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Interaction of ions and ion clusters with a disordered electron gas:
Collective and single-particle excitations
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In this paper, we report results on our theoretical studies of stopping power contributions from single-particle
and plasmon excitations. We have introduced an equipartition ratio defined as the ratio of stopping contribu-
tions from plasmon and single-particle excitations, respectively. Within the linear response theory we have
made a comprehensive investigation of this equipartition ratio for fast pointlike and extended projectile ions in
a disordered electron gas; the latter is modeled by a degenerate electron gas of metallic densities and with
disorder being incorporated within a relaxation-time approximation. As simple but useful examples of pointlike
and extended projectiles we have considered proton and He1 ion, as well as diproton and He1 ion clusters. We
present detailed and comparative results for the equipartition ratio corresponding to several values of the
damping parameter which characterizes disorder in our model. The results are also compared, wherever
applicable, with those for individual, i.e., uncorrelated projectiles.
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I. INTRODUCTION

One of the important aspects of an interaction of char
particle projectiles in a target medium is the energy loss
the projectiles in the medium. The problem of energy loss
ions and ion clusters in solids is of both theoretical and
perimental interests in diverse areas concerning particle-s
interactions@1–11#; more recently energy loss is being stu
ied in connection with energy deposition by ion beams
fusion plasma targets@12–15#.

Reliable calculations of energy loss, pioneered
Lindhard @16#, have been done~see, Refs.@7,8# for recent
reviews! through the linear response theory and by model
the solid target medium as a dense~degenerate! electron gas.
The linear response method is justified for swift charged p
jectiles@8#. For such high-velocity projectiles or clusters, t
energy loss may be mainly due to collective and sing
particle excitations in the target medium.

In the linear response approach which assumes a w
coupling between energetic projectiles and the target m
rial, specially a metal, the relevant physical quantities e
the stopping power are calculated with the help of the m
dium dielectric function«(k,v). The latter contains contri
bution from both collective and single-particle excitations
the target electrons.

It is of both fundamental and practical interests to stu
the extent to which the collective and single-particle exc
tions each contribute to energy loss. For a singlepoint-ion
projectile, Lindhard and Winther~LW! @17# investigated the
respective contributions of these two excitations and fou
an equipartition sum rule which states that both these e
tations contribute equally to energy loss per unit length i
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stopping power~SP! of the projectile.
In a recent work@18# we have shown that the LW sum

rule does not necessarily hold for an extended projectile
and for ion clusters moving in a degenerate but free~nonin-
teracting! electron gas. We have derived a generalized st
ping power sum rule for this type of projectiles. It may b
noted that SP has been studied mainly for three types
projectiles:~i! point ion ~ii ! extended ion and ion clusters
and~iii ! structured projectiles having internal structures e
atomic shells. In this paper, we shall consider the first t
types of projectiles. By an extended ion we refer to the fin
size of its charge distribution.

In an earlier work@9#, we made a detailed study of var
ous aspects of correlated SP of a diproton cluster by emp
ing different approximations for the linear response funct
«(k,v). In both of these studies we considered a degene
electron gas~DEG! which is free of disorder~e.g., due to
impurity etc.!. In a real target medium, disorder is expect
in various degrees and it affects the decay of the elemen
excitations.

To include disorder in a fully interacting electron gas a
microscopic level is rather involved, and no analytical calc
lations of «(k,v) without restrictions onk and v are still
available. The effect of disorder has been introduced
«(k,v) through a phenomenological but number-conserv
damping term at the random-phase approximation~RPA!
level @19,20#. The resulting «(k,v) leads to significant
changes in the mean free paths and energy losses of
energy projectiles, as shown by some earlier calculations
electrons and protons interacting with an electron gas@21–
24#. The theoretically shown increase in SP~or decrease in
mean free path! is due to disorder-induced changes in t
plasmon dispersion such that it becomes possible to h
plasmon excitation for projectile energies below the thre
old predicted in the absence of damping.

The objective of this paper is to report on our studies
©2002 The American Physical Society15-1
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NERSISYAN, DAS, AND MATEVOSYAN PHYSICAL REVIEW E66, 046415 ~2002!
the respective contributions of collective~plasmon! and
single-particle excitations to individual and correlated SP
point-ion and extended charged projectiles in a disorde
DEG, within the linear response approach. The RPA die
tric function which includes damping in a numbe
conserving relaxation-time approximation~RTA! @19,20# is
used for the disordered DEG medium. Within this formalis
we briefly present, in Sec. II, the linear response formulat
for SP of a dicluster of two identical extended ions and
rive analytical expressions for the disorder-inclusive diel
tric function. In Sec. III we introduce and formulate tw
criteria which allow to distinguish between the plasmon a
single-particle excitations in the energy-momentum disp
sion. These two criteria enable us to reformulate in Se
III A and III B an equipartition ratio in a disorder-inclusiv
case. Utilizing these features and with both the criteria
have made detail numerical calculations for the equipartit
ratio. The Appendix contains some different and useful
sults for the plasmon dispersion~within RPA! with and with-
out disorder.

II. LINEAR RESPONSE FUNCTION FORMULATION

In the linear response theory, the SP which is the ene
loss per unit length for an external projectile with a spa
charge distributionrext(r ,t)5Qext(r2Vt) moving with ve-
locity V in a homogeneous isotropic medium characteriz
by the dielectric function«(k,v), is given by@5–11#

S5
1

2p2V
E dkuG~k!u2

k•V

k2
Im

21

«~k,k•V!
, ~1!

whereG(k) is the Fourier transform of the stationary char
Qext(r ). We shall consider the range ofV for which the linear
response theory is adequate@8#.

Both the single-particle and collective excitations~i.e., the
plasmons! contribute to the SP and these contributions
contained in«(k,k•V) in Eq. ~1!. In our study the targe
medium is assumed to be disordered due to impurities etc
stated in Sec. I, we shall incorporate effects of disorde
«(k,v) in a somewhat phenomenological manner. This is
include disorder through a relaxation timet such that the
particle number is conserved. This was done first by Merm
@19# and then by Das@20# in the random-phase approxima
tion and in RTA. We refer the reader to Refs.@19,20# for
details of this formalism. Fort→`, this linear response
function«(k,v,1/t) reduces to the Lindhard dielectric func
tion. In Eq. ~1!, «(k,k•V) is understood to containg
(51/t) as a damping parameter due to disorder. The form
«(k,v,1/t) is to be specified shortly.

Equation~1! is applicable to any external charge distrib
tion. For the projectile systems under study we may w
Qext(r ) as

Qext~r !5Ze@d~r !1d~r2R!#2e@r~r !1r~ ur2Ru!#.
~2!

For point-ions, only thed-function terms in Eq.~2! need be
considered while for an extended-charge projectile all
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terms in Eq.~2! are included. In Sec. III we discuss a diclu
ter of two identical ions, particularly He1 ions. r(r ) is the
spatial distribution, assumed to be spherically symmetric
bound electrons in the ions.Ze is the charge on each of th
pointlike ions or nuclei separated by a variable distanceR.

We use a 1s-type wave function of the form

c1s~r !5S Z3

pa0
3D 1/2

e2Zr/a0 ~3!

to describe the bound electron on each He1 ion, with a0
50.529 Å as the Bohr radius. It may be remarked that,
like in the work of Wang and Nagy@25#, we are considering
an unscreened 1s electron. The Fourier transform of the sp
tial distributionr(r )5uc1s(r )u2 is then expressed as

r~k!5
1

~11k2a0
2/4Z2!2

. ~4!

For a dicluster of He1 ions we have

uG~k!u252e2@Z2r~k!#2@11cos~k•R!#. ~5!

Using Eqs.~1! to ~5!, the SP of a dicluster can be writte
as

S52Sind~l!12Scorr~l,R,q!, ~6!

whereSind(V) andScorr(R,V) stand for individual and corre
lated SP, respectively. From Eqs.~1! and ~5!

Sind~l!5
16S0

p3x4l2E0

`

Z 2~a,z!zdzE
0

l

Im
21

«~z,u!
udu,

~7!

Scorr~l,R,q!5
16S0

p3x4l2E0

`

Z 2~a,z!zdzE
0

l

Im
21

«~z,u!
udu

3cosS 2uz

l
kFR cosq D

3J0S 2kFRzsinqA12
u2

l2D . ~8!

J0(x) is the Bessel function of first kind and zero order, a
q is the angle between the interionic separation vectorR and
the velocity vector V; S05e2/2a0

2.2.566 GeV/cm, l
5V/vF , x251/pkFa05(4/9p4)1/3r s , r s5(3/4pn0a0

3)1/3,
n0 is the electron gas density,vF and kF are the Fermi ve-
locity and wave number of the target electrons, respectiv
Z(a,z)5Z2r(a,z). In our calculationsx ~or r s) serves as
a measure of electron density. Here, as in Refs.@16,17#, we
have introduced the following notationsz5k/2kF , u
5v/kvF . In Eq. ~6! the term for correlated stopping powe
Scorr vanishes for largeR(R→`) and SP is the sum of indi
vidual stopping powers for the separate ions. ForR→0 the
5-2
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INTERACTION OF IONS AND ION CLUSTERS WITH A . . . PHYSICAL REVIEW E66, 046415 ~2002!
two ions coalesce into a single entity. ThenScorr5Sind , and
SP corresponds to that for a projectile of total charge 2e(Z
21).

With variablesz andu Eq. ~4! becomes

r~a,z!5
a4

~a21z2!2
, ~9!

wherea5px2Z.
Let us now specify the disorder-inclusive dielectric fun

tion. With the notations introduced in the preceding pa
graph, it reads

«~z,u!511
~zu1 iG!@«RPA~z,u,G!21#

zu1 iG@«RPA~z,u,G!21#/@«RPA~z,0!21#
,

~10!

whereG5\g/4EF , EF being the Fermi energy5\2kF
2/2m

with m as the effective mass. The quantityg ~or G) is a
measure of damping of excitations in the disordered elec
gas.«RPA(z,u,G)5«RPA(k,v1 ig) is the longitudinal dielec-
tric function of zero-temperature~degenerate! electron gas in
the RPA.«RPA(z,0)5«RPA(k,0) is the static dielectric func
tion.

We have analytically evaluated the disorder-inclus
«(z,u) for which the results, presented below, appear to
different and we have utilized them in our numerical inve
tigation.

Let us recall the Lindhard~RPA! expression for the lon-
gitudinal dielectric function@16#. In variablesz and u, it
reads as

«RPA~z,u,G!5«RPA~k,v1 ig!

511
x2

2 E
0

1

qdqE
2q

1q dm

z42~mz2zu2 iG!2

511
x2

z2
@ f 1~z,u!1 i f 2~z,u!#, ~11!

where we have introduced the functionsf 1(z,u) and f 2(z,u)
as in the usual RPA expression of longitudinal dielect
function.

Performing theq andm integrations in Eq.~11! we obtain,
for a nonzero damping,

f 1~z,u!5
1

2
1

1

16z3
$@z2~U2

2 21!2G2#Y1~z,U2!

2@z2~U1
2 21!2G2#Y1~z,U1!

14Gz@U1Y2~z,U1!2U2Y2~z,U2!#%,

~12!
04641
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f 2~z,u!5
1

8z3
$Gz@U2Y1~z,U2!2U1Y1~z,U1!#

1@z2~U2
2 21!2G2#Y2~z,U2!

2@z2~U1
2 21!2G2#Y2~z,U1!% ~13!

with U65u6z,

Y1~z,U !5 ln
z2~U11!21G2

z2~U21!21G2
, ~14!

Y2~z,U !5arctan
z~U21!

G
2arctan

z~U11!

G
. ~15!

In the case of vanishing damping (g→0 andG→0) the
expressions~12!–~15! coincide with the Lindhard result@16#.

III. STOPPING POWER AND EXCITATIONS
EQUIPARTITION

With the theoretical formalism presented so far, we n
take up the main topic of this paper. This is to study ho
collective and single-particle excitations in the target m
dium contribute toSind and Scorr. This problem was first
addressed by Lindhard and Winther@17# for a degenerate
electron gas medium without damping (g50). They consid-
ered onlySind and only for a point-ion projectile. They for
mulated an equipartition rule which states that an integ
proportional to that in Eq.~7!

I~u!5E
0

`

Im
21

«~z,u!
zdz5Ip~u!1Isp~u! ~16!

receives equal contributions from plasmon (Ip) ~with 0,z
,u21) and from single-particle excitations (Isp) ~with u
21,z,u11), respectively. The functionsIp(u) and
Isp(u) may then be written as

Ip~u!5E
0

u21

Im
21

«~z,u!
zdz,

Isp~u!5E
u21

u11

Im
21

«~z,u!
zdz. ~17!

This equipartition rule is valid for sufficiently fast projec
tile V.Vt , whereVt is the threshold ion velocity for plas
mon excitation~or u.Vt /vF5l t). In a recent work@18# we
have shown that the LW equipartition rule does not neces
ily hold for an extended charged projectile, e.g., a dipro
cluster in a degenerate electron gas without disorderg
50). We have established some generalized stopping po
sum rules.

We shall now study the equipartition problem for a diso
dered (gÞ0) electron gas, utilizing, among other things, t
results for the linear response function as presented in E
~10!–~15!. For our analysis we introduce two criteria whic
enable us to distinguish, operationally, between contributi
5-3
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NERSISYAN, DAS, AND MATEVOSYAN PHYSICAL REVIEW E66, 046415 ~2002!
from plasmon and single-particle excitations. As in the c
without damping, we consider the dispersion curve ofv vs k,
and look for the intersection at which the plasmon curve fi
touches the single-particle spectrum; this is criterion 1 (C1).
The corresponding value ofk is denoted bykc . Figs. 1 and 2
show the solutions Re„vs(k,g)… and Im„vs(k,g)… ~in units
of 4EF) of dispersion equation~DE! «(k,v)50 as a func-
tion of z5k/2kF , for some values of\g. In these figures the
lines with circles correspond to approximate solutions of
@see, the Appendix, Eqs.~A7!–~A10!#. In Fig. 1 the short-
dashed line corresponds to single-particle excitation sp
trum vsp(k)5kvF1\k2/2m @or \vsp(k)/4EF5z1z2]. The
intersection of single-particle excitation spectrumvsp(k)
with the real part of plasmon energy Re„vs(k,g)… gives the
critical wave numberkc(g).

For g50 ~no disorder!, the plasmon will be Landau
damped beyondkc . This means that the plasmon dispersi
will have both nonzero real and imaginary parts. But the r
part will decay and the imaginary part will increase
strength.

Next we consider the second criterion for characteriz
contributions from plasmon and single-particle excitatio
We plot the solution for the DE,«(k,v)50, for v with
respect tok ~see, Figs. 1 and 2!. At some value ofk, the DE
ceases to have either a real or a complex solution. We
this valuekmax(g) which provides the second criterion (C2)1.
On physical grounds we expect thatkmax is greater thankc .
In the context of stopping, we are assuming that inC1,
plasmons will not contribute to stopping beyondkc . This is
somewhat restrictive. But let us explore a theoretical mo
in order to see its consequences. InC2, we are assuming tha
plasmons can still contribute to stopping even whenk.kc .
Probably this is more realistic. But, again, our idea is

1After completing this work we became aware that the criter
C2 has been applied, in number nonconserving and conserving
proximations, to study collective excitations in nuclear matter@26#.

FIG. 1. Real part@js5Re„\vs(k)/4EF…# of exact and approxi-
mate ~the lines with circles! solutions of dispersion equation vsz
5k/2kF for \g50 ~solid line!, \g53 eV ~dashed line!, \g
510 eV ~dotted line!, \g515 eV ~dash-dotted line!. The short-
dashed line corresponds tov5kvF1\k2/2m ~or j05z1z2 in units
of j5\v/4EF andz5k/2kF).
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consider two theoretically motivated criteria and compare
physical results which perhaps lie in between the two cr
ria.

In Fig. 3 we showzmax5kmax/2kF ~solid line! and zc
5kc/2kF ~dashed line! as a function of\g. This figure shows
that the criticalkc ~in C1) decreases monotonically wit
increasingg while kmax ~in C2) increases withg.

For a further investigation of excitations’ equipartition w
need to consider an operational definition of the thresh
ion velocity for plasmon excitation in a disordered electr
gas~in the presence of a nonzerog). For g50 ~no disorder!
we have plasmon excitation within the domainz,u21. The
intersection of the single-particle excitation curvez5u21
and the plasmon dispersion curvezr(u) ~see the Appendix!
gives the threshold valueut given by ut511zr(ut); the
plasmons are excited only forut<u<l @Eqs. ~7! and ~8!#.
The threshold ion velocityVt is related tout through ut
5Vt /vF , the latter being denoted byl t in subsequent cal-
culations. The value ofzr(ut) corresponds to the critica
wave numberzc5kc/2kF . In C1 we then have the general
zationl t(g)5Vt(g)/vF511kc(g)/2kF of the threshold ion
velocity.

In C2 we use the numerical data for plasmon dispers
curves of Re(v/kvF) and Im(v/kvF) vs z5k/2kF for sev-

p-

FIG. 2. Imaginary part@hs5Im(\vs(k)/4EF)# of exact and ap-
proximate~the lines with circles! solutions of dispersion equatio
vs z5k/2kF for \g51 eV ~solid line!, \g53 eV ~dashed line!,
\g510 eV ~dotted line!, \g515 eV ~dash-dotted line!.

FIG. 3. The critical wave numbers~in units of 2kF) vs \g
plotted under criterion 1~solid line! and criterion 2~dashed line!.
5-4
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INTERACTION OF IONS AND ION CLUSTERS WITH A . . . PHYSICAL REVIEW E66, 046415 ~2002!
eral values ofg, as displayed in Figs. 1 and 2.C2 selects the
value ofkmax(g) at which the dispersion equation has no re
or complex solution. In Fig. 4 we have plotted the thresh
ion velocities vs\g according toC1 ~solid line! and C2
~dashed line!. As expected, both the curves coincide forg
50. In this case the threshold ion velocity is found to be

Vt.
vF

2
1AvF

2

4
1

\vp

2m
. ~18!

We now introduce an equipartition ratio~ER! R(l,G)
defined as

R~l,G!5
S(p)~l,G!

S(sp)~l,G!
, ~19!

whereS(p)(l,G) andS(sp)(l,G) are the stopping powers fo
plasmon and single-particle excitations.R(l,G) describes
the strength of plasmon energy loss intensity with respec
a single-particle energy loss intensity. Note that ERR(l,G)
vanishes forV,Vt ~or l,l t). The ERs corresponding t
C1 and C2 are respectively denoted asR1(l,G) and
R2(l,G). From Eq.~7! and for an individual ion projectile
we find in C1

S(p)~l,G!5E
l t(G)

l

uduE
0

zc(G)

Z 2~a,z!Im
21

«~z,u!
zdz,

~20!

S(sp)~l,G!5S E
0

l t(G)

uduE
0

`

zdz1E
l t(G)

l

uduE
zc(G)

`

zdzD
3Z 2~a,z!Im

21

«~z,u!
. ~21!

We have omitted the multiplicative factor in Eq.~7! before
the integral overz. Similar expressions can be found for th
correlated part of ion stopping power. The parameterszc(G)
and l t(G) in Eqs. ~20! and ~21! are obtained from Figs. 3
and 4, respectively. In a similar manner the ratioR2(l,G)
can be found from Eqs.~19!–~21! by insertingzmax(G) in-

FIG. 4. The threshold ion velocityVt(g) ~in units of vF) for
plasmon excitation vs\g plotted under criterion 1~solid line! and
criterion 2 ~dashed line!.
04641
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numerical data corresponding to the dashed line in Fig. 4

In the following sections we consider the plasmon a
single-particle excitation contributions to SP for pointlik
and extended projectiles moving in a disordered electron

A. Equipartition rule for pointlike ions

Using the theoretical and numerical results of Secs. II a
III, we have made extensive numerical calculations of E
Here we consider ER for pointlike ion projectiles. In th
case, we need to putr(a,z)51 in Eqs.~20! and ~21!. Con-
sequently, for dimensionless energy losses due to plas
and single-particle excitations we find the following expre
sions inC1:

S(p)~l,G!5~Z21!2E
l t(G)

l

uduE
0

zc(G)

Im
21

«~z,u!
zdz,

~22!

S(sp)~l,G!5~Z21!2S E
0

l t(G)

uduE
0

`

zdz

1E
l t(G)

l

uduE
zc(G)

`

zdzD Im
21

«~z,u!
. ~23!

Let us note that in this case the stopping powersS(p)(l,G)
and S(sp)(l,G) are proportional to (Z21)2. Therefore, the
ratiosR1(l,G) andR2(l,G) do not depend on the projectil
ion chargeZ.

Next we present numerical results for ER. We have u
the analytical results presented in the Appendix in order
effect a numerical integration of Eqs.~22! and~23!. Figure 5
showsR1(l,G), i.e., ER, for a single-proton projectile@Fig.
5~a!# and a diproton cluster@Figs. 5~b! and 5~c!# with R
51 Å, as a function ofV/vF for six values of the damping
parameterg: \g50 ~solid line!, \g50.1 eV ~dashed line!,
\g51 eV ~dotted line!, \g53 eV ~dash-dotted line!, \g
510 eV ~dash-dot-dotted line!, \g515 eV ~short dashed
line!. The values\g50.1 eV and\g51 eV are comparable
with the damping parameter~related to collision time! in Al
target. The last value\g515 eV corresponds to the damp
ing parameter in carbon@22–24#. The density parameter i
r s52.07 corresponding to the valence electron density in

We choose two specific values, 0@Fig. 5~b!# andp/2 @Fig.
5~c!#, for the diproton cluster orientation angleq. Correla-
tions between two protons in the dicluster are maximum a
minimum, respectively, for these two values ofq. The ob-
jective is then to see how, for these maximum and minim
configurations, ER depends onV/vF and g. Fig. 5 shows
that ER attains noticeably higher values for a diproton cl
ter. This is due to a correlated motion of the two proto
through a resonant interaction with the plasmon excitati
in the electron gas. Also the angular dependence of ER
particularly worth noting. It is seen that in the higher veloc
range (V.2vF) ER has a remarkably higher value for th
larger value ofq(q5p/2). These features can be explain
by noting that the single-particle and collective~plasmon!
excitations are effective in different velocity ranges. In
5-5
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NERSISYAN, DAS, AND MATEVOSYAN PHYSICAL REVIEW E66, 046415 ~2002!
small velocity range (V,2vF) the full SP (S5S(p)1S(sp))
has a higher value for the larger value ofq due to single-
particle excitations in this velocity range@10#. In a higher
velocity range, the dicluster wake-field excitations beco
important and we find that the situation is reverse in
higher-velocity range (V.2vF) for which SP forq50 is
larger than forq5p/2 @10#. On the other hand, the collec
tive part of SP (S(p)) strongly depends on the interpartic
distanceR. Consequently, a decrease in the full SP atq
5p/2 may lead to an enhancement of ER at the same v
of q.

Another interesting feature is the oscillatory behavior
R1 for a diproton cluster withq5p/2 andR51 Å in the
absence of disorderg50 @see Fig. 5~c!, the solid line#. This
behavior can be understood as follows: the wavelength
plasmon excitations along (q50) and perpendicular (q
5p/2) to the interproton alignment differ markedly from
each other, and these wavelengths also depend on

FIG. 5. The ratioR1(l) of a ~a! single-proton projectile,~b!
diproton cluster withR51 Å,q50, and~c! R51 Å, q5p/2 vs
V/vF for \g50 ~solid line!, \g50.1 eV ~dashed line!, \g
51 eV ~dotted line!, \g53 eV ~dash-dotted line!, \g510 eV
~dash-dot-dotted line!, \g515 eV ~short-dashed line!.
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strength of disorderg. In order to understand this differenc
let us consider a simple plasmon-pole approximation~PPA!
@see, e.g., Refs.@3,9,27## which is a good approximation fo
the linear response function in a high-projectile-velocity d
main, specially whenV.Vp5A\vp/2m.0.48r s

1/4vF ~where
\vp is the plasmon energy!. The individual and correlated
SP for a diproton cluster within PPA was investigated
Refs. @3,9#. It has been shown that the individual SP,Sind
;2 ln(V/Vp), receives equal contributions from plasmon a
single-particle excitations. Whenq50, for the correlated SP
we find @9#

Scorr;cosS vp

V
RD lnS V

Vp
D1

1

2 F ciS Vvp

Vp
2

RD 2ciS vp

V
RD G ,

~24!

where ci(z) is the integral cosin function. The first term i
Eq. ~24! is the collective part of the SP and the remaini
terms correspond to the single-particle excitations. T
wavelength of plasmon excitation along the dicluster alig
ment is 'l15V/vp . For single-particle excitations ther
are two characteristic wavelengths along the dicluster ali
ment namelyl1 and alsol35Vp

2/Vvp .
Whenq5p/2, the correlated SP from Ref.@9# is propor-

tional to

Scorr;K0S vp

V
RD2E

R/l2

` dx

x
J0~x!

1E
Vp /V

1 dx

x
J0S R

l3
xA12x2D , ~25!

whereK0 is the modified Bessel function, andl25Vp /vp .
When V.Vp , the three lengths satisfy the inequalityl1
.l2.l3. The first two terms in Eq.~25! are responsible for
plasmon excitations and the third term for single-particle
citations. From Eq.~25! it is seen that the characterist
length scales for plasmons arel1 and l2, and those for
single-particle excitations arel2 andl3.

From Eqs. ~24! and ~25! it follows that the dominant
wavelength along the dicluster alignment,l i , can be much
larger than the corresponding wavelength perpendicula
the alignment,l i@l' . As can be seen from Eq.~25!, l'

also depends onV but it may not be as sensitive to a vari
tion in V ~i.e., whenl'.l2); it may also decrease with a
increasingV ~i.e., whenl'.l3). For our chosen value o
R51 Å and in a high-velocity range,R!l1 , R;l2 (l2
;0.5 Å for Al target!, andR@l3. Therefore, we may expec
that R1 will not be sensitive to a variation inV for q50
while for a perpendicular alignment of a dicluster (q
5p/2) R1 exhibits small oscillations with an increasingV.

For further consideration it will be useful to introduc
explicit expressions for ER along (Ri

(PPA)) and perpendicular
(R'

(PPA)) to the interproton alignment. From Eqs.~24! and
~25! we find
5-6
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Ri
(PPA)~l!5

11cosS vp

V
RD

11
1

2ln~V/Vp! F ciS Vvp

Vp
2

RD 2ciS vp

V
RD G ,

~26!

R'
(PPA)~l!5

11
1

ln~V/Vp! FK0S vp

V
RD2E

R/l2

` dx

x
J0~x!G

11
1

ln~V/Vp!
E

Vp /V

1 dx

x
J0S R

l3
xA12x2D .

~27!

For a fixed interproton distanceR and in a high-velocity
domain (V@vpR, Vp and Vp

2/vpR) we can obtain the fol-
lowing asymptotic values,Ri

(PPA)(`)51.33 andR'
(PPA)(`)

51. Therefore, within PPA and in the high-velocity limi
the ER is larger for a diproton cluster withq5p/2. We
expect the features, discussed above, to hold generally
beyond PPA.

Next we consider effects of disorder on equipartition. D
order in the electron gas affects collective excitations in t
ways: The plasmon energy\vp decreases~see the Appen-
dix!, and the plasmons become damped. These effects
demonstrated in Fig. 5~c! by a monotonic increase in th
equipartition ratioR1 for nonzero gamma. Besides, in th
case it is expected that the wavelengthl i will increase with
an increasing damping parameterg.

We have so far presented results for ER vs the projec
velocity V, for a fixed value of the separation distanceR. It is
of complementary interest to see how the ratioR1 behaves
as a function ofR for a fixed value ofV. In Fig. 6 we have
plotted R1 for a diproton cluster vsR for V53vF , q50
~lines without circles! and q5p/2 ~lines with circles!, and
for three values of the damping parameter. Figure 6 show
oscillatory behavior of ER with respect toR. The oscillations
are the highest forq50 and lowest forq5p/2. In a more
realistic range ofR from 1 to 10 Å the plasmon excitation i
expected to be more effective atq5p/2. This feature has

FIG. 6. The ratioR1 of a diproton cluster withV53vF , q
50 ~the lines without circles! andq5p/2 ~the lines with circles!,
vs R for \g50 ~solid line!, \g53 eV ~dashed line!, \g515 eV
~dotted line!.
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been discussed above. The role of damping is clearly see
Fig. 6. The wavelengths of oscillations atq50 increase with
g but the amplitudes are now weaker due to the collisio
damping of plasmons.

Having discussed ER for the first criterion (C1), we now
present results forR2, i.e., ER using the second criterio
(C2). A comparison of SP inC1 andC2 reveals the follow-
ing features. In the presence of damping (gÞ0), the thresh-
old ion velocityVt in bothC1 andC2 are noticeably smalle
than forg50 ~Fig. 4!. HoweverVt in C2 is less thanVt in
C1. Consequently we find that within the framework ofC2,
the plasmon excitation is more effective in some ion veloc
range, sayV.Vt ; this is becauseVt in C2 is smaller than in
C1. Moreover, the permissiblek value (kmax) for plasmon
excitation is higher inC2 than inC1 ~Fig. 3!. The equipar-
tition ratio R2 reflects these features.R2 is plotted in Fig. 7
for a single-proton projectile. In Fig. 7 the curves are f
\g51 eV ~solid line!, \g53 eV ~dashed line!, \g
510 eV ~dotted line!, \g515 eV ~short-dashed line!. The
density parameter is the same as for Figs. 5 and 6r s
52.07). A comparison of numerical data for both ratios,R1
and R2, shows thatR1 is less thanR2 for any projectile
velocity V and damping parameterg. For \g less than 3 eV
the ratioR1 /R2 differs from unity, although slightly. Spe
cifically, 0.95,R1 /R2,1 for V.Vt . There is something
interesting about Fig. 7. LikeR1 @shown in Fig. 5~a!#, the
ratio R2 also decreases with an increasing damping par
eter; but in the intermediate velocity rangeR2 may be higher
for large damping parameterg. This is due to the plasmon
excitation which is included in that velocity range inC2 but
not in C1 ~see, e.g., Fig. 4!.

B. Equipartition rule for He ¿ ions

We have so far considered ER for pointlike projectile
Now we will consider ER for extended He1 ions. The theo-
retical results for ER have been presented in Sec. III@see
Eqs. ~20! and ~21!# with the functionr(a,z) given by Eq.
~9!. It should be noted that for extended projectiles the rat
R1(l,G) andR2(l,G) depend on the projectile ion charg
Z. For He1 ion we haveZ52.

FIG. 7. The ratioR2(l) of a single-proton projectile, vsV/vF

for \g51 eV ~solid line!, \g53 eV ~dashed line!, \g510 eV
~dotted line!, \g515 eV ~short-dashed line!.
5-7
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Next we present the equipartition ratioR1 for the electron
density parameterr s52.07. Fig. 8 showsR1(l,G) for a
single He1 ion projectile@Fig. 8~a!# and for a He1 ion clus-
ter @Figs. 8~b! and 8~c!# with R53 Å, as a function ofV/vF
for six values of damping parameterg. Here again we
choose two values, 0@Fig. 8~b!# andp/2 @Fig. 8~c!#, of the
He1 ion cluster orientation angleq. Figure 8 may be com-
pared with Fig. 5. It is seen that ER has a remarkably hig
value for pointlike projectiles. This is likely due to a corr
lated motion of the He1 ion nucleus and the bound electro
Also the difference between velocity dependence of ER
both type of projectiles is particularly worthy noting. For
He1 ion the curves saturate with increasingV more rapidly
than for a proton projectile. In a forthcoming publicatio
@10,11# we shall present asymptotic analytical results for
stopping power of pointlike and extended projectiles in
high-velocity limit. From those results it follows, for in
stance, that when the damping vanishes the ratioR1 for a

FIG. 8. The ratioR1(l) of a ~a! He1 ion, ~b! He1 ion cluster
with R53 Å, q50, and ~c! R53 Å, q5p/2 vs V/vF for \g
50 ~solid line!, \g50.1 eV~dashed line!, \g51 eV ~dotted line!,
\g53 eV ~dash-dotted line!, \g510 eV ~dash-dot-dotted line!,
\g515 eV ~short-dashed line!.
04641
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single-proton tends to unity in thel→` limit, while for a
single He1 ion R1 is about (Z21)2/Z250.25. Note that this
result can be retrieved within a binary collision model.
simply states that for close collisions~single-particle excita-
tions!, the impact parameter is small. Then the target el
trons interact with the unscreened nucleus of He1 ion with
the nuclear chargeZ, while for distant collisions~plasmon
excitation!, the projectile ion can be viewed as a pointlik
projectile with total charge (Z21).

There are similarities but also some interesting differen
if we compare Figs. 8~b! and 8~c! with Figs. 5~b! and 5~c!.
For instance, the angular dependence of ER in Figs. 8~b! and
8~c! is reverse to that in Figs. 5~b! and 5~c!. In a higher-
velocity range ER has a remarkably higher value for
aligned (q50)He1 ion cluster. This feature can again b
explained by the dominance of single-particle and collect
~plasmon! excitations in different velocity ranges.

For a more detailed presentation we show in Fig. 9,R1 vs
interparticle distanceR for a He1 ion cluster with two values
of q: q50 ~lines without circles! and q5p/2 ~lines with
circles!. Figure 9 may be compared with Fig. 6, the dampi
parameters being the same. It is seen that Fig. 9 show
similar behavior of ER for a He1 ion cluster although the
amplitudes of oscillations are now weaker.

IV. SUMMARY AND CONCLUSION

In this paper, we have presented a detailed theoret
investigation of the contributions of single-particle and c
lective ~plasmon! excitations to the stopping power of poin
ion, extended ion and ion cluster projectiles in a degene
electron gas containing disorder. In the course of this st
we have also obtained approximate but analytical results
the disorder-inclusive RPA linear response function and
the corresponding plasmon dispersion relations.

We have introduced an equipartition ratio~ER! defined as
R5S(p)/S(sp) which is the ratio of stopping power contribu
tions from plasmon (S(p)) and single-particle excitation
(S(sp)). These two contributions have been calculat
through a generalization of the stopping power integr
given in Eqs.~16! and ~17!, in order to include disorder in

FIG. 9. The ratioR1 of a He1 ion cluster withV53vF , q
50 ~the lines without circles! andq5p/2 ~the lines with circles!,
vs R for \g50 ~solid line!, \g53 eV ~dashed line!, \g515 eV
~dotted line!.
5-8
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the linear response function«(z,u) and also an extende
charged projectile. A further highlight of our work is to in
troduce two criteria which specify the conditions for pla
mon and single-particle excitations as given by the disp
sion i.e., the energy-momentum spectrum.

The first criterion (C1) was used earlier@see, e.g., Ref.
@17## for a disorder-free electron gas. We have extende
and applied it in our present investigation. The second cr
rion (C2) is used in this paper for the first time. Both th
criteria are well motivated on physical and theoretic
grounds. We have used these two criteria because we do
have a criterion which precisely specifies the conditions
plasmon and single-particle excitations in a disordered DE
Also a theoretical sum rule~like the Lindhard-Winther equi-
partition sum rule! is not known for the problem under stud
Such a generalized sum rule together with the abo
mentioned conditions may be considered as a third crite
(C3) which will be a mathematical formulation for a
‘‘energy-momentum conservation law’’ including energy d
sipation in the disordered target medium.

By considering an equipartition ratio and some rela
quantities we have demonstrated that the extent to wh
single-particle excitations and collective~plasmon! excita-
tions contribute to the stopping power of a fast charged p
jectile, depends significantly on the charge structure of
projectile and on the disordered or disorder-free nature of
target medium.

Our findings are illustrated by a detailed consideration
pointlike ions in Sec. III A, and of He1 ions in Sec. III B.

We conclude with these short remarks. In the consid
ations of the equipartition sum rule we have, as Lindhard
Winther did, modeled a target medium by an electron
and have ignored possible effects due to energy band s
ture. A simple and approximate approach to include so
energy band effect will be to introduce an experimenta
known effective mass. A more immediate aspect is to inclu
some short-range correlation in the linear response funct
which we intend to consider in a future work.
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APPENDIX: APPROXIMATE PLASMON DISPERSION
WITH AND WITHOUT DAMPING

In order to evaluate the integrals overz in Eqs.~20!–~23!
at g50 we shall derive here an approximate solution of
dispersion equation«(z,u)50 in the domain 0<z<u21,
u.1 wheref 2(z,u) vanishes. The integration in this regio
includes the excitation of collective plasma modes~plas-
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mons! by a fast projectile. Consequently, althoughf 250, the
integrals in this region are not equal to zero. For a calcu
tion of the collective part of stopping power we use the f
lowing known expression@see, e.g., Ref.@28##:

Im
21

«~z,u!
U

g→0

→pz2d„z21x2f 1~z,u!…

5U pz2

2z1x2] f 1~z,u!/]z
U

z5zr (x,u)

3d„z2zr~x,u!…, ~A1!

where zr(x,u) is the solution of the dispersion equatio
which in the case ofg50 becomesz21x2f 1(z,u)50. Here
the functionf 1(z,u) is given by usual RPA expression

f 1~z,u!5
1

2
1

1

8z F ~U2
2 21!lnUU211

U221U
2~U1

2 21!lnUU111

U121UG . ~A2!

We take into account the fact that the functionzr(x,u)
decreases with an increasing target density~i.e., with a de-
creasing density parameterx), and we note that for the me
tallic target material (x;0.5)zr!u @see, e.g., Refs.@9,16#
and Fig. 10#. Therefore, the Taylor expansion of the functio
f 1(z,u) for small z yields the approximate dispersion equ
tion

z21x2@2 f 0~u!2z2f 2~u!2z4f 4~u!#50, ~A3!

where

f 0~u!5
u

2
lnUu11

u21U21, f 2~u!5
1

3~u221!2
,

FIG. 10. The exact and approximate~the lines with circles! dis-
persion curveszr(x,u) without damping (g50) vs u for x50.5
~dashed line!, x50.15 ~dotted line!, x50.05 ~short-dashed line!.
The solid line corresponds tov5kvF1\k2/2m ~or z5u21 in
units of u5v/kvF andz5k/2kF).
5-9
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f 4~u!5
5u211

15~u221!4
. ~A4!

Equation~A3! has an analytical solution,

zr~x,u!5AF1~x,u!2AF1
2~x,u!2F2~u!, ~A5!

where

F1~x,u!5
1

2x2f 4~u!
@12x2f 2~u!#, F2~u!5

f 0~u!

f 4~u!
.

~A6!

Note that in Eq.~A5! we choose the negative sign in fro
of the inner square root because only this solution at h
u@1 leads to the known resultzr.x/uA3 ~see, e.g., Refs
@16,17#!. This value ofzr corresponds to the plasmon ener
\vp at small k. The another solution of Eq.~A3! is not
physical and at largeu behaves aszr.u3A3/x.

Figure 10 shows the exact and approximate~the lines with
circles! solutions for various values ofx ~dashed line,x
50.5; dotted line,x50.15; short-dashed line,x50.05).
This figure shows that the approximate solution@Eqs. ~A5!
and ~A6!# of dispersion equation is in good agreement w
exact numerical results.

Let us now consider the solution of dispersion equation
long-wavelength limit (z5k/2kF,1) for disordered electron
gas ~with gÞ0). Using the expressions~10!–~15! for the
dielectric function in long-wavelength limit we find

z~z!5z01z2z21z4z41•••, ~A7!

wherez5\v/4EF @j5Re(z),h5Im(z)#,

z05V2
iG

2
, z25

3x222G224iGV

10x2V
, ~A8!

z45
~V2 iG/2!2

2V3 H 12
9

140x2
1

G4

2x4 S 1

4
2

3

175x2D
1

G2

4x2 S 87

350x2
2

11

3 D 2
iG3V

2x4 S 1

2
1

6

175x2D
1

iGV

x2 S 1

3
1

9

700x2D J , ~A9!
a
.
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V5Ax2

3
2

G2

4
. ~A10!

It is practically interesting to find the solution of dispe
sion equation as a function of variableu. Then instead of Eq.
~A7! we have

z~u!5z01
z̃2

u2
1

z̃4

u4
1•••, ~A11!

where

z̃25z2z0
2 , z̃45z0

3~2z2
21z4z0!. ~A12!

Equation~A11! is applied in our next papers@10,11#. The
coefficientsz0 , z2 andz4 are given by Eqs.~A8!–~A10!.

In Figs. 1 and 2 we compare the real and imaginary pa
of exact and approximate~the lines with circles! solutions of
dispersion equation forr s52.07 and for some values ofg.
These figures also show the good agreement between
proximate solution@Eqs.~A7!–~A10!# of dispersion equation
and exact numerical results.

When the damping vanishes (G50, h50) the Eqs.
~A8!–~A10! become

z05
x

A3
; z25

3A3

10x
; z45

A3

2x S 12
9

140x2D .

~A13!

We can represent the obtained dispersion expressio
the usual form

v25vp
21

3

5
k2vF

21F11
192

175S EF

\vp
D 2G\2k4

4m2
, ~A14!

which differs from the known plasmon-pole expression@see,
e.g., Ref.@8##

vPP
2 5vp

21
3

5
k2vF

21
\2k4

4m2
. ~A15!
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