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In this paper, we report results on our theoretical studies of stopping power contributions from single-particle
and plasmon excitations. We have introduced an equipartition ratio defined as the ratio of stopping contribu-
tions from plasmon and single-particle excitations, respectively. Within the linear response theory we have
made a comprehensive investigation of this equipartition ratio for fast pointlike and extended projectile ions in
a disordered electron gas; the latter is modeled by a degenerate electron gas of metallic densities and with
disorder being incorporated within a relaxation-time approximation. As simple but useful examples of pointlike
and extended projectiles we have considered proton anddte as well as diproton and Heon clusters. We
present detailed and comparative results for the equipartition ratio corresponding to several values of the
damping parameter which characterizes disorder in our model. The results are also compared, wherever
applicable, with those for individual, i.e., uncorrelated projectiles.
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I. INTRODUCTION stopping poweKSP of the projectile.
In a recent work 18] we have shown that the LW sum
One of the important aspects of an interaction of chargedule does not necessarily hold for an extended projectile ion
particle projectiles in a target medium is the energy loss ofnd for ion clusters moving in a degenerate but fie@nin-
the projectiles in the medium. The problem of energy loss oteracting electron gas. We have derived a generalized stop-
ions and ion clusters in solids is of both theoretical and exping power sum rule for this type of projectiles. It may be
perimental interests in diverse areas concerning particle-solidoted that SP has been studied mainly for three types of
interactiong 1-11]; more recently energy loss is being stud- projectiles: (i) point ion (ii) extended ion and ion clusters,
ied in connection with energy deposition by ion beams inand(iii) structured projectiles having internal structures e.g.,
fusion plasma targefsl2—-15. atomic shells. In this paper, we shall consider the first two
Reliable calculations of energy loss, pioneered bytypes of projectiles. By an extended ion we refer to the finite
Lindhard [16], have been donésee, Refs[7,8] for recent  size of its charge distribution.
reviews through the linear response theory and by modeling In an earlier workf9], we made a detailed study of vari-
the solid target medium as a der(slegenerateelectron gas. ous aspects of correlated SP of a diproton cluster by employ-
The linear response method is justified for swift charged proing different approximations for the linear response function
jectiles[8]. For such high-velocity projectiles or clusters, the e(k,w). In both of these studies we considered a degenerate
energy loss may be mainly due to collective and singleelectron gagDEG) which is free of disordefe.g., due to
particle excitations in the target medium. impurity etc). In a real target medium, disorder is expected
In the linear response approach which assumes a weak various degrees and it affects the decay of the elementary
coupling between energetic projectiles and the target mateexcitations.
rial, specially a metal, the relevant physical quantities e.g., To include disorder in a fully interacting electron gas at a
the stopping power are calculated with the help of the memicroscopic level is rather involved, and no analytical calcu-
dium dielectric functiore (k,w). The latter contains contri- lations of e(k,») without restrictions ork and w are still
bution from both collective and single-particle excitations ofavailable. The effect of disorder has been introduced in
the target electrons. e(k,w) through a phenomenological but number-conserving
It is of both fundamental and practical interests to studydamping term at the random-phase approximatiBiPA)
the extent to which the collective and single-particle excitadevel [19,20. The resulting e(k,w) leads to significant
tions each contribute to energy loss. For a singdnt-ion  changes in the mean free paths and energy losses of low-
projectile, Lindhard and Winthe{LW) [17] investigated the energy projectiles, as shown by some earlier calculations for
respective contributions of these two excitations and founalectrons and protons interacting with an electron [@ds-
an equipartition sum rule which states that both these exci24]. The theoretically shown increase in & decrease in
tations contribute equally to energy loss per unit length i.e.mean free pathis due to disorder-induced changes in the
plasmon dispersion such that it becomes possible to have
plasmon excitation for projectile energies below the thresh-
*Electronic address: hrachya@irphe.am old predicted in the absence of damping.
"Electronic address: akdas@dal.ca The objective of this paper is to report on our studies of
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the respective contributions of collectivgplasmon and  terms in Eq.2) are included. In Sec. 1l we discuss a diclus-
single-particle excitations to individual and correlated SP ofter of two identical ions, particularly Heions. p(r) is the
point-ion and extended charged projectiles in a disorderedpatial distribution, assumed to be spherically symmetric, of
DEG, within the linear response approach. The RPA dielechound electrons in the ionge is the charge on each of the
tric function which includes damping in a number- pointlike ions or nuclei separated by a variable distaRce
conserving relaxation-time approximatigRTA) [19,2Q is We use a $-type wave function of the form
used for the disordered DEG medium. Within this formalism
we briefly present, in Sec. Il, the linear response formulation 3\ 12
for SP of a dicluster of two identical extended ions and de- 1//13(r)=(—3) e % (3
rive analytical expressions for the disorder-inclusive dielec- mag
tric function. In Sec. lll we introduce and formulate two ] . ]
criteria which allow to distinguish between the plasmon and© describe the bound electron on each™Hen, with ag
single-particle excitations in the energy-momentum disper=0-529 A as the Bohr radius. It may be remarked that, un-
sion. These two criteria enable us to reformulate in Secdike in the work of Wang and Nag)25], we are considering
1A and 1ll B an equipartition ratio in a disorder-inclusive @n unscreenedslelectron. The Fourier transform of the spa-
case. Utilizing these features and with both the criteria weial distribution p(r)=|y:4(r)|? is then expressed as
have made detail numerical calculations for the equipartition
ratio. The Appendix contains some different and useful re- 1
sults for the plasmon dispersigwithin RPA) with and with- p(k)= (1+K2a2/az?)?’ )

H 0
out disorder.

For a dicluster of Hé ions we have
II. LINEAR RESPONSE FUNCTION FORMULATION

2_9n2[7_ 2 .
In the linear response theory, the SP which is the energy |G(k)[*=2eZ—p(K)][1+codk-R)]. ©)

loss per unit length for an external projectile with a spatial
charge distributiorpey(r,t) = Qex(r —Vt) moving with ve- S
locity V in a homogeneous isotropic medium characterized®

Using Egs.(1) to (5), the SP of a dicluster can be written

by the dielectric functiors(k,w), is given by[5-11] S=25,4(\) + 2SR D), ®)
S= L J dk|G(k)|2k'_V|m_—1 (1) whereS;4(V) andS;,(R,V) stand for individual and corre-
2wV k2 e(kk-V)’ lated SP, respectively. From Ed4) and(5)
whereG(Kk) is the Fourier transform of the stationary charge 1650 (= _, N -1
Qex(r). We shall consider the range ffor which the linear Sind(N) = 7T3X4)\2f0 z (a,Z)ZOIZfO Ims(z m udu,

response theory is adequdg.

Both the single-particle and collective excitatigns., the
plasmong contribute to the SP and these contributions are &
contained ine(k,k-V) in Eq. (1). In our study the target 1820 (>~ _, Aol
medium is assumed to be disordered due to impurities etc. AsSCO”()"R’ﬂ)_ m3x\2Jo ZHa,z)zdz 0 Ims(z,u) udu
stated in Sec. |, we shall incorporate effects of disorder in

)

e(k,w) in a somewhat phenomenological manner. This is to 2uz

include disorder through a relaxation timesuch that the XCOS{TKFRCOS’})

particle number is conserved. This was done first by Mermin

[19] and then by Da$20] in the random-phase approxima- u?

tion and in RTA. We refer the reader to Refd9,2( for X Jo| 2kgRzsing \/ 1~ F) (8)

details of this formalism. Forr—oo, this linear response
function e (k,w,1/7) reduces to the Lindhard dielectric func-
tion. In Eq. (1), e(k,k-V) is understood to contairy
=1/7) as a damping parameter due to disorder. The form o .
(S(k,(Z?llT) is to bpe Sgpgmfled Shortly. the Ve|OCIt%/ vector V, 20=4e21//§a§: 2.566 GeV/an,l/?))\
Equation(1) is applicable to any external charge distribu- = V/UF, X“=1/mkeao=(4/977) s, rs=(3/4mnoag) ™,
tion. For the projectile systems under study we may writeho i the electron gas density: andkg are the Fermi ve-

Jo(X) is the Bessel function of first kind and zero order, and
f? is the angle between the interionic separation velRtand

Qur) as locity and wave number of the target electrons, respectively,
¢ Z(a,z)=Z—p(a,z). In our calculationsy (or rg) serves as
Qex(1)=Z€[8(r)+ 8(r—R)]—e[p(r)+p([r—R])]. a measure of electron density. Here, as in Rgif§,17], we

2) have introduced the following notationg=k/2kg, u

=wl/kvg. In Eq. (6) the term for correlated stopping power

For point-ions, only theS-function terms in Eq(2) need be S, vanishes for larg&k(R— =) and SP is the sum of indi-
considered while for an extended-charge projectile all thevidual stopping powers for the separate ions. Rex0 the
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two ions coalesce into a single entity. Th8g,,= S;,q, and 1
SP corresponds to that for a projectile of total chargéz2 fo(z,u)= Q{FZ[U,Yl(Z,U,)—U+Y1(Z,U+)]
-1).
With variablesz andu Eg. (4) becomes +[22(U2_—1)—F2]Y2(2,U,)
A —[22(U5 - 1)-T?]Y(z,U )} (13
p(a,Z)Z(a2+22)2, © with U.=u=*z,
Z2(U+1)%+T?
wherea=mx?Z. Yi(zU)=In—, (14
. . . . . . ZZ(U _ 1)2+ r2
Let us now specify the disorder-inclusive dielectric func-
tion. With the notations introduced in the preceding para-
graph, it reads z(U~-1) z(U+1)
Y,(z,U)= arctanT arctaﬁr— (15
B (zu+il)[erpa(z,u,I") — 1] In the case of vanishing damping{>0 andI’—0) the
e(z,u)=1+ . o . .
' zut+il'[egpa(z,u,I") = 1]/[egpa(z,0)— 1]’ expression$12)—(15) coincide with the Lindhard resuli6].
(10)

lll. STOPPING POWER AND EXCITATIONS

wherel'=#Ay/4Eg, Eg being the Fermi energy ﬁ2k§/2m EQUIPARTITION

with m as the effective mass. The quantify (or I') is a With the theoretical formalism presented so far, we now
measure of damping of excitations in the disordered electrofake up the main topic of this paper. This is to study how
gas.egpa(Z,U,I") = erpa(k, @ +i7) is the longitudinal dielec-  collective and single-particle excitations in the target me-
tric function of zero-temperatur@legenerateelectron gas in - dium contribute t0S;,qy and Sey,. This problem was first
the RPA.2rpA(2,0)=¢rpa(k,0) is the static dielectric func- addressed by Lindhard and Winthgi7] for a degenerate
tion. electron gas medium without damping=€0). They consid-
We have analytica”y evaluated the diSOfder-inClUSiveered on|y3nd and On|y for a point-ion project”e_ They for-

&(z,u) for which the results, presented below, appear to benulated an equipartition rule which states that an integral
different and we have utilized them in our numerical inves-proportional to that in Eq(7)

tigation.

Let us recall the LindhardRPA) expression for the lon- N o -1
gitudinal dielectric function[16]. In variablesz and u, it u) J' 'mg(z U)Zdzsz(qusp(u) (16)
reads as ’

receives equal contributions from plasmd¥) (with 0<z
erpa(Z,U,T) = erpa(K, @ +i7) <u—1) and from single-particle excitationsi{,) (with u

—1<z<u+1), respectively. The functionsi,(u) and
Jsp(u) may then be written as
—1+—J' qdqf
qz —(,uZ zu—|1")2

_ u-1 -1
Jp(u)=f0 Im zdz

¥2 e(z,u)
=1+ —2[f1(z,u)+|f2(z,u)], (11
z u+1 -1
Jsp(u) = fu_l Ims(Z ) zdz (17

where we have introduced the functiohgz,u) andf,(z,u)
as in the usual RPA expression of longitudinal dielectric This equipartition rule is valid for sufficiently fast projec-

function. tile V>V, whereV, is the threshold ion velocity for plas-
Performing theg andu integrations in Eq(11) we obtain,  mon excitation(or u>V,/vg=X\,). In a recent wor18] we
for a nonzero damping, have shown that the LW equipartition rule does not necessar-

ily hold for an extended charged projectile, e.g., a diproton
cluster in a degenerate electron gas without disorder (

(zu)= E+ 1 {[ZZ(UZ_— 1)—T2]Y,(z,U_) =0). We have established some generalized stopping power
3 sum rules.
- 5 We shall now study the equipartition problem for a disor-
—[z7(U5—=1)-T"]Y4(z,U}) dered ¢y#0) electron gas, utilizing, among other things, the

results for the linear response function as presented in Egs.
(10)—(15). For our analysis we introduce two criteria which
(12 enable us to distinguish, operationally, between contributions

+4T'Z[U,Y,(z,U,)—U_Y,(z,U )]},
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FIG. 1. Real parf &= Relfi wy(K)/4E()] of exact and approxi-  FIG. 2. Imaginary parf 7,=Im(% wg(k)/4E)] of exact and ap-

mate (the lines with circles solutions of dispersion equation ¥s  proximate(the lines with circlep solutions of dispersion equation
=k/2kg for iy=0 (solid line), y=3 eV (dashed ling Ay vs z=k/2kg for Ay=1 eV (solid line), #y=3 eV (dashed ling
=10 eV (dotted ling, 7 y=15 eV (dash-dotted line The short- % y=10 eV (dotted ling, 7 y=15 eV (dash-dotted ling
dashed line corresponds déo=kuv g+ #k?/2m (or &=z+Z? in units
of é=hwl4Er andz=k/2k). consider two theoretically motivated criteria and compare the
physical results which perhaps lie in between the two crite-

from plasmon and single-particle excitations. As in the caséia'

P g'e-p ' In Fig. 3 we showz,,=kna/2ke (solid line) and z

without damping, we consider the dispersion curveofsk, _ ; ! L
and look for the intersection at which the plasmon curve firstt;]gctlztl:]'; (i?izzgld kllnﬁr?scal;uz(ggorg;sﬁe)s/. ;g'ﬁgigﬁgsaflgow;h
C

touches the single-particle spectrum; this is criteriolC1). . ; . . : :
. . . increasingy while k5, (in C2) increases withy.
The corresponding value &fis denoted by, . Figs. 1 and 2 . L P s
For a further investigation of excitations’ equipartition we

show the so_Iutlons_ F{G)S(k’y.)) and m(wS(k_’y)) (in units need to consider an operational definition of the threshold
of 4E¢) of dispersion equatio(DE) e(k,w)=0 as a func- . ; DO .
ion velocity for plasmon excitation in a disordered electron

tion of z=ki/2ke, for some values ot y. In these figures the gas(in the presence of a nonzes). For y=0 (no disordey
lines with circles correspond to approximate solutions of DE e o .
we have plasmon excitation within the domakiu—1. The

[see, the Appendix, Eq$A7)—(A10)]. In Fig. 1 the short- . . ) o L -
dashed line corresponds to single-particle excitation Speclptersectmn of the single-particle excitation curre u—1

_ - and the plasmon dispersion curzgu) (see the Appendix
trum wsy(K) = ko g +7%k?/2m [or wgy(K)[AEE=2z+2°]. The : . - _
intersection of single-particle excitation spectrum (k) gives the threshold value, given by u;=1+2z(u,); the

. . lasmons are excited only far<u<N\ [Egs.(7) and (8)].
with the real part of plasmon energy ®e(k,y)) gives the P . . L
critical wave numbek(7). The threshold ion velocity, is related tou, through u,

For y=0 (no disordey, the plasmon will be Landau =V,/vg, the latter being denoted by; in subsequent cal-

damped beyon#.. This means that the plasmon dispersioncmaﬁons' The l/alue ok, (u,) corresponds to the critica}
will have both nonzero real and imaginary parts. But the real'2ve r;\umb«irz\;— kC;ZkF_' 1'” (k:l w/e2lt(henf hﬁvehthe r?elgefrall-
part will decay and the imaginary part will increase in \Z/ee‘ltgoc?tyt(w_ t(V/ve=1+k(7)/2Ke of the threshold ion
strength. : : . :
Ne%(t we consider the second criterion for characterizing In C2 we use the numerical data for plasmon dispersion
contributions from plasmon and single-particle excitationsCUVeS Of Reb/kug) and Im(/kug) vs z=ki2ke for sev-
We plot the solution for the DEg(k,w)=0, for o with 045
respect tk (see, Figs. 1 and)2At some value ok, the DE
ceases to have either a real or a complex solution. We call
this valuek () Which provides the second criteriog2)™.
On physical grounds we expect that,, is greater thark, .
In the context of stopping, we are assuming thatGf,
plasmons will not contribute to stopping beyokgd This is
somewhat restrictive. But let us explore a theoretical model
in order to see its consequencesCla, we are assuming that
plasmons can still contribute to stopping even wiherk_ .
Probably this is more realistic. But, again, our idea is to

=)
&

-
-
-
-
-
-

Pid = Criterion 1
z —==- Criterion 2

Critical wave numbers
=] o
b3 b

0.25 .
12 15

6 9
. o N #ry (eV)
After completing this work we became aware that the criterion

C2 has been applied, in number nonconserving and conserving ap- FIG. 3. The critical wave numbergn units of 2kg) vs fiy
proximations, to study collective excitations in nuclear mdtg&i. plotted under criterion Isolid line) and criterion 2(dashed ling
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stead ofz,(I"). The threshold velocity will be defined by
== numerical data corresponding to the dashed line in Fig. 4.
13l S ] In the following sections we consider the plasmon and
~~ single-particle excitation contributions to SP for pointlike
N and extended projectiles moving in a disordered electron gas.

——  Criterion 1 N
=== Criterion 2 AN

V(v

A. Equipartition rule for pointlike ions

Using the theoretical and numerical results of Secs. Il and
Ill, we have made extensive numerical calculations of ER.
Here we consider ER for pointlike ion projectiles. In this
case, we need to pyi{ «,z) =1 in Egs.(20) and(21). Con-
sequently, for dimensionless energy losses due to plasmon
and single-particle excitations we find the following expres-
sions inC1:

1.1} gV

1.0

6 9 12 15
fry (eV)

FIG. 4. The threshold ion velocity(y) (in units of vg) for
plasmon excitation vé y plotted under criterion 1solid line) and

o . A z(T") -1
criterion 2 (dashed ling S(p)()\,F)z(Z—l)zf uduf |m8(z -~ 2dz
. - A(D) 0 ;
eral values ofy, as displayed in Figs. 1 and €2 selects the ' (22)
value ofk,5{(y) at which the dispersion equation has no real
or complex solution. In Fig. 4 we have plotted the threshold S MO o
ion velocities vsfy according toC1 (solid line) and C2 SEP(\,T)=(Z—-1) (Jo uduJ0 zdz
(dashed ling As expected, both the curves coincide for
=0. In this case the threshold ion velocity is found to be Jx % -1
+ uduJ zdz|Im . (23
h (D) zo(I") ) e(z,u) @3
V= Ur + Ur 9 (18)
2 4 2m Let us note that in this case the stopping pow&fR(\,T")

and SSP(\,T") are proportional to Z—1)?. Therefore, the
ratios?R,(N,I") andMR,(N,I") do not depend on the projectile
ion chargeZ.

Next we present numerical results for ER. We have used
the analytical results presented in the Appendix in order to
effect a numerical integration of EgR2) and(23). Figure 5
showsR;(\,IN), i.e., ER, for a single-proton projecti[&ig.
whereS®)(\,I") andS®P(\,I') are the stopping powers for 5(a)] and a diproton clustefFigs. 5b) and §c)] with R
plasmon and single-particle excitatior&(\,I') describes =1 A as a function o/v for six values of the damping
the strength of plasmon energy loss intensity with respect t®arametery: #y=0 (solid line), #y=0.1 eV (dashed ling
a single-particle energy loss intensity. Note that BR\,T") #iy=1 eV (dotted ling, #y=3 eV (dash-dotted ling %y
vanishes forV<V, (or A<A). The ERs corresponding to =10 eV (dash-dot-dotted line #y=15 eV (short dashed
Cl and C2 are respectively denoted &B,(A,I') and |ine). The valuesiy=0.1 eV andiiy=1 eV are comparable
MRp(N,T). From Eq.(7) and for an individual ion projectile  with the damping parametérelated to collision timgin Al
we find in C1 target. The last valué y=15 eV corresponds to the damp-
ing parameter in carbof22—-24. The density parameter is
r=2.07 corresponding to the valence electron density in Al.

We choose two specific values[Big. 5b)] and7/2 [Fig.

(20 5(c)], for the diproton cluster orientation angfe Correla-

tions between two protons in the dicluster are maximum and
f“‘r) q f” dzt JA q f” q minimum, respectively, for these two values ®f The ob-

0 uau 0 zdz M(F)u u ZC(F)Z z jective is then to see how, for these maximum and minimum
L configurations, ER depends afvgr and y. Fig. 5 shows

2 - that ER attains noticeably higher values for a diproton clus-

Xz (a'z)lmg zZu)’ (2D ter. This is due to a correlated motion of the two protons

through a resonant interaction with the plasmon excitations

We have omitted the multiplicative factor in E(f) before in the electron gas. Also the angular dependence of ER is

the integral overz. Similar expressions can be found for the particularly worth noting. It is seen that in the higher velocity

We now introduce an equipartition rati€R) 3(\,I)
defined as

B S(p)()\,l")

RN, )=———,
S(Sp)()\,l")

(19

N

s(m()\,r):f
A

e(z,u)

z(T")
uduf Z%(a,z)Im zdz,
0

()

SR\, TN =

correlated part of ion stopping power. The parametefF)

and \(I") in Egs.(20) and (21) are obtained from Figs. 3

and 4, respectively. In a similar manner the raig(\,I")
can be found from Eqs(19)—(21) by insertingzy,,(I") in-

range ¥V>2vg) ER has a remarkably higher value for the
larger value ofd (= m/2). These features can be explained
by noting that the single-particle and collectigglasmon

excitations are effective in different velocity ranges. In a
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0.7 g g g strength of disordes. In order to understand this difference,
06 | let us consider a simple plasmon-pole approximatieRA)

' [see, e.g., Ref$3,9,27] which is a good approximation for
05} the linear response function in a high-projectile-velocity do-
oal main, specially wheV>V, =\ ,/2m=0.48 Y% (where

' hoy is the plasmon energyThe individual and correlated
03} SP for a diproton cluster within PPA was investigated in
oal Refs.[3,9]. It has been shown that the individual S&,q

’ ~ 2 In(VIV,), receives equal contributions from plasmon and
0.1} single-particle excitations. Wheth=0, for the correlated SP
00 we find[9]

"l S “optin| L)+ Xl ol YerR| —oi| 2R
o corr~ CO v n V_p E Cl V_S —ClI v s
< (29
& 04l
where ci@) is the integral cosin function. The first term in
02} Eq. (24) is the collective part of the SP and the remaining
terms correspond to the single-particle excitations. The
0.0 wavelength of plasmon excitation along the dicluster align-
12} ment is ~\,=V/w,. For single-particle excitations there
are two characteristic wavelengths along the dicluster align-
10¢ ment namely ; and alsok3=V3/Va,,.
osh When = 7/2, the correlated SP from RdB] is propor-
tional to
0.6 |
04} S K(wa foo de( )
~Kol = R|— —Jo(x
ozl corr 0 Vv RN, X 0
1 dx_ [R
005 +f —Jo(—x\/l—x2>, (25)
Vpiv X TIAg

FIG. 5. The ratio®R;(\) of a (a) single-proton projectile(b)
diproton cluster withR=1 A, 9=0, and(c) R=1 A, 9=mu/2 vs
V/ivg for fiy=0 (solid ling, #y=0.1eV (dashed ling 7y
=1 eV (dotted ling, Ay=3 eV (dash-dotted ling A#y=10 eV
(dash-dot-dotted line# y=15 eV (short-dashed line

whereKj is the modified Bessel function, ang=V,/w,.
When V>V, the three lengths satisfy the inequality
>N\,>M\3. The first two terms in Eq(25) are responsible for
plasmon excitations and the third term for single-particle ex-
citations. From Eq.(25) it is seen that the characteristic
small velocity range Y<2v¢) the full SP G=SP + S(sP) length scales for plasmons akg and A,, and those for
has a higher value for the larger value ®fdue to single- single-particle excitations ane, and\ .
particle excitations in this velocity randd0]. In a higher From Eqgs.(24) and (25) it follows that the dominant
velocity range, the dicluster wake-field excitations becomavavelength along the dicluster alignmen,, can be much
important and we find that the situation is reverse in thdarger than the corresponding wavelength perpendicular to
higher-velocity range \(>2v¢) for which SP ford=0 is  the alignmenth;>\, . As can be seen from E@25), |
larger than ford= /2 [10]. On the other hand, the collec- also depends oK but it may not be as sensitive to a varia-
tive part of SP 8P) strongly depends on the interparticle tion in V (i.e., whenk, =X\,); it may also decrease with an
distanceR. Consequently, a decrease in the full SPdat increasingV (i.e., when\ =A\3). For our chosen value of
= /2 may lead to an enhancement of ER at the same valuB=1 A and in a high-velocity rangeR<\;, R~X\, (A,
of . ~0.5 A for Al targey, andR> \ 5. Therefore, we may expect
Another interesting feature is the oscillatory behavior ofthat%; will not be sensitive to a variation iv for =0
R, for a diproton cluster with9==/2 andR=1 A in the  While for a perpendicular alignment of a dicluste (
absence of disordey=0 [see Fig. &), the solid lind. This = m/2) R, exhibits small oscillations with an increasivg
behavior can be understood as follows: the wavelengths of For further consideration it will be useful to introduce
plasmon excitations alongd(=0) and perpendicular§  explicit expressions for ER along¥{"™) and perpendicular
=m/2) to the interproton alignment differ markedly from (R{"™) to the interproton alignment. From Eq&4) and
each other, and these wavelengths also depend on tt25) we find
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R (A)

FIG. 6. The ratio!R, of a diproton cluster withV=3vg, ¥
=0 (the lines without circlesand 3= /2 (the lines with circles
vs R for Ay=0 (solid line), #y=3 eV (dashed ling Ay=15 eV

(dotted ling.
@p
1+co VR
SRﬁPPA)()\): ’
T [ Yorg| i 2R
2In(VIV,) | © V2 v
(26)

1 1 Ko| PR F dXJ
T vy | ol VRIS % T

dx_ (R
JO(—xx/l—xz)

R =
IN(V/V,) jvp,VY A3

1+
(27)

For a fixed interproton distancR and in a high-velocity
domain > wyR, V, and VZ/wa) we can obtain the fol-
lowing asymptotic valuesR{"™)(x)=1.33 and®R{"™(=)
=1. Therefore, within PPA and in the high-velocity limit,
the ER is larger for a diproton cluster withh= /2. We

PHYSICAL REVIEW 56, 046415 (2002

FIG. 7. The ratioR,(\) of a single-proton projectile, V¥/vg
for Ay=1 eV (solid line, Ay=3 eV (dashed ling #y=10 eV
(dotted ling, y=15 eV (short-dashed line

been discussed above. The role of damping is clearly seen in
Fig. 6. The wavelengths of oscillations@t 0 increase with

v but the amplitudes are now weaker due to the collisional
damping of plasmons.

Having discussed ER for the first criterio@1), we now
present results fofR,, i.e., ER using the second criterion
(C2). A comparison of SP i1 andC2 reveals the follow-
ing features. In the presence of dampingA0), the thresh-
old ion velocityV; in bothC1 andC2 are noticeably smaller
than fory=0 (Fig. 4. HoweverV, in C2 is less tharV, in
C1. Consequently we find that within the framework@2,
the plasmon excitation is more effective in some ion velocity
range, sayw>V,; this is becaus¥, in C2 is smaller than in
C1. Moreover, the permissiblk value (Kna) for plasmon
excitation is higher irC2 than inC1 (Fig. 3. The equipar-
tition ratio R, reflects these feature®, is plotted in Fig. 7
for a single-proton projectile. In Fig. 7 the curves are for
hy=1 eV (solid line, Ay=3 eV (dashed ling 7%y
=10 eV (dotted ling, % y=15 eV (short-dashed line The
density parameter is the same as for Figs. 5 andrH (

expect the features, discussed above, to hold generally alse2.07). A comparison of numerical data for both ratits,

beyond PPA.

and R,, shows thatRk, is less thanii, for any projectile

Next we consider effects of disorder on equipartition. Dis-velocity V and damping parameter. For7 y less than 3 eV
order in the electron gas affects collective excitations in twathe ratio 93, /9, differs from unity, although slightly. Spe-

ways: The plasmon energyw, decreasegsee the Appen-

cifically, 0.95<R;/R,<1 for V>V,. There is something

dix), and the plasmons become damped. These effects aiigteresting about Fig. 7. Lik&, [shown in Fig. %a)], the

demonstrated in Fig.(B) by a monotonic increase in the

ratio R, also decreases with an increasing damping param-

equipartition ratiolR; for nonzero gamma. Besides, in this eter; but in the intermediate velocity ranffg may be higher

case it is expected that the wavelenghwill increase with
an increasing damping parameter

for large damping parameter. This is due to the plasmon
excitation which is included in that velocity range@®2 but

We have so far presented results for ER vs the projectilgiot in C1 (see, e.g., Fig. ¥

velocity V, for a fixed value of the separation distariedt is
of complementary interest to see how the ra&fip behaves
as a function oRR for a fixed value ofV. In Fig. 6 we have
plotted 2R, for a diproton cluster vR for V=3vg, 9=0
(lines without circles and 9= /2 (lines with circles, and

B. Equipartition rule for He * ions

We have so far considered ER for pointlike projectiles.
Now we will consider ER for extended Heons. The theo-

for three values of the damping parameter. Figure 6 shows armetical results for ER have been presented in Sec|skle

oscillatory behavior of ER with respect R The oscillations
are the highest foy=0 and lowest ford=#/2. In a more
realistic range oR from 1 to 10 A the plasmon excitation is
expected to be more effective @t= /2. This feature has

Egs. (20) and (21)] with the functionp(«,z) given by Eq.
(9). It should be noted that for extended projectiles the ratios
Ri(N,I') andR,(N\,I") depend on the projectile ion charge
Z. For He" ion we haveZ=2.
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0.3
02}
0.1}
0.0
05} R (A)
04| FIG. 9. The ratioR; of a He" ion cluster withV=3vg, ¢
. =0 (the lines without circlesand 3= /2 (the lines with circlej
< 03¢ vs R for #y=0 (solid line), #y=3 eV (dashed ling #y=15 eV
& (dotted line.
02}
single-proton tends to unity in the—oo limit, while for a
01} single He ion M, is about —1)%/Z?=0.25. Note that this
result can be retrieved within a binary collision model. It
0.0 simply states that for close collisiorisingle-particle excita-
04T tiong), the impact parameter is small. Then the target elec-
trons interact with the unscreened nucleus of Hen with
03} the nuclear charg&, while for distant collisiongplasmon
excitatior), the projectile ion can be viewed as a pointlike
projectile with total charge4—1).
02t There are similarities but also some interesting differences
if we compare Figs. @) and &c) with Figs. §b) and 5c).
o1} For instance, the angular dependence of ER in Fi@s.ahd
8(c) is reverse to that in Figs.(B) and Hc). In a higher-
velocity range ER has a remarkably higher value for an
0‘00 aligned @=0)He" ion cluster. This feature can again be

explained by the dominance of single-particle and collective
(plasmon excitations in different velocity ranges.

FIG. 8. The ratioRk;(\) of a (a) He" ion, (b) He* ion cluster For a more detailed presentation we show in FigR9vs
with R=3 A, 9=0, and(c) R=3 A, 9=x/2 vs V/vg for iy  interparticle distanc® for a He" ion cluster with two values
=0 (solid ling), 2 y=0.1 eV(dashed ling y=1 eV (dotted ling,  of J: ¥=0 (lines without circley and 9= =/2 (lines with
fy=3 eV (dash-dotted ling % y=10 eV (dash-dot-dotted line  circles. Figure 9 may be compared with Fig. 6, the damping
fy=15 eV (short-dashed line parameters being the same. It is seen that Fig. 9 shows a
similar behavior of ER for a He ion cluster although the
amplitudes of oscillations are now weaker.

Next we present the equipartition rafiy, for the electron
density parameter,=2.07. Fig. 8 showsR;(A,I') for a
single He ion projectile[Fig. 8a)] and for a Hé ion clus-
ter [Figs. 8b) and §c)] with R=3 A, as a function o¥//v
for six values of damping parametey. Here again we In this paper, we have presented a detailed theoretical
choose two values, QFig. 8b)] and 7/2 [Fig. 8(c)], of the investigation of the contributions of single-particle and col-
He" ion cluster orientation anglé. Figure 8 may be com- lective (plasmon excitations to the stopping power of point
pared with Fig. 5. It is seen that ER has a remarkably higheion, extended ion and ion cluster projectiles in a degenerate
value for pointlike projectiles. This is likely due to a corre- electron gas containing disorder. In the course of this study
lated motion of the H& ion nucleus and the bound electron. we have also obtained approximate but analytical results for
Also the difference between velocity dependence of ER fothe disorder-inclusive RPA linear response function and for
both type of projectiles is particularly worthy noting. For a the corresponding plasmon dispersion relations.

He" ion the curves saturate with increasisignore rapidly We have introduced an equipartition ratleR) defined as
than for a proton projectile. In a forthcoming publications %= SP)/S(P which is the ratio of stopping power contribu-
[10,11] we shall present asymptotic analytical results for thetions from plasmon $) and single-particle excitations
stopping power of pointlike and extended projectiles in the(SP). These two contributions have been calculated
high-velocity limit. From those results it follows, for in- through a generalization of the stopping power integrals
stance, that when the damping vanishes the r&tjofor a  given in Egs.(16) and (17), in order to include disorder in

IV. SUMMARY AND CONCLUSION
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the linear response function(z,u) and also an extended 0.4
charged projectile. A further highlight of our work is to in-
troduce two criteria which specify the conditions for plas-
mon and single-particle excitations as given by the disper-
sion i.e., the energy-momentum spectrum. —_
The first criterion C1) was used earligsee, e.g., Ref. ; 02|
[17]] for a disorder-free electron gas. We have extended it e
and applied it in our present investigation. The second crite-
rion (C2) is used in this paper for the first time. Both the 0.1}
criteria are well motivated on physical and theoretical
grounds. We have used these two criteria because we do not
have a criterion which precisely specifies the conditions for 0'00
plasmon and single-particle excitations in a disordered DEG.
Also a theoretical sum ruldike the Lindhard-Winther equi- . . L .
partition sum ruleis not known for the problem under s?udy. FIG. 10. The exact a.nd approx'm.a(the lines with circle}dis-
. . persion curveg,(y,u) without damping ¢=0) vsu for x=0.5
Such a generalized sum rule together with the abovery o "ie" 2015 (dotted ling, y=0.05 (short-dashed line
mentioned conditions may be considered as a third criteriony, " L0 corresponds to=ku g +7k2/2m (or z=u—1 in
(C3) which will be a mathgmatlcal .formL.JIatlon for an it of u= w/ko andz=k/2ke).
“energy-momentum conservation law” including energy dis-
sipation in the disordered target medium.
By considering an equipartition ratio and some relate

03}

i - Integrals in this region are not equal to zero. For a calcula-
quantities we have demonstrated that the extent to whic on of the collective part of stopping power we use the fol-

single-particle excitations and collectiyplasmon excita- : . )
tions contribute to the stopping power of a fast charged prol—OWIng known expressiopsee, e.g., Re{28]J
jectile, depends significantly on the charge structure of the
projectile and on the disordered or disorder-free nature of the Im
target medium. e(z,u)
Our findings are illustrated by a detailed consideration of
pointlike ions in Sec. Il A, and of He ions in Sec. IlI B.
We conclude with these short remarks. In the consider-
ations of the equipartition sum rule we have, as Lindhard and z=2z,(x,u)
Winther did, modeled a target medium by an electron gas _
and have ignored possible effects due to energy band struc- X 8z=z(x.u), (AL)
ture. A simple and approximate approach to include some . . . . .
energy band effect will be to introduce an experimentallywﬂ.err? .Zf(ﬁ’u) IS the_sooltl:tlon of tzhe czhfspers,lo_r10eq|_l|1atlon,
known effective mass. A more immediate aspect is to includ Ic 'n.t € case 05’_ ) becomesz”+ x 1(z,u) = - nere
some short-range correlation in the linear response functio 'he functionf,(z,u) is given by usual RPA expression
which we intend to consider in a future work.

[gwons) by a fast projectile. Consequently, althouigh= 0, the
n

— 72?822+ x*f1(z,u))

y—0

w72 ‘

22+X2af1(z,u)/az‘

f1(z,u) 1+1(u2 1)l J- ‘
1(Zu)=5+ 5| (UZ=1)In|——
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APPENDIX: APPROXIMATE PLASMON DISPERSION 5 2 5 4
WITH AND WITHOUT DAMPING 27 XL = fo(u) = Z7f(u) =27 f4(u)]=0,  (A3)

In order to evaluate the integrals ovein Egs.(20-(23)  where
at y=0 we shall derive here an approximate solution of the
dispersion equatioms(z,u)=0 in the domain 6z<su—1,
u>1 wheref,(z,u) vanishes. The integration in this region fo(u)= Eln
includes the excitation of collective plasma modgsas- 2

u+1 R
A T 4 u =
u—1 2 3(u2-1)2
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5u?+1 [x? TI?
fiu)y=———. A4 Q=\/%5——+ (A10)
4( ) 15([_]2_1)4 ( ) 3 4
Equation(A3) has an analytical solution, It is practically interesting to find the solution of disper-
sion equation as a function of variahleThen instead of Eq.
2006w = VF1 (w0~ VFZOnw —Fo(u),  (A5) (A7) we have
where ~  ~
fo(u) §(u)=§o+§—§+§—i+--~, (A11)
Filo W)= ————[1-x?,(W)], Fa(u)= . uru
! 2x%f 4(U) fa(u)
(A6)  where
Note that in Eq(A5) we choose the negative sign in front
of the inner square root because only this solution at high Lo=0,05, Ta=3205+ Lalo). (A12)

us>1 leads to the known resutt= y/u\/3 (see, e.g., Refs.
[16,17). This value ofz, corresponds to the plasmon energy
fiw, at smallk. The another solution of EqA3) is not
physical and at large behaves ag,=us\/3/y.

Figure 10 shows the exact and approxim@te lines with
circles solutions for various values of (dashed liney
=0.5; dotted line,xy=0.15; short-dashed liney=0.05).
This figure shows that the approximate solut[@gys. (A5)
and (A6)] of dispersion equation is in good agreement wit
exact numerical results. . :

Let us now consider the solution of dispersion equation in(Ag/)\/ﬁ(inlot)hgeggrr:gmg vanished" €0, #=0) the Egs.
long-wavelength limit ¢=k/2kz<1) for disordered electron
gas (with y#0). Using the expressiond0)—(15) for the

Equation(A1l) is applied in our next papefd0,11. The
coefficients{,, ¢, and{, are given by Eqs(A8)—(A10).

In Figs. 1 and 2 we compare the real and imaginary parts
of exact and approximatghe lines with circlessolutions of
dispersion equation farg=2.07 and for some values of.
These figures also show the good agreement between ap-
hproximate solutiofEqgs.(A7)—(A10)] of dispersion equation

and exact numerical results.

dielectric function in long-wavelength limit we find X 3V3 V3 9
, ) §0:ﬁ; 52:ﬁ§ 5425 1- 12072)
2)={ot 2o+ {2+ - - A7
{(2)={ot {2+, (A7) (A13)
where{=hw/4Er [£=Re((),n=1m({)],
_ ) . We can represent the obtained dispersion expression in
~ ir 3y -2l —4irQ the usual form
gO_Q__! §2_ 2 ’ (AS)
2 10x2Q
iT/2)2 4 2ot Sz 10 2 BT s
PGl +F_(1_ 3 W= wpt gKUE 175\ g |amz: A
208 140¢% 2x*\ 4 1752
r2( g7 11\ iréo/1 6 which differs from the known plasmon-pole expressisee,
+— = - =+ e.g., Ref[8
4y?\350¢° 3 2x* |2 175 J (8]
o 1+ ’ (A9) 2 = wi+ 3k2 2+—2k4 (A15)
a 1 w :w —_— v
XZ 3 700X2 PP P g5 F 2
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