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Geodesic chaos around quadrupolar deformed centers of attraction
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The exact solution to the Einstein equations that represent a static axially symmetric source deformed by an
internal quadrupole is considered. The Poincseetion method is used to study numerically the geodesic
motion of test particles, for prolate quadrupole deformations, we find chaotic motions contrary to the oblate
case where only regular motion is found. We also consider the metric that represents a rotating black hole
deformed by a quadrupole term. This metric is obtained as a two-soliton solution in the context of Belinsky-
Zakharov inverse scattering method. The stability of geodesics depends strongly on the relative direction of the
spin of the center of attraction and the angular momentum of the test particle.
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INTRODUCTION relativity; examples are the fixed two-body problem8],
and particles moving in a monopolar center of attraction sur-
After the visionary work of the Poincafé] and the KAM  rounded by a dipolar half9]. Also gravitational waves, a
(Kolmogorov, Arnold, and Mosef2]) theories, it became nonexisting phenomenon in the Newtonian realm, can pro-
well established that nonintegrability, and hence chaos, is duce irregular motion of test particles orbiting around a static
general rather than exceptional manifestation in the contexslack hole[10,11. Another distinctive feature of general
of dynamical systems, see for instance, R81. Given this  relativity is the dragging of inertial frames due to mass rota-
ubiquitous fact, an important issue in astronomical modelingion. This fact is observed, for instance, in the impressive
is the study in which extent in phase space chaoticity rises idifferences of the geodesic motion in Schwarzschild and
models that are relevant to describe real systems and whierr geometrie$12].
are its consequences. Along this paper we shall study the geodesic equations for
The adequate description of the gravitation field of anparticles evolving in the space time associated to a center of
astrophysical object has been an important subject in bothttraction with a quadrupolar deformation. The solution of
relativistic and Newtonian gravity since their origin. The par-the Einstein equations representing this center of
ticular case of the gravity associated to an axially symmetriattraction—in the static case—can be found in Réf3],
body has played a central role in this discussion. Recentlyherein the rather misleading terminology “distorted black
Merrit [4] found, from detailed modeling of triaxial galaxies, hole” was used to refer to such an object. Examples of static
that most of the galaxies must be nearly axisymmetric, eithecenters of attractions with multipolar deformations are:
prolate or oblate. In Newtonian theory the gravitational po- (a) A true static black holéor a dense objersurrounded
tential of an axially symmetric body can be always repre-by a distribution of matter like a ring or a small disk formed
sented by its usual expansion in terms of the Legendre polyby counter-rotating matter, i.e., built by approximately the
nomials (zonal harmonics The underlying theory in this same number of particles moving clockwise as counterclock-
case is the usual Newtonian gravitation that, for large massesise. Even though this interpretation can be seen as a device
and velocities, is known to be less appropriate than the Einto have a static stable configuration, there is observational
stein general relativity. In the latter case the Newtonian poevidence of disks made of streams of rotating and counter-
tential is replaced by the space-time metric and Newton morotating mattef14].
tion equations by geodesics. In general relativity, we have (b) An axially symmetric static dense object with either
that the solution of the vacuum Einstein equations associatgsblar deformations or polar jets. In the ca&® we have
to a static axially symmetric body has a simple form with oblate deformations. Also the polar deformations of the Sun
only two metric functiong5], and one of them admits an and the inner planets in the solar system are oblate. We have
expansion in zonal harmonics. For rotating axially symmet-prolate deformations in stars with jets and in some galaxy
ric bodies we have a metric with three functions and two ofclusters[15]. In the precedent cases, by adding rotation to
them obey a sigma-model type of partial differential equa-the central black hole and removing the counter-rotating hy-
tions for which there are known methods of solut|@q. pothesis we can have stationary centers of attraction with
The change of the particle motion equation and gravitamultipolar deformations. We recall that accordingly to the
tional theory can produce dramatic effects, for instance, testonhair black hole theorems, a noncharged black hole is
particles moving in the presence of systems of masses, whiatompletely characterized by its angular momentum and
are integrable in Newtonian theory are chaotic in generamass, therefore any multipolar deformation for a true black
hole must be interpreted as structures located outside the
event horizon, which break the spherical symmetry of the
*Email address: gueron@ime.unicamp.br system[16].
"Email address: letelier@ime.unicamp.br Geodesic motions for axially symmetric space times rep-
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resenting core-halo system were studied in R&f/] for  ated with the Weyl line element,

bounded motion and in Refl18] for unbounded motions.

The case of a slowly rotating center of attraction with a di- ds?=e?’dt2— 2" D (dZ2+drd)—r2e 2de?, (1)
polar halo was considered in R¢lL9]. The geodesic chaos
for a disk with a central center of attraction was considered .
in [20]. A core-halo system with Newman-Unti-Tamburino where¢ andy are functions of andzonly. The range of the
charge was also considere@1]. Newtonian [22] and coordinates,z,¢ are the usual ones for cylindrical coordi-
pseudo-Newtoniarfi23] counterpar.ts of some of these sys- nates. It is more convenient to use prolate spheroidal coordi-
tems were also studied. In a recent paper—within the Newhatesu andv, which are related to the Weyl coordinates by

tonian realm—we studied chaotic motions of test particles

orbiting around a deformed body modeled by a monopolar r2=m?(u-1)(1-v?), (2
and an internal quadrupolar teri24]. .
In this paper, we dwell in the study of geodesic chaos, but zZ=mu,

now related tointernal quadrupole deformations of the at-
traction center. Note that halos are external multipolar con- .
tributions, their strength increases with the distance, contrary'€rémis a constant that reports to the mass of the center of
to the internal ones that decrease with the distance. The quLtraction. The coordinate takes values in the interval
drupolar contribution usually represents the major deviation —1,1] (it is essentially a cosinendu runs from 1 to infin-

to the spherical symmetry. Thus, as a good first approximally (it is essentially a radial coordinatewe shall use units
tion, it can model most of the deformed sources. such thatt=G=1. With no loss of generality we shall also

We shall analyze only bounded motions for specificchoosem=1. In this new system of coordinates, the metric
choices of energy and angular momentum and certain valudg) takes the form,
of quadrupolar strength that we believe will cover all the
different typical situations. Due to the symmetry of the prob- ds?=e2/(U)q{2— e~ 24U)(y2—1)(1—v?)dp?
lem, one can reduce the geodesic motion to a dynamical
system with two degrees of freedom. For such cases, the
Poincaresection method is the most appropriated tool to
study the general behavior of the geodesics.

In the first one, Sec. |, the exact solution to the Einstein o ] ] ]
equations, which represents a static axially symmetric source For this line element, the vacuum Einstein equations re-
deformed by an internal quadrupole, is considered. The Poirfluces to
caresection method is used to study numerically the geode-
sic motion of test particles orbiting around a deformed [(WP=1) ¢, ],u+[(1—0),,],4=0, (4)
source, for prolate quadrupolar deformations we find chaotic
irscf)(t)ltl)gdc:-ontrary to the oblate case where only regular motion . (U =209 ) (U2 = 1) (1= 02 y— U(L—v2) % 2

In the second one, Sec. Il, the rotation of the attraction ~ (u?—v?)
center is considered. We first study the metric that represents
a rotating black hole deformed by a quadrupolar term. This 2 2 2 2, 2
metric is obtained as a two-soliton solution in the context of ,, — (2U¥u= V¥, (W=D =vT i, to(u"= 1), _
Belinsky-Zakharov inverse scattering metH@&b] that gen- " (u2—v?)
erates new solutions from a known ofseed solution As in (5)
the preceding section, geodesics are numerically studied us-
ing surfaces of section. The consideration of different caseEquation(4) is the usual Laplace equation in prolate coordi-
leads us to conclude that the black hole rotation considerablyates for the metric potentigl, and Eqs(5) yield the func-
alters the stability of the system. We obtain that the stabilitytion y as a quadrature. The integrability ®f(y y,= v ,u) iS
depends strongly on the relative direction of the spin of theguaranteed by Ed4). The potentiaky for the Schwarzschild
center of attraction and the angular momentum of the tesgolution in prolate coordinates 5]
particle. We also find that the rotation does not alter the
regular character of geodesic motions in the oblate case, i.e., 1 1-u

du?  dv?

u>—1 1-¢2

_ez(y(u,ww<u,v))(u2_vz)( ) )

the orbits in this case remain regular. Finally, we discuss and ‘/’Szﬁlanu' (6)
summarize the obtained results. We also present and discuss
some Poincareections for test particles moving in the gravi- ] _ )
tational field of a monopole with large rotation surrounded!n this paper we shall consider the solution
by a dipolar halo.
1 1-u
I. SCHWARZSCHILD SOLUTION WITH QUADRUPOLE = §|nm +koPo(v)Qa(u), (7)

DEFORMATIONS

The metric of the space time related to the gravitationalwhere P, and Q, are the second Legendre polynomial and
field of a static axially symmetric source is the one associfunction, respectively,
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Po(x)=(3x2—1)/2, d2v - 1—p2

d72 220D (u?—p?)

Qa(x) ={P2(X)In[(x+1)/(x—1)]=3x}/2, (€S) -
x{9,e?"+d,[(u?—1)(1—v?)e 2]}
and k, is a constant that is positivenegative for oblate

(prolate deformations. Note that the Newtonian limit of the . (uU2—1)v
potential (7) is ¢=—m/R+ (2m3k,/15)P,(cosd)R3 (we =0 [0 (y=W]— 55—
use the definition of Newtonian limit of Reff27]). (U =v9)(v-1)

From Eq.(5), we find the other metric function,

.. u
_2 — -
y={4[2((7Tk3— 20k, +4)In(u—1)+ (kp+2)?In(u+1) uv([&“w w)]+(u2—v2))
— 41n(u%—v?)(k,— 1)2)— 3((27u%?— 30u2 _uz((vz—l)[ﬂu(v—w)]_ (v2-1)v )
(U>-1) (U2—v?)(u?2-1))’

— 212+ 26)k,— 8)In((u+1)/(u— 1))k uv? @

+3((27u?v*—30u%v?+ 3u?— 1204+ 16v?)k,

—16v2)k,]— 3[4((3u?>—3u—2)k,+8) E=e?/uv)t, =g 2Muv)(y2—1)(1-v2)ep, (12

—3(9u?v?—u?—v?+1)(u—1)(v2-1)
where r=s/c=s and the overdots indicate derivative with

XIn((u+1)/(u—1))kp](u+1) respectr. E andL are constants of integrations related to the
test particle energy and the angular momentum, respectively.
X In((u+1)/(u—1))k,}/64. o) The metric(3) gives a third constant of motion,
The exact solution to Einstein equations given by Egs. ] ]

(7)—(9) was first studied by Erez and Rosg28]. The gen- 1=e?"u0)t2— @=20(uv)(y2—1)(1—p?) p?

eral casdSchwarzschild with the whole series of multipgles -

was considered by Queve®9], and a simple in_terpretz_;\tion — @200~ u) (2 y2) N v 13

in terms of bars was presented by Lete[igd]. This solution u—1 1-p2)°

is interpreted as a “distorted” black hole in RéfL3]. The

study of the associated Newtonian multipoles, as well as the

relativistic multipoles for this solution and other multipolar 1o motion of the test particle is completely determined

expansions can be found in R¢81]. The geodesic equa- py the solution of the two second-order differential equations

tions for the metriq3) take the form (10) and (11). They define a four-dimensional phase space,

but the motion constantd.3) and(12) tell us that the motion

d2u ul—1 is effectively realized in a three-dimensional surface. More-
P IR v over, these constants allow us to define an effective potential-
dr*  2e (=09 like function,

X{auezw+‘7u[(uz_1)(1_02)e_2¢]}
@ 62(¢(va)v(uvv))( 20002
2 R - u,v
( z(v 2_)(1)2u 1)) o W= |\
u"—ov°)(u=—

—uz(wuw— )]+

e2((u0) ~v(u0))
%1 (14)
—2ui)([a<y—¢>]—#> (b
’ (U?=v?)
Thus the motion must be restricted to the region defined by
2 2
2 (U= D[au(y=¢)] n (u"~Du the inequalityd (u,v)<0.

(v2-1) (U¥-v?)(v2-1))" Since the geodesic motion of the test particles is per-

formed in a three-dimensional effective phase space, an ad-
(100  equate tool to study this motion is the Poincaection
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FIG. 1. Boundary contour fo=3.8, E=0.973, andk,= FIG. 3. Same values of the preceding figure, but rioy=

—1.0. There is an escape zone and one region of bounded motior.5.02. There are two escape zones in the left-hand side of the
u andv are dimensionless. picture and two closed zones of bounded motion.

method. As we mention before, the sign of the quadrupolq)resem the curvad(u,v)=0 for L=3.32, E=0.937, and
parametelk, specifies whether the source is deformed in &,=—5.02, we have two disconnected bounded regions.
prolate or in an oblate shape. This last situation is quite different in the Newtonian limit
wherein the bounded surface is separated in two regions: one
above and other below the equatorial plane as shown in Fig.
Fi hall studv th | 0 F lati 4(d). In other words, we can say that in the general relativ-
Irst we sha study t € pro ate cak:<0. From re atlon_ istic case the closed surfaces are two concentric rings, while
(14), we find the appropriated constants to have a confine the Newtonian theory one is the reflection of the other
motion. We have that only three combinations of the CON- nder the plang=0
stants.E (energyz L (angular mF"T‘.e.”t“W and k.2 (quadru- The behavior of orbits using Poincasarface sections for
pole strengthtyplfy all the possibilities of confinement. each one of the three sets of constants indicated above is
In Fig. 1 we present the curv@(u,v)=0 for L=3.8, esented in Figs. 5-7. In Fig. 5 we show that the motion in
E=0.9731, and,;=—1, this is the most common situation yhe noynded region of Fig. 1 is regular as in the case of a
found for bounded internal prolate quadrupole solutlonspure Schwarzschild black ho[d7]. In Fig. 6 we show the
There is only one smooth closed surface. The chse pgincatesection for orbits restricted to the closed surface
=3.32,E=0.937, ank,= —5.0 is presented in Fig. 2, we
still see only one closed surface, but now we have two re-

A. Prolate deformation

gions linked by a narrow connection. Finally, in Fig. 3, we 09 ' '
0.4
03 | i
0.2
N
vV 0
0.3 | 4
-0.2
0.4 -0.9 . .
0.0 0.6 1.2 1.8
2 3 U 4 5 6 '
FIG. 4. A sequence of bounded regions in the Newtonian prolate
FIG. 2. Boundary contour fot. =3.32, E=0.937, andk,= quadrupole plus monopole solution. The lindsrepresent two

—5.0. There are two escape zones in the left-hand side of the piclosed surfaces separated by the plan®. The coordinates and
ture, which correspond to small values wfand a closed zone of z are measured in geometric units, and the mass of the center of
bounded motion which is almost divided into two. attraction is assigned the value of 1.
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FIG. 5. Poincaresection for the values defined in Fig. 1. We
have regular motiorP ,=du/dr, 7is measured in geometric units
with the unit of mass taken as in the preceding figure.

FIG. 7. Poincaresection for the values defined in Fig. 3. We see
chaotic behavior in orbits confined in the first zone of bounded
motions, but the motion in the second zone is regular.
presented in Fig. 2. It is interesting to observe that we have a N . . .
region of irregular motion on the right and a region of regu-t0 the one presen'ged in Fig. 1. A conflgurgtlon W'th.two
lar motion surrounded by a layer of chaos on the left. In Fig_boun_ded regions, like the ones present_ed In Fig. 3, I not
7 we present a Poincagsection for the two bounded regions POSSible. The typical example is shown in Fig. 8, where

of Fig. 3. In the bounded region of the left-hand side of the=0-96, L=3.8, andk,=5. We see that there is just one

figure, we have a typical picture of chaotic motion, but orbitsbfu”ged_regkilon' arlld the escape on]e is not divilded into tvk\]/o,

confined in the other bounded region present regular motiorfK€ that in the prolate cases, I.e., the origin belongs to the
These results can be understood by studying the effectivVeSCaPe region. This indicates the absence of a second saddle

potential critical points. We recall that a pure black holePint, like that in the pure black hole situation. However, in

(k,=0) with adequate values of the constaiandL has an the Newtonian limit, we can find one saddle point on the

effective potential with a single saddle point. When we add?'@nez=0. _ . .

the prolate quadrupolar fiekhb<0, we have a second saddle The _geodesms were studied using surface sections for

point for the value of the constants of Figs. 3 and 2. In thgnany different values &, L, andk,>0. We find only regu-

third case(Fig. 1) the second saddle point disappears, and wed! motions. In Fig. 9 we present a typical Poincaegtion

end up with the same dynamical behavior of the test particle®>" this case. The parameters are the ones_of Fig. 8. We

as in the pure Schwarzschild black hole case. In the gener pserve Fhat, at Ieas.t In our computer resolution, the tori of

relativistic example there can be two the saddle points on thi€ total integrable situation are not destroyed.

planez=0, while in the Newtonian analog we can have at

most one in this planf24]. IIl. KERR SOLUTION WITH QUADRUPOLE

DEFORMATIONS

B. Oblate deformation Since the Kerr solution represents a rotating black hole,
For the case of oblate quadrupole deformation, ke. the addition of an internal multipole term can be used to

>0, we always find regions of bounded motion very similar os-
1.8x10™" I ' I j f ' T ' ' R
0.4
12107 - —
0.2
6.0x10"7 - -
v 04
a? 0.0 .
6.0x10"7 |- b -02
J12x107°¢ — 041
18x10™ | I . I , I . I \ I I ]
2 3 3 5 6 08 2 4 6 u8 10 12 14

FIG. 6. Poincaresection for the values defined in Fig. 2. We see  FIG. 8. Boundary contour fot. =3.8 andE=0.96, but now
chaotic motion in the left-hand side of the figure and in a smallk,=5.0. We see one bounded region. The escape zone contains the
external region on the right-hand side. origin.
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0008 T — — body with arbitrary rotation deformed by an internal quadru-
- 1 pole term.

0002 - The metric for a stationary axially symmetric space time

has the general form

0001~ 7 ds?=g,dt?+ 2g,,dtdp+ g4 4dp?— €' (U2 —v?)
du>  do?

+
u>—-1 1-v?

Py
=)
T

I

X , (15

-0.001 — —
whereg;;, 9is, 944, andI’ are function of the coordinates
u,v.
To construct the solution of the vacuum Einstein that rep-
resents the superposition of a Kerr black hole and a field of
0003 e, multipoles, we use the Belinsky-Zakharov metHa]. In
! this method the Kerr space time is obtained from the
FIG. 9. Poincaresection for the values defined in Fig. 8. We Minkowski vacuum(seed solutionas a two-soliton solution.
have regular motion. The application of this solution generating algorithm to more
general seeds was studied by Lete[i82]. Some other re-

) cursive methods are described in Regf6]. Using the tech-
model a rotating star or the core of a galaxy. The black holgjques presented in Reff32], we easily obtain the metric
rotation produces the pure relativistic effect of dragging offynctions 9u(U,v), Gie(U,v), 9ge(u,v), and f(u,v) that
inertial frames. Then our main goal in this section is to studyrepresent a Kerr black hole deformed by multipolar terms.
the influence of the black hole rotation on the stability of We choose a quadrupolar field as a seed solution. Then the
geodesic motions. Letelier and Vieird9] studied the motion  Belinsky-Zakharov two-soliton transformation give us the
of test particles moving around a slowly rotating black holenonlinear superposition of a Kerr solution with this field. We
with a dipolar halo. Now we shall study the case of a centrafind

-0.002 — .

g =[e"(e{[2e*F 1122 (u2—v?) —e®M(v?—1)](p+1)2—e* 1 (u+ 1) (u—-1)g%g®—e* 2 [e®M(p+1)%(u+ 1) (u—1)
+e*F1(v2-1)g%)(p+1)2) ]V (€*{[2e* 17 2(u+v)(u—v) — (v —1)?](p+1)%e*F1(u—1)%q?} g —e*"2

x[eM(p+1)2(u+1)2+e*i(v+1)%9%](p+1)?), (16)

grp={—2e"[e?{[2e”T17 % 2(u*—v?) —e®(v® - 1)](p+1)*—e* 1 (u+1)(u—1)g*q*—e* e (p+ 1)*(u+1)(u—1)
+e*1(v2=1)g?)(p+1)%+ (¥ [e*2(p+ 1)*(u+ 1) (v +1) +e*(u—1)(v—1)g°](u—v) —e* e (p+1)*(u+1)
X(v—1)+e*1(u—1)(v+1)g*](u+v))(p+1)play (€*{[2e* 1 "*F2(u?—v?) — (v —1)%](p+1)?
—e*f1(u-1)%9%lq*—e* e (p+ 1)*(u+1)*+ e (v +1)°9*](p+1)?), 17)

2 2 2 2
02, pA(1—v?)(u2—1)
Qo= 4. , (18

el'=—(exd {([(4[2 In(u+ 1)+ 81u%v*—90u?v2+9u?—36v*+482—8 In(u+v)+ 14 In(u—1)—8 In(u—v)]
+9(9u?p2—u?—v2+1)(u2—1)(v2-1)In[(u+1)/(u—1)]?— 14 27uv* - 30u%v 2+ 3ud—2— (212 5)
X (v2=1)u]in[(u+1)/(u—1)1}k,— 16{(3u?—1)In[(u+1)/(u—1)]—6U}(3v2—1))k,]/128)]
X (e*{[2e*F11 % 2(u?—v?) — e (v - 1)](p+ 1) +e* 1 (p—1)(u—1)%(p—1) +e* e’ (p+1)(u+1)?
—e*1(p—1)(v+1)%)(p+1)])/[4e*F 1 22 2 (U2 —p?)p?], (19)
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where

0.4
Fi=[—{2[In(u+1)—3v2=3In(u—1)+2In(u—v)]
+3(3v—1)(v+Du}+3{[v+3+2(v+1)ul(v—1)
—(Bv—1)(v+1)uZn[(u+1)/(u—1)]k,1/16, (20)

0.2

v o]
Fo=[—{3[(3v—1)(v+1)u+2v%]—4In(u+v) 02/
+41In(u—1)}—3[(3v—1)u—(v+1)J(u+1)(v+1)
XIn[(u+1)/(u—1)])k,1/16, 21y
2 3 U 4 5 ]
H=({(3u*~1)In[(u+1)/(u—1)]—6u}(3v>— 1)k,)/8k,/8. FIG. 10. Boundary contour of the Kerr-quadrupole system for

(22 L=-3.322,E=0.937 15,k,= —5.08, andg=0.002.

2 _ .2
The quadrupole strength ks, q is the source angular mo- d_U: 1-v
mentum per square of the mass, amds defined by the dr* 2I'(u?—v?)
relationp?+ gq?= 1. The metric presented above is a particu-

[avgttt2+ 25u9t¢t¢+ avquqS(-i)z]

lar case of the general solution that represents a Kerr metric ol T (u>—1)v o ar
embedded in a field of multipoles, see for instance R&f3]. U T 22y a2 —2u 2T
(u*=v9)(v°—-1)
and[30].
When one performs the limit,—0 in the solution pre- u o, rw?-1) (v2—1)v
sented above, one obtains the Kerr metric in Boyer-Lindquist + —u? - .
i i (U?=v?) 2M(uw?=1)  (U?—v?)(u*-1)
coordinatesy and ¥ that are related to the prolate spheroidal v v
coordinatesu andv by u=(r—m)/o, andv=cosé. The (25)
constantsp and q are related to the Boyer-Lindquist con-
stants byp=o/m, gq=a/m, andm?=c?+a?, wherem is Also, as before we have two second-order evolution equa-

the monopole masgr is an auxiliary constant, anais in-  tions (24) and(25) for the variabless andv, the metric and
terpreted as the black hole angular momentum per unit othe constant$23) give a new constant relating these two

mass measured by a very distant observer. variables,
As in the preceding case, the geodesic equations have two
constants of motionl, andE, 1=g"E?+2¢"?EL+g??E%2—e' (u?—v?)
X u* + v? (26)
Ezgttt+gt¢¢: ul—1 1-v?|

In other words, despite algebraic complications, we have ex-
g¢¢¢+gt¢i= L. (23)  actly the same dynamical situation as in the static case. The

particles move in an effective three-dimensional space. Thus
we can analyze the motion of test particles moving in the
gravitational field of a rotating prolate deformed body using
Poincaresections as in the nonrotating case.

Since the main new ingredient in the system under con-

sideration is the rotation of the source, we shall keep the
2)[(9ugn't2+zfgugt¢'t¢+ 0ug¢¢¢2] angular momentuni, the energyE, and the quadrupole

The evolution equations far andv are

d?u ul-1

dr?  2T'(u®-v strengthk, fixed; and we shall consider test particles moving
with angular momentum parallel to the spin sou(cerota-
P (v?=1u |, tion) and with angular momentum counterparallel to the spin
Yo (WP—v2)(u2-1)| Ty source(counter-rotation

In Fig. 10 we present the region of bounded motions for
a,(u?-1) (u’=1)u counter-rotating orbitsgL<0. We takeE=0.937 15, |L|
+ , =3.322, andk,=—5.08, and for the rotation parametgr
2_ 2_ 2y 2_ , 2 ,
2l"=1) (U= ("-1) =0.002. We have a situation similar to the one presented in
(29 Fig. 2. The bounded regions for the corotation cagk,

v _2
(uz—vz)] ’
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FIG. 13. Poincaresection for the same value of the parameters

FIG. 11. Boundary contour for a Kerr-quadrupole system forof Fig. 11. We do not see irregular motion in both regions.
L=3.322, E=0.937 15,k,= —5.08, andg=0.002. The confine-
ment region is separated in two, they are much smaller than in thpole plus black hole solution. We also study combinations
preceding figure. including internal octopole and external quadrupole terms,

rotating sources were considered as well. We found that for
>0, is shown in Fig. 11. We see two relatively small andthe great majority of values of momentum and energy, which
distant closed surfaces. The Poincaeetion for the counter- confined the motion there are only regular orbits, in general,
rotating case is presented in Fig. 12. Chaotic motion can bghaotic geodesics are found near the central mass for dis-
seen on the left of the graphic and in the external part of thQanceS less than 50 black hole maséa%eometric units
right-hand side, as in Fig. 6. In Fig. 13, we present the surTherefore, we conclude that observational consequences of
face section for the same parameters as abovegbit0  the geodesic instabilities will be mostly relevant in a very
(corotation. We do not find chaotic motion in this case. restricted area close to the black hole.

We were not able to obtain bounded motion for both large | arge rotations, q=0.1, were analyzed studying some
quadrupole strengths and large rotation parameters. We stugbincaresections for a solution that represents a monopole
bounded systems with large rotation spéetithe order of  syrrounded by a dipolar halo. We did not find an internal
0.1), but with quadrupole strength always less than unity. Inquadrupole solution with large rotation and quadrupole
these cases, the study of Poincasgtions leads to regular strength of the same order of the static examples studied in
geodeS|C motion for corotation as well as Counter-rotatlonthe preceding sections because the bounded regions com-
We also found that the confinement region may suffer arpletely disappear for large rotations. We present three Poin-

appreciable change in size and shape. caresections for a rotating black hole plus dipole solution
using the parametersL=3.988, E=0.9665, and D
DISCUSSION =0.0005. In Fig. 14 we consider a static black hole. In Fig.

Besides the results presented in the previous sections Wle5 a rotating system is considered with rotation parameter
preser P q=5/13, the geodesics corresponding to the corotating or-
have constructed some Poincatefaces for the external di-

T T
-17
8.0%10 T T T T T T T T T
0.05|- .
4.0x10" [ -
o i
=2
o 00k . o
005 .
4.0x10"7 [ -
s.0x10" ] . ! . ! A I , | a I R T S S SRR n
-8 2 3 4 5 6 6 8 10 12 14 16 18
u u

FIG. 12. Poincaresection for the same value of the parameters  FIG. 14. Poincaresection for the static black hole plus dipole
of Fig. 10. We have chaotic motion mainly in the left-hand side of solution usingL =3.988, E=0.9665, and> =0.0005. It looks like
the picture. an integrable motion.
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0.05—

e?  OF

-0.05—

u s 10 15 20

FIG. 15. ;I’he same as the preceding figure, but now we add £\ 16 A surface of section with the same parameters of Fig.
rqtatlon,glm—5/13. The center of attraction is a rotating black hole 15, but for counterrotating orbitd. <<0). Irregular motion is seen
with a dipolar halo. here

bits. In both figures there are apparently only nonchaotiditing around internal an oblate quadrupole plus monopole
orbits in phase space. This situation changes completely fdienter of attraction in the Newtonian gravitation, as well as,
counter-rotation, using the same parameters of Fig. 15, buf the general relativity are integrable. To prove the integra-

q=—5/13, we find in Fig. 16 the surface of section of cha-Pility Of these systems is not an easy task. Also to perform a
otic orbits Painlevetype of analysig36] for these cases is quite in-

. ; : - Ived

The main results of this paper are: We find chaotic geo—v0 ! .

desics in the geometry that characterizes an internal quadru- T.h'S quk 'F“e”d.s to complete_ the Sthy of chaos of geo-
desic motion in axially symmetric metrics obtained from a

pole plus monopole solution for the prolate case. In the ob=""" . : ;
late case these orbits appear to be regular. This behavior ultipolar expansion. We think th_at the next natural step Is
e study of stability of astrophysical structures confined in

similar to the Newtonian analogs, except for the fact that the'. . ) . )
g P situations described by this model, specially when general

closed region that confines the chaotic orbits are very differ S :
ent[33-35. relativistic effects can make a difference.

For rotating sources we see that large speeds alter signifi- The.exact SQIUt'On to Einstein equaans presenteq in the
cantly the bounded regions, and consequently chaotic réa_recedlng sections are not new, and _dlfferent versions of
gions for counter-rotation arise in situations where the stati hem _hav_e already appeared in the literature. We present
case seems to be nonchaotic. We conclude that observatiorfdf™ " this work for two reasonga) for easy reference, and

effects may be found for this group of orbits. In spite of thes malrlll)t/3 bec_l?#se for numenc?I darkllalyss we réee_d a:jfaul_t-
modifications, it is also very difficulfperhaps impossibleéo €ss sotion. The ones presented here were derived using
Igebraic computation and checked using the full vacuum

find chaotic geodesics around rotating sources with an oblaﬁ. . ! )

qguadrupolar deformation, like that in the static case. Thi instein equations in each case.
result tells us that there are no numerical evidences of the
existences of nonintegrable geodesics in the internal quadru-
pole plus monopole solution in general relativity. In other The authors thank FAPESP for financial support. P.S.L.
words it does look like that the motion of test particles or-also thanks CNPq.
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