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Localized excitations in„2¿1…-dimensional systems
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By means of a special variable separation approach, a common formula with some arbitrary functions has
been obtained for some suitable physical quantities of various~211!-dimensional models such as the Davey-
Stewartson~DS! model, the Nizhnik-Novikov-Veselov~NNV! system, asymmetric NNV equation, asymmetric
DS equation, dispersive long wave equation, Broer-Kaup-Kupershmidt system, long wave–short wave inter-
action model, Maccari system, and a general (N1M )-component Ablowitz-Kaup-Newell-Segur~AKNS! sys-
tem. Selecting the arbitrary functions appropriately, one may obtain abundant stable localized interesting
excitations such as the multidromions, lumps, ring soliton solutions, breathers, instantons, etc. It is shown that
some types of lower dimensional chaotic patterns such as the chaotic-chaotic patterns, periodic-chaotic pat-
terns, chaotic line soliton patterns, chaotic dromion patterns, fractal lump patterns, and fractal dromion patterns
may be found in higher dimensional soliton systems. The interactions between the traveling ring type soliton
solutions are completely elastic. The traveling ring solitons pass through each other and preserve their shapes,
velocities, and phases. Some types of localized weak solutions, peakons, are also discussed. Especially, the
interactions between two peakons are not completely elastic. After the interactions, the traveling peakons also
pass through each other and preserve their velocities and phases, however, they completely exchange their
shapes.

DOI: 10.1103/PhysRevE.66.046601 PACS number~s!: 05.45.Yv, 02.30.Ik
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I. INTRODUCTION

In the past three decades, the solitons@1#, chaos@2#, and
fractals @3# have been widely studied and applied in ma
natural sciences such as biology, chemistry, mathema
communication, and especially in almost all branches
physics such as condensed matter physics, field theory,
dynamics, plasma physics, and optics. Usually, one consi
that the solitons are the basic excitations of the integra
models while the chaos and fractals are the basic behav
of the nonintegrable models. Actually, the above consid
ation may not be complete especially in higher dimensio
When saying that a model is integrable, one should emp
size two important facts. The first one is that we should po
out under what special meaning~s! the model is integrable
For instance, we say a model is Painleve´ integrable if it
possesses the Painleve´ property and a model is Lax or IST
~inverse scattering transformation! integrable if it has a Lax
pair and then can be solved by the IST approach. A mo
integrable under some special meanings may not be i
grable under other meanings. For instance, some Lax i
grable models may not be Painleve´ integrable@4,5#. The sec-
ond fact is that for the general solution of a high
dimensional integrable model, say, a Painleve´ integrable
model, there exist some characteristic, lower dimensionalar-
bitrary functions. That means any lower dimensional chao
and/or fractal solutions can be used to construct exact s
tions of higher dimensional integrable models. In oth
words, any exotic behavior may propagate along the cha
teristics.

Solving nonlinear mathematical physics problems is mu
more difficult than solving the linear ones. In linear physi
1063-651X/2002/66~4!/046601~17!/$20.00 66 0466
s,
f
id
rs
le
rs

r-
s.
a-
t

el
e-
e-

c
u-
r
c-

h
,

the Fourier transformation method and the variable sep
tion approach~VSA! are two most important approaches
find the exact solutions. It is known that the famous IST c
be considered as an extension of the Fourier transforma
in nonlinear physics. However, it is difficult to extend th
VSA to nonlinear physics. Recently, two kinds of ‘‘variab
separation’’ procedures have been established. The
method is called the ‘‘formal variable separation approac
~FVSA! @6#, or equivalently the symmetry constraints@7# or
nonlinearization of the Lax pairs@8#. The independent vari-
ables of a reduced field in FVSA have not been totally se
rated though the reduced field satisfies some low
dimensional equations. The second type of varia
separation method established first for the DS~Davey-
Stewartson! equation in 1996@9#. The method has been re
visited and developed recently for various~211!-
dimensional models like the NNV~Nizhnik-Novikov-
Veselov! equation@10#, ANNV ~asymmetric NNV! equation
@11#, DS equation@12#, ADS ~asymmetric DS! equation@13#,
dispersive long wave equation~DLWE! @14#, BKK ~Broer-
Kaup-Kupershmidt! system @15#, a nonintegrable~211!-
dimensional Kortweg–de Vries equation@16#, long wave–
short wave~LWSW! interaction model@17#, Maccari system
@18#, and a general (N1M )-component Ablowitz-Kaup-
Newell-Segur~AKNS! system@19#. After some slight modi-
fications, one can find that there exists a common formu

U[
22Dqypx

~a01a1p1a2q1a3pq!2
, D[a0a32a1a2 ,

~1.1!

to describe suitable physical quantities for all the mod
mentioned above. In Eq.~1.1!, a0 , a1 , a2, anda3 are arbi-
trary constants andp is an arbitrary function of$x,t% for all
©2002 The American Physical Society01-1
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of them, whileq of Eq. ~1.1! may be an arbitrary function o
$y,t% for some models like the DS and NNV equations or
arbitrary solution of a Riccati equation for others~see fol-
lowing for details!. Because some arbitrary characteristi
lower dimensional functions~like p), have been included in
the universal formula~1.1!, by selecting them appropriately
abundant stable localized structures have been reveale
these models. If we consider the boundary~or initial! condi-
tions of the given localized excitations, we can find that
the ~211!-dimensional localized solutions of these mod
are caused by the suitable boundary~or initial! conditions. In
other words, the richness of the localized excitations of
~211!-dimensional models results from the fact that arbitra
exotic behaviors can propagate along some special chara
istics of the models. In a previous study@20#, we had pointed
out that some types of nonlocalized chaotic and periodic
terns may exist also in~211!-dimensional soliton system
because of some arbitrary characteristic functions that ca
included in the special variable separation solutions. In
paper, we mainly focus on the possibilities of the chaotic a
fractal localized excitations and the interaction properties
some special types of localized excitations for the~211!-
dimensional soliton systems.

For completeness, we review the variable separation
proach for the DS system in Sec. II, list the known mod
that can be solved by means of the special variable sep
tion approach in Sec. III, and give out some special types
stable localized excitations in Sec. IV. The completely ela
interaction property between two special ring solitons is a
discussed in Sec. IV. In Secs. V and VI, we discuss the p
sible chaotic and fractal patterns for~211!-dimensional
models, respectively. In Sec. VII, a special type of we
solution ~peakons! and their noncompletely elastic intera
tion behavior are studied. The last section contains a s
mary and discussions.

II. VARIABLE SEPARATION APPROACH FOR THE
DAVEY-STEWARTSON EQUATION

In order to establish a concrete variable separation pro
dure for a given nonlinear system, it is convenient to cha
the model to a multilinear variant form with an arbitrary se
solution and then extend the Hirota’s two-soliton solution
a general variable separation ansatz. Finally, by substitu
the variable separation ansatz to the original model and
lecting the seed solution appropriately, one may find so
nontrivial variable separated solutions.

For concreteness and completeness to see the det
variable separation approach, we review the procedure
the DS system@21#

iut1
1

2
~uxx1uyy!1auuu2u2uv50,

~2.1!
vxx2vyy22a~ uuu2!xx50,

with a slight modification such that we can use a same u
versal formula to describe all the models discussed in
paper. The DS equation is an isotropic Lax integrable ext
04660
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sion of the well known~111!-dimensional nonlinear Schro¨-
dinger equation. The DS system is the shallow water limit
the Benney-Roskes equation@22,21#, whereu is the ampli-
tude of a surface wave packet andv characterizes the mea
motion generated by this surface wave. The DS system~2.1!
can also be derived from the plasma physics@23# and from
the self-dual Yang-Mills field@24#. The DS system has als
been proposed as a~211!-dimensional model for quantum
field theory @25–27#. It is known that the DS equation i
integrable under somespecialmeanings, say, it is IST inte
grable@28,29# and Painleve´ integrable@30#. Many other in-
teresting properties of the model like a special bilinear fo
@31#, the Darboux transformation@32#, finite dimensional in-
tegrable reductions@33#, infinitely many symmetries@34#,
and the rich soliton structures@28,29,31,9,12# have also been
revealed.

To find some exact solutions with some arbitrary fun
tions of the DS equation, we make the following transform
tion:

v5v02 f 21~ f x8x81 f y8y812 f x8y8!

1 f 22~ f x8
2

12 f y8 f x81 f y8
2

!, ~2.2!

u5g f211u0 ,

with real f and complexg, wherex85(x1y)/A2, y85(x
2y)/A2 and $u0 ,v0% is an arbitrary seed solution of th
model. One may obtain the Ba¨cklund transformation relation
~2.2! via standard truncated Painleve´ expansion. Under the
transformation~2.2!, the DS system~2.1! is transformed to a
general bilinear form,

~Dx8x81Dy8y812iD t!1u0~Dx8x812Dx8y81Dy8y8! f f

12au0gg* 12au0
2g* f 22v0g f1G1f g50, ~2.3!

2~Dx8y81auu0u2! f f 12agh12ag f u0* 12au0g* f 2G1f f

50,

whereD is the usual bilinear operator@35# defined as

Dx
mAB[~]x2]x1

!mA~x!B~x1!ux15x ,

andG1 is an arbitrary solution of

216a~u0x81u0y8!~u0x8
* 1u0y8

* !1G1x8x81G1y8y812G1x8y8

24a~Dx8x81Dy8y812Dx8y8!u0u0* 50. ~2.4!

For the notation simplicity, we will drop the ‘‘primes’’ of the
space variables later.

To discuss further, we fix the seed solution$u0 ,v0% and
G1 as

u05G150, v05p0~x,t !1q0~y,t !, ~2.5!

wherep0[p0(x,t) andq0[q0(y,t) are two arbitrary func-
tions of the indicated variables.

To solve the bilinear equation~2.3!, we make the ansatz
1-2
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f 5a01a1p1a2q1a3pq, g5p1q1 exp~ ir 1 is!,
~2.6!

where a0 ,a1 ,a2 ,a3 are arbitrary constants an
p[p(x,t), q[q(y,t), p1[p1(x,t), q1[q1(y,t), r
[r (x,t), s[s(y,t) are all real functions of the indicate
variables. If we takep, q, p1, and q1 as exponential func-
tions, the variable separation ansatz reduces to the two
soliton ~or single dromion! solution form. Substituting Eq
~2.6! into Eq. ~2.3! and separating the real and imagina
parts of the resulting equations, we have

2Dpxqy1ap1
2q1

250, ~2.7!

$q1p1xx1p1q1yy2p1q1@2r t12st12~p01q0!1sy
21r x

2#%

3~a01a1p1a2q1a3pq!1q1~a11a3q!

3~p1pxx22p1xpx!1p1~a3p1a2!~q1qyy22q1yqy!50,

~2.8!

@2q1~2r xp1x12p1t1p1r xx!2p1~2syq1y12q1t1q1syy!#

3~a01a1p1a2q1a3pq!12q1p1~qt1syqy!

3~a3p1a2!12q1p1~r xpx1pt!~a11a3q!50. ~2.9!

Because the functionsp0 , p, p1, andr are only functions
of $x,t% and the functionsq0 , q, q1, ands are only functions
of $y,t%, the equation system~2.7!, ~2.8!, and ~2.9! can be
solved by the following variable separated equations:

p15d1A22Da21c1
21px, ~2.10!

q15d2Ac1qy, ~d1
25d2

251!,
m
e

n-
ld

04660
ne

pt52r xpx1c2~a21a3p!21c3~a21a3p!2Dc4 ,
~2.11!

qt52syqy2c4~a11a3q!22c3~a11a3q!1Dc2 ,

4~2r t1r x
212p0!px

21pxx
2 22pxxxpx1c5px

250,
~2.12!

4~2st1sy
212q0!qy

21qyy
2 22qyqyyy2c5qy

250.

For any fixedp0 and q0, solving the equation system
~2.11! and ~2.12! is very difficult. However, because of th
arbitrariness ofp0 andq0, we can treat the problem alterna
tively. Actually, we can consider the functionsp and q as
arbitrary functions whilep0 and q0 are determined by Eq
~2.12! andr ands are fixed by Eq.~2.11!. Consequently, the
exact variable separation solution of the DS equation has
form

u5
d1d2A22Da21pxqy exp~ ir 1 is!

a01a1p1a2q1a3pq
,

v5p01q02
@~a21a3p!qyy1~a11a3q!pxx#

a01a1p1a2q1a3pq
~2.13!

1
~a21a3p!2qy

222Dqypx1~a11a3q!2px
2

~a01a1p1a2q1a3pq!2
,

with two arbitrary functionsp and q while p0 and q0 are
determined by Eq.~2.12! andr ands are fixed by Eq.~2.11!.
Especially, for the module square of the fieldu reads
uuu25Ua21 ~2.14!

5
2221a21DPxQy

HAa0a3 cosh
1

2
@P1Q1 ln~a3 /a0!#1Aa1a2 cosh

1

2
@P2Q1 ln~a1 /a2!#J 2 , ~2.15!
be
ach
s a
where

p5eP, q5eQ, ~2.16!

andP andQ are also arbitrary functions of$x,t% and$y,t%,
respectively. In Ref.@12#, a special variable separation for
(a050) for the DS system has been given. The result of R
@9# is related to the special case of this paper forp05q0
5a050.

From expression~2.14!, we know that because the qua
tity expresses the value of the module square of the fieu
for the DS system, we have to put a constraint

aDpxqy,0, ~2.17!
f.

on the selections of the functionsp andq and the constants
a0 , a1 , a2 , a3, anda.

III. VARIABLE SEPARATION SOLUTIONS OF OTHER
„2¿1…-DIMENSIONAL MODELS

In this section, we list some known models which can
solved by means of the special variable separation appro
with some suitable modifications such that they posses
common quantity expressed as Eq.~1.1!.

NNV model. For the NNV model

ut2auxxx2buyyy13a~uv !x13b~uw!y50, ~3.1!

ux5vy ,
1-3
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uy5wx ,

a special variable separation solution reads

u5U, ~3.2!

v5
2~a11a3q!2px

2

~a01a1p1a2q1a3pq!2
2

2~a11a3q!pxx

~a01a1p1a2q1a3pq!

1v0 , ~3.3!

w5
2~a21a3p!2qy

2

~a01a1p1a2q1a3pq!2
2

2~a21a3p!qyy

~a01a1p1a2q1a3pq!

1w0 , ~3.4!

where p[p(x,t) and q[q(y,t) are arbitrary functions of
$x,t% and $y,t%, respectively;a0 , a1 , a2, and a3 are arbi-
trary constants whilev0 andw0 are related top andq by

v05~3apx!
21@2pt1apxxx1c1a01~a1c11a2c01c2a0!p

1~a1c21a3c0!p2#, ~3.5!

w05~3bqy!21@2qt1bqyyy1c0a01~a1c11a2c02c2a0!q

2~a2c22a3c1!q2#, ~3.6!

with $c0 ,c1 ,c2% being arbitrary functions oft.
In Ref. @10#, a special result witha051 for the NNV

system had been discussed in detail. From Eq.~3.2!, we
know that for the NNV model~3.1!, there is no constrain
like Eq. ~2.17! on the selections of the functionsp andq and
the constantsa0 , a1 , a2, anda3.

ANNV system. The similar formula is valid for the ANNV
system@36–38#

ut1uxxx23~uv !x50, ux5vy . ~3.7!

The result reads

u5U, ~3.8!

v5
2~a11a3q!2px

2

~a01a1p1a2q1a3pq!2
2

2~a11a3q!pxx

~a01a1p1a2q1a3pq!

1v0 . ~3.9!

In this case, the functionp[p(x,t) is still an arbitrary func-
tion of $x,t% whenv0 is fixed by

v052~3px!
21@2pt2pxxx1c1a01~a1c11a2c01c2a0!p

1~a1c21a3c0!p2#. ~3.10!

However, the functionq5q(y,t) now is not an arbitrary
function and should be determined by the following Ricc
equation

2qt1c0a01~a1c11a2c02c2a0!q2~a2c22a3c1!q250,
~3.11!
04660
i

where$c0 ,c1 ,c2% are arbitrary functions oft anda0 , a1 , a2,
anda3 are arbitrary constants. If we select the functionsc0 ,
c1, andc2 as

c05
1

a0A1
~A1A2t2A2A1t2A2

2A3t!, ~3.12!

c15
1

a0A1D
@a2

2A1A2t2a2~a01a2A2!A1t

2~a01a2A2!2A3t#, ~3.13!

and

c25
1

a0A1D
@a2a3A1A2t2a3~a01a2A2!A1t

2~a0a11a2a3A2
212a0a3A2!A3t#, ~3.14!

then the Riccati equation~3.11! has a solution

q5
A1

A31F
1A2 , ~3.15!

whereA1[A1(t), A2[A2(t), A3[A3(t), andF[F(y) are
arbitrary functions of the indicated variables.

In Ref. @11#, some types of special stable localized ex
tations witha051 for the ANNV system have been obtaine
by selecting the arbitrary functions appropriately. For t
ANNV system there is no constraint like Eq.~2.17! also.

Dispersive long wave equation system. The ~211!-
dimensional dispersive long wave equation system,

uyt1hxx1uxuy1uuxy50,
~3.16!

h t1ux1hux1uhx1uxxy50,

was first obtained by Boitiet al. @39# as a compatibility con-
dition for a ‘‘weak’’ Lax pair. In Ref.@40#, Paquin and Win-
ternitz showed that the symmetry algebra of~1! and ~2! is
infinite-dimensional and has a Kac-Moody-Virasoro stru
ture. Some special similarity solutions are also given in R
@40# by using symmetry algebra and the classical theoret
analysis. The more general symmetry algebra,W` symmetry
algebra, is given in Ref.@41#. In Ref.@42#, Lou gave out nine
types of two dimensional similarity reductions and thirte
types of ordinary differential equation reductions. Thou
the model equation system is Lax or IST integrable, it do
not pass the Painleve´ test @43#.

For the~211!-dimensional dispersive long wave system
there is a special variable separation solution in the form

v[h1152U, ~3.17!

u56
2px~a11a3q!

a01a1p1a2q1a3pq
1u0 , ~3.18!

with p being an arbitrary function of$x,t%, q5q(y,t) being
a solution of the Riccati equation
1-4
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qt2a0c02~a1c11a2c02a0c2!q2~a3c12a2c2!q250,
~3.19!

and

u052px
21@pt6pxx2a0c12~a1c11a2c01a0c2!p

2~a1c21a3c0!p2#, ~3.20!

without the constraint like Eq.~2.17!.
(N1M )-component AKNS system. In this subsection we

write the variable separation result for a generalizedN
1M )-component~211!-dimensional AKNS system,

ipit1pixx1piux50, i 51,2, . . . ,N,

2 iq jt1qjxx1qjux50, j 51,2, . . . ,M , ~3.21!

uy1(
i 51

N

(
j 51

M

ai j piqj50,

which was first obtained from the inner parameter depend
symmetry constraints of the Kadomtsev-Petviashvili~KP!
equation@34#. In Ref. @19#, the Painleve´ integrability of Eq.
~3.21! was confirmed. The Kac-Moody-Virasoro type algeb
and the related finite transformation are obtained and
similarity partial differential equation reductions and ord
nary differential equation reductions have been given by
Lie group approach@44# and the direct method@45#.

The variable separation solution of the general AKNS s
tem ~3.21! possesses the form

pi5
Pi

f
, qj5

Qj

f
, u5

2 f x

f
1u0 , ~3.22!

with

f 5a01a1p~x,t !1a2q~y,t !1a3p~x,t !q~y,t !,
~3.23!

Pi5F1i~x,t !G1i~y,t !exp@ iR1i~x,t !1 iS1i~y,t !#,
~3.24!

Qj5F2 j~x,t !G2 j~y,t !exp@2 iR2 j~x,t !2 iS2 j~y,t !#,
~3.25!

G1i5
b1i

a1i~ t !
Aqy, G2 j5

b2 j

a2 j~ t !
Aqy, ~3.26!

F1i5a1i~ t !Apx, F2 j5a2 j~ t !Apx, ~3.27!

S1i5B1s1i~y!, S2 j5B1s2 j~y!, ~3.28!

R1ix5R2 jx[Rx5
1

2Dpx
~a2

2a02Dpt1a2a2p1a1p2!,

~3.29!
04660
nt

e

e

-

u0x5
1

4D2px
2 $D2pt

222D~a2a01a2a2p1a1p2!pt

1D2@pxx
2 22pxpxxx14px

2~Bt1Rt!#

1~a2a2p1a2
2a01p2a1!2%, ~3.30!

qt5
1

D2
$q2~a3

3a02a3a21a1!2q@~a0a31a1a2!

3a222a0a122a1a2a3a0#2a0a1a2a2

1a0
2a11a1

2a2
2a0%, ~3.31!

where b1i and b2 j are arbitrary constants an
p(x,t), a1i(t), a2 j (t), s1i(y), s2 j (y), B[B(t), a0
[a0(t), a1[a1(t), a2[a2(t) are all arbitrary functions of
the indicated variables with the condition

(
i 51

N

(
j 51

M

ai j b1ib2 j exp$ i @s1i~y!2s2 j~y!#%522D.

~3.32!

Hence, for the quantityv[( i 51
N ( j 51

M ai j piqj , we have

v5U, ~3.33!

with p being an arbitrary function ofx and t andq5q(y,t)
satisfing the Riccati equation~3.31! without constraint like
Eq. ~2.17!. In Ref. @19#, the detailed procedure to derive th
variable separation solution witha050 has been given.

AKNS, ADS and long wave-short wave interaction s
tems. The simplest case, a special AKNS system,

ic t1cxx1cux50,

2 if t1fxx1fux50, ~3.34!

uy5fc,

is related to the (N1M )-component AKNS system~3.21! by
M5N52a1151, p15c, and q15f respectively. Espe-
cially, if we take f5c* further, the AKNS system~3.34!
can be considered as an asymmetric form of the DS sys
Some special variable separation forms of the AKNS sys
~3.34! and the ADS system are given in Refs.@46# and@13#,
respectively. As for the DS system, we have to put a furt
constraint,

U.0, ~3.35!

on the ADS system.
If we make the variable transformations

c~x,y,t !5L~x,y1t,t ![L~x8,y8,t8!,
~3.36!

c~x,y,t !5S~x,y1t,t ![S~x8,y8,t8!,

then the AKNS system~3.34! reduces to the so-called lon
wave–short wave interaction model@47#
1-5
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i ~Lt81Ly8!1Lx8x81Lux850, ~3.37!

2 i ~St81Sy8!1Sx8x81Sux850,

uy5LS.

Maccari system. In Ref. @48#, a ‘‘new ~211!-dimensional
nonlinear system’’ is derived

iAt1Axx1LA50,

iBt1Bxx1LB50, ~3.38!

Ly5~ uAu21uBu2!x ,

and Zhang, Huang, and Zheng@18# have obtained a variabl
separation solution of Eq.~3.38!. Actually, taking M5N
52, p15A, p25B, q15A* , and q25B* , the (N1M )
component AKNS system~3.21! reduces to the Maccari sys
tem ~3.38!. The same constraint~3.35! should also be adde
to this model.

BKK system. The ~211!-dimensional BKK system

Hty2Hxxy12~HHx!y12Gxx50, ~3.39!

Gt1Gxx12~HG!x50, ~3.40!

has a special variable separation solution

G52
U

2
, ~3.41!

H5
~a11a3q!px

a01a1p1a2q1a3pq
1H0 , ~3.42!

wherep is an arbitrary function of$x,t%,

H052~2px!
21@pt1pxx2D~c1p22c3p1c2!#,

~3.43!

andq satisfies the following Riccati equation:

qt5c1~a01a1q!21c2~a11a3q!2

1c3~a01a2q!~a11a3q!. ~3.44!

In summary, from the results~2.14!, ~3.2!, ~3.8!, ~3.17!,
~3.33!, and~3.41!, we know that the variable separation s
lution ~1.1! is valid for many physically interesting model
For the DS and NNV models, both the functionsp andq are
arbitrary. For other models, only the functionp is arbitrary
while q should be a solution of a Riccati equation. For t
DS model~the ADS model and the Maccari system! a further
constraint~2.17! @Eq. ~3.35!# should be satisfied.

IV. SPECIAL LOCALIZED STABLE SOLUTIONS

In this section, we list some special types of stable loc
ized known excitations for the quantityU expressed by Eq
~1.1! via some suitable selections of the arbitrary functio
All the examples in this section are valid for the mode
without constraint~2.17! or ~3.35!. However, for the DS,
04660
l-

.

ADS, and the Maccari systems, some examples@say, shown
in Figs. 1~b!, 1~d!, 3, 4, 6, 7, 8, 9, 11, and 12# are not valid
because of the constraint~2.17! or ~3.35!.

Resonant dromion and solitoff solutions. If we restrict the
functionsp andq of Eq. ~1.1! as

p5(
i 51

N

exp~kix1v i t1x0i ![(
i 51

N

exp~j i !,

~4.1!

q5(
i 51

M

exp~Kiy1y0i !(
j 51

J

exp~V j t !,

wherex0i , y0i , ki , v i , Ki , andV i are arbitrary constants
andM, N, andJ are arbitrary positive integers, then we ha

FIG. 1. Four resonant solutions driven by four straight-line so
ton solutions for the quantityU shown by Eq.~1.1! with Eqs.~4.1!
and ~4.3! at time t50. ~a! The first type of a single resonant dro
mion with the parameters being given by Eq.~4.2!. ~b! The second
type of single dromion solution with the condition~4.4!. ~c! A
single solitoff solution with Eq.~4.5!. ~d! Four solitoff solutions
under the selection~4.6!. All the figures of this paper have no un
because all the models discussed in this paper are dimensionl
1-6



lu-
a

by
.
le

gle

n

.

on
o

se

lu-

e-

ul-
a

li-

by

-

e
of

LOCALIZED EXCITATIONS IN ~211!-DIMENSIONAL . . . PHYSICAL REVIEW E 66, 046601 ~2002!
a single resonant dromion solution or multiple solitoff so
tions ~we call a half-straight line soliton solution as
solitoff!. In Fig. 1, we plot four typical structures caused
the resonant effects of four straight-line soliton solutions

Figure 1~a! shows the structure of a first type of sing
resonant dromion solution shown by Eq.~1.1! with Eq. ~4.1!,

M5N52, J5k15K151, k25K25
1

3
,

~4.2!

a051, a15a253, a35
1

2
,

and

x015y015x025y0250 ~4.3!

at t50.
Figure 1~b! shows the structure of a second type of sin

resonant dromion solution shown by Eq.~1.1! with Eqs.
~4.1!, ~4.3!, and

M5N52, J52k15K151, k252K25
1

3
,

~4.4!

a05a25a351, a15
1

2
, t50.

Figure 1~c! is a plot of a single resonant solitoff solutio
shown by Eq.~1.1! with Eqs.~4.1!, ~4.3!, and

M5N52, J5k15K151, k25K25
1

3
, a051,

~4.5!
a15a253, a350, t50.

Figure 1~d! is a plot of a four solitoff solutions shown by Eq
~1.1! with Eqs.~4.1!, ~4.3!, and

M5N52, J52k15K151, k252K25
1

3
,

~4.6!
a05a253, a350, a151, t50.

Multidromion solutions. In the selection of Eq.~4.1!,
though there exist some types of single-dromion soluti
with different peaks, we have not yet found a multiple dr
mion solution from Eq.~1.1! with Eq. ~4.1!. In order to ob-
tain multiple dromion solutions, we have to change the
lections of the functionsp andq. For instance, if we take

p5(
i 51

N

bi tanha i~kix1v i t1x0i ![(
i 51

N

bi tanha i~j i !,

~4.7!

q5(
i 51

M

ci tanhb i~Kiy1y0i !(
j 51

J

exp~V j t !,
04660
s
-

-

where x0i , y0i , ki , v i , Ki , b i , bi , ci , a i , and V i are
arbitrary constants andM, N, and J are arbitrary positive
integers, then we obtain the first type of multidromion so
tions.

Actually, to find multiple dromion solutions one may s
lect the arbitrary functionsp andq in quite different ways. If
we change the selection~4.7! as

p5 f ~u!, u5(
i 51

N

bi tanha i~kix1v i t1x0i !,

~4.8!

q5g~h!, h5(
i 51

M

ci tanhb i~Kiy1y0i !(
j 51

J

exp~V j t !,

where f (u) andg(h) are some differentiable functions ofu
andh, respectively, then we obtain the second type of m
tidromion, dromion lattice structure. Figure 2 is a plot of
special type of dromion lattice solution with

f ~u!5exp~u!, g~h!5exp~h!, ~4.9!

and

M5N55, J5a051,a15a2510, a35
1

2
,

~4.10!
ki5Ki52, a i5b i51, x0i5y0i

521515i ,

bi5ci50.1, i 51,2, . . . ,5,

when t50.
Multidromion solutions driven by curved-line ghost so

tons. Recently, Lou pointed out that for many~211!-
dimensional models, a dromion may be driven not only
straight-line solitons@36# but also by curved-line solitons
@37#. Actually, Eq.~2.14! shows us that the general multidro
mion solutions of the model expressed by Eq.~1.1! or
equivalently Eq.~2.15! are driven by two sets of straight-lin
solitons and some curved-line solitons. The first set
straight-line solitons appears in the factorQy of Eq. ~2.15!,
say, one can take

Qy5(
i 51

N

Qi~y2yi0!, ~4.11!

FIG. 2. A special dromion lattice solution for the quantityU
expressed by Eq.~1.1! with Eqs. ~4.8!, ~4.9!, and ~4.10! at time t
50.
1-7
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whereQi5Qi(y2yi0) denotes a straight-line soliton whic
is finite at the liney5yi0 and decays rapidly away from th
line. Similarly, the second set of straight-line solitons appe
in the factorPx . Finally, the curved-line solitons are dete

mined by the factorsAa0a3 cosh1
2@P1Q1ln(a3 /a0)# and

Aa1a2 cosh1
2@P2Q1ln(a1 /a2)# of Eq. ~2.15! and the curves

are determined by

P1Q1 ln
a3

a0
5minUP1Q1 ln

a3

a0
U,

~4.12!

P2Q1 ln
a1

a2
5minUP2Q1 ln

a1

a2
U,

while the number of curved-line solitons is determined
the branches of the equations in Eq.~4.12!. The dromions are
located at the cross points and/or the closest points of
straight and curved lines.

Multilump solutions. In high dimensions, in addition to
the dromion solutions, another special type of localiz
structure, called lump solutions, are formed by rational fu
tions. Actually, the multilump solutions of ~211!-
dimensional integrable models can be found by taking
arbitrary functions in many ways. Here is a special select
to find multilump solutions for the quantityU shown by Eq.
~1.1!,

p5(
i 51

N
1

11~kix2v i t2xi0!2
, q5(

i 51

M
1

11~Kiy2yi0!2
.

~4.13!

Multiple oscillating dromions and lumps. If some periodic
functions in space variables are included in the functionp
and q of Eq. ~1.1!, we may obtain some types of multidro
mion and multilump solutions with oscillating tails. The o
cillated lump solution plotted in Fig. 3~a! is related to

p5
1

11$~x2ct!@cos~x2ct!15/4#%2
, q5

1

11y2
,

~4.14!

a05a351, a15a255, ~4.15!

at t50 and the oscillated dromion solution in Fig. 3~b! is
related to

p5expH 31(
i 50

10 S 3

2D 2 i /2

sinF S 3

2D i

~kix1v i t !G J ,

~4.16!

q5expH 31(
i 50

10 S 3

2D 2 i /2

sinF S 3

2D i

~Kix1V i t !G J ,

~4.17!

with Eq. ~4.15! and

ki5Ki51, t50. ~4.18!
04660
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Multiple ring soliton solutions. In high dimensions, in ad-
dition to the pointlike localized coherent excitations, the
may be some other types of physically significant localiz
excitation. For instance, in~211!-dimensional cases, ther
may be some types of ring soliton solutions which are
exactly equal to zero at some closed curves and decay e
nentially away from the closed curves@49,10,11#. In Fig. 4,
we plot the interaction property of a two traveling sadd
type of ring solitons expressed by Eq.~1.1! with the selection

p5expH 2
~x120t !4

10 000
1

1

5
~x120t !11J

1expH 2
1

10
~x220t !215J , ~4.19!

q5expS y2

10
25D , a15a255, a05a350

at the times~a! t522, ~b! t520.3, ~c! t50, and ~d! t
52, respectively. Figures 4~e! and 4~f! are the contour plots
of two ring solitons before the interaction~at the timet5
21) and after the interaction~at t51), respectively. From
Figs. 4~a!–4~d! and especially from Figs. 4~e! and 4~f!, we
can see that after head on collision of two traveling ri
solitons, they preserve their shapes totally. In other wor
the collision between the traveling ring solitons is com
pletely elastic.

More concretely, to see the completely elastic interact
property between two ring solitons, we cut and move the
ring soliton of Fig. 4~d! from the center@x5220c1t0
1d1 , y5d2# ~with t052 andc1 , d1, andd2 being some
suitable constants related to the possible changes of the
locity and the phase shift! to the center of the right ring
soliton of Fig. 4~a! ~before interaction! @x520t0 ,y50#. The
result single ring soliton may be described by

FIG. 3. ~a! Plot of the special oscillating lump solution~1.1!
with ~4.14! and ~4.15!. ~b! Plot of the special oscillating dromion
solution ~1.1! with Eqs.~4.16!, ~4.17!, ~4.15!, and~4.18!.
1-8
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FIG. 4. Evolution plots of the two special traveling ring soliton solutions~1.1! with Eq. ~4.19! at the times~a! t522, ~b! t520.3, ~c!
t50, and~d! t52, respectively.~e! Contour plot of the ring solitons before collision (t521). ~f! Contour plot of the ring solitons afte
collision (t51). The values of the contours from outside to inside areuUu50.01,0.1,0.3, respectively.
f

f

U1[H U~ t5t0!, x<0

0, x.0 J
x→x220@c111#t01d1 , y→y1d2

,

~4.20!

whereU(t5t0) is defined by Eq.~1.1! with Eq. ~4.19! and
t5t0.0. Similarly, we cut and move the right ring soliton o
Fig. 4~d! from @x520c2t01d3 ,y5d4# to the center of the
left ring soliton of Fig. 4~a! @x5220t0 ,y50# and the result
can be expressed as

U2[H 0, x<0

U~ t5t0!, x.0J
x→x120@11c2#t01d3 , y→y1d4

.

~4.21!

Now selecting the constantsc1 , c2 , d1 , d2 , d3, and d4
appropriately to minimize the quantity

v1[uU11U22U~ t52t0!u, ~4.22!

we can find that

v1max→2310213;0, ~4.23!
04660
for

c15c251, ~4.24!

and

d15d25d35d450. ~4.25!

The corresponding figure of Eq.~4.22! with Eqs. ~4.24!,
~4.25!, and t052 is plotted in Fig. 5. The slight changes o
the

FIG. 5. Plot of the error function expressed by Eq.~4.23! with
an enlargement factor 1013 ~i.e., v2[1013v1) at timet052.
1-9



ta

n
th
e

oll
th

po
a

e

le
s

e
a

f
f
-
e

e

th

e
lec-

iven

t-

lu-

XIAO-YAN TANG, SEN-YUE LOU, AND YING ZHANG PHYSICAL REVIEW E 66, 046601 ~2002!
parametersc1 , c2, andd i , i 51, 2, 3, 4 will immediately
lead to the rapid increase of the value ofv1. The conclusion
is true for any othert0.2. The result~4.23! ~i.e., v1;0)
denotes that the ring solitons preserve their shapes to
after their collision. Equation~4.24! shows us that the ring
solitons preserve their velocities during the interaction. A
Eq. ~4.25! means that there are no phase shifts at all for
head on collision between two ring solitons. Similarly, w
have studied the interaction properties for the pursue c
sion between two traveling ring solitons which may have
shapes different from that of Eq.~4.19!. The conclusions are
exactly the same.

Multibreather like soliton solutions. In ~111!-dimen-
sional cases, the breather solution is another type of im
tant nonlinear excitations. Because of the arbitrariness
pearing in the functionsp and q of Eq. ~1.1!, the breather
solutions of the~211!-dimensional models may also hav
quite rich structures.

In this paper, we write only one special example, multip
ring type of breathers, with the selections of the functionp
andq of Eq. ~1.1!,

p5(
i 51

N

exp$2@ f 1i~ t !x2 f 2i~ t !#21 f 3i~ t !%,

~4.26!

q5(
j 51

M

exp$@g1 j~ t !y#22g2 j~ t !%,

where $ f 1i[ f 1i(t), f 2i[ f 2i(t), f 3i[ f 3i(t), g1 j[g1 j (t),
g2 j[g2 j (t), i 51,2, . . . ,N, j 51,2, . . . ,M % are all arbitrary
periodic functions. From the expressions~1.1! and~4.26! we
know that, this type of ring shaped breathers may ‘‘breath
in some different ways. For instance, the breathers m
breathe in their amplitudes~because of the periodicity o
f 1i ,g1i , and f 3i), radius ~because of the periodicity o
f 3i / f 1i andg2 j /g1 j ), and positions~because of the periodic
ity of f 2i). More details can be found in Fig. 6 where th
corresponding parameters and functions of Eqs.~1.1! and
~4.26! read

M5N5a15a25g1151, a05a350, f 315g2155,
~4.27!

f 115cos~ t !1
4

3
, f 215220 sin~ t !.

From Figs. 6~a!–6~d!, we can see that the amplitude of th
ring shaped breather~1.1! with Eqs. ~4.26! and ~4.27!
‘‘breathes’’ from;0.8 to;6, the radius inx direction from
;5 to ;20 and the center of the ring from;215 to ;15.

Multiple instanton solution. If some types of decaying
functions of timet are included in the solution~1.1!, then we
can find some types of instanton solutions. For instance,
amplitude of the lump type of instanton solution~1.1! with

p5
1

11x2 sech2t
, q5

2 sech2t

11y2
, ~4.28!

a052a351, a15a2510
04660
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will decay rapidly fromuUu;0.42 touUu;8.431025 as the
time increases fromutu50 to utu55.

V. CHAOTIC PATTERNS

Becausep andq are arbitrary functions, in addition to th
stable soliton selections, there may be various chaotic se
tions. Some interesting possible chaotic patterns are g
here.

Chaotic-chaotic patterns. If we select bothp and q as
chaotic solutions of some~111!-dimensional @or ~011!-
dimensional# nonintegrable models, then the expression~1.1!
becomes some types of~211!-dimensional space-time pa
terns which may be chaotic in bothx and y directions. For

FIG. 6. Evolution plots of a special ring shape of breather so
tions ~1.1! with Eqs.~4.26!, and~4.27! at the times~a! t57p, ~b!
t52p/2, ~c! t50, and~d! t5p/2, respectively.
1-10
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instance, we can selectp and q as the solutions of (t1[x
1v1t, t2[x1v2t),

pt1t1t1
5

pt1t1
pt1

1~c11!pt1

2

p
2~p21bc1b!pt1

2~b1c11!pt1t1
1pc~ba2b2p2!, ~5.1!

qt2t2t2
5

qt2t2
qt2

1~g11!qt2

2

q
2@q21b~g11!#qt2

2~b1g11!qt2t2
1qc@b~a21!2q2#, ~5.2!

wherev1 , v2 , a, b, c, a, b, and g are all arbitrary con-
stants. It is straightforward to prove that Eq.~5.1! @and Eq.
~5.2!# is equivalent to the well-known chaos system, the L
renz system@50#,

pt1
52c~p2g!, gt1

5p~a2h!2g, ht1
5pg2bh.

~5.3!

Actually, after eliminating the functionsg andh in Eq. ~5.3!,
one can find Eq.~5.1! immediately. Figure 7~a! is a special
plot of a chaotic-chaotic pattern shown by Eq.~1.1! with

a05200, a350, a15a251, ~5.4!

and p and q being given by Eqs.~5.1! and ~5.2! under the
following special parameter selections:

a5a560, b5b58/3, c5g510. ~5.5!

FIG. 7. ~a! Plot of the chaotic-chaotic pattern~1.1! with Eq.
~5.4! and the functionsp and q being the chaotic solution of the
Lorenz system~5.1!, ~5.2!, and ~5.5!. ~b! The plot of the typical
chaotic solution of the Lorenz system~5.3! with Eq. ~5.5!.
04660
-

Figure 7~b! is a plot for the typical chaotic solution of th
Lorenz system~5.3! with Eq. ~5.5!.

Chaotic-periodic patterns. If we select one ofp andq as a
periodic function while the other one as chaotic, the solut
expressed by Eq.~1.1! becomes some chaotic-periodic pa
terns which are chaotic in one direction and periodic in
other direction.

Figure 8~a! is a plot of a special chaotic-periodic patte
~1.1! with Eq. ~5.4! andp being the chaotic solution of Eq
~5.1! with a560, b58/3, c510, while q being the peri-
odic solution of Eq.~5.2! with

a5350, b5
8

3
, g510. ~5.6!

Figure 8~b! is a plot of the typical two-periodic solution o
the Lorenz system~5.3! with Eq. ~5.6!.

Chaotic line soliton patterns. If one of p andq is selected
as a localized function and the other one is chaotic, then
solution ~1.1! becomes a chaotic line soliton.

Figure 9 is a plot of the chaotic line soliton solution e
pressed by Eq.~1.1! with Eq. ~5.7!, p being given by Eq.
~5.1! with a560, b58/3, c58, andq being given by

q5tanhy. ~5.7!
Chaotic dromion patterns. In ~211! dimensions, the mos

important nonlinear excitation is the dromion solution whi
is localized in all directions. Now the most interesting que
tion is whether some special types of chaotic behavior can
found for the dromion excitations. Actually, the answer

FIG. 8. ~a! Plot of the chaotic-periodic pattern~1.1! with Eq.
~5.4! and the functionsp and q being the typical chaotic solution
and periodic solution of the Lorenz systems~5.1! ~with a560,b
58/3,c510) and~5.2! ~with a5350,b58/3,c510), respectively.
~b! The plot of the typical periodic solution of the Lorenz syste
~5.3! with Eq. ~5.6!.
1-11
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obviously positive because of the arbitrariness of the fu
tions p and q. For instance, if we selectp and q as @ f 2(t)
.0, f 6(t).0#,

p5
f 1~ t !

f 4~ t !1exp$ f 2~ t !@x1 f 3~ t !#%
,

~5.8!

q511
f 5~ t !

f 8~ t !1exp$ f 6~ t !@y1 f 7~ t !#%
,

with f i(t),i 51,2, . . . ,8 being chaotic solutions, then Eq
~1.1! becomes a chaotic dromion which is chaotic in so
different ways. The amplitude of the dromion~1.1! with Eq.
~5.8! will be chaotic if f 1(t), f 4(t), f 5(t), and/or f 8(t) are
chaotic. If f 2(t) and/or f 6(t) are chaotic, then the shap
~width! of the dromion becomes chaotic. The position of t
dromion located may also be chaotic if the functionsf 3(t)
and/or f 7(t) are chaotic.

In Fig. 10~a!, we plot the shape of the dromion solutio

FIG. 9. Plot of the chaotic line soliton pattern~1.1! with Eq.
~5.7! andp being given by Eq.~5.1! with a560,b58/3,c58.

FIG. 10. ~a! Plot of the single dromion solution for the quanti
U given by Eq.~1.1! with Eqs. ~5.7!, ~5.9!, and f (t)50. ~b! The
evolution of the amplitude of the chaotic dromion related to~a! with
f being given by Eq.~5.10!.
04660
-

e

for the physical quantityU shown by Eq.~1.1! with Eq. ~5.7!
at a fixed time@for f (t)50] with

p5e2x, q5
1001 f ~ t !

ey11
11 ~5.9!

and f (t) being a solution of the Lorenz system@50#,

f t5210~ f 2g!, gt5 f ~602h!2g, ht5 f g2
8

3
h.

~5.10!

Figure 10~b! shows the evolution of the amplitude of th
dromion ~1.1! with Eqs.~5.7!, ~5.9!, and~5.10!.

VI. FRACTAL PATTERNS

Recently, some types of piecewise smooth solutions
the peakons, cuspons, and compactons are widely use
~111!-dimensional soliton systems@51–56#. All the lower
dimensional piecewise smooth functions can also be use
construct higher dimensional peakons, cuspons, and com
tons. In this section and the following section we are int
ested in pointing out that some types of lower dimensio
piecewise smooth functions with and without fractal stru
tures can be used to construct~weak! exact solutions of
higher dimensional soliton systems. In this section we
two special types of fractal patterns.

Nonlocal fractal pattern. If we select (j5x1t),

p5
1

4
juju$sin@ ln~j2!#2cos@ ln~j2!#%, ~6.1!

q511
1

4
yuyu$sin@ ln~y2!#2cos@ ln~y2!#%, ~6.2!

in Eq. ~1.1! with a15a251, a05a350, then we get a non-
local exact solution with fractal structure for smallx1t and
y. Figure 11 shows the structure of Eq.~1.1! at the region
$x5@20.185,0.185#, y5@20.185, . . . ,0.185#% for t50.
If we plot the structure of the solution at smaller regions su
as $x5@20.065,0.065#, y5@20.065, . . . ,0.065#%,
$x5@20.0078,0.0078#, y5@20.0078, . . . ,0.0078#%, . . . ,

FIG. 11. Density plot of the fractal solution for the fieldU given
by Eq. ~1.1! with Eq. ~6.1! at the region$x5@20.185,0.185#,y
5@20.185•••0.185#% for t50.
1-12
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$x5@21.45310210, . . . , 1.45310210], y5@21.45
310210, . . . , 1.45310210] %, . . . , we can obtain totally
same structures as shown in Fig. 11. Actually, to obtain
similar picture to Fig. 11, we can also use the different sca
for x and y, say, $x5@20.185,0.185#, y5@21.45
310210, . . . , 1.45310210] %.

Fractal dromion and lump patterns. We call a dromion
~lump! solution fractal dromion~lump! if the solution is ex-
ponentially ~algebraically! localized in large scale and pos
sesses self-similar structure near the center of the drom
~lump!. For instance, if we take

p5expHA~x2c1t !2S 3

2
1sin$ ln@~x2c1t !2#% D J , ~6.3!

q5expHA~ y2c2t!2S 3

2
1sin$ ln@~ y2c2t!2# !J ,

~6.4!

the expression~1.1! becomes a special fractal dromion sol
tion.

Figure 12 is a plot of the special dromion solution~1.1!
with Eqs.~6.3!, ~6.4!, and

a05a15a252a351 ~6.5!

at time t50. The localized property of the dromion is re
vealed in Fig. 12~a!. Figure 12~b! is a density plot of the
dromion solution at the range$x5@20.11,0.11#, y5

FIG. 12. Plot of the fractal dromion solution~1.1! with Eqs.
~6.3!, ~6.4!, and~6.5!. ~a! The localized structure of the fractal dro
mion. ~b! The density plot of the dromion at the range$x
5@20.11,0.11#, y5@20.11,0.11#%. The same pictures~except the
scales! can be found at infinitely many smaller ranges, s
$x5@20.005,0.005#, y5@20.005,0.005#%, . . . , $x5@25.9
310214, 5.9310214], y5@25.9310214, 5.9310214] %, . . . , $x
5@20.005,0.005#, y5@25.9310214,5.9310214#%, . . . .
04660
e
s

on

@20.11,0.11#%. It is interesting that by enlarging the sma
areas at the center of Fig. 12~b!, say, $x5@20.005,0.005#,
y5@20.005,0.005#%, $x5@20.0002,0.0002#, y5
@20.0002,0.0002#%, . . . ,$x5@25.9310214, 5.9310214],
y5@25.9310214, 5.9310214] %, . . . ,$x5@20.005,0.005#,
y5@20.0002,0.0002#%, . . . , we can find thetotally same
pictures as Fig. 12~b!.

VII. PEAKON SOLUTIONS IN „2¿1… DIMENSIONS

Since the pioneering work of Camassa and Holm~CH!
@51#, a special type of weak solutions of~111!-dimensional
nonlinear evolution equations has attracted the attention
physicists and mathematicians@55#. These types of solitary
waves are called peakons because they are discontinuo
their crest@51#. Especially, the properties and interaction b
haviors of the peakons for~111!-dimensional integrable CH
equation have been understood quite well. The collisio
among the~111!-dimensional peakons are completely ela
tic. Though the CH equation has been extended to~211!
dimensions in several possible ways@57#, one does not know
anything on the~211!-dimensional peakons which are loca
ized in all directions for any~211!-dimensional integrable
model.

In fact, the entrance of the arbitrary functionsp andq in
the universal quantity expressed by Eq.~1.1! tells that the
~211!-dimensional peakons can exist at least for all the m
els listed in this paper by selecting the arbitrary functions
some suitable piecewise continuous functions. In this s
tion, we give two special types of~211!-dimensional pea-
kons.

The first type of peakons can be obtained by selecting
of p and q of Eq. ~1.1! as a piecewise function while th
other one as a continue differentiable function. For instan
we can take the functionq as a continue function~say, one of
those listed in the examples of the last three sections! while
p is given by

p5(
i 51

M H Fi~x1ci t !, x1ci t<0

2Fi~2x2ci t !12Fi~0!, x1ci t.0,
~7.1!

where the functionFi(j)[Fi(x1ci), i 51,2, . . . ,M are
differentiable functions and possess the boundary condit

Fi~6`!5C6 i , i 51,2, . . . ,M ~7.2!

with C6 i being constants and/or̀. The second type of pea
kon solutions is yielded by selecting bothp andq in Eq. ~1.1!
as some piecewise functions. For instance,p is still given by
Eq. ~7.1! while q is taken as

q5(
i 51

N H Gi~y!, y<0

2Gi~2y!12Gi~0!, y.0,
~7.3!

where the functionsGi(y), i 51, 2, . . . ,N are differen-
tiable functions and possess the boundary conditions sim
to Eq. ~7.2!.

,
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In Fig. 13, we plot the interaction property between tw
second type of peakons for the quantity~1.1! with a0
50, a15a252a351,

p5115 2 lnH tanhF1

2
~12x1t !G J , x<t

lnH tanhF1

2
~11x2t !G J 22 lnF tanhS 1

2D G , x.t,

~7.4!

FIG. 13. Exhibition of the interaction property between two pe
kons shown by Eq.~1.1! with a050,a15a252a351, Eqs.~7.4!
and~7.5! at the time~a! t528, ~b! t523, ~c! t50, ~d! t53, and
~e! t58, respectively.
04660
1H 2 lnH tanhF1

2
~12x22t !G J , x<22t

lnH tanhF1

2
~11x12t !G J 22 lnF tanhS 1

2D G , x.22t,

and

q55 2 lnH tanhF1

2
~12y!G J , y<0

lnH tanhF1

2
~11y!G J 22 lnF tanhS 1

2D G , y.0.

~7.5!

From Fig. 13, we can see that the interactions amo
peakons are not completely elastic. After interaction, t
peakons exchange their shapes completely and preserve
velocities. Similar to the case of the interaction of the ri
solitons, to see the interaction property between the peak
more clearly, we cut and move the left peakon of Fig. 13~e!
from the center@x522c1t01d1 , y5d2#(t058) to the
center of the left peakon of Fig. 13~a! @x52t0 ,y50#. The
resulting single peakon may be described by

U1[H U~ t5t0!, x<0

0, x.0J
x→x2@2c121#t01d1 , y→y1d2

,

~7.6!

where U(t5t0) is defined by Eq.~1.1! with a050, a1
5a252a351, Eqs.~7.4! and ~7.5!. Similarly, we cut and
move the right peakon of Fig. 13~e! from @x5c2t01d3 ,y
5d4# to the center of the right peakon of Fig. 13~a! @x
52t0 ,y50# and the result can be expressed as

U2[H 0, x<0

U~ t5t0!, x.0J
x→x2@22c2#t01d3 ,y→y1d4

.

~7.7!

Now selecting the constantsc1 , c2 , d1 , d2 , d3, and d4
appropriately to minimize the quantity

v1[uU11U22U~ t52t0!u, ~7.8!

we can find that

v1max→3310217;0, ~7.9!

for

c15c251, ~7.10!

and

d15d25d35d450. ~7.11!

The corresponding figure of Eq.~7.8! with Eqs. ~7.10!,
~7.11!, and t058 is plotted in Fig. 14. The result~7.9! ~i.e.,
v1;0) indicates that the peakons exchange their shape
tally after collision. Equation~7.10! shows us that the pea

-
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kons preserve their velocities after interaction. And E
~7.11! means that there are not phase shifts at all for the h
on collision of peakons. Similarly, these conclusions h
true both for the pursue collision between two peakons
for the interactions of the first type of peakons.

VIII. SUMMARY AND DISCUSSIONS

In summary, for some~211!-dimensional soliton system
such as the DS equation, NNV equation, ADS equati
ANNV equation, DLWE system, BKK system, LWSW
model, Maccari system, and the generalized (N1M )-
component AKNS system, some lower dimensional arbitr
functions can be included in their exact solutions. A comm
variable separation formula is valid for all these models.
addition to the many types of stable localized excitatio
such as the solitoffs, dromions, lumps, breathers, instant
and ring solitons, there may be many types of chaotic
fractal patterns by selecting the arbitrary functions as
chaotic and/or fractal solutions of somelower dimensional
nonintegrable models. Especially, the dromion type soluti
that are localized in all directions for some types of physi
fields may also be chaotic in some different ways~say, cha-
otic in their amplitudes, positions, and widths!. Similar to the
cases in~111! dimensions, the weak solutions like the pe
kon solutions may also exist in higher dimensions. Two typ
of explicit peakon solutions that are localized in all dire
tions have also been given in this paper.

For the existence of the abundant structures of the uni
sal formula~1.1!, it is quite important but difficult to inves-
tigate the interaction properties for all the possible localiz
excitations. In this paper, the interactions of two spec
types of localized traveling excitations, ring solitons and
peakons, are studied. For the traveling ring soliton solutio
the interaction is completely elastic. During the collisio
~both for the head on collision and the pursue collision!, the
ring solitons pass through each other and completely
serve their shapes, velocities, and phases. For the trav
peakons, the peakons also pass through each other with
changed velocities and phases, however, their shapes
completely exchanged.

Why do the~211!-dimensional integrable models posse
so rich localized excitations and why can some lower dim
sional chaotic and fractal solutions enter into the higher
mensional integrable models? All the reasons come from
existence of the characteristics, arbitrary functions, in

FIG. 14. Plot of an error functionv1 expressed by Eq.~7.8!
with Eqs. ~7.10!, ~7.11!, and an enlargement factor 1017 ~i.e., v2
[1017v1) at timet058.
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universal formula~1.1!. Actually, it is known that arbitrary
exotic behaviors may propagate along the characteris
The similar situation exists even also in linear system l
the wave equation

utt2c2uxx50. ~8.1!

It is known that there are two characteristic functions,f (x
2ct) andg(x1ct), included linearly in the general solutio
of the wave equation~8.1!. If one can find the general solu
tion of the nth order (m11)-dimensional nonlinear inte
grable models, there should benm-dimensional characteris
tic functions in the general solution. Of course, the
characteristics should be combined highly nonlinearly in
general solutions of nonlinear models. In ourspecialvariable
separation solution~1.1! there exist only two characteristi
functions.

Though the localized excitations such as the dromio
lumps, ring solitons, and the peakons possess zero boun
conditions for the quantityU, the boundary conditions fo
other quantities, say, the quantityv ~2.13! for the DS model
andv andw @Eqs.~3.3! and ~3.4!# for the NNV system, are
not exactly zero. Different selections of the functionsp andq
in ~1.1! correspond to different selections of boundary co
ditions of fields~or potentials! with nonzero boundary con
ditions. The changes of these boundary conditions~exotic
behavior! propagate along the characteristic and then yi
the changes of the localized excitations. That means, in s
sense, the dromions and other types of localized excitat
for some physical quantities are remote controlled by so
other quantities~or potentials! which have nonzero boundar
conditions. In Ref.@58#, by using pure numerical calcula
tions, the authors have also pointed out that the noncha
dromions of the DS equation can be remote controlled.

It is also known that both the ANNV system and the D
systems are related to the KP equation@24,38#, while the DS
and the KP equations are the reductions of the self-d
Yang-Mills ~SDYM! equation@24,38#. So both the KP and
the SDYM equations may possess quite rich nonlinear e
tations with some arbitrary characteristics. The KP equat
is another type of important integrable model in the study
integrable models. However, we have not yet found an eff
tive way to obtain its nontrivial variable separation solution
In our special variable separation expression~1.1!, there are
only two characteristic functions. How to introduce mo
characteristic functions into the variable separation soluti
is also an essential open question. These interesting and
portant problems should be studied further.
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