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Localized excitations in(2+1)-dimensional systems
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By means of a special variable separation approach, a common formula with some arbitrary functions has
been obtained for some suitable physical quantities of vari@t4)-dimensional models such as the Davey-
Stewartsor{DS) model, the Nizhnik-Novikov-VeselotNNV) system, asymmetric NNV equation, asymmetric
DS equation, dispersive long wave equation, Broer-Kaup-Kupershmidt system, long wave—short wave inter-
action model, Maccari system, and a geneNu+(M)-component Ablowitz-Kaup-Newell-SegUuAKNS) sys-
tem. Selecting the arbitrary functions appropriately, one may obtain abundant stable localized interesting
excitations such as the multidromions, lumps, ring soliton solutions, breathers, instantons, etc. It is shown that
some types of lower dimensional chaotic patterns such as the chaotic-chaotic patterns, periodic-chaotic pat-
terns, chaotic line soliton patterns, chaotic dromion patterns, fractal lump patterns, and fractal dromion patterns
may be found in higher dimensional soliton systems. The interactions between the traveling ring type soliton
solutions are completely elastic. The traveling ring solitons pass through each other and preserve their shapes,
velocities, and phases. Some types of localized weak solutions, peakons, are also discussed. Especially, the
interactions between two peakons are not completely elastic. After the interactions, the traveling peakons also
pass through each other and preserve their velocities and phases, however, they completely exchange their
shapes.
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[. INTRODUCTION the Fourier transformation method and the variable separa-
tion approachVSA) are two most important approaches to
In the past three decades, the solitph chaos[2], and  find the exact solutions. It is known that the famous IST can
fractals[3] have been widely studied and applied in manybe considered as an extension of the Fourier transformation
natural sciences such as biology, chemistry, mathematic nonlinear physics. However, it is difficult to extend the

communication, and especially in almost all branches o SA to nonlinear physics. Recently, two kinds of “variable

. . : separation” procedures have been established. The first
physics such as condensed matter physics, field theory, ﬂu'r‘fethod is called the “formal variable separation approach”

dynamics, plasma physics, and optics. Usually, one Consideﬁ‘zVSA) [6], or equivalently the symmetry constrain@ or

that the solitons are the basic excitations of the integrabl@gplinearization of the Lax paif8]. The independent vari-
models while the chaos and fractals are the basic behavioggples of a reduced field in FVSA have not been totally sepa-
of the nonintegrable models. Actually, the above considerrated though the reduced field satisfies some lower-
ation may not be complete especially in higher dimensionsdimensional equations. The second type of variable
When saying that a model is integrable, one should emphaseparation method established first for the DSavey-
size two important facts. The first one is that we should poinStewartson equation in 19969]. The method has been re-
out under what special meaniis the model is integrable. Visited and developed recently for various2+1)-

For instance, we say a model is Pairlemtegrable if it ~dimensional models like the NNV(Nizhnik-Novikov-
possesses the Painlepgeoperty and a model is Lax or IST Veseloy equatl_on[lo], ANNV (asymm_etrlc NNV equation
(inverse scattering transformatjoimtegrable if it has a Lax [1&) e?s?vquté)itéogvg/]épé?qﬁ ;ﬁ;énﬂcjv%r '?12% e;;gt'?gég]r'_
paur and then can be solved.by the IST approach. A qu aup-Kupershmidt system[15], a nonintégrable(2+1)-
integrable under some special meanings may not be int&imensional Kortweg—de Vries equatiots], long wave—
grable under other meanings. For instance, some Lax intgs, ¢ wave(LWSW) interaction modef17], M,accari system
grable models may not be Painleimegrable_[4,5]. The SeC- 18], and a general N+ M)-component Ablowitz-Kaup-
ond fact is that for the general solution of a higher Newell-SegufAKNS) system[19]. After some slight modi-

dimensional integrable model, say, a Painldméegrable fications, one can find that there exists a common formula,
model, there exist some characteristic, lower dimensianal

bitrary functions. That means any lower dimensional chaotic —2Aqypy

and/or fractal solutions can be used to construct exact solu- U= Aot At 5 A=agaz—ajay,

tions of higher dimensional integrable models. In other (8ot aip+axq+aspq) 1.1
words, any exotic behavior may propagate along the charac- '
teristics. to describe suitable physical quantities for all the models

Solving nonlinear mathematical physics problems is muctmentioned above. In Eq1.1), ay, a;, a,, anda; are arbi-
more difficult than solving the linear ones. In linear physics,trary constants angd is an arbitrary function ofx,t} for all
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of them, whileq of Eq. (1.1) may be an arbitrary function of sion of the well known(1+ 1)-dimensional nonlinear Schro

{y.,t} for some models like the DS and NNV equations or andinger equation. The DS system is the shallow water limit of

arbitrary solution of a Riccati equation for otheisee fol- the Benney-Roskes equatip®2,21], whereu is the ampli-

lowing for detail3. Because some arbitrary characteristics,tude of a surface wave packet anccharacterizes the mean

lower dimensional functionflike p), have been included in motion generated by this surface wave. The DS sys&i

the universal formuldl.1), by selecting them appropriately, can also be derived from the plasma phygi23] and from

abundant stable localized structures have been revealed ftire self-dual Yang-Mills field24]. The DS system has also

these models. If we consider the boundéoy initial) condi-  been proposed as @+1)-dimensional model for quantum

tions of the given localized excitations, we can find that allfield theory[25-27. It is known that the DS equation is

the (2+1)-dimensional localized solutions of these modelsintegrable under somgpecialmeanings, say, it is IST inte-

are caused by the suitable boundésyinitial) conditions. In  grable[28,29 and Painleventegrable[30]. Many other in-

other words, the richness of the localized excitations of thderesting properties of the model like a special bilinear form

(2+1)-dimensional models results from the fact that arbitrary[31], the Darboux transformatidr82], finite dimensional in-

exotic behaviors can propagate along some special charactéegrable reduction$33], infinitely many symmetrie§34],

istics of the models. In a previous stuf®0], we had pointed and the rich soliton structur¢28,29,31,9,12have also been

out that some types of nonlocalized chaotic and periodic patrevealed.

terns may exist also if2+1)-dimensional soliton systems To find some exact solutions with some arbitrary func-

because of some arbitrary characteristic functions that can bB&ns of the DS equation, we make the following transforma-

included in the special variable separation solutions. In thigion:

paper, we mainly focus on the possibilities of the chaotic and

fractal localized excitations and the interaction properties of v=vo—f H(Fyo+ gy +2f,000)

some special types of localized excitations for tRe-1)- 5.2 2

dimensional soliton systems. + 2(fX’+2f>”f><’+fy’)’ 2.2
For completeness, we review the variable separation ap- 1

proach for the DS system in Sec. Il, list the known models u=gf " +uo,

that can be solved by means of the special variable separa- , ,

tion approach in Sec. Ill, and give out some special types ofVith réalf and complexg, wherex =(x+y)/\2, Y=

stable localized excitations in Sec. IV. The completely elastic ™ y)/2 and{ug,vo} is an arbitrary seed solution of the

interaction property between two special ring solitons is alsgnodel. One may obtain the Bidund transformation relation

discussed in Sec. IV. In Secs. V and VI, we discuss the pos(-z-z) via stgndard truncated Pain[ewpansion. Under the
sible chaotic and fractal patterns fd-+1)-dimensional transformatior(2.2), the DS systent2.1) is transformed to a

models, respectively. In Sec. VII, a special type of weakdeneral bilinear form,

solution (peakong and their noncompletely elastic interac- .
tion behavior are studied. The last section contains a sum- (Dxryr+Dyryr +2iD )+ Ug(Dyryr +2Dyryr + Dyry )

mary and discussions. +2auogg* +2audg* f—2v,gf+G,fg=0, (2.3

Il. VARIABLE SEPARATION APPROACH FOR THE 2(Dyryr + alug|?) tf+2agh+2agfu§ +2aueg* f — G, ff
DAVEY-STEWARTSON EQUATION ~0
In order to establish a concrete variable separation proce-
dure for a given nonlinear system, it is convenient to changevhereD is the usual bilinear operat85] defined as
the model to a multilinear variant form with an arbitrary seed
solution and then extend the Hirota’s two-soliton solution to DYAB= (95— dx ) "AX)B(X1)|x,=x»
a general variable separation ansatz. Finally, by substituting
the variable separation ansatz to the original model and s&ndG; is an arbitrary solution of
lecting the seed solution appropriately, one may find some
nontrivial variable separated solutions. —16a(Ugy +Ugy ) (U, U5 )+ Gy + Gryryr +2Gyy
For concreteness and completeness to see the detailed
variable separation approach, we review the procedure for
the DS systenji21]

_4a,(DX’X’+Dy’y’+2DX’y’)u0u3:0' (24)

For the notation simplicity, we will drop the “primes” of the
space variables later.

1
iU+ §(Uxx+ Uyy) + a|u[2u—uv =0, To discuss further, we fix the seed solutifuy,v,} and
G, as
(2.1
D Vyy~ 2a([uf?)6=0, Up=G1=0, vo=Po(X.)+qo(y,t), (2.5

with a slight modification such that we can use a same uniwherepy=py(X,t) andgy=qq(y,t) are two arbitrary func-
versal formula to describe all the models discussed in thisions of the indicated variables.
paper. The DS equation is an isotropic Lax integrable exten- To solve the bilinear equatiof2.3), we make the ansatz
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LOCALIZED EXCITATIONS IN (2+1)-DIMENSIONAL . .. PHYSICAL REVIEW E 66, 046601 (2002

f=ap+a;pt+aq+aspdq, g=piq;expir +is), Pr=— TPyt Ca(@+azp)?+cz(a+asp) —Acy,

(2.6 (2.1
where ag,a;,a,,az3 are arbitrary constants and — _ + 2_ + +A
p=p(x.t), q=d(y,t), Pi=pi(xt), G=aqs(y.t), T TS0 Gl A st asd) F A,

=r(x,t), s=s(y,t) are all real functions of the indicated
variables. If we takep, g, p;, andq; as exponential func-
tions, the variable separation ansatz reduces to the two-line
soliton (or single dromiop solution form. Substituting Eq.

4(2rt+ r>2<+ 2p0) p>2<+ pix_ 2pxxxpx+ c5p§=0,
(2.12

(2.6) into Eqg. (2.3 and separating the real and imaginary

parts of the resulting equations, we have

2Ap,qy+ apiqi=0, (2.7)

{01P1xxt P1liyy— P10 27+ 25+ 2(Po+ Qo)+ + 2]}
X(agta;p+ayq+aspq)+qi(a;+asq)
X (P1Pxx—2P1xPx) + P1(@zp+2az)(d:1dyy—2d1,4y) =0,
(2.8
[—01(2rypaxt 2P+ Palwx) = P1(2Syd1y+ 201+ d1Syy) |
X (ap+a;p+ayg+agpa)+2q;:ps(qet+syay)
X (agp+ap) +201ps(rypx+py(as+azd)=0. (2.9

Because the functiong,, p, p;, andr are only functions
of {x,t} and the functions|y, g, q;, ands are only functions
of {y,t}, the equation systert2.7), (2.8), and(2.9) can be
solved by the following variable separated equations:

428+ 57+ 200)dy + Gy — 20, Gyyy— Cs0ly =0.

For any fixedp, and qq, solving the equation system
(2.11) and(2.12 is very difficult. However, because of the
arbitrariness opy andqg, we can treat the problem alterna-
tively. Actually, we can consider the functioqsand q as
arbitrary functions whilep, and q, are determined by Eg.
(2.12 andr ands are fixed by Eq(2.11). Consequently, the
exact variable separation solution of the DS equation has the
form

818,V —2Aa " 'p,qy explir +is)
u:

aptaipt+agq+aspq

[(a2+ a3p)ny+ (al+ aSQ)pxx]
apgta;ptragq+azpq

(2.13

vV=PotJo—

L (@t a3p)2a>— 2Aqypy+ (a; +a3q)?ps
(ap+ap+ayq+aspq)?

p1=381V—2Aa ¢, 'py, (210 with two arbitrary functionsp and g while p, and q, are
determined by Eq(2.12 andr ands are fixed by Eq(2.11).
0= 8\ciay,  (85=85=1), Especially, for the module square of the fieldeads
lu?=Ua™? (2.19
—27'a AP
- « 2Py 2, (2.15

Vapas coshi—[ P+Q+In(as/agp) ]+ vaja, coshi—[P— Q+In(a/ay)]

where

p=e,

(2.16

andP andQ are also arbitrary functions d¢k,t} and{y,t},

g=e?,

respectively. In Ref[12], a special variable separation form
(ap=0) for the DS system has been given. The result of Ref,

[9] is related to the special case of this paper figr=qq
=a0=0.

From expressior2.14), we know that because the quan-
tity expresses the value of the module square of the field

for the DS system, we have to put a constraint

@Ap,d,<0, (2.17

on the selections of the functiomsand g and the constants
ay, a1, a,, az, anda.

Ill. VARIABLE SEPARATION SOLUTIONS OF OTHER
(2+1)-DIMENSIONAL MODELS

In this section, we list some known models which can be
solved by means of the special variable separation approach
with some suitable modifications such that they possess a
common quantity expressed as Ef.1).

NNV model For the NNV model
Ug— Uygyx— buyyy+3a(uv)+3b(uw),=0, (3.1

Uy=vy,
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Uy =Wy,

a special variable separation solution reads

u=u, 3.2
2(a1+a30)?p; 2(a,+ a30) Py
o= _
(ap+a;p+a,q+aspq)? (dot+ap+axg+aspq)
+Uo, (3.3)
o 2atagpay  2(atasp)ayy
(ap+a;pt+a,q+aspq)? (dot+aip+axg+aspa)
+Wwp, (3.9

where p=p(x,t) and q=q(y,t) are arbitrary functions of
{x,t} and{y,t}, respectively;ay, a;, a,, andas are arbi-
trary constants while, andw, are related t@ andq by

vo=(3apy) "' — Pr+ aPxxxT C180+ (@1C1 +a5Co+ C2a0)P

3.9

+(a;¢y+azco)p?l,

wo=(3bgy) g+ bayyyt+ Codpt(a;C1+a,Cco—Cra0)q

(3.9

—(axCy— a3cl)q2],

with {cq,cq,C,} being arbitrary functions of.

In Ref. [10], a special result wittag=1 for the NNV
system had been discussed in detail. From &), we
know that for the NNV model[3.1), there is no constraint
like Eq. (2.17 on the selections of the functiopsandq and
the constantg,, a;, a,, andas.

ANNYV systeniThe similar formula is valid for the ANNV
system[36-3§

Ug+ Uy — 3(Uv ) =0, uy=vo, (3.7
The result reads
u=u, (3.8
L 2@ta)’py  2(at 3P
(ap+a;p+a,q+aspq)? (dot+aip+axg+aspq)
+vg. (3.9

In this case, the functiop=p(x,t) is still an arbitrary func-
tion of {x,t} whenuy is fixed by

vo=—(3p) - P~
+(a1C,+asCo)p?].

PxxxT C1@07+ (21C1+aCo+ Cra0) P
(3.10

However, the functiong=q(y,t) now is not an arbitrary

function and should be determined by the following Riccati

equation

2_
— 0+ Copt(@1C1+a5C0—Cra0)q— (@€, —a3C,)q~=0,

(3.11)
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where{cy,c;,C,} are arbitrary functions afandag, a;, a,,
andas are arbitrary constants. If we select the functiops
¢4, andc, as

Co=aoa, Arhz—AAu—AdAg), (312
Ci= oA, A [azAlAzt az(aptaAz)Ay
—(apt+ayAy)?Ag], (3.13
and
1
Co= m[azasAlAzt_ az(agt+aAz)Ay;

— (apa; +ayazA3+2agazA,)Ag], (3.19

then the Riccati equatio8.11) has a solution
q= A; +F+A2’ (3.15

whereA;=A, (1), A, =A,(t), A;=A5(t), andF=F(y) are
arbitrary functions of the indicated variables.

In Ref.[11], some types of special stable localized exci-
tations withayg=1 for the ANNV system have been obtained
by selecting the arbitrary functions appropriately. For the
ANNV system there is no constraint like E@.17) also.

Dispersive long wave equation systenihe (2+1)-
dimensional dispersive long wave equation system,

Uyt 75yt UyUy+ Ulyy = 0,

(3.16

Nt Uy Uy U7+ Uyyy= 0,

was first obtained by Boitet al.[39] as a compatibility con-
dition for a “weak” Lax pair. In Ref.[40], Paquin and Win-
ternitz showed that the symmetry algebra(bf and (2) is
infinite-dimensional and has a Kac-Moody-Virasoro struc-
ture. Some special similarity solutions are also given in Ref.
[40] by using symmetry algebra and the classical theoretical
analysis. The more general symmetry algeliva, symmetry
algebra, is given in Ref41]. In Ref.[42], Lou gave out nine
types of two dimensional similarity reductions and thirteen
types of ordinary differential equation reductions. Though
the model equation system is Lax or IST integrable, it does
not pass the Painlévest[43].

For the(2+1)-dimensional dispersive long wave system,
there is a special variable separation solution in the form

v=p+l=—U, (3.17
2px(a1+a3q)
u== +Ug, 3.1
agt+a;ptraxq+aspq  ° (318

with p being an arbitrary function dix,t}, q=q(y,t) being
a solution of the Riccati equation
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2_
0i—a0Co— (a1C1+axCo—apC,)q—(a3C1—axC,)q“=0

(3-i9) U0x=4A2p)2({A2pt2—ZA(a2a0+aza2p+ a1p?)py
and + AZ[p2,~ 2P, Pt 4PH(B+R)]
Uo= Py '[Pt= Pxx— @01~ (a1C1 +@,Co+80C2)P +(@,0p+a5a0+ pay)?, (3.30
— (216, +asCo)p?l, (3.20

1
23
. L 0i=—1{09%(ajap—aza,+ a;) —q[(azaz+aa,)
without the constraint like Eq2.17. ‘ AZ{ 370 982 M 093 d1chz

(N+ M)-component AKNS systetm this subsection we

write the variable separation result for a generalizétl ( X ay— 28901~ 28185830] ~ 802185

+M)-componeni2+1)-dimensional AKNS system, + agalJr aiagao}, (3.31)
iPitt Pixxt PiUx=0, 1=1,2,... N, where by and b, are arbitrary constants and

p(Xat)y ali(t)i a2j(t)= Sli(y)1 SZj(y)1 BEB(t), ag
—igji+ it qju=0, j=12,... M, (3.2) =ap(t), ar=aq(t), a,=a,(t) are all arbitrary functions of

the indicated variables with the condition

N M
N
uy+i§1 jgl a;Pig; =0, > .

M
=1 =

ajjbqiby; expli[s1i(y) —Sp(y) 1} = —24A.

1
which was first obtained from the inner parameter dependent (332
symmetry constraints of the Kadomtsev-PetviashiP)  Hence, for the quantityEEi'\‘:lE}V':la”piqj, we have
equation[34]. In Ref.[19], the Painlevantegrability of Eq.
(3.21) was confirmed. The Kac-Moody-Virasoro type algebra v=U, (3.33
and the related finite transformation are obtained and the
similarity partial differential equation reductions and ordi- with p being an arbitrary function of andt andgq=q(y,t)
nary differential equation reductions have been given by theatisfing the Riccati equatiof8.31) without constraint like

Lie group approaci44] and the direct metho45]. Eq. (2.17). In Ref.[19], the detailed procedure to derive the
The variable separation solution of the general AKNS sysvariable separation solution with,=0 has been given.
tem (3.21) possesses the form AKNS, ADS and long wave-short wave interaction sys-
tems The simplest case, a special AKNS system,
P Qj 2fy )
pi:Tl qj:T! u:T+u01 (322 |lﬂt+lﬂxx+lﬂuxzoy
with — i+ duxt Pu=0, (3.34

Uy= ¢¢1

(323 is related to the |+ M)-component AKNS syster{8.21) by
) . M=N=-a;;=1, p1=4, and q;= ¢ respectively. Espe-
Pi=F1ui(X,1)Gyi(y,t)exdiRy;(X,t) +iSy(y,t) ], cially, if we take ¢=y¢* further, the AKNS systen{3.34)
(3.29 can be considered as an asymmetric form of the DS system.
Some special variable separation forms of the AKNS system

f=ag+a;p(x,t)+axq(y,t) +azp(x,t)q(y,t),

Qj=F(x,1)Gy(y,t)exd —iRy;(X,t) —iSy(y,1)], (3.34 and the ADS system are given in Reff$6] and[13],
(3.25  respectively. As for the DS system, we have to put a further
constraint,
Gy Gy——A (3.26 U>0 3.3
anm\ P2 ap(t) Gy ' -9 (3.39
on the ADS system.
Fri=an(OVpe  Faj=az(t)Vpx, (3.27 If we make the variable transformations
Su=B+su(y), S=B+sy(y), (328 Oy D=Ly =LY,

(3.36
P(xy,)=8(x,y+t,) =S(x",y’,t"),

then the AKNS systen(3.34) reduces to the so-called long
(3.29  wave—short wave interaction moddl7]

Riix=R2jx=Rx (a5a9— Api+aya,p+ ayp?),

B 1
~ 2Ap,
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i(Ltr+Lyr)+LXIXr+Luxr:0, (337)
_i(Str"‘Syr)"‘sxlxr_"Sl.&r:O,
u,=LS.

Maccari systemin Ref.[48], a “new (2+1)-dimensional
nonlinear system” is derived

iA+ A+ LA=0,
iB,+B,,+LB=0, (3.39

Ly=(|A]2+[B[?)y,

and Zhang, Huang, and Zhefg8] have obtained a variable

separation solution of Eq3.38. Actually, taking M=N
=2, p1=A, p,=B, q;=A*, and g,=B*, the N+ M)

component AKNS systen(8.21) reduces to the Maccari sys-
tem (3.38. The same constrairi8.35 should also be added

to this model.
BKK systemThe (2+1)-dimensional BKK system

Hyy—Hyxyt2(HH,)y+2G,,=0, (3.39
Gi+ Gyt 2(HG),=0, (3.40

has a special variable separation solution

6= 3.4
(a;+azq)py

- Ho, 3.4

aptaipt+agq+aspq 0 (342

wherep is an arbitrary function ofx,t},

Ho=—(2px) [P+ Pux— A(C1p?—C3p+Cy) ],

(3.43
andq satisfies the following Riccati equation:
0y=C1(ag+a1q)°+cy(a; +azq)?
+C3(apt+axg)(a;+asq). (3.44

In summary, from the result®.14), (3.2), (3.8), (3.17),

PHYSICAL REVIEW E 66, 046601 (2002

0.15

0.1 A\
U A
. I

0 O% N

0N

y X
@ 10710

FIG. 1. Four resonant solutions driven by four straight-line soli-
ton solutions for the quantity shown by Eq(1.1) with Eqgs.(4.1)
and (4.3) at timet=0. (a) The first type of a single resonant dro-
mion with the parameters being given by E4.2). (b) The second
type of single dromion solution with the conditio@.4). (c) A
single solitoff solution with Eq.(4.5). (d) Four solitoff solutions
under the selectiofd.6). All the figures of this paper have no unit
because all the models discussed in this paper are dimensionless.

(3.33, and(3.41), we know that the variable separation so- ADS, and the Maccari systems, some exampées, shown
lution (1.1) is valid for many physically interesting models. Figs. 1b), 1(d), 3, 4, 6, 7, 8, 9, 11, and 12re not valid

For the DS and NNV models, both the functigmandq are
arbitrary. For other models, only the functignis arbitrary

because of the constraif.17) or (3.35.
Resonant dromion and solitoff solutioritfwe restrict the

while g should be a solution of a Riccati equation. For thefunctionsp andq of Eq. (1.1) as

DS model(the ADS model and the Maccari systeanfurther
constraint(2.17) [Eq. (3.35] should be satisfied.

IV. SPECIAL LOCALIZED STABLE SOLUTIONS

In this section, we list some special types of stable local-
ized known excitations for the quantity expressed by Eg.

N N
p=21 exp(kix+wit+x0i>z,21 exp &),
" 5 4.1
q=i§1 exeriy+y0i>J§1 exp Q;t),

(1.1) via some suitable selections of the arbitrary functions.
All the examples in this section are valid for the modelswherexy;, Yo, Ki, oi, K;, and{}; are arbitrary constants

without constraint(2.17) or (3.35. However, for the DS,

andM, N, andJ are arbitrary positive integers, then we have
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a single resonant dromion solution or multiple solitoff solu-
tions (we call a half-straight line soliton solution as a
solitoff). In Fig. 1, we plot four typical structures caused by
the resonant effects of four straight-line soliton solutions.
Figure Xa) shows the structure of a first type of single
resonant dromion solution shown by Ed.1) with Eq. (4.1),

1
M:NZZ, J:k]_:Kl:l, k2:K2:§,

4.2
1 FIG. 2. A special dromion lattice solution for the quantltly
=1 a=a,=3, a3=5> expressed by Eq1.1) with Egs. (4.8), (4.9), and (4.10 at timet
=0.
and
Whel’eXOi, Yoi» ki! wj , Ki7 Bi, bi, Ci, «a, anin are
(4.3  arbitrary constants anM, N, and J are arbitrary positive
integers, then we obtain the first type of multidromion solu-
att=0. tions.

Figure Xb) shows the structure of a second type of single Actually, to find multiple dromion solutions one may se-
resonant dromion solution shown by E(L.1) with Egs. lect the arbitrary functionp andq in quite different ways. If

X01= Y01= X02= Y02=0

(4.2), (4.3), and we change the selectidd.7) as
1 N
M=N=2, J=—k=K;=1, k=-K,=3, p=£(0), 0=2;bﬂamﬁwm+wﬂ+Mo,
. (4.4 y 5 (4.9
a0:a2:a3:1, alzi, t=0. q:g(n)! 77:21 Ci tanhgi(Kiy-i-in)jzl eXFijt)!

Figure Xc) is a plot of a single resonant solitoff solution Wheref(6) andg(7) are some differentiable functions 6f

shown by Eq(1.1) with Egs.(4.1), (4.3), and and », respectively, then we obtain the second type of mul-
tidromion, dromion lattice structure. Figure 2 is a plot of a

1 special type of dromion lattice solution with
M:NZZ, J:k]_:Kl:l, k2:K2:§, aO:l,

f(0)=exp(6), 9(n)=exp(n), (4.9
(4.9
a1:a2:3, a3:0, t=0. and
Figure 1d) is a plot of a four solitoff solutions shown by Eq. 1
(1.1) with Egs.(4.1), (4.3), and M=N=5, J=a,=la;=a,=10, az=z,
1 (4.10
— N = — — _ _ __ ki=Ki=2, ai=ﬂi=1, X0i=y0i=_15+5i1
M=N=2, J ki=K;=1, k, K23,
(4.9 bj=c;=0.1, i=1.2,...,5,
aO:a2:3, a3=O, a]_:l, t=0.
whent=0.
Multidromion solutions In the selection of Eq(4.1), Multidromion solutions driven by curved-line ghost soli-

though there exist some types of single-dromion solutiongons Recently, Lou pointed out that for man{2+1)-
with different peaks, we have not yet found a multiple dro-dimensional models, a dromion may be driven not only by
mion solution from Eq(1.1) with Eq. (4.1). In order to ob-  straight-line solitong36] but also by curved-line solitons
tain multiple dromion solutions, we have to change the sef37]. Actually, Eq.(2.14 shows us that the general multidro-
lections of the functionp andq. For instance, if we take ~ mion solutions of the model expressed by Ed.1) or
equivalently Eq(2.15 are driven by two sets of straight-line
N N solitons and some curved-line solitons. The first set of
p=2 b; tanH'i(k;x+ wit+x0i)52 b; tantfi(&;), straight-line solitons appears in the fac@y of Eq. (2.19),
=1 =1 say, one can take
, (4.7)

M N
q:i; ¢ tanrﬁi<Kiy+y0i>j§l expQ;t), Qy=i§1 Qi(Y—Yio), (4.10)

046601-7
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whereQ;=Q;(y—YVio) denotes a straight-line soliton which
is finite at the liney=y,, and decays rapidly away from the

line. Similarly, the second set of straight-line solitons appears

in the factorP,. Finally, the curved-line solitons are deter-
mined by the factorsyagascosh[P+Q+In(as/ay)] and

Jaja, cosh[P—Q+In(a; /a,)] of Eq. (2.15 and the curves
are determined by

ag_ .
P+Q+Ina—=m|n

as
P+Q+In—
0 a

0

(4.12

P—Q+int
Q n-

a .
P—Q+In—=min
a 2

while the number of curved-line solitons is determined by

the branches of the equations in E4.12). The dromions are

PHYSICAL REVIEW E 66, 046601 (2002

located at the cross points and/or the closest points of the (b)

straight and curved lines.
Multilump solutions In high dimensions, in addition to

FIG. 3. (a) Plot of the special oscillating lump solutiof.1)

the dromion solutions, another special type of localizedwith (4.14 and(4.15. (b) Plot of the special oscillating dromion
structure, called lump solutions, are formed by rational func-solution (1.1) with Egs. (4.16, (4.17), (4.15, and(4.18).

tions. Actually, the multilump solutions of(2+1)-

dimensional integrable models can be found by taking the Multiple ring soliton solutionsin high dimensions, in ad-
arbitrary functions in many ways. Here is a special selectiortlition to the pointlike localized coherent excitations, there

to find multilump solutions for the quantity shown by Eqg.
(1.9,

N 1 M 1
p=i§l 1+ (kiX— wit—X;0)?’ ngl 1+(Kiy=Yio)?
(4.13

Multiple oscillating dromions and lump# some periodic
functions in space variables are included in the functipns
andq of Eq. (1.1), we may obtain some types of multidro-
mion and multilump solutions with oscillating tails. The os-
cillated lump solution plotted in Fig.(d) is related to

1 1

P 1+{(x—ct)[cog x—ct)+5/4]}?’ a= 14y2’
(4.14
Qp=a3=1, a;=a,=>s, (4.15

att=0 and the oscillated dromion solution in Fig(bB is
related to
3 —il2
) sin

E 1

10
p=exp{3+2
=0

i
E (kiX+ (l)lt)

(4.16
10 —in i
S Eae
=012 2
(4.17
with Eq. (4.15 and
k=K,=1, t=0. (4.18

may be some other types of physically significant localized
excitation. For instance, if2+1)-dimensional cases, there
may be some types of ring soliton solutions which are not
exactly equal to zero at some closed curves and decay expo-
nentially away from the closed curvg49,10,1]. In Fig. 4,

we plot the interaction property of a two traveling saddle
type of ring solitons expressed by Ed.1) with the selection

(x+200)% 1
p=exp — W+ g(x+20t)+1

+exp{—1—lo(x—20t)2+5 , (4.19

y2
qzexp(E—S , a;=a,=5, ag=az=0
at the times(a) t=—2, (b) t=—0.3, (c) t=0, and(d) t
=2, respectively. Figures(d) and 4f) are the contour plots
of two ring solitons before the interactigi@at the timet=
—1) and after the interactiofat t=1), respectively. From
Figs. 4a)—4(d) and especially from Figs.(d) and 4f), we
can see that after head on collision of two traveling ring
solitons, they preserve their shapes totally. In other words,
the collision between the traveling ring solitons is com-
pletely elastic.

More concretely, to see the completely elastic interaction
property between two ring solitons, we cut and move the left
ring soliton of Fig. 4d) from the center[x=—20c;t,
+64, y=958,] (with t;=2 andc,, 6;, and §, being some
suitable constants related to the possible changes of the ve-
locity and the phase shjfto the center of the right ring
soliton of Fig. 4a) (before interaction[ x=20t,,y=0]. The
result single ring soliton may be described by

046601-8
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30 20 -10 0 x 10 20 30 40

: §§
NS/

30 -20 -10 x0 10 20 30

uo

a

60

©

FIG. 4. Evolution plots of the two special traveling ring soliton soluti¢hd) with Eq. (4.19 at the timeda) t=—2, (b) t=—0.3, (¢)
t=0, and(d) t=2, respectively(e) Contour plot of the ring solitons before collisiob={—1). (f) Contour plot of the ring solitons after
collision (t=1). The values of the contours from outside to inside|are=0.01,0.1,0.3, respectively.

for

]xﬂxzqcl+ 1tg+8,, y—y+d, C1=Cy=1, (4.24
(420 gng

whereU (t=tg) is defined by Eq(1.1) with Eq. (4.19 and

t=t,>0. Similarly, we cut and move the right ring soliton of

Fig. 4(d) from [x=20c,to+ 63,y=6,] to the center of the The corresponding figure of Eq4.22 with Egs. (4.24),
left ring soliton of Fig. 4a) [x=—20to,y=0] and the result (4 25 andt,=2 is plotted in Fig. 5. The slight changes of

U(t:to), Xx=0
1o, x>0

51:52:53:5420. (425)

can be expressed as the
0, x=O0
27 U(t=ty), x>0

X—=X+201+cCyltg+ 3, y—y+d,
(4.27)

Now selecting the constants;, c,, 8;, 8, &3, and d,
appropriately to minimize the quantity

) 0
20 @ 40 20 %

we can find that

FIG. 5. Plot of the error function expressed by E4.23 with
01 max— 2X 107 ~0, (4.23  an enlargement factor 1(i.e., v2=10"%1) at timety=2.
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parameterg,, c,, ands;, i=1, 2, 3, 4 will immediately
lead to the rapid increase of the valuevdf. The conclusion

is true for any othety>2. The result(4.23 (i.e., v1~0)
denotes that the ring solitons preserve their shapes totally
after their collision. Equatiori4.24) shows us that the ring
solitons preserve their velocities during the interaction. And
Eq. (4.25 means that there are no phase shifts at all for the
head on collision between two ring solitons. Similarly, we
have studied the interaction properties for the pursue colli-
sion between two traveling ring solitons which may have the
shapes different from that of E4.19. The conclusions are
exactly the same.

Multibreather like soliton solutionsin (1+1)-dimen-
sional cases, the breather solution is another type of impor-
tant nonlinear excitations. Because of the arbitrariness ap-
pearing in the functionp and q of Eq. (1.1), the breather
solutions of the(2+1)-dimensional models may also have
quite rich structures.

In this paper, we write only one special example, multiple
ring type of breathers, with the selections of the functipns
andq of Eq. (1.1),

N
p=§1 exp{— [ fyi(t)x—f(D)]2+f5(D)},
(4.26
M
q=j§l expl[91;(1)Y1?— g5 (D)},

where {f;;=f(t), fa=fy(t), f5=Ff5(t), 91;=01(1),
02j=0j(t), i=1,2,...N,j=12,... M} are all arbitrary
periodic functions. From the expressiaisl) and(4.26) we
know that, this type of ring shaped breathers may “breathe”
in some different ways. For instance, the breathers may
breathe in their amplitudetecause of the periodicity of
f1i,91;, and fg), radius (because of the periodicity of
f5i/f4; andgy;/g4;), and positiongbecause of the periodic-
ity of f,;). More details can be found in Fig. 6 where the
corresponding parameters and functions of Edsl) and
(4.26 read

()

FIG. 6. Evolution plots of a special ring shape of breather solu-
tions (1.2) with Egs.(4.26), and(4.27) at the timega) t= =+, (b)
(4.27) t=—m/2, (c) t=0, and(d) t= /2, respectively.

M=N=a;=a,=0;;=1, ap=a3=0, f33=0,=5,

4
fllzcoit)‘k g, f21:_203|r(t)

_ _ will decay rapidly from|U|~0.42 to|U|~8.4x 10 ° as the
From Figs. €a)—6(d), we can see that the amplitude of the time increases frorft|=0 to |t|=5.

ring shaped breathefl.1) with Egs. (4.26 and (4.27
“breathes” from ~0.8 to ~ 6, the radius irx direction from

~5 to ~20 and the center of the ring from —15 to ~15. V. CHAOTIC PATTERNS
Multiple instanton solutionIf some types of decaying . . . .
functions of timet are included in the solutiofl.1), then we Becausep andq are arbitrary functions, in addition to the
can find some types of instanton solutions. For instance, thgt@ble soliton selections, there may be various chaotic selec-
amplitude of the lump type of instanton soluti¢h 1) with Eons. Some interesting possible chaotic patterns are given
ere.
1 2 secht Chgotic—ch.aotic patternsif we splect .bothp and q as
p= , q= , (4.28 chaotic solutions of somél+1)-dimensional[or (0+1)-
1+ x2 secht 1+y? dimensiona] nonintegrable models, then the expresgibi)
becomes some types @2+1)-dimensional space-time pat-
ap=2a3;=1, a;=a,=10 terns which may be chaotic in bothandy directions. For
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FIG. 8. (a) Plot of the chaotic-periodic patteri.1) with Eq.
FIG. 7. (a) Plot of the chaotic-chaotic patterfl.1) with Eq. (5.4 and the functiong and q being the typical chaotic solution
(5.4) and the functiong and g being the chaotic solution of the and periodic solution of the Lorenz systerff&1) (with a=60b
Lorenz system(5.1), (5.2), and (5.5). (b) The plot of the typical =8/3c=10) and(5.2) (with a=350b=28/3c=10), respectively.
chaotic solution of the Lorenz systefb.3) with Eq. (5.5). (b) The plot of the typical periodic solution of the Lorenz system
(5.3 with Eq. (5.6).
instance, we can seleptand q as the solutions of f;=x

+oit, T=X+w,t), Figure qb) is a plot for the typical chaotic solution of the
Lorenz system(5.3) with Eq. (5.5).
PrrPrt(CH 1)I0§l Chaotic-periodic patterndf we select one op andg as a
Priryr = > —(p*+bc+b)p,, periodic function while the other one as chaotic, the solution

expressed by Eq1.1) becomes some chaotic-periodic pat-
—(b+c+1)p, .+ pc(ba—b—p?), (5.1) terns which are chaotic in one direction and periodic in the
other direction.

Upr O+ (y+ 1)q2 Figure 8a) is a plot of a special chaotic-periodic pattern
q _ 22" 2 9%+ B(y+1)]q (1.1) with Eq. (5.4) andp being the chaotic solution of Eq.
T272m2 q 2 (5.1) with a=60, b=8/3, c=10, while q being the peri-
— (Bt y+ 1)q7272+qc[/3(a—l)—q2], (5.2 odic solution of Eq(5.2) with
8
wherewq, w,, @, b, ¢, @, B, and y are all arbitrary con- a=350, B= 3 Y= 10. (5.9

stants. It is straightforward to prove that E§.1) [and Eq.
(5.2] is equivalent to the well-known chaos system, the Lo-Figyre gb) is a plot of the typical two-periodic solution of
renz systenj50], the Lorenz systent5.3) with Eq. (5.6).
_ _ _ Chaotic line soliton patterndf one of p andq is selected

p-,=—¢(p=0), g,=p@a-h)-g, h;=pg-bh. as a localized function and the other one is chaotic, then the
(5.3 solution(1.1) becomes a chaotic line soliton.

Figure 9 is a plot of the chaotic line soliton solution ex-
pressed by Eq(1.1) with Eq. (5.7), p being given by Eq.
(5.1) with a=60, b=8/3, c=8, andq being given by

Actually, after eliminating the functiong andh in Eq. (5.3),
one can find Eq(5.1) immediately. Figure (&) is a special
plot of a chaotic-chaotic pattern shown by E#j.1) with

8,=200, a;=0, a;=a,=1, (5.4 gz o (5
Chaotic dromion patterndn (2+1) dimensions, the most

and p and q being given by Eqs(5.1) and (5.2) under the important nonlinear excitation is the dromion solution which

following special parameter selections: is localized in all directions. Now the most interesting ques-
tion is whether some special types of chaotic behavior can be
a=a=60, b=pB=8/3, c=vy=10. (5.5  found for the dromion excitations. Actually, the answer is
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FIG. 9. Plot of the chaotic line soliton patteff.1) with Eq.
(5.7) andp being given by Eq(5.1) with a=60b=8/3c=8. FIG. 11. Density plot of the fractal solution for the fidltigiven
by Eqg. (1.1 with Eqg. (6.1) at the region{x=[—0.185,0.18%,y
obviously positive because of the arbitrariness of the func=[—0.185 --0.185} for t=0.
tions p and g. For instance, if we seleqi andq as|[f,(t)
>0, fg(t)>0], for the physical quantity) shown by Eq(1.1) with Eq. (5.7)
at a fixed time[for f(t)=0] with

_ f1(t)
P= f4(t) +exp{fo()[x+f5()]} p=e q:M_H_ (5.9
(5.9 ’ ev+1
f5(t)
q=1+ fg(t)+exp{f2(t)[y+f7(t)]}’ andf(t) being a solution of the Lorenz systdi®0],

8
with f;(t),i=1,2,...,8 being chaotic solutions, then Eg. fi=—10(f-g), g¢,=f(60—h)—g, h,=fg—zh.
(1.1 becomes a chaotic dromion which is chaotic in some 3 1

different ways. The amplitude of the dromi¢h.1) with Eq. (5.10

(5.8 will be chaotic if f1(t), f4(t), f5(t), and/orfg(t) are  Eigure 1ab) shows the evolution of the amplitude of the
chaotic. If f5(t) and/or fg(t) are chaotic, then the shape yromion (1.1 with Egs.(5.7), (5.9), and(5.10.
(width) of the dromion becomes chaotic. The position of the

dromion located may also be chaotic if the functidnét)
and/orf,(t) are chaotic.

In Fig. 10@), we plot the shape of the dromion solution  Recently, some types of piecewise smooth solutions like
the peakons, cuspons, and compactons are widely used in
(1+1)-dimensional soliton system{$1-56. All the lower
dimensional piecewise smooth functions can also be used to
construct higher dimensional peakons, cuspons, and compac-
tons. In this section and the following section we are inter-
ested in pointing out that some types of lower dimensional
piecewise smooth functions with and without fractal struc-
(@) vy 4 5 8 10 tures can be used to construgteak exact solutions of

higher dimensional soliton systems. In this section we list
. two special types of fractal patterns.
Nonlocal fractal patternlIf we select §=x+1),

VI. FRACTAL PATTERNS

fiin

i
s
]

1
H i p=ZElé{siin(e)]—cogin())]}, (6

) I | | \/ k[
1 /‘JL \uf\/ \f L;}(\(\, J\(‘Js \\ Ql‘jl}} q=1+%ylyl{sir{ln(yzn—coiln(ym}, 6.2
20 -| | ‘ ‘

in Eq. (1.1) with a;=a,=1, ag=a3=0, then we get a non-

(b) o %0 100 50 0 local exact solution with fractal structure for smah-t and

y. Figure 11 shows the structure of Ed..1) at the region
FIG. 10. (a) Plot of the single dromion solution for the quantity {X=[—0.185,0.18%, y=[-0.185...,0.183} for t=0.

U given by Eq.(1.1) with Egs.(5.7), (5.9), andf(t)=0. (b) The If we plot the structure of the solution at smaller regions such

evolution of the amplitude of the chaotic dromion relateddonith ~ as  {x=[—0.065,0.065, y=[—0.065...,0.069},

f being given by Eq(5.10. {x=[-0.0078,0.0078 y=[—0.0078...,0.0078}, ...,
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[—0.11,0.13}. It is interesting that by enlarging the small
areas at the center of Fig. @2, say,{x=[—0.005,0.005,
y=[—0.005,0.005%}, {x=[—0.0002,0.0002, y=
[—0.0002,0.0008, ... {x=[—5.9x10 ! 59x10 11,
y=[—-5.9x10 1 5.9x10 ¥}, ... {x=[—0.005,0.005,
y=[—0.0002,0.0008, ..., we can find theotally same
pictures as Fig. 1®).

VIl. PEAKON SOLUTIONS IN (2+1) DIMENSIONS

Since the pioneering work of Camassa and HaliH)
[51], a special type of weak solutions ¢+ 1)-dimensional
nonlinear evolution equations has attracted the attention of
physicists and mathematiciafis5]. These types of solitary
waves are called peakons because they are discontinuous at
their cresf51]. Especially, the properties and interaction be-
haviors of the peakons fd@f+1)-dimensional integrable CH
equation have been understood quite well. The collisions
among the(1+1)-dimensional peakons are completely elas-

() o1 005 0 0.05 o1 tig. Tho_ugh _the CH equati_on has been extended2tol)
X dimensions in several possible wad%§], one does not know

FIG. 12. Plot of the fractal dromion solutiofi.1) with Egs. finything on Fh€(2.+1)'dimen5ional pgakon; Whic.h are local-

(6.3), (6.4), and(6.5). (a) The localized structure of the fractal dro- ized in all directions for any2+1)-dimensional integrable

mion. (b) The density plot of the dromion at the rande model.

=[—0.11,0.13, y=[—0.11,0.13}. The same picturegexcept the In fact, the entrance of the arbitrary functiopsindq in
scale$ can be found at infinitely many smaller ranges, say,the universal quantity expressed by Ed.1) tells that the
{x=[—0.005,0.005, y=[—0.0050.00%,..., {x=[-59 (2+1)-dimensional peakons can exist at least for all the mod-
X101 59x1071, y=[-5.9x10" 1 59x10° ¥}, ..., {x els listed in this paper by selecting the arbitrary functions as
=[—0.005,0.00%, y=[—5.9x10"1459x10 4]}, ... . some suitable piecewise continuous functions. In this sec-
tion, we give two special types @R+1)-dimensional pea-
{x=[—-1.45<1071° ..., 1451019, y=[-1.45 kons.
x10710 .. 1.45x 10—10]}, ..., we canobtain totally The first type of peakons can be obtained by selecting one

same structures as shown in Fig. 11. Actually, to obtain thé@f p and g of Eq. (1.1) as a piecewise function while the

similar picture to Fig. 11, we can also use the different scale§ther one as a continue differentiable function. For instance,

for x and y, say, {x=[—0.185,0.185 y=[—1.45 Wwe can take the functiogas a continue functiofsay, one of

X101, ..., 1.45¢10 19}, those listed in the examples of the last three secliadsle
Fractal dromion and lump patterndVe call a dromion P is given by

(lump) solution fractal dromior{lump) if the solution is ex-

ponentially (algebraically localized in large scale and pos- M

sesses self-similar structure near the center of the dromion pz_z

(lump). For instance, if we take =1

p=exp[ V(x—cqt)?

Fi(x+cit), X+cit<0
(7.0

_Fi(—X_Cit)+2Fi(O), X+Cit>0,

3 where the functionF;(§)=F;(x+c¢;), i=12,... M are
2 i i i
§+sm{ln[(X—C1t) ]}) ] (6.3 differentiable functions and possess the boundary conditions

3 ) Fi(ioo)zcii, |:1,2,M (72)
a-exd VTy—ea7| 5 +sinfin (y-c)) |
(6.4) with C..; being constants and/ey. The second type of pea-
' kon solutions is yielded by selecting bgifandq in Eq. (1.1

the expressiorl.1) becomes a special fractal dromion solu- & Some piecewise functions. For instares still given by

tion. Eq. (7.1 while q is taken as
Figure 12 is a plot of the special dromion solutithl)
with Egs.(6.3), (6.4), and N[ Gi(y), y<0
q=. (7.3
ap=a;=a,=2az=1 (6.5 =1 [ =Gi(—y)+2G;(0), y>0,
at timet=0. The localized property of the dromion is re- where the functionsG;(y), i=1, 2,... N are differen-

vealed in Fig. 189). Figure 12b) is a density plot of the tiable functions and possess the boundary conditions similar
dromion solution at the ranggx=[-0.11,0.11, y= to Eq.(7.2).
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FIG. 13. Exhibition of the interaction property between two pea-
kons shown by Eq(1.1) with a,=0,a;,=a,=2a3=1, Egs.(7.4)
and(7.5) at the time(a) t=—8, (b) t=—-3, (¢) t=0, (d) t=3, and
(e) t=8, respectively.

In Fig. 13, we plot the interaction property between two
second type of peakons for the quantity.l) with ag
:O, a1=612=2a3=1,

In[tanl{;(le) , X<t
p=1+
1 1
In{tanl{z(lﬂ—t)H—ZIn tanl‘(z) , X>t,
(7.9

PHYSICAL REVIEW E 66, 046601 (2002

—In[tan)’{;(l—x—Zt)“, X< —2t
1 1
In[tan 5(1+x+2t) ]—Zln tam(z) , X>—2t,
and
1
—In[tanr{z(l—y)ﬂ, y<0
q= (7.9

—21In

anf]. s-0

From Fig. 13, we can see that the interactions among
peakons are not completely elastic. After interaction, two
peakons exchange their shapes completely and preserve their
velocities. Similar to the case of the interaction of the ring
solitons, to see the interaction property between the peakons
more clearly, we cut and move the left peakon of Figel3
from the center[x=—2c ty+ 51, y=6,](tp=8) to the
center of the left peakon of Fig. 8 [x=—t,,y=0]. The
resulting single peakon may be described by

(7.6)
where U(t=ty) is defined by Eq.(1.1) with ag=0, a;
=a,=2az=1, Egs.(7.4) and (7.5). Similarly, we cut and
move the right peakon of Fig. 18 from [x=cC,ty+ d3,Y
=§,] to the center of the right peakon of Fig. (BB [x
=2t,,y=0] and the result can be expressed as
UZZ( ] .
X—=X—[2—C,]tg+ I3, Y=Y+,
(7.7

Now selecting the constants;, c,, 61, 8, 83, and &,
appropriately to minimize the quantity

| 1
ny tan 5(1+y)

U(t=to),
0,

x=0
x>0

1=

] X—=x—[2¢)—1]tyg+ 6, y—=y+3,

0,
U(t=to),

Xx<=0
x>0

v1=|U;+U,—U(t=—ty)], (7.9
we can find that
01 max— 3X 10" 17~0, (7.9
for
C1=Cy=1, (7.10
and
81=5,= 83=8,=0. (7.13)

The corresponding figure of Eq7.8) with Egs. (7.10),
(7.17), andty=8 is plotted in Fig. 14. The resu{.9) (i.e.,
v1~0) indicates that the peakons exchange their shapes to-
tally after collision. Equation(7.10 shows us that the pea-
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universal formula(1.1). Actually, it is known that arbitrary
exotic behaviors may propagate along the characteristics.
The similar situation exists even also in linear system like
the wave equation

Uy — C2Uy, = 0. (8.2

It is known that there are two characteristic functiofs
—ct) andg(x+ct), included linearly in the general solution
of the wave equatio8.1). If one can find the general solu-

FIG. 14. Plot of an error functiom1 expressed by Ed.7.9) tion of the nth order (m+1)-dimensional nonlinear inte-
with Egs.(7.10, (7.11), and an enlargement factor 10i.e., v2  grable models, there should ben-dimensional characteris-
=10'"v1) at timety=8. tic functions in the general solution. Of course, these

characteristics should be combined highly nonlinearly in the

kons preserve their velocities after interaction. And Eq.general solutions of nonlinear models. In apecialvariable
(7.11) means that there are not phase shifts at all for the heageparation solutiorfl.1) there exist only two characteristic
on collision of peakons. Similarly, these conclusions holdfunctions.

true both for the pursue collision between two peakons and Though the localized excitations such as the dromions,

for the interactions of the first type of peakons. lumps, ring solitons, and the peakons possess zero boundary
conditions for the quantityJ, the boundary conditions for
VIIl. SUMMARY AND DISCUSSIONS other quantities, say, the quantity(2.13 for the DS model

i . i andv andw [Egs. (3.3 and(3.4)] for the NNV system, are
In summary, for some2+1)-dimensional soliton systems ot exactly zero. Different selections of the functignandq
such as the DS equation, NNV equation, ADS equationjn (1.1) correspond to different selections of boundary con-
ANNV' equation, DLWE system, BKK system, LWSW jiions of fields(or potential with nonzero boundary con-
model, Maccari system, and the generalized+(M)-  gitions. The changes of these boundary condititeeotic
component AKNS system, some lower dimensional arbitranpehavioj propagate along the characteristic and then yield
functions can be included in their exact solutions. A commonye changes of the localized excitations. That means, in some
variable separation formula is valid for all these models. Ingense, the dromions and other types of localized excitations
addition to the many types of stable localized excitationsor some physical quantities are remote controlled by some
such as the solitoffs, dromions, lumps, breathers, instantongiher quantitiegor potentials which have nonzero boundary
and ring solitons, there may be many types of chaotic andgnditions. In Ref.[58], by using pure numerical calcula-
fractal patterns by selecting the arbitrary functions as th§jgng, the authors have also pointed out that the nonchaotic
chaotic and/or fractal solutions of son@ver dimensional  §romions of the DS equation can be remote controlled.
nonintegrable models. Especially, the dromion type solutions |t is also known that both the ANNV system and the DS
that are localized in all directions for some types of physicalsystemS are related to the KP equafi@d,38, while the DS
fields may also be chaotic in some different wagay, cha-  4nq the KP equations are the reductions of the self-dual
otic in their amplitudes, positions, and widihSimilar to the Yang-Mills (SDYM) equation[24,38. So both the KP and
cases in(1+1) dimensions, the weak solutions like the pea-the SDYM equations may possess quite rich nonlinear exci-
kon solutions may also exist in higher dimensions. Two typesations with some arbitrary characteristics. The KP equation
of explicit peakon solutions that are localized in all direc-jg gnother type of important integrable model in the study of
tions have also been given in this paper. __integrable models. However, we have not yet found an effec-
For the existence of the abundant structures of the univerjye way to obtain its nontrivial variable separation solutions.

sal formula(1.1), it is quite important but difficult to inves- | gur special variable separation expressibri), there are
tigate the interaction properties for all the possible localizedynly two characteristic functions. How to introduce more
excitations. In this paper, the interactions of two specialcharacteristic functions into the variable separation solutions
types of localized traveling excitations, ring solitons and the;s g1so an essential open question. These interesting and im-

peakons, are studied. For the traveling ring soliton solutionsyortant problems should be studied further.
the interaction is completely elastic. During the collision

(both for the head on collision and the pursue colligidhe
ring solitons pass through each other and completely pre-
serve their shapes, velocities, and phases. For the traveling The authors thank Professors Q. P. Liu, Professor X. B.
peakons, the peakons also pass through each other with uHu, Professor C. P. Sun, Professor Y. S. Li, Professor G. X.
changed velocities and phases, however, their shapes arriang, Dr. C.-I. Chen, Dr. S.-I. Zhang, Dr. X.-m. Qian, and
completely exchanged. Dr. B. Wu for helpful discussions. The work was supported
Why do the(2+1)-dimensional integrable models possessby the National Outstanding Youth Foundation of China
so rich localized excitations and why can some lower dimen{Grant No. 19925522 the Research Fund for the Doctoral
sional chaotic and fractal solutions enter into the higher diProgram of Higher Education of ChindGrant No.
mensional integrable models? All the reasons come from th200002483% and the Natural Science Foundation of Zhe-
existence of the characteristics, arbitrary functions, in thgiang Province of China.
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