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Computationally determined existence and stability of transverse structures.
[I. Multipeaked cavity solitons
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We apply quasi-exact numerical techniques to the calculation of stationary one- and two-dimensional, bound
multipeaked cavity soliton solutions of a model describing a saturable absorber in a driven optical cavity. We
calculate the existence and stability domains of a wide range of such states and determine the perturbative
eigenmodes that cause loss of stability. We relate the existeridgedked states to the locking range between
patterned and homogeneous solutions, as a function of two parameters.
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I. INTRODUCTION rable absorber within a driven cavifyf]. This system has
also been shown to allow roll, hexagon and honeycomb pat-
In the first papef1], we presented a widely applicable terned solutions stable over a wide range of wave vectors
Fourier-transform based, numerical technique for the detert1,23,24. With the addition of Fourier feedback control,
mination of the existence and stability of stationary periodicsquare patterns have been stabliz24l.
patterns in a driven optical cavity containing a saturable ab- Given this diversity of nonlinear spatial structures, it is
sorber. Such solutions were characterized by their wav8ardly surprising that within our model there exist regions of
number and the background intensity from which theyParameter space which support both cavity solitons and
emerge, or with which they compete. We computed theifigher-order solitonic structures. Multipeaked  stationary
domains of stability and instability. In particular, we found States have been shown to exist in one dimension in an ac-
that hexagonal patterns may “crack,” breaking up into dis—d”Ven nonlinear Schtinger equation[26] and quintic

tinct islands of pattern interspersed with patches of the ho@mzburg-Landau equatiof27], and there has also been a

. . . brief report of such structures in the present mddietited
mogeneous solution. Such islands may contain only a fe

: . 0 one spatial dimensiori31].
pattern elements, so that they might be considered to be clus- In this paper, we present a detailed study of stationary

ters of solitary wavescavity soliton$ [2]. Such solitons, and multipeaked cavity soliton(CS solutions in the above-
their composites, are the primary topic of this second Papementioned two-level saturable absorber mot&gc. 1). In
Potential applications of spatial solitons in technology arésec_ |i| we present efficient and powerful numerical tech-
under investigatiofi3]. Cavity solitons are a distinct type of pigues to calculate these steady states and their stability. Ex-
diSSipatiVe Spatial Soliton, namely |nd|V|dUa”y addressablqEnsive numerica| ana'ysis iS performed in both a one-
and steerable self-localized spots of light in an externallygimensional (1D) (Sec. I\V) and the full two-dimensional
pumped optical cavity4]. These structures have been pro-(2D) model (Sec. \J. We investigate such stationary struc-
posed as pixel elements for an all optical memory, paralletures as a function of two parameters. The stability of these
and image processin®-12, and for use in optical buffer- solutions is calculated and respective eigenmodes deter-
ing[11,18. Confinement and manipulation of small particles mined. Finally we relate the existence domains of families of
[13], is an interesting non-IT application. Applications inter- multipeaked CS to “locking” of fronts between the homoge-
est has been heightened with the observation of cavity solineous solution and a coexistent subcritical pat{&®,29.
tons in semiconductor microcavities. These cavity solitonsie track across a two-dimensional parameter space the
have diameters of around 20m, evolve on and nanosecond saddle-node bifurcations at whiciN-peaked structures
time scales or less, and can be moved transversally at speegisierge, and compare the sequence and spacing of these bi-
in excess of 100 ms' [14,15. furcations with analytical predictio29]. We also consider,
Models based on a variety of nonlinear medid,16—18  in both 1D and 2D, the “locking range” of individual struc-
now been shown to support cavity solitons. Dissipative solitures, namely that in which they are stable against both ex-
tons in half cavity or feedback systerf2,20,2] have very  pansion and shrinkage. At the former boundary, the structure
similar properties to cavity solitons, and the term “cavity invades the homogeneous background on which it sits to
soliton” can be extended to imply such structures also. Excreate an extended pattern. At the latter, it shrinks and disap-
perimental observations have been made in both §li8+  pears, overcome by the dominance of the homogeneous
21] and fast{22] systems. Cavity solitons exist in a simple, solution.
but yet phenomenologically rich, model describing a satu-

Il. THE MODEL
*Electronic address: jmc@phys.strath.ac.uk We consider the same model as in Rdf], viz. an on-
"Electronic address: willie@phys.strath.ac.uk resonance two-level saturable absorbing medium in an exter-
*Electronic address: gianluca@phys.strath.ac.uk nally pumped optical cavity30]. In this model, both linear
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and nonlinear contributions to the atomic response are real ' ' ' 'a) 25 T (5)
so that the medium does not have self-focusing or defocusing 1o} ] 20k
properties. Conventionalpropagating spatial solitons do
not, therefore exist in this medium. The spatiotemporal dy- 15F
namics of the slowly varying amplitude of the electromag- 2 6f < o0
netic fieldE is modeled by —, &
[ ] 05
( : 2C ) So2 2f el 1 0.0
HE=—E| (1+i0)+ +E,+iVTE, 0
1+|E|2 o} L L 1 L —0.5Len I L L L
-1.4 =12 —1.2 -08 =06 -20 -10 0 10 20

where 6 is the cavity mistuning of the intracavity resonance

from the pump frequencyz is the scaled atomic density and  FiG. 1. (a) The integral (|A| dx) of single-peaked cavity soli-

so parametrizes both linear and nonlinear absorp&grihie  tons versus the cavity mistunirgg (b) Re(A) for cavity solitons on

amplitude of the external pump fiel@considered a plane upper branch ofa): 6= —1.2, solid line;#=—0.92, dashed line;

wave, and V7 is the transverse Laplacia#f+d;, which  6=—0.63, dotted line|E,?=1.33, C=5.4.

models diffraction. The timeis scaled to the cavity response

time. As is evident from the denominator of the nonlinearRaphson method32,33, allowing it to be quasiglobally

term in Eq.(1), the field scaling is such that the saturation convergent, thus giving our algorithm very low sensitivity to

intensity of the transition corresponds|®©|=1. initial conditions. All stationary, periodic or nonperiodic so-
As in Ref.[1], it is convenient to express E(lL) in terms  lutions of Eg.(2) in one and two spatial dimensions can

of the deviation A(x,y,t)] from the homogeneous solution hence be solved on millisecond and second time scales

(Ep) throughE=(1+A)Ey. We thereby obtain an equiva- (simulations were run on SGl, Origin 300 servers with 500

lent equation in which solitons sit on a zero background: MHz R14000 processoys respectively with additional

speedup obtainable via OpenMP parallelization.

JA=— (1+10)A+ 2C 2C(1+A) The third algorithm is used to determine the stability of

th=— ! - tationary structures from our Newton algorithm. It is a
1+[Eol2  1+4]|EolA(1+A)(1+A* S Yy stru . 9 1S

[Eol [Eol*( A ) sparse finite-difference algorithm based on the “Implicitly

+iV2A. (20  Restarted Arnoldi Iteration” method developed in Refs.

_ _ o [34,35. We use this algorithm to soh@t=\¢, whereJ is
The intensity|Eq| of the background field is taken to be the Jacobian of derivatives of the solution in question, the
our primary control parameter. We us@lthough it has no  gots \ are its eigenvalues and the corresponding eigen-
direct physical meaning the integral [|Al dxdy as a modes. This allows us to calculate the eigenspectrum in a
positive-definite measure with which to characterize localmatter of seconds/minutédD/2D) with approximately lin-
ized solutions of Eq(2). This measure has advantages forear speed-up achievable across multiple processors via MPI
easy display of the complicated bifurcation structure of mul-parallelization(hardware as aboyeAlthough in this work

tipeaked cavifcy solitons. If, .9., _the maximum|8{ is plot- these methods are applied to the solutionJofvith rank
ted, the solution branches overlie each other, as can be segn . I
in Ref.[31]. 2768, we have used them efficiently whédnhas rank

=262 144, and they could easily be modified to calculate
stationary solutions and stability d@lly three-dimensional
problems.

Our numerical analysis of this system consists of three
algorithms vyhich we solvg on a com.putational mesh of IV. ONE-DIMENSIONAL STATIONARY STATES
128%x 128 gridpoints. The first directly integrates the spa-
tiotemporal dynamics of Eql) using a split-step operator ~ To simplify our presentation and numerical analysis we
integrator, in which nonlinear terms are computed via awork with a pump of homogeneous transverse profile. The
Runge-Kutta method and the Laplacian by a fast Fourieplane-wave solution to Eq1) has an absorptive optical bi-
transform(FFT) [32]. stability (OB) threshold atC=4 and =0, where|E|?

Our second algorithm is an enhanced Newton-Raphsorr 3. Increasing 6| increases the OB threshold. For the bulk
method that can find all stable and unstable stationary solwsf our studies we chose parameters close to, but outside, the
tions to Eq.(2) when dA;=0. A Newton-FFT method has OB domain so thak, is unique. These ar€=5.4, =
previously been usefil4,17,31, for evaluation of ther —1.2. For these parameters the homogeneous solution ex-
operator, but solution of the resultant dense matrix is comhibits a modulational instability for input field,=Ep;
putationally intensive, especially in two spatial dimensions.=6.70 and|Eq|2,=1.657[1]. This instability is subcritical,

To overcome this problem, here we evaluate this spatial opas is essential for the existence of stable cavity solitons. For
erator using finite differences, hence obtaining a Jacobiamput field E,=6.645 (E,|>=1.33), single-peaked cavity
matrix that can be inverted easily using sparse numeric lisolitons exist over a range of (Fig. 1). Over this range of
brary routines. As an extension to this algorithm we used amletuning the cavity solitons are quite narrow, and well con-
automated variable step Powell enhancement to the Newtomiained within the computational domdjiRig. 1(b)]. Varying

IIl. NUMERICAL TECHNIQUES
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have amplitude at least equivalent to that of the lower-branch
solitary cavity solitonC% at given input parameters. A se-
quence of these solutions is presented in Fig. 3. Note that the
N peaks are “close packed.” As might be guessed, there are
numerous other branches corresponding to structures with at
least one “gap” between adjacent large-amplitude peaks. If
we denote such a peak by “1,” and a minimal “gap” by “0,”
our close-packed CS structures are all of type
“....0001....1110®....,” which excludes e.g.
“....000110100.... .” We will not examine such “open
structures” in detail, although we note that their existence
7 and stability is important in connection with the use of CS
] arrays as pixel or memory arraj/s,22,34.
—— ] As N increases, the solutions get broader, and so are even-
I et SO tually limited by the computational domain. In the absence
Ol Lvverens, Lovverens, Lveiens, Lo of such constraints, they become very similar to the roll pat-
1.20 1.30 1.40 1.50 1.60 terns described in Refl]. Since acontinuumof patterns of
|Eo|2 different wave vector are stable in this parameter region, the
issue of the limiting peak separation of the multipeaked CS
FIG. 2. Integral of one-dimensional CS structures against thdS an interesting question. Another issue arises when we con-
intracavity field|Eo|2. Solid, dotted, and dashed lines, respectively, sider that additional peaks do not have to be added sym-
denote: stable G§ unstable CS,4, and unstable GS,, solutions.  metrically. By adding peaks on only one side one limits to
Parameters aré= —1.2 andC=5.4. “....0000011111.... ,” which is not a roll pattern, but
coexistent roll and homogeneous patterns, wiftoat at the
E, at fixed #=—1.2, it can be seen in Fig. 2 that cavity border between them. These issues will be explored below.
soliton branches bifurcate subcritically at the modulational Turning now to the dynamical properties of these CS so-
instability threshold. lutions, we have tested their stability by diagonalizing their
The existence of multipeaked CS structures is shown iJacobian, using the numerical methods mentioned above.
Fig. 2, in which their integral {|A| dx) is plotted as a func- Discounting the neutral mod@ee below possessed by all
tion of |Eg|2. CS exist on two distinct yet similar branches CS solutions, the stability results are rather simple, in that all
which correspond to structures with, respectively, odd angositive-slope branches in Fig. 2 are stable, and all negative-
even numbers of peaks. Both bifurcate from the homogeslope branches unstable. More precisely, all nonzero eigen-
neous state at the point of modulational instability. Eachvalues of the Jacobian of a positive-sldggeak CS solution
branch, although continuous, is composed of numerous posare negative, so that it is aattractor, self-organizing from
tive slope(uppe) and negative slop@ower) sections, which any sufficiently-similar structure into the uniquat given
we will denote byl” andL superscripts, respectively. We also parametersCS solution on its branch.

101

f Al dx

specify the “number of peaks({N) as the number which All negative-slope CS are unstable, they in fact have only
2.Q T 2.0 T 2.0 2.0f Wy
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FIG. 3. Sequences of profiles for odédft) and ever(right) CS branches shown in Fig. 2. Dash-dotted, solid, and dashed lines correspond
to solutions alEq|?=1.22, |Ey|?=1.33, and Ey|?>=1.44. Other parameters afe= —1.2 andC=5.4.
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FIG. 4. Panela shows the attractor nature of the lower-branch cavity soliton foy €&ictures and panéb) for CS, structures, for
differing address pulses. Par(e) gives similar behavior fofpeak ) above andpeak 2 below the separatrix. Solid and dash-dotted lines
indicate two simulations in which peak 2 is “switched on” and where it relaxes to the side band of peak 1. The vertical dotted line denotes
the address time. Horizontal dotted and dashed lines, respectively, show'C&nd C$'" structures. Parameters dig|?=1.33, =
—1.2, andC=5.4.

one positive eigenvalue, and so all their internal degrees ofnough the peak two will relax to the side band of peak one.
freedom except one are damped. Hence, as has been shownFor the stable positive-slope &Structures, all internal

in Ref. [14], the lowest branch CS, although unstable, be-modes are damped, and thus they usually have only one ef-
haves as anetastableattractor for nearby states. Supposefective degree of freedom, corresponding to the neutxal (
one attempts to create a stable upper branch CS with aa0) eigenmode mentioned above. This mode, shown in Fig.
incident address pulse of, say, Gaussian profile for a gives, is associated with the transverse translational symmetry of
time 7. If the pulse is very weak, its effect will decay away Eq. 2. Such translationalGoldston¢ CS eigenmodes are
and no CS will be created. Increasing the amplitude of thevell documented2,14,31,37. The neutral mode, being of
address pulse, one finds that the perturbation “hump” on thevdd parity, couples to any local gradient of, e.g., pump field
background field becomes longer lived, and also begins tamplitude or phase present at the location of the structure.
resemble the lower-branch CS in shape. At this stage, th§he consequent excitation of the neutral mode implies that
amplitudea of this hump becomes the only significant dy- CS move with a velocity proportional to the local gradient
namical variable. If it remains less than that of the unstablg§7 14].

CS, the hump eventually decays back into the background, CS dynamics is more complex close to the end of a
and no stable CS is created as is seen below the lower-branganch. We see that in one spatial dimension, lowering of
CS lines in Figs. &) and 4b) for an address beam suitably |E,|? causes aN-peaked upper branch cavity soliton (€S
spaced (Zr/k;) with dual humps of similar amplitude. B jnitial condition (panelsb and f) to undergo a saddle-node
exceeds the amplitude of the unstable CS, however, it coryifyrcation to a C§_, lower-branch structurépanelsa and
tinues to grow(even after the address pulse is gyeand e) when |Eo|?~1.20. At this saddle-node point the upper-
eventually stabilizes as a stable upper branch single-peakgflanch structure becomes unstable to an eigenmode of form

CS. In the critical range, whereis very close to that of the  given in Fig. 6. The structure then collapses into the homo-
unstable CS, the dynamics slows down dramatically, Wh'dbeneous background.

is why we consider the unstable CS to be metastable, rathér pq the pump|E,|? is increased, side-peaksiffraction

than just unstable. For higher pump values, the Iower-_br_ancnpmeg surrounding the main CS structure begin to grow,
amplitude decreaseig. 2), and it follows that the mini-  qngistent with moving closer to the modulational instability

mum energy required to excite a soliton decrea@®sre-  threshold. Before this threshold is reached, however, the
sponding experimentally to shorter address times or lower

powers[20]). If, however, an asymmetric address pulse is 1of '(0)'_ 1o '(b)'

applied similar to that used in Fig(l) but with the second i

peak of amplitude slightly below the lower-branch CS, inter- 0.5 0.5

esting results can be seen. The first peak, as expected, will 0.0 w 00

grow towards the amplitude of @&tructure—see Fig.(4).

The second peak, however, relaxes below the lower-branch =05 -0.5

solutions, but due to the growth of the side bands of peaks 10 10 Vi

one causes the structure to gain energy and move above the et st
-20-10 0 10 20 -20-10 0 10 20

amplitude of the lower-branch CS, that eventually evolves to
a C3'. At the point of growth above the ¢$eak one that
has been dwelling close to ESlowly increases in ampli-

X

X

FIG. 5. Normalized neutral translational eigenmodes fof CS

tude until the amplitudes of both peaks reach that of 4 CSand c$ structures. Solid and dashed lines, respectively, denote

structure. If, however, the peak one does not grow quicklyRe(¢) and Im(). For both panel$E,|?=1.33.
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1.0 I —10 s ]
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FIG. 6. Normalized unstable eigenmodes for!Cand C$

y -

structures at left saddle-node bifurcation. Solid and dashed lines, | !
respectively, denote Rg| and Im(). Parameters|Eq|*=1.221 —1.4} Q. |
(CS)) and|Ey|?=1.194 (C$). T i O\ \\

strongest ripples reach a critical amplitude, where they de- 16l 9;

velop a new CS peak on each side of the original structure ) S P Ea—
(|Eo|?~1.46). This instability causes the structure to jump 1.0..4 12 14 1.6 %
to an unstable G$. , branch(panelsc andg of Fig. 3, and POE? y
is a direct result of an eigenmodeof form shown in Fig. 7 T — © B \(Q

becoming unstable at this saddle-node point, with a real ei-
genvaluex becoming positive.

This instability of the side bands is a consequence of their ~ -1220
powers exceeding that of the lower-branch soliton, which as ©
mentioned earlier is aeparatrixand causes growth to a full
soliton. Since the newly formed higher-order soliton have  _; .0}
identical side bands, a chain reaction occurs until a roll pat-
tern is formed which fills the computational domain—as can TS990 1230 1240 1250
be seen in Fig. 8 panéb). 16"

Thus we see that at one end of a CS branch, pattern domi- FIG. 8. Regions of existence limits 1D {;Structures(shaded
nate_s over background, whereas at the other the backgrou?ggions in two-dimensional parameter spad&g|2,6). Structures
dominates as the CS solutions collapse. Ponj28liconsid- ity N=1, 2, 3, and 4, respectively, exist between solid, dotted,
ered the dynamics of the front between a roll pattemn angjashed, and dash-dotted lines. Parialsand (b) show space-time
the coexistent homogeneous solutiosymbolized by  piots of unlocking behavior, with the transverse coordinate the
“....0000011111...." in the Introduction. He showed horizontal axis and timeé increasing on the vertical axis. Parfe)
that this front generically moves, i.e., there is a more stablghows the fine structure of locking domain, indicated by the square
phase that annihilates the less stable one, but that there can the main figure. Paramete3=5.4.
be an intermediate region in which the two phases can stably

coexist over a finite range of a given parameter. In_. e -
this region the front ,‘lockS% and remgins stgtionary. Ouyr divenan analytical justification by Coullet al.[29]. Within

N-peaked CS solutons can be symbolized asthe regions of stability of C‘,$structureswe can thus talk of

“ . ..0001111...11111000 ... .," which we can envis- ockingin analogy with these analytical resuf8,29. From
age as a pair of fronts “back-to-back.” This idea has beerfn€ saddle-node pn‘u_rcatlon_s in Fig. 2 It is cléand fortu-
nate from an applicational viewpoirthat high-order clusters
of cavity solitons can be stable over a finite ranggRf|?.
Knowing the existence and stability properties of CS solu-
tions as functions ofE|? for fixed # andC, we can add a
second dimension in parameter space, extending Fig. 2,
along 6 in the (Eql%6) plane, as shown in Fig. 8 for
C§"2L,Sy4 structures. At the boundaries of these regions, un-
locking takes place due to the invasion of the homogeneous
solution into a patterned state or pattern into a homogeneous

bttt bbbt state[see, panelga) and(b) in Fig. 8]. The fine structure of
—-20-10 0 10 20 —-20-10 0 10 20 such locking domains is shown in parie).

X X These solutions have stable and unstable multisectioned

FIG. 7. Normalized unstable eigenmodes for.Cand C$ branches.which connept through se'lddle-'node bifurcations.
structures at right saddle-node bifurcation. Solid and dashed line®Y analyzing these sections (£s; with ¢ fixed, the value
respectively, denote R&( and Im(). Parameters|Eo|2=1.464  Of |Eo|? for each C§ structure at each saddle-node bifurca-
(CS)) and|Ey|?=1.447 (C$). tion point (which we termu,) is determined. The values of

-1.230F

N
A

-1.250 —1.250

1.466 1.467 1.468
IEol?

1ol (b))

051

San

0.0
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FIG. 9. Stable C§2'3'4 clusters found using our Newton algo- 1.0
rithm in a physical domain of 4848 diffraction lengths on a com-
putational mesh of 128128 grid points. Parameter,|?>=1.33,
#=—1.2, andC=5.4. FIG. 10. Integral of two-dimensional CS structures against the
external pumpEy|2. Respectively denoted for ascending integral
wy should obey a similar scaling principle to that presentedvalues are solid GSand broken CS lines, whereN=1,2,3,4. Pa-
in Ref. [29] for localized structures in the Swift-Hohenberg rameters:=—1.2 andC=5.4.

equation. For larg&\ this scaling is predicted to be geomet- ) ) )
ric, i.e. given by configurations of sidel are unstable due to diagonal interac-

tions[see, Ref[2]], and so foN=4 we consider the rhom-
(3)  boid of sided, which is stable.

Figure 10 shows the integral measure of the 2D CS solu-
wherer is a constant. We can try to test this prediction, overlions withN=1,2,3,4 close-packed peaks. There is a strong
a two-dimensional parameter space, against the data frofif@litative similarity to the corresponding 1D pl@itig. 2),
our model presented in Fig. 8. We can report that the gebut it should be noted that there is no known sca_llng law for
quence of bifurcations is precisely as predicted in Reg], 2D structures to match that for 1[D29]. In this two-
and moreover, that this sequence is maintained along arfjimensional model, the existence aznd stability domains of
section of the CS domain in Fig. 8. We cannot confirm theMultipeaked cavity solitons in theéEo|*, ¢) parameter space
geometric scaling law, however, but cannot yet say whethe®'® also quite similar to those found in our one-dimensional
this is due to imprecision in our numerical data, to not hay-2nalysis, and so we present only those fol CES,, CS;
ing reached the asymptotic region bf or indeed to the and C§ structures. These are shown in Fig. 11, again with
scaling law being invalid. their existence domains extended. These stability domains

Fig. 8 shows the existence of a particularly interestingare important because of cavity mistuning and pumping in-
region in 1D parameter subspace, whég|°~1.49. At homogeneities present in experimental nonlinear media, that

these parameters we obtain two separate rangeg if ~ make it desirable to have large domains of stability. While
which cavity solitons exist. the structure of the overlaid domains in Fig. 11, are qualita-

tively similar to the 1D case, we again note that there is no
analytic law with which to compare the bifurcation se-
guences.

Multipeaked cavity soliton structures in two dimensions Panelda) and(b) of Fig. 11, respectively, show 3D space-
involve 2D interaction forces between neighboring solitonstime plots of unlocking behavior, with the transverse coordi-
This feature has been studied recently in R2f, where the  nates K,y) on the vertical axis and timeon the horizontal
stability of two-dimensional clusters of cavity solitons was axis. In panela a CS, becomes unstable to the invasion of
analyzed as a function of soliton separation. Stable separédhe homogeneous solution into the structure, while in panel
tions are determined by an effective potential created by thé) the opposite is true and the structure invades the homog-
interaction of the diffraction ripples of thi cavity solitons, enous solution forming an extended optical pattern.
which was found to be expressible as a sum of pair-wise Mechanisms responsible for these unlocking characteris-
potentials within the structure. In RdR] the emphasis was tics are of obvious importance. Starting from a solitar))iCS
primarily on open clusters, because the interaction potentiatructure we find that decreasing the pump has the effect of
is only asymptotically exact. Here, in a numerical analysisweakening the diffraction ripples surrounding the soliton. At
we only consider close-packed clusters, at the first stabléne lower existence threshol¢Ep|?>~1.10) the structure be-
separation distance af~6.8 for CS, configurations, as comes unstable to an undamped eigenmode which causes the
shown in Fig. 9. It should be noted that for {Ssquare CS structure to eventually relax into the homogenous state.

MnNs1— MN=T (AN UN- 1),

V. TWO-DIMENSIONAL STATIONARY STATES
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~1.40F

—1.50F

1.0 1.2 1.4 1.6
E,l?

FIG. 11. Locking regimes of hexagonal clusters of; GSolid/ FIG. 13. Dynamical evolution of GSstructure atEo|7,.,. Pan-

light gray), CS, (dotted/gray, CS, (dashed/dark grayand C$  els(a)—(d), respectively, give the fiel& att=0, t=45,t=80, and

(dot-dashed/bladkstructures, with respective existence indicatedt=400. Parameter$Eq|*=1.5326,6=—1.2, andC=5.4.

by (line styleffill shad¢ Panels(a) and (b) show the unlocking

dynamics of a CSstructure at amplitudfE|= 1.5, with transverse

coordinates X,y) on the vertical axis and timeincreasing on the as seen in Fig. 13, thus verifying the picture given in Fig. 11

horizontal axis. Respective intracavity field intensities Heg|? panel (b). At the end of the existence brancHEg|?

=1.08 and 1.45 with=—1.2 andC=5.4. =1.5326) anm=0 eigenmode becomes undamped as pre-
dicted in Ref.[7].

As in the 1D case, increasing the pump generates stronger VI. CONCLUSIONS
diffraction ripples around the structures. If the pump is in- '
creased to the upper existence threshoEy|f~1.52) the We have applied powerful numerical techniques to effi-

primary ring splitsup into a periodically disturbed annulus.ciently calculate one- and two-dimensional steady-state cav-
Unlike the one-dimensional analysis though, there are fouity soliton solutions, and their stability. We demonstrated
competing eigenmodes which become undamped at thithese techniques in the context of a simple but rich nonlinear
point (see Fig. 12 These lead to the formation of six, four, optics model, but they have wide applicability. These struc-
five, and seven modulated peaks around the primary diffractures have been shown to exist in substantial regions of a
tion ring, as shown in panels)—(g), respectively. The mode two-dimensional parameter space, in separate branches
with six-fold symmetry[panel(d)] is the dominant one, and which bifurcate from the homogeneous background solution.
subsequently causes a bifurcation to an unstablg,§So-  The stability and dynamics of the solutions on each branch
lution. This then evolves towards a hexagonal patterned stateave been studied, and we have characterized their eigen-

0.04+ six-fold e———e —

o - H
A 0.00
—0.02F
—0.04
1 1 L 1 1
1515 1520 1525 1530
[Eql

FIG. 12. Eigenmodes plotted as a function |&,|? for CS{ structure. Respective eigenvalues for pangls-(g) are A=0, O,
3.7x1072, 3.5x 1072, 1.7X 1072, 1.5x 102, ParametergEy|?°=1.53, §=—1.2, andC=5.4.
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modes. We have identified the modes which become unin two dimensions, for which no analytic formulas are
damped at the saddle-node bifurcation marking the end dfnown.
each branchor subbranch We have also found the spatial

modes responsible for the formation of higher order solu-

tions. Finally we identified the overlaid domains in which  Thijs research was partially supported by EPSRC Grant
one- and two-dimensional structures exist as stable “locked’Nos. GR/M 31880, GR/M 19727, GR/N 19830, and GR/R
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is in general agreement with an asymptotic analytic predicedges support from SGI. We thank A. J. Scroggie for illumi-
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