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Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides
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We investigate the effects of the optical Kerr nonlinearity in a coupled-resonator optical waveguide
(CROW). Under certain conditions, there exists a stationary spatial distribution of the field whose envelope
does not change with time—a super-resonant mode. The analysis does not indicate the existence of traveling
hyperbolic-secant solitons of the Sctiager type.
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[. INTRODUCTION thus far, by choosingor changing the structural properties
of the waveguide, e.g., inter-resonator spacing, overlap inte-
A coupled-resonator optical wavegui@®@ROW) [1-3]is  grals between adjacent resonator eigenmodes, and the Fou-
composed of a periodic array of isolated structural elementger spectrum of the initial excitation. Coupled-resonator
(e.g., highQ resonators such as defects in photonicwaveguides therefore offer a wider range of design possibili-
crystals—see Fig. )lweakly coupled to one another. Such ties for the realization of all-optical information processing
waveguides are naturally described by the tight binding apdevices than available thus far.
proximation[4], in direct correspondence with the descrip-  In considering the various choices in which to expand the
tion of electrons in a strong periodic potential in solid statefield, we choose the propagating Bloch wave solutions of the
phy3|cs[5] Experimenta| demonstrations of the CROW Con_CROWS without OptiCﬁ' nonlinearities, which are derived
cept and corroboration of the analytical model were recentlyfom the tight-binding approximationl-3|. We take the
presented[6,7]. Prior to the introduction of the generic field to be a superposition of such waves with slovlyne-)
CROW family of waveguides, the tight binding formalism varying coefficients. This expansion has the merit that in the
was app“ed to the description of deep superstructure gratingﬁbsence of nonlinearities, each field in this expansion is an
[al. eigenmode.
The dispersion relationship in CROWS is intrinsically

nonlinear, but the propagation of localized excitations, i.e., 1I. WAVEGUIDE MODES AND LINEAR PROPAGATION
optical pulses can be characterized nonperturbatively to all .
orders of dispersiofo]. This is a somewhat surprising result, e assume that the structural elements comprising the
and it leads to a description of the distortion that results fronfP€riodic waveguide of length, e.g., defects in a 2D photo-
the nonlinear dispersion relationship. Weighted sums of!i crystal slab with index confinement in the out-of-plane

Bessel functions take the role of cosines in the Fourier-seriegireCtion' are identical and lie along ttzeaxis.(uni't veg:tor
decomposition of the propagating figlti0]. e,) separated by a distancB. Together with its time-

In optical fibers and similar waveguides, the effects ofévolution factor, the waveguide mode of the linear wave-

(anomalous group-velocity dispersion can be exactly bal- 9Uide (@n eigenmode of a time-independent Hamiltonian
anced by the self-phase modulation induced by the Kerr ef@x(") at a particular propagation constaats written as a
fect, an intensity-dependent change in the refractive index dfn€ar combination of the individual eigenmodEgr) of
the material. This is the basis for the formation of tfien- .
damental Schralinger soliton in optical fibers, for instance. air holes
Here, we investigate the Kerr effect in coupled-resonator
waveguides, with particular emphasis on determining
whether self-phase modulation can compensate for the dis-
tortion consequent of the nonlinear dispersion relationship.

Such solutions would lead to the existence of envelopes
that can exist or propagate without distortion in CROWSs as
eigensolutions of a nonlinear propagation equatolitary
waves and solitonnsWhether such soliton pulse shapes exist
or not, from a practical viewpoir(since the material disper-

sion also plays a roje nonlinear propagation in such kG 1. Schematic of an infinitely-long 1D CROW with period-
waveguides can be controlled, as in the linear cases analyz@gy R consisting of defect cavities embedded in a 2D photonic
crystal. The dielectric material in the defect cavities exhibits the
nonlinear Kerr effect, i.e., its refractive index is modified by the
*Electronic address: shayan@caltech.edu optical intensity.

defect cavity
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the elements that comprise the struct{Beb], [11]. It is also possible to solve this problem without making
this approximatiorf9], and this is the framework which we
e ol g ()= —|wkt2 expinRk-e,) will use to analyzenonlinear propagation in this paper. The

form of the dispersion relationship, E@®), is the signature
of all tight-binding models based on nearest neighbor inter-
X Eredr —NRe,), (D actions[5], and it is important to keep the full form in de-
scribing those nonlinear phenomena which depend on a bal-
nce between nonlinear and dispersive phase-modulation
ects in a single wave form, e.g., solitons.

where the summation overruns over theN=L/R structural
elements and we consider only a single bound state in ea

individual element. As expected, E(.) has the Bloch form
IIl. FORMULATION OF THE NONLINEAR PROPAGATION

[5].

The dispersion relationship for a CROW mode around a PROBLEM
central wave numbek, is [1]
Since nonlinear phenomena such as the Kerr effect

“’ko+K:Q(1_A“/2)+QK cog (ko+K)R]=w change the relative weights of the eigenmodes(Egas the
wave form evolves with time, we introduce a time depen-

+Awcog (ko K)R], 2 dency in the superposition coefficientg appearing in Eq.
(4). [We assume that the Hilbert space of solutions is

where() is the eigenfrequency of the individual resonators.spamned by the eigenmode set EX).] We write

In Eq. (2), Aa and « are overlap integrals involving the

individual resonator modes and the spatial variation of the _ =R dK
dielectric constant, E(r,t)ze*"”otf ——[e1awtcoslkotKIR]
771'/R27T
Aa:j d3r[fwg(r_Rez)_eres(r_Rez)“Eres(r)F, ><Ck(ﬁK(t) ¢k0+K(r)]' (6

Equation(6) leads to a differential equation describing the
= f d3r[e,odr—Re,) — €ug(r —RE)] Qvolutlon of the twpe-yarymg coefficients, driven by the non-
linear (Kerr) polarization,

X Eres( r) ' Ereir - Rez)i (3)

wheree,. is the dielectric constant of the individual resona-
tors, ande,q is the dielectric constant of the waveguide. We

de0+K(t) mR dK; dK;
_Wff —exd —ikQt

—x/R 277 2w

restrict the range oK to the first Brillouin zone|K|R< . X{—cog(ko+Ky)R]+cog (ko +K2)R]
One may usually assume for conv_eme_r{es in [3]) tha_t +cog (kg+K3)R]—cog (kg+K)R]}H]
koR=2msr, for some integem, but in this paper we will

work in the general case, unless stated otherwise. ><ck0+K1(t)*ckO+K2(t)ck0+K3(t), (7)

The field describing a puls&(r,t) is written as a super- _ . _ N
position of waveguide modegp,(r) within the Brillouin ~ whereK;+K=K,+K3 andy is the nonlinearity coefficient
zone, and using Ed2), in the CROW geometry, described in the Appendix.

dk ‘ IV. LINEAR AND NONLINEAR EVOLUTION
E(rt)~ | 5—e " Kexey(r)
2m A. Linear case
We first note that in the linear case, whes0, the so-
lution of Eq.(7) is trivial: ck0+K(t)=cko+K(t=0) as would
@ be expected on physical grounds: The waveguide modes, be-
ing orthogonal, are uncoupled. The value qfo+K(t=O)
The boundary conditions that arise in pulse propagationmay be evaluated for an arbitrary input pulse shape as de-
problems typically specify a pulse shape at theO cross  scribed in[9]:
section of the waveguide and centered at the optical fre-

— - iwgt R d_K[e—iAwtcos[(k0+K)R]c b (1]
777/R27T k0+K k0+K .

guencywg, . (0)= 1 “ 2nR fx ﬂ
. . KorK biyg+k(0) | A=1 by \ Jo
E(r=0t)=e '“0'E(z=01)u, (5
whereu is a unit-magnitude vector that describes the vecto- X[E(z=0t"/Aw)— E(O,O)]Jn(t'))
rial nature of the field at=0.

Finding the coefficientsy . in Eq. (4) based on the

boundary condition, Eq(5), is relatively simple when we Xcos(nKR)+ck0¢k0(0)] . (8)
approximate the dispersion relationship, Eg), as linear
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dAk0+K B dK; dK, ,
—_fo 5 o Pkt K Ak KAk + K SIND,
(12
1o A d¢k0+K J‘ J‘ dK; dK2 A
e T B T R 1 dt Ak 2m 2m Dotk Ak,
066
X Ay 1+ k,COSP, (13
0sad . .
where® is defined as

D= —{y,+k,~ kQtcog (ko+ K R]}+{y -k, kOt
X cog (Ko+Ko)RI}+{ by +k,— xQtcog (ko + K3)R]}

20

40

. 80
Distance 100

e —{ by k— kQt cOf (Ko + KR} (14)
FIG. 2. Temporal evolution of a Gaussian envelope at specific
distances inside a CROW, showing the effects of dispersive propa- Based on Eq(12), the A’s will be independent ot if
gation. “Distance” is normalized td, the inter-resonator spacing. Sin®=0 for all t. This implies that cob=1, and based on
“Time” is normalized to 1A w. The vertical axis represeni§(z,t Eqg. (13), we takeqbk +k to be a linear function of,
=0)| normalized to its maximum value. At greater depths, the peak
of the envelope arrives at a later time, and ripples in the trailing ¢ko+K(t)=a+ bt+ kQt cog (ko+K)R], (15
edge indicate higher-order distortion.
wherea andb are constants independenttaindK. We drop
For waveguides composed of a large number of resonahe constant which represents a fixed phase that can be
tors, we have derived a simpler expressitfl, absorbed into the initial conditions. Substituting this form for
¢k0+K(t) into Eq. (13), we get

oo

2R B
Cky+k(0)= Feo0) HZO Scogn(ko+ KR,  (9) b+ kQ cog (ko+K)R]
R dK, dK2
Where Ak0+Kj J7 . 271_ 27_[_ k0+ KlAk0+ K2Ak0+ K3.

Rl | (0, n=0, {19

Bn= i“"[E(z=0n/Aw)—E(0,0], n=1, (10 We wi.II discuss numerical techniques to the solutiqn of
Eqg. (16) in a separate paper; here, we discuss a particular

o . ) regime in which there exist stationary solutions.

andck0 is given by Parseval's relationship.

An example of the propagation of(@mpora] Gaussian  y, pjsCUSSION: TIME-INVARIANT EVOLUTION AND

pulse through a coupled resonator waveguide with Gaussian T4 NONLINEAR SCHRO DINGER EQUATION

functions describing the spatial distribution of the eigen-

modes is shown in Fig. 2. As may be expected from the In this section, we will use the results from Sec. IV B to

dispersion relationship, distortion accumulates with distancegiscuss in what regime the CROW admits solutions of the

and is manifest in the oscillatory structure on the trailingSchralinger soliton form, i.e., the hyperbolic secant. The ba-

edge of the pulse. The crest of the envelope travels with asic physics lie in a balance between the phase modulation

approximate group velocithz/At<AwR; an exact group effects of the Kerr effect andanomalous group-velocity

velocity is not defined since the dispersion relationship iglispersion(GVD). The GVD term in the nonlinear Schro

nonlinear. dinger equation appears as the coefficient of a second deriva-

tive term, which in the Fourier domain with the Fouriére-

quency variableK, translates to multiplication byik)?.

B. Nonlinear case In Eq.(16), if we assume thd{yR is a multiple of 27 and

We separate the amplitude and phasegf «(t) as |[KR|<1, then we may write cdgky+K)R]~1—(KR)%/2,
_ which is the desired effective GVD term. Observe from the
Cy+ k(D) =Ax k(D expi gy k()] (11)  dispersion relationship, Eq2), that wy .k is a quadratic

function ofK only at the edges of the Brillouin zone—where
We will look for solutions that retain their shape, i.e., dwk +k/dK vanishes, i.e., the group velocity is zero. We
dA/dt=0. Substituting Eq(11) into Eq.(7) and separating expect, therefore, that the solutions of Etg) in this regime
the real and imaginary parts, we obtain a pair of equationswill be stationary describing a localized state that is frozen
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in its initial (t=0) spatial distribution and does not propa- 1
gate along the waveguide.
Using this approxmation, Eq16) becomes
0.8}
2 7R
b+KQ=KQ(KR) + 4 f f %% resonator
2 Ak0+K —mR 2T 27 3 eigenmodes ; :
2 0.6 : B i
X Ak K A+ K Pk Ky (17) ;El ?‘ e
_ ) g ; excitation
We assume that th&'s are defined to be zero outside the & 94| | coefficients
regions of integration- #/R and /R so that the limits of < 4
integration can be taken asw« to «. Equation(17) may
then be solved12], 2 i 1
0 V&
Ary+ k=Al kSecttK/K), (18) . /\/\]\ | ]\/\/\ »
. 20 -5 -10 -5 0 10 15 20
whereK is a spectral width parameter whose relevance will Position (norm. to R)

become clear in the following discussion. Substituting Eq.

(18) into Eq. (17), we get FIG. 3. An approximate super-resonant field distribution, as-

suming that the individual resonator eigenmodes are Gaussians.
KR)2 “Position” is normalized toR, the inter-resonator spacing and the
b+ kO = KQ( ) +2[A(ko)+|<]2 Y ordinate repr_ese_r111§(z,t:0)| normalized to it_s maximum value._

2 0 (217R)2 The dotted line is an envelope—a hyperbolic secant—connecting
the excitation coefficients multiplying the individual resonator

eigenmodes. We have used /2= m/(4R).

KR

T) } (19
_ _ limits of integration may be changed te-¢o,©). The inte-
If bis to be independent df, then we need gral then can be evaluated easily—the Fourier transform of a
hyperbolic secant is itself a hyperbolic secant function. We

k) ; ; ;
A(k?))+K: R /_(ZWR)ZTy' (20) derive the approximation

Since the left-hand side represents a real and positive num- E(r t)%efiwotefikﬂt[lJrTrZ(RR)z/S] 1/_ ﬂ

ber, we require thak as defined in Eq(3) be a negative ’ 4y

number(as is physically expected from the meaningegf, <

anded. This is equivalent to anomalous dispersion in op- a ™ "

tical frii)S)ers and sin?ilar waveguides. P P x WKR; sec){TnR) EredT—NR2. (24
Using Eq.(15) and Eq.(20) in Eq. (11), we write the final

expression focy . (),

X

(KR)2+

The modulus of the amplitude(z,t=0)| normalized to its
) 2 o 2 maximum valug(in this approximatiohis plotted in Fig. 3.
Ci+ k(1) =Ciy 1 k(0)exp[ —1 Q[ 1+ 7(KR)“/8 Values of the hyperbolic secant function in E@4) at nR
_ (which has the dimensions of lengtare the weights of the
cogKR) ]}, (1) individual resonator eigenmodes. In this approximation, the
envelope of these weights is a hyperbolic secant function

whose width is inversely proportional 6.
k) — As we had expected from physical arguments, the enve-
Cy,+Kk(0)=2TR~\/ — 4—ysech/K). |KR|<. lope of £(r,t) is a stationary state that is independent of
(22)  fime: its spatial distribution &t=0 is maintained for all sub-
sequentt. This is consistent with the observation that al-

where

The field described by these coefficients is though the group velocity dispersion coefficient is nonzero,
_ . = the group velocity itself is zero. We call the stationary state a
E(r,t) = e TwotgmIxQt[1+ 7 (KR)%/8] super-resonant field since it is formed in a waveguide that
R dK itself comprises the coupling of individu&tationary reso-
m R nator modes. There are two requirements for such a solution:
X Cky+k(0) k(1) (23) . . IR
—m/R2T 0 0 (1) the slowly varying assumption, which simplifies Eg3)

to Eg. (24) and (2) the necessarycondition thatkyR is an
In light of Eq. (22), the integral on the second line of EQ. integer multiple of 2r.

(23) is not expressible in a simpler form. However,KR Using Eq.(A6), Eq. (24) may be rephrased as an expres-
=<1, the hyperbolic secant function decays rapidly, and thesion for the individual-resonator coefficierag(t),
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kQ — | 7K
a,(z,) = —TwaR e '“sec TZn
We substitute Eq(6) which describes the field in the

where u=kQ[1+ 72(KR)?/8] is a constant frequency de- waveguide in terms of the time-varying coefficienp§+K(t)

tuning andz,=nR is a discretization of the spatial axis. into Maxwell's equations written with an explicit nonlinear
Christodoulides and Efremed[43] have analyzed this polarization term describing the Kerr effect,

problem using the,, coefficients[see Eq(A6)]. In contrast

with our analysis, they predict the existence of moving 92 92

hyperbolic-secant solitons as well as stationary solitons. VXVXE(r,t)—ueng(r) —&(r,t)=pu—Py(r,t),

Their envelopes, similar to E¢25), propagate with a group at at Al

velocity v=—«QRsing, whereq is a parameter that ap- (AL)

pears in an assumed ansatz. The two solutions agree onfyhere

whenv =0 (and thereforeg is not an undetermined param-

eten, and this solution does not propagate along the wave- 3

guide. Using finite-difference time-domain calculations with Pa(r )= ZfoX(3)|5(f1t)|25(r,t) (A2)

a nonlinear polarization term accounting for the Kerr effect

in coupled—dgfect waveguides, I!ieex al. [14] haye shown ij the instantaneous response approximation.

that there exist stable and localizewonpropagatingenve- |5 simplifying the terms, we use the normalizatigi6]

lopes, similar to nonlinearly localized modes or discrete soli-

tons as found in discrete systefib|. Propagating soliton-

type envelopes have not yet been found in numerical MY f dreyg(r)|Eredr —mMRe,)|*=1, (A3)

simulations. "
The super-resonant mode in a C_ROW_composed of higf\hhere the CROW waveguide compriddsresonators.

Q resonators can have a long I|fet|me, since It decays with If we assume that, ., «(t) varies slowly over time inter-

the time constant associated with the quality factor of the "0 ,

isolated individual resonatof@] rather than the time con- V&!S~O(27/wo), as is usually the case, then we obtain Eq.

stant associated with the coupling between Hghesonators (7). The nonlinearity coefficient is defined as

and external waveguides. In addition, an optical pgih

nonzero group velocitytraveling down the waveguide can y:2non260w0f dr> |E,edr —MmRe)|*, (A4)

be made to interact with such a static distribution; their in- m

teraction can be enhanced using quasi-phase-matéiag ) ) ) _

ing) techniqueg 16]. This leads to the possibility of the ap- USing the relationship §/8=ngn, [17], and we have ig-

plication of these localized states for optical switching andnored the dispersiofvariation inw) of .

APPENDIX: EVOLUTION OF THE TIME-VARYING
, (29 COEFFICIENTS

routing. Equation(7) is equivalent to the differential equation
da, A« K
VI. CONCLUSION |d—t”+ — Qa,= 50 (@1t a,-1)+la,*a,=0,
We have investigated the effects of the optical Kerr non- (A5)

linearity in coupled-resonator optical waveguid€&ROW9

with regard to the propagation of optical pulses. In particularobtained by Christodoulides and Efremidlis3] for a related

we have shown that there exists a stationary field distributioset of coefficientsa,(t), where

of the hyperbolic secant form which balances the effects of

group velocity dispersion and the Kerr self-phase modula- IR

tion. This field distribution is closely related to the family of an(t)= J

gap solitons in periodic structures, but remains frozen in R

space with zero group velocity. Aa
On the fundamental waveguiding aspects of the Kerr ef- Xex;{i[—ﬂ— kQcog (ko+ K)R]H_ (AB)

fect, we have derived an equation closely related to the fre- 2

guency representation of the nonlinear Sclimger equation. . o

Our approach may also be used to describe any nonline%rhe notational correspondence from our paper to theirs is

i ; e o (Aal2)Q—Aw and — («/2)Q1—c. Thea,’s are the coeffi-
vr;/]z:\)\(/jzlrsnlxmg phenomena in all electromagnetic tight bInOIIngcients that appear in the expansion of the field in terms of

individual resonator modes, rather than the waveguide
modes. It is easily verified that substituting the plane-wave
ACKNOWLEDGMENTS ansatza, = exp{i[ (2~ oy . )t—(ko+K)NR]} in Eq. (A5) with
The authors thank D.S. Cohen of the California Instituten,=0 leads to the dispersion relationship, E2).
of Technology for useful discussions. This work was funded This basis set consisting of individual resonator modes is
by the US Office of Naval Research and the US Air Forcenot an orthonormal set, unlike our waveguide modes
Office of Scientific Research. {d(r)explwgd)}.
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