j !
DA11,m~ t !

1 (
m51

n
i z j cm~z!e2(hm1h j )t

2~hm1h j !
A12,m~ t !52

1

2
me2h j t,

~37!

(
m51

n S 2 i z j cm~z!e2(hm1h j )t

2~hm1h j !
DA11,m~ t !

1 (
m51

n S d jm1
mcm~z!e2(hm1h j )t

2~hm1h j !
DA12,m~ t !

5
1

2
i z je

2h j t, ~38!

(
m51

n S d jm1
mcm~z!e2(hm1h j )t

2~hm1h j !
DA21,m~ t !

1 (
m51

n S i z j cm~z!e2(hm1h j )t

2~hm1h j !
DA22,m~ t !52

1

2
i z je

2h j t,

~39!
(
m51

n S 2 i z j cm~z!e2(hm1h j )t

2~hm1h j !
DA21,m~ t !

1 (
m51

n S d jm1
mcm~z!e2(hm1h j )t

2~hm1h j !
DA22,m~ t !

52
1

2
me2h j t, ~40!

for j 51, 2, . . . , n , wherezm5jm1 ihm , uzmu5m, andhm
52 ikm , for m51, 2,•••, n.

The complex conjugates of the Eqs.~37! and ~38! are
consistent with Eqs.~39! and ~40!. Therefore, in the follow-
ing we need only to proceed with Eqs.~37! and~38!. This is
a set of algebraic equations which can be written in ma
form,

~ I 1mB!Ã111JBÃ1252
1

2
m f , ~41!

J̄BÃ111~ I 1mB!Ã1252
1

2
J̄ f , ~42!

where

B5~Bjm!n3n ,Ã115~Ã11,m!n31 ,Ã125~Ã12,m!n31 ,

J5 i diag~z1 ,z2 , . . . ,zn!. ~43!

The matrix components are

f j5Acj~z!e2h j t, Bjm5
f j f m

2~hm1h j !
, ~44!
6-4



y

o-
ef.

ck
e

l

GRAY OPTICAL DIPS IN THE SUBPICOSECOND REGIME PHYSICAL REVIEW E66, 046616 ~2002!
Ã11,m5Acm~z!A11,m~ t !, Ã12,m5Acm~z!A12,m~ t !.
~45!

Solving these equations systematically, we arrive at

Ã1252
1

2
m2~J1mJB1mBJ!21f . ~46!

Substituting the solution~46! into Eq. ~36!, we can evaluate
the right-hand side of Eq.~34! to obtain the darkN-soliton
solution in the general form

qn~ t,z!5m
det~J1mJB1mBJ1m f f T!

det~J1mJB1mBJ!
. ~47!

For n51 this simplifies to the dark~gray! one-soliton
solution

q1~ t,z!5
j12 ih1

m
~j11 ih1tanh@h1u1~ t,z!# !, ~48!

where m25j1
21h1

2 with h1.0, and u1(t,z)5t2t12(b1

1b2j11b3j1
2)z with mc1/2h15e22t1. The solution pos-

sesses the asymptotic behaviors
e

ity
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q1~ t,z!→m ast→1`, ~49!

q1~ t,z!→m
z1

z1
ast→2`. ~50!

The amplitude of the dark one soliton is given b
uq1(t,z)u5$(j1

21h1
2)2h1

2sech2@h1u1(t,z)#%1/2. The mini-
mum and maximum amplitudes arej1 andAj1

21h1
2, respec-

tively. It should be pointed out that the dark one-soliton s
lution ~48! is more general than that one presented in R
@28# by the Hirota method. The latter solution is a bla
soliton solution, for which the minimum of the amplitud
uq1(t,z)u is zero. The present solution~48! includes gray
solitons,

B. Properties of a gray two-soliton solution

For n52, Eq.~47! leads to the explicit form of a genera
dark two soliton
q2~ t,z!5mF 11

4m„q11~ t,z!1q12~ t,z!22m…24i
z11z2

h11h2
„q11~ t,z!2m…„q12~ t,z!2m…

4m21S z11z2

h11h2
D 2

„q11~ t,z!2m…„q12~ t,z!2m…

G . ~51!
ce
m-
to

the
g-

a
r-
two
ng
t-
n
is-
du-
.g.,
r

es.
Here, q11(t,z)[q1(t,z;z1) and q12(t,z)[q1(t,z;z2) are
dark one-soliton solutions with parametersz1 andz2 @see Eq.
~48!#, respectively. The asymptotic behaviors are

q2~ t,z!→m as t→1`, ~52!

q2~ t,z!→mS z21z1

z21z1
D 2

as t→2`. ~53!

Although not strictly valid, a two-soliton solution may b
interpreted as the superposition of two interacting~effective!
one-soliton solutions approaching each other from infin
This interpretation leads to scenarios for soliton-soliton
teractions. The latter are important issues, e.g., for estima
bit-error rates~BER!. In the following, we may therefore
draw interesting conclusions by inspecting details of the tw
soliton solution~51!. From the latter, we can clearly recog
nize that, similar to the characteristics of dark solitons in
picosecond domain, the femtosecond dark soliton soluti
retain their shapes after interaction. Only slight changes
their phases occur. The interaction of dark solitons is elas
Figure 1 shows graphically an interaction derived from
dark two-soliton solution~51!. From this plot, we conclude
that the interaction force between the two dark~one! solitons
.
-
ng

-

e
s

in
c.
e

in the femtosecond domain is effectively repulsive. Sin
there is no possibility to form a bound state, this is an i
portant feature in favor of dark solitons when compared
bright solitons. Because of the repulsive interaction, in
future dark solitons may become of interest also in lon
distance communication systems.

It is important to note that it is possible to construct
two-soliton solution that effectively does not show any inte
action between the dips, i.e., the distance between the
~effective! one-soliton solutions does not change duri
propagation inz. This happens if the modulation depths sa
isfy j252(j11b2 /b3). Figure 2 presents such an evolutio
of a gray two-soliton solution. The plot shows that the d
tance between the two dips remains unchanged if the mo
lation depths are chosen appropriately. This property is, e
very interesting for optical communication with low BER o
for guiding light by light.

V. THE GENERAL MODEL AND ITS SOLITARY
SOLUTIONS

In the preceding section, we investigated theN-soliton
solution under Hirota conditions~4! and ~5!. However, the
Hirota conditions may not be satisfied in real wave guid
6-5
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One could therefore argue that it will be difficult to obser
the proposed solutions in the experiment. As we shall de
onstrate, fortunately the Hirota constraints~4! and~5! are not
needed for the existence of interesting solutions. In the
lowing, we shall construct dark solitary dip solutions for t
general HNLS equation, and not only for the~integrable!
Hirota equation. Thus, now we return to the HNLS equat
without the Hirota constraints. We shall present dark solit
dip solutions in explicit forms.

In order to proceed, we make an ansatz similar to
~integrable! dark one-soliton solution~48!,

q~z,t !5eif$l1 ir tanh@h~ t2xz!#%. ~54!

Here, f is introduced to take care of a possible const
phase,h and x are the pulse width and the inverse gro
velocity shift, respectively, and finallyl designates the dept
of modulation of the dark solitary wave. The solitary wa
amplitude is given byuq(z,t)u5$(l21r2)2r2sech2@h(t
2xz)#%1/2; the minimum and maximum amplitudes arel
andAl21r2, respectively.

Substituting the ansatz~54! into Eq. ~3! and equating the
coefficients of independent terms, we find that the para
eters have to satisfy

6b3h21~b412b5!r250, ~55!

2b2h212b5lhr1bnr250, ~56!

hx2b1h2rlbn22b3h31b4hl250, ~57!

b02bn~l21r2!50. ~58!

For the reason of simplicity, we setE051. Next, we substi-
tute for b j the expressions in terms ofak . These algebraic
manipulations lead to four equations being equivalent to E
~55!–~58!.

At first we observe that the second equation~56! is iden-
tically satisfied under the Hirota constraints~4! and ~5!.
Thus, the integrable case will allow for one additional fr
parameter compared to the situation with (a41a5)Þ0. In

FIG. 1. Plot of the dark two-soliton solution~51!. The parameter
values are t152.5, t2522.5, b150, b2521.0, b351.0, m
51.0, j150.4, andj250.1; h1 and h2 are determined fromm2

5j1
21h1

25j2
21h2

2, respectively.
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any case, we shall considerh andV as free parameters. In
the Hirota case, in addition,l can be freely chosen.

Under the conditiona3(3a412a5),0 and for (a4
1a5)Þ0, we determine the parametersr, l, x, andK as

r5hA 26a3

3a412a5
, ~59!

l5A 26a3

3a412a5
S V2

a1~3a412a5!23a2a3

6a3~a41a5! D ,

~60!

x5~22a1V13a3V2!12a3h21~a22a4V!lr/h

2a4l2, ~61!

K52a1V21a3V31~a22a4V!~l21r2!. ~62!

From Eq. ~59!, we recognize that the condition for a da
solitary wave solution~54! is

a3~3a412a5!,0. ~63!

If we force the frequency shiftV to satisfy

V5
a1~3a412a5!23a2a3

6a3~a41a5!
, ~64!

the dark solitary wave solution~54! becomes a black one
The latter is consistent with the dark solitary wave soluti
presented in Ref.@26# ~settinga15a25a351, a45c1, and
a55c2).

For the Hirota equation, i.e. whena41a550 anda1a4
53a2a3, the solution~60! is no longer valid. Instead,l
becomes a free parameter. Equation~59! now reads

r252
6a3

a4
h2. ~65!

FIG. 2. Plot of the dark two-soliton solution~51!. The parameter
values are the same as in Fig. 1 except forj252(j11b2 /b3)
50.6.
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For x and K we can use Eqs.~61! and ~62!, respectively,
taking into account the Hirota constraints~4! and ~5!. These
results agree with the solution~48! constructed by the IST
for reflectionless potentials.

Besides the free parameterl, for the Hirota equation an
other point is worth mentioning. The existence conditi
~63! simplifies for Eq.~4! to

a3a4,0. ~66!

On the other hand, making use of the second condition~5!,
one finds

a1a2,0. ~67!

This condition agrees with the condition for dark solito
known from the~integrable! NLS equation. It is worth men-
tioning that the latter inequality is not necessary for the
lutions ~59!–~62!. However, we expect that fora1a2.0 the
solutions become unstable.

So far nothing is known about the stability of the gene
solitary dip solutions when the Hirota conditions~4! and~5!
are not satisfied. The question of robustness, together
the investigation of a general solitaryN-dip solution, requires
plenty of numerical simulations. Here we only demonstr
on one example that, when deviating from the Hirota co
straints~4! and ~5!, the above mentioned interaction prope
ties are still~approximately! true. In Fig. 3, we have modi
fied the parametersa4 anda5 compared to those shown i
Fig. 2 (a4 has been increased by 10% anda5 has been
decreased by 10%!; they do not fulfill anymore the Hirota
constraints. Then we start a simulation with an initial two-d
solution where the modulation depths haven been cho
appropriately. No principal differences to Fig. 2 occur, e
cept for an enhanced radiation. More simulation results w
be presented separately, together with the form as with
well as structural stability considerations. By the latter,
mean that the~general! HNLS equation can be further gen
eralized by taking into account additional terms describi
e.g., filters, amplification, attenuation, etc. Then the beha

FIG. 3. Plot of the evolution of a dark two-dip solitary solutio
in the nonintegrable case. Compared to Fig. 2, we have modified
parametersa4 and a5 by 10% and usedj150.4, j250.0545, V
520.9697, b150.2355, b2520.4545, andb351.0. Otherwise,
the parameter values are the same as in Fig. 2.
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of the dips in the presence of perturbations, the existenc
stable attractors, and the characterization of the basin
attraction are new questions to be discussed elsewhere.

VI. SUMMARY AND DISCUSSION

In summary, in the first part we have solved the Hiro
equation by employing the IST method and obtained the d
N-soliton solution. The one- and two-soliton solutions ha
been presented in explicit forms. The interaction of dark s
tons was discussed. These results show that there is an
esting property of the gray two-soliton solution. The distan
between the two gray solitons remains unchanged with
normalized distance, provided the modulation depths are
propriately chosen. This property may be used in opti
communication systems to increase the bit rate. In the sec
part, we have investigated the general HNLS equati
Again, a generalized dark solitary wave solution exists. T
analytical form of a general darkN-soliton solution is still
unknown. Numerically, we have shown that also for the g
eral case interesting gray two-soliton solutions exist, wh
~approximately! possess similar behaviors as the integra
ones.

It should be noted that the condition for the existence
femtoseconddark solitary wave solutions isa3(3a412a5)
,0. The existence criterion depends on the properties
third-order dispersion, self-steepening, and self-freque
shift. This result complements previous findings. It w
shown in Ref.@14# that femtosecondbright solitary wave
solutions exist fora3(3a412a5).0. As the value of 3a4
12a5 is generally negative, it means that femtosecond d
~bright! solitary waves can be realized in the positive~nega-
tive! TOD regime.

Finally, we should remind the reader that there appe
another constraint for the existence of dark solitary wave
the practical systems. In fact, the frequency shiftV should
be much smaller than the carrier frequencyv0 to maintain
the validity of the model~3! under the quasimonochromat
approximation. This requirement can be satisfied in the n
mal group velocity dispersion regime (a1,0). For demon-
stration, let us take a typical single mode optical fiber as
example. If one chooses the optical fiber parameters as@4#:
a15210 ps2/km, a2520 W21/km, and a3
50.02 ps3/km, one can estimateV;431022v0 from Eq.
~64! for black optical pulses of 100 fs with waveleng
1.06mm. Therefore, the femtosecond dark solitary wa
should exist in optical fibers with positive TOD in the norm
group velocity dispersion regime.
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