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Electromagnetic vector potentials and the scalarization of sources in a nonhomogeneous medium
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Electromagnetic source equivalence is considered for the case of an isotropic nonhomogeneous medium.
Equivalent transformations of the transversally orient@ith respect to a chosen axisurrent sources into
longitudinally oriented sources are derived. They allow the reduction of any given distribution of arbitrarily
oriented sources to an equivalent distribution of single-component parallel electric and magnetic sources. The
technique is referred to as source scalarization; and, together with a recently developed vector potential field
representation in an isotropic, nonhomogeneous, lossy medium, which may contain sources of arbitrary orien-
tation, it is applied to produce a complete description of the field in terms of two scalar wave potentials. The
proposed source scalarization technique is illustrated by a simple numerical example: the radiation of an
electromagnetic pulse by an asymmetrical loop of magnetic currents.
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[. INTRODUCTION scalar potentials. The transformations allowing the scalariza-
tion of the electromagnetic sources are derived using a
It is well known that there are certain sources, e.g., asector-potential representation of the field. The fields due to
small loop of electric current and its equivalent magneticthe original and the equivalent sources are shown to be iden-
dipole, which produce the same field. In general, two sets ofical everywhere, the locations of the sources included.
sources are considered equivalent with respect to a region of The significance of the problem of source scalarization
interestV if they produce identical fields in it. So far, the stems from its relation to the electromagnéfd) field sca-
studies on electromagnetic source equivalence have bedarization (or TE/TM field decompositionwith respect to a

limited mostly to time-harmonic fields in homogeneous me-gistinguished axis in linear media. The purpose of the field
dia. For example, the equivalence relations between electrigcalarization is to represent the field in terms of two scalar
current densities on one hand and magnetic current denSiti%%tential functions, e.g., a pair @f-oriented magnetic and

on the other have been known for some decdd¢sThey lectri SlA—= A andF=AF. [41. A simil
are based on the Helmholtz equation for the electric field®!€Ctrc vector potentiald=nA, andF=nF, [4]. A similar

vector E or the magnetic field vectoH (it is noted that t€chnique uses a pair af—oriented magnetic and electric
throughout the paper vectors appear in bold face, and unfd€rtz potential5]. These scalar functions, e.g, andF,,
vectors such as are identified by carrying a) and lead to satisfy the wave equation in the time domain or the Helm-
field equivalence outside the volume of the sources. Moré10ItZ equation in the frequency domain and are, thereiore,

recently, it was showrf2,3] that a given electric current called scalar wave potentials. T, potential represents a

; e M, field and theF, potential represents a THield. The
source can be decomposed into a part radiating a transvers-gOtal field is thus given as the superposition of the Tand

electric(TE) wave and a part radiating a transverse-magneti E . field hich v referred t field mod
(TM) wave with respect to a choséar distinguishedl axis n TI€IGS, which are commonly referred o as Tield modes.
In a homogeneous region, the direction of the magnetic

g }rh'f’ dec;ompc;w?n IS téaseﬁ on the equwaleng_e derived 'Und electric vector potentials is that of the electric and mag-
ef.[1] and is also limited to homogeneous media. netic current densities, respectively. Thus, if all sources are

Here, we focus on a problem which, to the best of our llel ton let lution in t f tnd led
knowledge, has not been addressed so far. This is the redugaraliel ton, a complete solution in terms o couple

tion of a given distribution of electric and magnetic currentSCalar wave pot_ent|als IS possilple-6]. |t_car_1 be shown that
densities of arbitrary orientation to equivalent sources in theproblems involving media whose constltutlye parameters are
form of single-component electric and magnetic current denfunctions of one coordinate only, e.g., alongcan also be
sities parallel to a distinguished axis The technique is reduced to the analysis of two decE)upIed modes,, Bivid
referred to as source scalarization. An important merit of thisl En [7,8], if the sources are parallel to Using the proposed
technique is that it is valid inonhomogeneotisotropic me- ~ source scalarization technique, the sources in the above EM
dia. It is applicable not only to the direct field analysis in problems can be transformed to achieverientation. Sub-
terms ofE andH but also to the analysis based on vector andsequently, the analysis can be carried out either for the TE
mode or for the TN mode. The advantages of solving a
single scalar wave equation as opposed to the Maxwell equa-
*Electronic address: talia@mcmaster.ca tions for the field vectors are obvious.
"Electronic address: wsw@maths.gla.ac.uk The proposed source scalarization technique is in general

1063-651X/2002/6@}/0466148)/$20.00 66 046614-1 ©2002 The American Physical Society



N. K. GEORGIEVA AND W. S. WEIGLHOFER PHYSICAL REVIEW 66, 046614 (2002

valid in a nonhomogeneous medium where the gradients ahagnetic conductivity, while a fictitious property of matter,
the constitutive parameters are not restricted to any particulas of considerable value in computational electrodynamics
axis. This makes it applicable to problems of a more generalvhen dispersion-free media are simulated and fictitious per-
type than those described above where a solution can Hectly matched absorbers are construdtigl. In the follow-
constructed using either the Maxwell equations or suitabléng derivations, it will be understood that the field and its
scalar wave potential techniqugk 10]. In the latter, the so- associated potentials are functions of space and time, while
lution is obtained in terms of twgoupledscalar wave po- the constitutive parameters are functions of space only. The
tentials. local nature of the relations in E(B) means that the medium
The field and source scalarization in terms of scalar wavéas instantaneous, and thus nonphysical, response. Such an
potentials is derived and demonstrated in the time-domaimassumption is often made in transient computational algo-
making the assumption of an instantaneous response of thighms for media whose constitutive parameters are nearly
medium. However, all equations are in principle directly dispersion-free in the frequency band of interest.
transferable into the frequency domain, where proper care In view of Egs.(1)—(3), the magnetic vector potenti&l
can be taken of the frequency-dependent constitutive paranand the electric vector potenti&l are introduced as
eters; such a frequency-domain approach became available A
recently[11]. HHE=V XA,
eEF=—-VXF. (4
II. VECTOR POTENTIALS AND SOURCES IN A
NONHOMOGENEOUS MEDIUM Equations(1) and(2) require that the respective charge den-
sities vanish,p,=0, pi=0. We add for clarity that while
_ ) the magnetic charges and magnetic currents are considered
Here, we propose a vector potential formalism for thefictitious EM sources, they play an important role in solu-
case of an isotropic nonhomogeneous lossy medium, whichons based on the equivalence principle and EM duality
may involve electric and magnetic currents of arbitrary di'£14]. According to the continuity relations, the following re-

rections. It gives a more general definition of the sources Okrictions are imposed on the current sources associated with
the vector potentials and serves as a starting point toward thge A field and theF field:

scalarization of EM sources. It also gives explicitly the nec-

A. General vector potential equations

essary conditions for the EM field scalarization and shows V~JQ=O,
how the coupling between the vector potential components .
occurs in a nonhomogeneous medium. V-Je=0, )

For a linear EM problem, one can use the superposition AL ) ) )
principle and decompose the EM field accordingly. The partvhereJy, is the magnetic current density which appears as a
for which source of theA field, andJ; denotes the electric current

. density associated with tHe field. Thenph=0 andpt=0
V-B"*=0 (1) hold indeed if zero initial conditions are assumed for the

charge distributionsp? =0, p%—oy=0. Thus,J? and
holds is called the field, (EA,HA). TheF field, (EF,HF), is ge cISTbUAONSPm(-0)= . Pe(1=0) M Im

that which fulfills Jg, if represented as the curls of given vector fields, are
admissible sources oA and F, respectively. The current
V.DF=0. (2)  sources of an EM problem can thus be represented as
Jo=J0+3E,

In general, the constitutive relations for time-dependent
fields are given in terms of integrals of convolution type to
fulfill the requirement of causalitysee, for example, Ref.

[12]]. In the following analysis, however, we use the tlrne'Where the electric current sources of #deld, JQ, and the

dependent constitutive relations of an isotropic, nonhomoge- . ) E .
neous medium in their instantaneous form. We have magnetic current sources of thdfield, J;,,, are not subjected

to any conditions, while;, andJ5 are a subject to the con-

Jm=Jn+JIE, (6)

D(x,t)=e(X)E(x,1), ditions given in Eq.(5). Here, it should be noted that the
classical interpretation is that the sourcesPotan be only
B(x,t)=u(X)H(x,t), electrical currentsi.e., J’nﬁ=0), and the sources df can be
only magnetic currenté.e., J£=O), which is only a special
Jo (X, 1) =0e(X)E(X,1), case of Eq(5).
The above discussion permits a generalization of the vec-
Jo (X ) =Tm(X)H(X1), (3)  tor potential sources. In addition t# and J\,, a set of

sources Jg, J;,) is introduced via Helmholtz' theorem
wheree is the dielectric permittivityu is the magnetic per-

meability, o, is the specific electric conductivityr,, is the Je=VXH-VPg,
specific magnetic conductivity of the medium, all depending <
on the position vectox=(x,y,z). It is briefly noted that the In=—"VXE-VP,, (7)
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where’H, €, P, and P, are given functions of space and and, equivalently,
time. The current densitie} andJ;, have their divergence-

free part clearly distinguished from their curl-free part. The TE=VX(VXA,~TF)—-J+VP,
vectorsH and € can be interpreted as an incident magnetic .
and electric field, respectively, while the scalar functiéhs TH=VX(VXFA+T,A,)—In+VPy. (14)

andP,, are representative of conservative fields. We refer to o - ]
the functions™, &, P,,, andP, asprimary sourceswhile  During the derivations, the modified vector potentials

J% and J;, are called thesecondary source§he currents)?

: NS . A =nA,
andJ!, which are not given in terms of a solenoidal and a wo M
gradient part, will be distinguished from the secondary F=clF (15)
sources by referring to them simply esrrent sources ¢
The divergence-free secondary sources have been introduced. From the equivalence of E).and
J§F=V><7-t, (14), the generalized Lorenz gauge is derived as
—T.D=V-A, +Pg,
A= -VxE ® pooE
- T7,V=V-F+Pp,. (16)

are introduced as admissible sourcesFoaind A, respec-
tively, according to Eq(5). The curl-free secondary sources The governing equations of the modified vector potentials
SA are, henceforth, obtained as
J"=—VPg,

VA, - T, A, +(VI)XF~(VT)T . Y(V-A,+P

anF:—VPm (9) Y23 me M ( s) € ( 5) € ( M e)
=-J0-1T, €,

can only be associated with tiAefield and with theF field,

respectively. Thus, thé\ field and theF field have their V2|:E_TMFE_(V%)XAM_(VZL)T;%V|:6+ P

sources generalized to include the primary sources in the

form = —JE— .M, (17

B+IA=00-VP,, IBA=-VXE, A field, where7 _* and7 ,* are the inverse of the operators defined
in Eq. (12. In Eq. (17), 7, is a second-order differential
F+Ir=I-VP,, XF=VXH, F field. (100  operator in time given by

Both source sets, the current sourcd§,(Jf) and the Te=T,T.= peiy+(eom+ poe)dy+ oeom. (18
secondary sourcedy, J;)), are included in the time-domain
Maxwell equations The vector operatorsM7,) and (V7,) are the gradients of

the operators defined in E¢L2):
TE=VXH-J-J2,
(VI)=(Ve)dt(Voe),

T,H=-VXE-J,-J,. (11
(VT,)=(Vu)d+(Vop), (19
Here, the linear scalar differential operators in tifieand
7, are given by so that, for example,
T.= €dy+ 0, (VI )®=(Ve) s @+ (Vo) ®,
T,=unoiton. (12 (VI)XF.=(Ve)XoF A+ (Vo) XF,. (20)

The operators7, and 7,,, convenient for use in the time These vector operators reflect the influence of the material
domain, also allow the direct transfer of the time-domainnonhomogeneities. In a homogeneous medium, where

analysis presenteg below into the fr~equency donain by reev7,)=(V7,)=0, Eq. (17) simplifies to two decoupled
placing 7, with jwe, and7, with jou. Therein,e is the  equations forlA, andF,, as per
complex dielectric permittivity angl is the complex mag-

_ A
netic permeability. DA,=-J.— 1 &,
As a result of the substitution of E4) into Eq.(11), the .
following field-to-potential representations are obtained DF=-3-7, H. (21)
E=-7,A,—VO-VXF+E, Therein,D=V?— 7, is a wave operator that generalizes the

d’Alembertoperator ¥2— pedy). In view of Egs.(17) and
H=-7TF—-VV+VXA +H, (13 (21), the potential sources are now defined as
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GA=00+1T, €, where:(i) all sources 8%, J%,, £, andH) are parallel tan;
. (i) the gradients of the constitutive parameters are parallel to
GF=Jn+7, H. (22)  p; and(iii) any perfectly conducting edges are parallefito

e : Such regions are said to have a distinguished axighe
It is important to note that the scalar primary sourégs - X

: . . source scalarization technique proposed here allows the re-
and P, affect neither the left-hand side nor the sources in . . i S

o . ; duction of electric and magnetic currents of any distribution

Eq. (21 for the modified vector potentials,, andF, in a ) ) A A” EAE A
homogeneous medium. This means that the currents in EGNd orientation to the forde=Jen, Jpn=Jn, E=&mN,
(9) are nonradiating sources in the sense that they do n@nd7=",n, thus ensuring conditiofi). If all of the above
affect the EM field outside their own volume. However, they conditions are observed, the two coupled vector equations in
do affect the field vectors locally as seen from Etd), as  Eq. (17) reduce to two decoupled scalar equations for the
well as from Eqs(13) and(16). This behavior conforms with wave potential# ,, andF;,:
the theory of nonradiating sources in a homogeneous me-

dium [15]. If the medium is not homogeneou® 7.#0 DAun—(0nT)T H(9pAunt Pe) = —Jen— Te&n,
and/orV7,#0), P, and P, affect the left-hand sides of

Eq.(17). In such a case, the secondary souf&€an not be ’DFen_(an’];L)T;l(,gnFen_;_ P =—J" — T, Hy,
classified as nonradiating. (23

The formalism based on Ed17) involves both vector
potentialsA , andF, with their six components. It is a more ~
general regresent;tion of the EM field in terms of vectorVVherAe‘9n represents the component of they operator,V
potentials than the commonly used magnetic vector potentiaf ¢nN+ V ;. For example, problems involving homogeneous
A. Unlike the latter, the formalism can handlgenerally ~ Or stratified media are reqdlly reduc_ed to th|§._form if their
nonhomogeneous, lossy, isotropic dielectric-magnetic medigources have been scalarized to satisfy conditipn
which involve both electric and magnetic current densities of Conditions (ii) and (iii) are related to the influence of
arbitrary orientations, and this constitutes a different resultimplicit EM sources induced at material nonhomogeneities
The solution procedure involves two coupled second-ordefnd perfectly conducting edges. The implicit sources are dif-
vector equations and its computational advantages will beferent from the explicitly defined EM sourcedy, Jy,, £,
come apparent after a scalarizati@aduction to two scalar andH) as they are dependent on the field that induces them,

equations has been carried out. i.e., they depend oA, andF,. For example, the implicit
current densitiesl, and J,, in a nonhomogeneous medium
B. Scalarization of the vector potential equations are defined according to E(L7) as

Let us assume that the constitutive parameters depend on
a single variable along the axis in the local coordinate
system 0,7, 7), Wheren=7,X7,. Then both vector op- i _
erators ¥7;) and (V7,) are parallel tah. This corresponds ~(VT) XA, N~ (VT)T , (95F ;+ Pr) =Ty, (29)
to a type of nonhomogeneity often encountered in practical
problems: a locally flat interface between two materials.|f conditions (ii) and (iii) are fulfilled the implicit currents
From Eq. (17) it is obvious that in this case single- ;o narallel ton. This, together with conditiori), ensures

component vector potentials defined As=A,;n andE the excitation of single-component-directed decoupled
=F 0 are not mutually coupled as the cross products in theector potentials.

left-hand side vanish. Moreover, they do not give rise 10 ¢ .,nqitions (ji) and (i) are violated, i.e.V7.X N#0

vector potential components tangential to the material inter- A L

face since the vector operatorgT.) and (VZ,) have only and/orV7,xn#0, then the implicit currents are transversal
€ m

n components. They are sufficient by themselves to provide %ﬁ the f”?is.” asso_ciated with the sca_lar wave potentials. I__i_ke
complete field description. e explicitly defined sources, the implicit currgnt densities
The orientation of the source terms determines the oriencan be equivalently reduced to sources parallet,tovhich
tation of the vector potentials as seen from Etj7). The are subsequently plugged in the right-hand side of (E§).
orientation of the vector potentials is also important whenThus a solution in terms of the two scalar wave potentials
their boundary conditions must be satisfied at conducting‘xn @ndF ., can be constructed even for a generally nonho-
edges. The boundary conditions for the vector potential comhogeneous medium that does not have a distinguished axis.
ponents, which are tangential to a perfectly conducting edg@bviously, in this casé,,, andF ., are coupled.
(the term perfect conductor referring to both perfect electric It is now apparent that, regardless of the complexity of the
conductor and perfect magnetic condugtare well posed, Nnonhomogeneous medium, the reduction of an EM problem
while the boundary conditions for the vector potential com-to two scalar wave equations for the paAMQ],FEn)ﬁ is
ponents, which are transversal to the edge, are ill pf8kd possible, and it requires a source scalarization technique
In summary, an EM problem can be described by a pair ofvhich can equivalently transform all explicit and implicit

decoupled collinear vector potentiald (, ,Fen)ﬁ in regions  currents into sources parallel o

(VI)XF (qn—(VT)T 1 (0,A 0+ Pe) =5,
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IIl. SCALARIZATION OF SOURCES GA=00 438, + 1.6, =00+ dyPot T.Ep

The representation of the secondary sources in terms of E oo o o
primary sources via Helmholtz' theorem, E€), is not Grn=JmntImnt L Ha=Int dnPmt T, H, . (30)
unique. Thus, we can define the primary sources in such a

way that the transversal currentd®(,J° ) of the original Once the sources are scalarized, the solution is found in

: . L terms of the wave potentialsA(,,,F.,) and their sources
problem are equivalently replaced by a pair of longitudinal, _ 5~ F ) .

il A GRVA. Of course. the longitudinal (G, ,G,). The field can easily be computed from the poten-
potential sources Coﬁn "2 n)N- urse, gitudinal +ja|s. Using Eq(13), we obtain the following expressions for
original currents J¢,,Jpyy) do not require transformation. the now scalarized problem
This ensures the excitation of single-component vector po-

tentials @,,,,F )N in the analyzed volume. En= =T Aun—dh®+E&n,
The original transverse currenty, andJg,., can be ex-
pressed as a superposition of equivalent longitudinal current Hp=—7F q— 0 W+ H,,

sources §8=J.n, J%=J°% n) and equivalent secondary
sources, which are given in terms of longitudinal primary
sources€=&yn, H="H,n, as per

E.=—V.®-V_XF_n,

H,=—V, ¥+V _XA,n, (31)
0o _1e A o
Jer=Jen+ VX Hyn—VPe, where the scalar potentiads and V' are calculated according
N - to
I, =Jdmn—VXEN-VP,. (25)
—T.P=09,A 0t Pe,
Notice that the presence of the equivalent longitudinal cur-
rent sources)®=J2.n andJ¢=J° n is required in order to —T,V=0nFentPp. (32
apply the three-dimension&BD) Helmholtz’ representation
(7) to the case of transversal currents. For E2p) to hold

identically, we must have TE, = _ViA,un_Jgn'

Equivalently, if Eq.(14) is used, the result is given by

o _ N
Je- =V XHn—V P, %Hn:_ViFen_‘]?nn!

o _ _ n_ ~

I = =V X EN=V P, (26) TE=V, dxAun—V.X TFq AV P,
e __ ~
Jen=nPe. TH,=V, 0Fa+V.X TAA+V Py, (39
Jmn=nPm. (27) Notice that the secondary equivalent current§,

. . . =9,P,, andJS = d,P, are part of the potential sources and,
From Eq.(26), the relations bet_vx(een the primary equwalentt e?efgre thee)r; aren a?:ti\.(eadiating sources. The portions of
sources and the transversal original currents are then denvqﬂe origin’al transversal currents Correspolnding tOV(.Pe)

T €.

as and (= V_P,,) have been effectively eliminated as nonradi-
V24, =—(V,x1°) ating sources, and they affect the_ transversal fi.eld compo-
T 7o Terny nents only locally as seen in the final two equations of Eq.
(393.
Vfﬁn=(V,>< e (28) It is important to note that the equivalent source transfor-
) o mations are independent of the medium; their defining dif-
ViPe=—V_Jc, ferential equation$28) and (29) do not contain any of the
2 [o]
ViPhw=—V,J,. (29 7o, = ~0.5(t) z
<
The 2D Poisson equations in Eq28) and(29) are comple-
mented by suitable boundary conditions for the primary Jo . = —g(t) | *ngz:g(t)
sources. The boundary conditions &y, H,, P, andP,, at Ko y ah
electric and magnetic walls are easily derived from those for * |
the field vectors. They appear as homogeneous Dirichlet or -
Neumann boundary conditions. OnEg and P, are found J2, = 0.59(t)
from Eq. (29), the longitudinal equivalent currentdg,, and -—
Jo,, are calculated via Eq(27). Egs. (27)—(29) define g
uniquely the equivalent longitudinal potential sources pig, 1. Distribution of the original magnetic current density in

(GA,GM)n given by the planex=0.
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FIG. 2. Planar distribution of the equivalent potential sourd®$,Gf) at timet=100At: G. in the planex=0; G} in the planex
=0.5Ah.

constitutive parameters, wu, o, andoy,. The scalarized All J°,  components have the same Gaussian pulse depen-
description obtained here for the case of transient EM probeence on time:

lems in an isotropic, nonhomogeneous, lossy medium is in

agreement with the frequency-domain analysis of a nonho- g(t)=exd — a(t—ty)?], (35
mogeneous uniaxial medium presented in RE8sl6], after

appropriate identifications and specializations are carried outvhere« andt, are numerical constants controlling the width
Such an agreement is an important verification since thand the position of the pulse along the time axis.

Hertz potential technique proposed in R€#,16] achieves A reference(or original) solution is first obtained by ex-
simultaneous field and source scalarization using a differertiting the electric potentialg ., andF ., with their respective
mathematical approach. sources,J,, andJp,,. From them, the original fieldg°,H®)

is calculated according to E¢l4). The wave form of each
component of the original field is recorded at several loca-
IV. ILLUSTRATIVE NUMERICAL EXAMPLE tions in order to be compared with the wave form of the

The theory of potential sources and source scalarization iespective field compor/lenthgnerated by the pair of equiva-
illustrated by the EM pulse radiation of an asymmetrical looplent potential sourcesq;’,G;)x. The planar distribution of
of magnetic currents in a plane orthogonal to the distinthe equivalent potential source§{,G}) is computed from
guished axis, which is chosen as x. All computations are  (Jmy:Jmz) using Egs.(27)—(30). In this particular example,
carried out directly in the time domain using the time-Wwe haveP,=0 and,=0 because the original set of cur-
domain wave potential algorithii®], which treats the wave rents has no electric componer@ andG; are the sources
equations in Eq(23) with an explicit central finite-difference of the wave potentialsA,, ,F ) from which the equivalent
discretization scheme. The original magnetic curréfiisare ~ field (E®,H®) is calculated using Eq33).
in the planex=0 such thatsee Fig. 1 A snapshot of the distribution of@%,GY) in a quadrant
of the planex=0 att=100At is given in Fig. 2. HereAt
denotes the discretization step in time. Because of the syn-
V. X #0, V.35, #0. (349 chronous behavior in time of all%_ components, the

0.0002
0.0001

-0.0001
-0.0002

y o 5, . .
of4/5) 70 "~ % t = 170Aat fdé) 7510

FIG. 3. Distribution of the wave potentials generated by the equivalent potential som@e@i) at timet=170At: A, in the plane
x=0; F,x in the planex=0.5Ah.
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8 x 10 ' ‘ — 10 : : : : :
” N p— —
6x10°) | (@4,65) e 0 :
Ax10°r .10l \ [ B (T J8s) ——
2X10%} : ©.65) -:-
rg 0 20
£ 2xw00) g 30l
. -4x10°} :R Y | » | |
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; o b AT
-10x 106 z ] 60 b |
-12x10°} / ¥y 0t A , /_ 5 |
-14x 10 : : :
X 0 50 100 150 200 250 300 350 -80 0 50 100 150 200 250 200
time step ime step
I e
FIG. 4. Comparison of the wave ZOrms b andHY generated FIG. 5. Comparison of the wave forms Bf andES generated
by the_ original magne'ﬂc loopJf,,.Jn,), and by the equivalent by the original magnetic loopJf,,,J5,), and by the equivalent
potential sourcesG,’,Gy)- potential sources@, ,GY).

relative-to-maximum distribution of Gy ,Gf) in space re- the field component is recorded right inside the source loca-
mains constant in time. Th&{',G};) dependence on time is tion as shown in the figure inset. Figures 4 and 5 are repre-
reflected only by a factor af(t) applied to the source value sentative of the behavior of all field components at all obser-
at each point in space. A snapshot of the potential paigation points. Excellent match of original and equivalent
(A,x,F &) distribution in space dt=170At is shown in Fig.  fields is observed everywhere, inside and outside the volume
3. In Figs. 2 and 3, the magnetic poten#g), and its sources of the original and the equivalent sources.
are plotted in the plane= 0, which is the plane of the origi-
nal magnetic loop. The electric potenti], and its sources
are calculated at points which are displaced by half a spatial
step,Ah/2 , along each axif9], with respect to the points at  The magnetic loop example illustrates very well the con-
which A, is calculated. That is why thE,, and theG}  cept of equivalent transformation of transversal currents into
distributions are plotted in the plane=0.5Ah. In this par-  longitudinal electromagnetic sources obtained in the form of
ticular examplefF .,=0 ande=O in the planex=0, which  planar distributions. It shows that the field equivalence is
is an electric wall. preserved everywhere, the volume of the equivalent sources
Figure 4 shows a comparison between the wave forms adhcluded. The source scalarization technique is in fact a very
the H§ component of the original field and thd$ compo-  useful tool when integrated with a computational algorithm,
nent of the equivalent field generated by the equivalent posuch as the time domain wave potential techni¢@g It
tential sourcesﬁﬁ and GE_ The observation point is away allows the solution of problems involving sources of differ-
from the sources, at an elevation angledef45°. The two  ent direction, complex boundary shapes and various types of
wave forms are practically indistinguishable from each othermaterial nonhomogeneities in terms of only two scalar func-
The maximum relative differenck(Hg—H§)/H§| is below tions, _the. scalar wave.p.otentlgls. Th|s is done through the
10~° when double precision computation is used. It showsscalarization of all explicit and implicit EM sources, the lat-
excellent agreement bearing in mind the finite-difference nater being induced at material nonhomogeneities and conduct-
ture of the algorithm and the numerigalonphysical reflec-  Ing edges. Thus, throughout the computational volume, the
tions from the absorbing boundary conditions. analysis is carArled out in terms (zf a single vector potential
Figure 5 shows a similar comparison only that this timepair (A, ,F.,)n of fixed directionn.

V. CONCLUSION
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