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Kinetic and correlation energies and distribution functions of dense plasmas
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The mean value of the kinetic energy of a quantum plasma is investigated in Hartree-Fock and Montroll-
Ward approximations using the method of thermodynamic Green'’s functions. Usually, one finds the kinetic
energy to be larger than that of an ideal plasma due to the interaction between the particles in the system.
However, also the opposite case is possible, i.e., a decrease of the kinetic energy compared to that of the ideal
gas. This special correlation effect is found for temperatures of abduik Hhd densities between 30and
108 cm 2. Here, the single-particle distribution function is shifted towards smaller momenta, and the binary
distribution is changed.
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I. INTRODUCTION AND BASIC EQUATIONS the mean values of kinetic and potential energies, respec-
tively,
The progess in experimental investigations of nonideal
plasmas leads to a further increasing interest in the theoreti- U=(H)=(K)+(V). (@)
cal description of matter under extreme conditions relevan{pa mean value of the potential energy is given in terms of
for inertially confined fusion and astrophysics. There are exihe two-particle Green’s function
periments by Basteat al. [1] which deal with the question
of metal—insulator transitions. The equation of state mea- 1 s
surements by Knudsoat al. [2] in liquid deuterium show <V>:§f drydroV(ry—rp)Go(12,17 72 )t2=11*- @
good agreement with Path Integral Monte—Carlo calculations
by Militzer and Ceperley3,4] and Militzeret al.[5] and do  We used, e.g., %r,,t; where the spin variables were
not agree with the former hugoniots found by DaSiéteal.  dropped for simplicity. For details concerning the method of
[6]. Recent investigations of electron-ion systems at very lowGreen’s function techniques in quantum statistical theory we
temperatures have initiated molecular dynamic simulationsefer to Ref[19]. The mean value of the kinetic energy can
[7,8] and stimulated the formulation of thermodynamic for- be calculated from
mulas valid for any degeneracy especially also for the
heavier species. Here, the role of the initial correlations and dp p?
the question of possibilities for cooling of degenerate quan- <K>:f 53 m
tum systems is of current interd§t—13]. The physical inter- (2m)
pretation and modeling of the recent experimental findingSyith () being the Wigner distribution function. It is well
require a basic understanding of the influence of quantumy,qwn that for quantum systems the mean value of the ki-
and correlation effects on the properties of strongly coupled\etic energy includes correlation effects as the momentum
plasmas. Thusab initio numerical simulations have become iqyinytion deviates from that of the ideal gas due to the
of increasing importance covering a wide range of densitysaraction in the system. Therefore, it is necessary to distin-

and temperaturg3—5,14-16. On the other hand, rigorous ¢, ish hetween the mean value of the potential energy and the
methods of quantum statistical theory are available to g€l iai correlation energyU". Instead of Eq.(1), we can
reliable and accurate analytical results in the limiting caseg ;e ’

of weakly and highly degenerate quantum syst¢t&19.
This provides the possibility of comparing simulation data U:<K>id+<K>Corr+<V>:<K>id+ yecor (4)
with analytical results in density-temperature regions where _
agreement has to be expected. In this connection, we alssith (K)9+(K)®®"=(K). For classical contributions, we
mention the attempts by Juranekal. [20] and Knaupet al.  haveU®"=(V), in quantum systems, however, one usually
[21]. In the following, we determine the influence of corre- expects an increase of the mean value of the kinetic energy
lation effects on the different contributions to the internal(K) as a result of the interaction between the particles. Such
energy of dense plasmas, and we investigate single particke behavior follows, e.g., in the limiting case B=0. How-
and radial distribution functions. ever, at finite temperatures also the opposite case is possible,
The internal energy corresponds to the expectation valuge., a decrease of the kinetic energy as compared to the
of the Hamiltonian, and consists, consequently, of the sum ofioninteracting system. Such a behavior was found in path
integral Monte Carlo Simulations by Pierloet al. [15] for
fully ionized hydrogen, some years ago by Pokrdi] us-
*Electronic address: schlanges@physik.uni-greifswald.de ing quantum-HNC, and recently by Militzer and Pold@2]

f(p), ()
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for the electron gas model at finite temperatures. They found Another effect which has to be accounted for is screening.
that in some range of density and temperature the kineti@his leads to the fact that contributions of the mean value of
energy(K) is smaller than the kinetic energ) of the  the potential energy contain powers aih, where x !
ideal system, i.e. , the correlation eneftyf°"| is larger than = \kgT/(47ne?) is the Debye screening length, and
the mean potential enerdyV)|. =#/\2ukgT is the thermal wavelengthu¢reduced mass
The goal of this paper is to discuss the question how According to Eq.(5) we have to perform a charging pro-
correlations change the mean value of the kinetic energy afedure with respect to the coupling strengé?)( and after
dense plasmas using Green’s function techniques. In particye) a differentiation with respect to the temperature has to be
lar, as a numerical example, an electron ¢a€P is con-  performed. Thus we may adopt the following general expres-
sidered with number density and temperaturd. We start  sjon for a typical term of the mean value of the potential
our discussion under the assumption that we have some apnergy where we show explicitly the powerseﬁfandT. We
proximate analytical expression for the mean value of thehave thenomitting logarithmic termps
potential energyV) according to Eq(2). There, the poten-
tial energy is given in terms of the chemical potential, and 1 [ €?
the equation of statéEO9 is achieved after elimination of <V>um=Vum=Cva,2(
the chemical potential by an inversion procedure. We do not T
want to go into details here; see REE9]. According to the
g_olden rule of statlstlc_:al mechanics, we adopt the point ofWhere o=01,..., 7=—1,01... . This term may be
view that the correlation part of pressure times volume as Qritten as
function of the chemical potential is equal to the negative

1 (eZ) 712
T3o’/2 T"

)

Tl/2

The general term of Eq(7) is of density ordem?*7* 72,

correlation part of the free energy as a function of the density (e2)v+ M2
which is, in the canonical ensemble, determined by V,,(,Tzcymm. 8
. [tdA ) )
F-F%= T<V>|" . (5)  The corresponding correlation part of the free energy follows
0

from Eqg. (5), and gives

Having the free energy, we may determine the internal en- 1
ergy (1) according to Feor—= V (9)

VT 2 T

U=F—T£. (6)  The correlation energy can be calculated from &, and
a2 reads

We are interested in the differences in the interaction contri- 1

butions. Therefore, we have to determif&®™=F —Fd U= a5 (32 w2+ 3012+ )V . (10)
given by Eq.(5) and then to calculatg®°" from Eq.(6) and

(K)<™ from Eg. (4). On the level of the Hartree-Fock and Tpere is no difference betwedst®” andV, . if the pref-
Montroll-Ward approximatior{exchange correlationxo)l,  sctor in Eq.(10) is unity IeadingmtT(; T

we discuss the behavior of the ratidd®"/(V) and ’

(K)/(K)"Y, respectively. Further, we consider the radial dis- v—7=3(c+1).

tribution function as well as the single-particle distribution

function of the electron gas. It will be shown that, in the This condition is fulfilled for the Debye limiting law where
framework of the quantum statistical approach used herey=2, r=—1, ando=0. The Debye contribution is a clas-
there is a possibility for a decrease of the kinetic energy asical term. The condition is also fulfilled for thelassical e®
certain densities and temperatures due to the interaction iterm, wherev=3 ando=7=0. Further terms, such as lad-

the system. der type terms are known; they correspond to
v=456...,0=7=0. Moreover, there are logarithmic
Il. SERIES EXPANSIONS FOR (V), F€ AND U terms and some more lower order diagrams which will

_ . . not be discussed hefé9,23,24. Only some of the coeffi-
Starting from the low-densityweakly degenerajesitua-  cientsC,,,. are known explicitly[18]. The task is to set up

tipn, we assume the mean va_lue of the potential energy to beertain expression fofVV) and discuss, e.g., the ratio
given in terms of a power series with respect to the coupling oM\,

strengthe?. For increasing density, any of the contributions
has, in addition, to be multiplied by powers of the degen-
eracy parametenA® with n being the density and\

=h/y27mksT the thermal de Broglie wavelength. This is
due to the fact that any of the distribution functions accounts We consider high enough temperatures so that bound
for degeneracy; in perturbation theories the Fermi distribustates do not form and it is sufficient to consider only the
tions shows up as a power series of the degeneracy pararHartree-Fock(HF) and the Montroll-WardMW) contribu-

eter. tions to the thermodynamic functions. Our numerical discus-

Ill. HARTREE-FOCK AND MONTROLL-WARD
APPROXIMATIONS

046405-2



KINETIC AND CORRELATION ENERGIES AND . ..

PHYSICAL REVIEW E66, 046405 (2002

sion below refers only to the electron gas. The Hartree conperature derivative being done numerically does not change
tribution is assumed to be compensated against the positithe situation found in the nondegenerate o3 [25]). We
background in which the OCP is embedded. The first candistart from the expressiqgr26]

date which produces a lowering of the kinetic energy as com-

pared to the ideal situation is the Hartree-Fock contribution.
In the low-density region, the Hartree-Fock term is of the

ordere? (see below for the self-consistent HF modé&lrom
Eq. (7) it follows for v=1 and forc=7=0,

kBTK3 n)\3
m— .

igror: 2V 00— 2<V>HF: - ZW N

(11)

The total energy then reads

U=(K)uet (Mne,  (K)ue=(K) "+ (V)i

1 2¢? a«
V== S, Tt [ 124ay

(16)
and have to consider
d 1I 2 . N 1 04 .
9T NG HF(a)_m (@) IO 17)

where) denotes the volume., are Fermi integrals, and the

As <V>HF is negative’ the mean value of the kinetic energyconnection between %ndT will be determined as follows.
(K)ue in a Hartree-Fock system is smaller than the idealVe applyly(a)=[nA®/(2s+1)] and get

kinetic energy(K)'“. In order to get a more reliable estimate
concerning the possibility for a lowering of the mean kinetic
energy of a dense nonideal plasma we have to go beyond the

&IHF &IH,: Ja 3 | |
T o gt 2T v

Hartree-Fock contribution. Let us first restrict ourselves to
high temperatures. Then it is sufficient to take into accouniThe limiting behavior forZ, is [see Ref[19], EQs.(6.37)

only the so-called exchange-correlatigxc)-contributions,

i.e., (V)=(V),, andU®"=U,.. In the nondegenerate case,
the potential energy for xc for electrons can be written up to
the ordern? (in a two component system, the heavier par-

and(6.38] at low degeneracy,

ticles are nondegenerate, too, if the electrons are; the heavier
particles may still be nondegenerate, if the electrons are desnd at high degeneracy,

generatg Accounting for the HF and MW terms we get

(only e? exchangg

kgT 3 N na3
(Vxe=— 8 (1_TK)\+7TK . (12
The correlation energy follows then to be
kgT x> 5\ 2mna3
=1 VT ns K
8 16 K\
and the ratio
Uye Jm nA®
<V>XC—1—EK)\+7TK (14)
is larger than unity, if
4h
———(kgT)%>(kgT)%2 (15)
eZ\/ﬂ'_me( B B

The inequality(15) is fulfilled, if kgT>1 Ry. In this way,
the density expansiofl4) indicates the possibility of a low-

1 21/2
IHF(a’): EEXF(ZCU)— ?eXQSa), (18)
2 T
The( @)= ;aZ— §In a+0.504. (19

The correlation part of the free energy follows to (gelden
rule) Fye=(V)ye, with (V)yr given by Eq.(16). Then, us-
ing Egs.(2) and(3), we get for the correlation energy related
to the potential energy

Upe _  3loapla)lya)
Mne %3 Tye(a) 7 20

This ratio(20) is shown in Fig. 1 as a function of the density
for a temperaturd =5x 10° K (dotted line.

The limiting behavior in the weakly degenerate case can
be seen to be in agreement with the corresponding formulas
(11), the ratio(20) gives the value 2. For high degeneracy,
the curve approaches unity; &t=0 there is no difference
betweenU®" and F". It turns out that, in Hartree-Fock
approximation at finite temperatures, there is always
(K)Y<(K)9, as the potential energy is negative.

Now we turn to the numerical calculation of tligener-

ering of the mean kinetic energy for high temperatures bottalized Montroll-Ward contribution for the quantum electron

for the electron gas and a multicomponent system.

gas. For this we need the contribution corresponding to the

Now we will perform a numerical evaluation of the internal energy(6) which is determined by the free energy
exchange-correlation contributions at any degeneracy includand its derivative with respect to the temperature. Further-

ing the HF and MW terms.
The mean value of the Hartree-Fock potential endlgpy
ing equal to the correlation part of the free enerdges not

more the mean value of the potential enef@y has to be
calculated. For the numerical evaluation we start from the
following expression for the Montroll-Ward contribution to

change the sign for any degeneracy. One finds that the tenthe mean value of the potential energy
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FIG. 1. Ratio of correlation and potential energies for an elec-

tron gas versus density at the temperaffre5x 10° K in different
approximations: HRdotted, MW (short dashed and HF-MW
(solid); low-density expansioiil4) (long dasheg

<V>MW:VJZZ—ZJ

X[Ime Y(p,w)+Ime(p,w)].

d
(2:)3713((0)

(21)

The dielectric functiore (p, ) is taken in random phase ap-
proximation(see, e.g., Ref.19]) and reads

2 ’ f(p’ —f(p’
8(p,w):1+8wef (dp (p’+p)—f(p")

p2 2m)% w+iet+E(p)—E(p' +p)
(22

The Bose-type functiong(w) + 1/2 is an odd function o,
so are the functions Im~* and Ime. In order to avoid prob-

PHYSICAL REVIEW E 66, 046405 (2002

the radial distribution function. For the determination of the
MW contribution to the correlation energy

aT ’

Uuww=Fuw—T

we need still the free energy which is given by

dp (~dw Bw
FMW_Vf (2m)3 OECOW(T)
X

Ime(p,w)

arctar‘m—lm s(p,w)]. (24

The ratioU y /{V)uw is presented in Fig. 1 for the tempera-
tureT=5x10° K. At low densities it tends to unity which is
the result for the classicaDebye limiting law. With in-
creasing density, first there is a decreasing behavior followed
by an increase at very high densities. It should be noticed
that, atT=0, the free energy is equal to the internal one.
Here we haveJyy /{V)uw— 0.5 in the high-density limit.
The solid line in Fig. 1 shows the numerical results for the
ratio U°"/(V) including the HF and MW contributions, i.e.,
U"=Uyet+Upw and (Vy=(V)yet+{(V)uw - We see that
there is a range where the ratio is larger than unity. There the
Hartree-Fock contribution plays the dominating role. This is
the case, e.g., for such densities, where in the MW contribu-
tion, the deviations from théDebye limiting law are small,

and where the HF term is big enough. For comparison, the
results following from the asymptotic expansi¢h4) are
presented, too. As expected, the curves coincide at low den-

lems with the plasmon peak, and taking into account thaSities.

both Ime and Ime ~ 1 fulfill sum rules, however, with oppo-
site signs, e.g.,

+ oo
f, dowlme Y(p,w)= —7Tw,23|,

we rewrite the integrand of Eq21) for an integral between
0 andce only,

e[ dp ot
<V>MW_VJO 27Tf (2’”)3|m8(p,0)){1 |8(p,w)|2]
o Ng({) w
X 2nB(w)(1—5 nB(w))+<1_§> R

The resulting behavior for the mean kinetic energy can be
seen in Fig. 2 for different temperatures.

Here, the ratio/K)/(K) is shown in different approxi-
mations as a function of the density. As discussed above,
there is alwaygK)<(K)4 in the Hartree-Fock approxima-
tion (dotted line$. The situation changes if the MW-
contribution is includedsolid lineg. Now, at the lower tem-
peratureT=1x10° K, the ratio is larger than unity in the
density range shown. However, at the higher temperatures,
there is a range with a well developed lowering of the mean
kinetic energy which corresponds to the case where the ratio
Uc(V) exceeds unity as shown in Fig. 1. This fact is, in
general, of interest in connection with recent efforts to inves-
tigate possibilities otooling of nonideal plasmas. The result
obtained in this paper follows from the inclusion of quantum
and correlation effects which was realized here in exchange-

In practical calculations, dimensionless frequencies and mazorrelation approximation including the Hartree-Fock and

menta are used. The frequen@yis the maximum position

the Montroll-Ward contributions. Thus, one of our main re-

of Ime ~* which is close to the plasma frequency and is, forsults is the ratio{K)/(K)9=1 at finite temperatures, pre-

small momenta,)=1+3[%p/(2mfiwy) 2% At w=0Q,

sented in Fig. 2. It clearly shows regions, where the kinetic

the integrand is zero and does no longer represent a problem@nergy of an interacting system is smaller than the kinetic

The integration ovew in Eg. (21) may be carried out using

energy of a free system. This is impossibleTat0. Indeed,

Eq. (23). The remaining momentum dependence is showrat higher densities the rati& )/(K ) is larger than unity and
below in Fig. 5; this is just the momentum representation ofit merges into the curve for the limiting ca3e=0.
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FIG. 2. Ratio of the mean kinetic energy of the interacting elec-
tron gas and that of the ideal system versus density for different

temperatures. Different approximations are consideredidd&ed,
HF+MW (solid), HF+MW at T=0 (dasheql
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IV. SINGLE PARTICLE AND RADIAL
DISTRIBUTION FUNCTIONS

So far we determined thermodynamic functions starting
with certain approximation for the mean value of the poten-
tial energy. Thermodynamic functions may also be deter-
mined from the density as a function of the chemical poten-
tial, if the single-particle spectral functioh,(pw) is known.

We may write

do dp

na(:“a’T):E o (277)3

Sa

fa(w)Aq(p,w), (29

with f,(w) being the Fermi function. Further thermody-
namic functions may be expressed in terms of single-particle
properties. For example, the mean value of the total energy
reads[27]

2

dp deo “T2m
(2m2m 2

=)= 3

Sa

Aa(p,0)fa(w),

and the mean value of the potential energy is

p2

dp do ® 2m
2

Aa(p, ) fa(w).

w33

2m)3 27

The main ingredient of Eq25) is the single-particle distri-
bution function(Wigner function f,(p), which is defined as

d
W= [ Gotu@Adpo). @8

According to Eq.(3) the Wigner function determines the

A more precise presentation of the behavior just diSCUSSGBEhaVIOr of the kinetic energy, which was investigated in the

is shown in Fig. 3 for a temperatufie= 1 X 10° K. Addition-
ally, the results following from the low-density expansions
(12) and(13) are given there.

1.01

1.005

10

YK

0.995

T=1x10°K
22

0.99
21

23 24 25 26
logion (cm'3)

27 28

preceding sections. Therefore, it is also of special interest to
study how the interaction influences the behavior of the
single-particle distribution. It is known that there might be
algebraic tails in contrast to the simple shape of Fermi func-
tionsf 4 for ideal systems. We want to find out how the effect
of the lowering of the mean kinetic energy is reflected in the
behavior of the single-particle distribution functiég(p).

The self energy,, is the key quantity entering the spec-
tral function. The latter has the general shape

2Im3,(p,w)
2

—Re3X (p,w)| +[IM2,(p,w)]?
(27

where the imaginary part of the self-energy, Ix(p, ), is
related to the damping of the single-particle states, and the

Aa(p!w): 2

w—
2m,

FIG. 3. Ratio of the mean kinetic energies versus density for thé€al part R& ,(p,w) determines the energy shift.

temperatureT=1x 10° K: HF+MW approximation(solid), low-
density expansiofdotted, HF+MW in the limit T=0 (dashed

The simplest example is the Hartree-Fock case. Then we
have Im,,=0, and
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2 2

- _ P s HE, o\ _ a 2 3. h%p?
Aalp,0)=2m0| 0= 5 —257(p) | (28) X (P = perpehafi| g 5| (30
The (rea) self-energy takes the formv{,-Coulomb poten- with ;F, being the confluent hypergeometric function. In the
tial) HF case, the Fermi distribution function for the electrons is
given by
p2
EQF(p)=—f ana(p—q)fa(E(q)), fur(p) =T, ﬁ+22F(p)) (31)
5 The next ordeMW contribution is very difficult (see, e.g.,
E(q) = q 43 HF (29) Refs.[29-31)). In this case, the self energy has an imaginary
2m, a part leading to a broadening of the spectral function and thus

to a damping of the single-particle motion. The real and
The nondegenerate formula for the Hartree-Fock self-energynaginary parts of the MW self-energy to be used in &)
reads read in first-order iteration

dp’ (do’
MW _ - 4
Imza (p,w)— Zth (ZW)SJ 277Vaa(p)
ﬁZ
X(1—f(p' +p)+ng(w))Ime Yp',0' +ie)d ﬁ(w—w’)—Zm (erp')2 (32
and
dp’ [ do’ . 1=fa(pt+p')+ng(w) PP
Rezg”w(p,w)=—2ﬁ7>f (Zw)gf S VaalP') 72 Ime Y(p' 0 +ie). (33

filo—w')—5—(p+p")?

2m,

For more general spectral functions one has to go beyond theavelength\/ag=5, our numerical result is as follows: The
HF and MW approximations of the self-energy. For systemssalue Bu=5 for free particles corresponds R =3.9473
with the possibility of the formation of bound states it is for fy, while Bu=1 for f;y leads toBu=0.530 02 forf .
necessary to use tiiscreeneplladder (T-matrix) approxima-  Consequently, for the physical system given, the distribution
tion. functions in the HF model are shifted to lower momenta as
If Im X ,(p,w) is small, the spectral functiof27) may be  compared to the ideal system. This can be seen in Fig. 4
expanded with respect to the latter quantity. The result wouldvhere in addition, the functiong®f=(p) are shown.

be theextended quasiparticle approximatioronsisting of a Once the distribution function is known, the mean value
S-distribution part and a widened part. For a two-componenbf the kinetic energy has to be determined according to Eq.
plasma, the latter accounts also for bound stft8s2§. (3). For the first situation mentioned above, the kinetic en-

As an example, we solve the Eg81) and (29) self-  ergy of the HF system is 96% of that of the ideal situation, in
consistently for the electron gas, i.e., with HF quasiparticleshe second one we get 91%.
(Hartree-Fock mod€l30,31]). We find that the Hartree-Fock This means, in the HF model, the correlation energy is
self energy leads to higher momenta in the distribution, if thQarger than the mean potential energy in agreement with our
chemical potentia3u is unchanged. However, we want to (agits discussed in the preceding section.

compare expressions for the kinetic energy at a given density Finally, we will analyze the consequences of quantum and

(25) for a free and for an interacting system. To determin€.,eation effects on the radial distribution function of the

electron gas. The radial distribution functigp) (as a func-
Sion of the momentummay be calculated from the mean

the densityn of the electron gas, the momentum integration
and spin summation over the distribution function have to b

performed, value of the potential energy discussed above as a functional
B dp f 34 derivative with respect to the interaction potential. The radial
- (27)3 (P). (34 distributiong(r) is then determined by the Fourier transfor-

mation. We have the identity
For Bu fixed, Eq.(34) gives different results fof,y andfye. ) )
Therefore we choosgu in the density integrals such that 1 n dp n
the density according to Eq34) is equal. For the thermal (V)= % (ZW)SV(p)g(p)= 2 | drv(ng(m. (39
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FIG. 4. Single-particle distribution function of an electron gas as  FIG. 5. Correlation functiong— 1 for an electron gas in HF and
a function of (\p)?/2: Ideal systeridashedl and HF modelsolid MW approximations: The dependencep dependencgefor HF is
line). There is included also the distribution function multiplied by shown by the dash-dotte@otted line and for MW by the solid
(Ap)?/2. The parameters ark/ag=5, Bu=1 (free), and Bu (dashedl one. The results in the Debye limit are given by circles.
=0.530 02(HF). Temperature and density akgT=1 Ry andn=1.35x 10 cm 3.

The first nontrivial term is the contribution corresponding to 9(r)=9ia(r) +gwmw(r), (39
the ideal exchange of two particléslF contribution of the
two-particle Green'’s functionIn momentum representation,
we have

with gig(r)=21+gue(r) is compared to that in thelassical
Debye limit gp=1—e?/(kgT) - exp(—«r)/r, which diverges
at zero distance. However, here it is not sufficient to take
only HF and MW. There follows an unphysical behavior
with negative values at small distances. If higher densities
and higher temperatures are considered the HF and MW ap-
proximations are more justified. In Fig. 7, such a situation is
given for an electron gas with temperatdre 1x 10° K and
1+exgd — U22(q+p)2+ Bu] density n=1.9x10?* cm 3. For comparison, different ap-
XIn > > (36) proximations are shown. In contrast to the Debye approxi-
1+exgd —Y2%(q—p)°+Bul mation, we get positive radial distribution functions at all

. : . - distances.
Both Eqg.(36) and its Fourier transform are given in Fig. 5.

The latter, in the low-density case including the direct ideal V. CONCLUSION
term, read$32]

2 mekBT qdq
gur(p) = (2m)2 f
P ex;{ 22— Bu|+1

The aim of this paper was to study the influence of quan-

1 r2 tum and correlation effects on the different parts of the inter-
Oig(r)=1- Eex =l (37 nal energy as well as on the distribution functions for dense
A nonideal plasmas using quantum statistical theory. In particu-

The next order of the momentum representation of the radial 1
distribution function follows from Eq(21) omitting the mo-
mentum integration and the Coulomb potential included in
the dielectric functions, 0
2 (* dw ng(w ~
ng(p)=¥fx5 \f((p))[lms1(p,w)+lms(p,w)]. %o 1
(38)

After a Fourier transformation of E¢38), the radial distri-

bution is found in position space. It is also shown in Fig. 5

together with the momentum representation. An electron gas -3
is considered with temperatukg T=1 Ry and number den-

sity n=1.35< 10?3 cm°. As expected, for not too high den-

sities, there is excellent agreement between the Montroll- F|G. 6. Radial distribution functiom(r)=gi4(r) + guw(r) for
Ward approximation and the Debye distribution at largeran electron gas wittgT=1 Ry andn=1.35x 10?3 cm™2 (solid).

distances. This can be seen in Fig. 6 where the radial distrifhe corresponding distribution function in the Debye limit is given
bution function of the quantum electron gas, by the dashed curve.

0 1 2 3 4 5
r (units of ag)
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1.2 the same time the single-particle distribution function is
shifted to smaller momenta. The radial distribution is
1.0 = changed as compared to the Debye behavior.
Our calculations confirm results found in path integral
0.8 Monte Carlo simulations by Pierlomt al.,, for fully ionized
- hydrogen, and those recently found by Militzer and Pollock
%0.6 [22] for the electron gas model at finite temperatures. In Ref.
[22], hydrogen was considered, too.
0.4 In this way, the quantum statistical calculations presented
T=1x10°K here are of importance for closing the gap between analytical
02 n=1.9x10% cm™ approaches and numerical simulations. Furthermore, the re-
i sults may be of interest for the understanding of special fea-
0.0 . > 3 y tures, such as cooling of strongly coupled plasmas. More-

over, a detailed investigation of the EOS is of interest for a
determination of the speed of sound for the interpretation of
solar oscillations, and for the features of the hygoniots from
shock experimentE33].

r (units of ag)

FIG. 7. Radial distribution functiog(r) for an electron gas in
different approximationsg= g4+ guw (solid), gy (dashegi g=1
+guw (dotted, Debye approximatiolong dashegd
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