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Kinetic and correlation energies and distribution functions of dense plasmas
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The mean value of the kinetic energy of a quantum plasma is investigated in Hartree-Fock and Montroll-
Ward approximations using the method of thermodynamic Green’s functions. Usually, one finds the kinetic
energy to be larger than that of an ideal plasma due to the interaction between the particles in the system.
However, also the opposite case is possible, i.e., a decrease of the kinetic energy compared to that of the ideal
gas. This special correlation effect is found for temperatures of about 106 K and densities between 1021 and
1026 cm23. Here, the single-particle distribution function is shifted towards smaller momenta, and the binary
distribution is changed.
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I. INTRODUCTION AND BASIC EQUATIONS

The progess in experimental investigations of nonid
plasmas leads to a further increasing interest in the theo
cal description of matter under extreme conditions relev
for inertially confined fusion and astrophysics. There are
periments by Basteaet al. @1# which deal with the question
of metal–insulator transitions. The equation of state m
surements by Knudsonet al. @2# in liquid deuterium show
good agreement with Path Integral Monte–Carlo calculati
by Militzer and Ceperley@3,4# and Militzer et al. @5# and do
not agree with the former hugoniots found by DaSilvaet al.
@6#. Recent investigations of electron-ion systems at very
temperatures have initiated molecular dynamic simulati
@7,8# and stimulated the formulation of thermodynamic fo
mulas valid for any degeneracy especially also for
heavier species. Here, the role of the initial correlations
the question of possibilities for cooling of degenerate qu
tum systems is of current interest@9–13#. The physical inter-
pretation and modeling of the recent experimental findin
require a basic understanding of the influence of quan
and correlation effects on the properties of strongly coup
plasmas. Thus,ab initio numerical simulations have becom
of increasing importance covering a wide range of den
and temperature@3–5,14–16#. On the other hand, rigorou
methods of quantum statistical theory are available to
reliable and accurate analytical results in the limiting ca
of weakly and highly degenerate quantum systems@18,19#.
This provides the possibility of comparing simulation da
with analytical results in density-temperature regions wh
agreement has to be expected. In this connection, we
mention the attempts by Juraneket al. @20# and Knaupet al.
@21#. In the following, we determine the influence of corr
lation effects on the different contributions to the intern
energy of dense plasmas, and we investigate single par
and radial distribution functions.

The internal energy corresponds to the expectation va
of the Hamiltonian, and consists, consequently, of the sum
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the mean values of kinetic and potential energies, resp
tively,

U5^H&5^K&1^V&. ~1!

The mean value of the potential energy is given in terms
the two-particle Green’s function

^V&5
1

2E dr1dr2V~r12r2!G2~12,11121! t251
1
1. ~2!

We used, e.g., 15r1 ,t1 where the spin variables wer
dropped for simplicity. For details concerning the method
Green’s function techniques in quantum statistical theory
refer to Ref.@19#. The mean value of the kinetic energy ca
be calculated from

^K&5E dp

~2p!3

p2

2m
f ~p!, ~3!

with f (p) being the Wigner distribution function. It is wel
known that for quantum systems the mean value of the
netic energy includes correlation effects as the momen
distribution deviates from that of the ideal gas due to
interaction in the system. Therefore, it is necessary to dis
guish between the mean value of the potential energy and
total correlation energyUcorr. Instead of Eq.~1!, we can
write

U5^K& id1^K&corr1^V&5^K& id1Ucorr, ~4!

with ^K& id1^K&corr5^K&. For classical contributions, we
haveUcorr5^V&, in quantum systems, however, one usua
expects an increase of the mean value of the kinetic ene
^K& as a result of the interaction between the particles. S
a behavior follows, e.g., in the limiting case atT50. How-
ever, at finite temperatures also the opposite case is poss
i.e., a decrease of the kinetic energy as compared to
noninteracting system. Such a behavior was found in p
integral Monte Carlo Simulations by Pierloniet al. @15# for
fully ionized hydrogen, some years ago by Pokrant@17# us-
ing quantum-HNC, and recently by Militzer and Polock@22#
©2002 The American Physical Society05-1
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for the electron gas model at finite temperatures. They fo
that in some range of density and temperature the kin
energy^K& is smaller than the kinetic energŷK& id of the
ideal system, i.e. , the correlation energyuUcorru is larger than
the mean potential energyu^V&u.

The goal of this paper is to discuss the question h
correlations change the mean value of the kinetic energ
dense plasmas using Green’s function techniques. In par
lar, as a numerical example, an electron gas~OCP! is con-
sidered with number densityn and temperatureT. We start
our discussion under the assumption that we have some
proximate analytical expression for the mean value of
potential energŷV& according to Eq.~2!. There, the poten-
tial energy is given in terms of the chemical potential, a
the equation of state~EOS! is achieved after elimination o
the chemical potential by an inversion procedure. We do
want to go into details here; see Ref.@19#. According to the
golden ruleof statistical mechanics, we adopt the point
view that the correlation part of pressure times volume a
function of the chemical potential is equal to the negat
correlation part of the free energy as a function of the den
which is, in the canonical ensemble, determined by

F2F id5E
0

1dl

l
^V&ul . ~5!

Having the free energy, we may determine the internal
ergy ~1! according to

U5F2T
]F

]T
. ~6!

We are interested in the differences in the interaction con
butions. Therefore, we have to determineFcorr5F2F id

given by Eq.~5! and then to calculateUcorr from Eq.~6! and
^K&corr from Eq. ~4!. On the level of the Hartree-Fock an
Montroll-Ward approximation@exchange correlation,~xc!#,
we discuss the behavior of the ratiosUcorr/^V& and
^K&/^K& id, respectively. Further, we consider the radial d
tribution function as well as the single-particle distributio
function of the electron gas. It will be shown that, in th
framework of the quantum statistical approach used h
there is a possibility for a decrease of the kinetic energy
certain densities and temperatures due to the interactio
the system.

II. SERIES EXPANSIONS FOR ŠV‹, F corr, AND Ucorr

Starting from the low-density~weakly degenerate! situa-
tion, we assume the mean value of the potential energy t
given in terms of a power series with respect to the coup
strengthe2. For increasing density, any of the contributio
has, in addition, to be multiplied by powers of the dege
eracy parameternL3 with n being the density andL
5h/A2pmkBT the thermal de Broglie wavelength. This
due to the fact that any of the distribution functions accou
for degeneracy; in perturbation theories the Fermi distri
tions shows up as a power series of the degeneracy pa
eter.
04640
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Another effect which has to be accounted for is screeni
This leads to the fact that contributions of the mean value
the potential energy contain powers ofkl, where k21

5AkBT/(4pne2) is the Debye screening length, andl
5\/A2mkBT is the thermal wavelength, (m-reduced mass!.

According to Eq.~5! we have to perform a charging pro
cedure with respect to the coupling strength (e2), and after
~6! a differentiation with respect to the temperature has to
performed. Thus we may adopt the following general expr
sion for a typical term of the mean value of the potent
energy where we show explicitly the powers ofe2 andT. We
have then~omitting logarithmic terms!

^V&nst5Vnst5Cnst

1

T1/2S e2

T1/2D n
1

T3s/2

~e2!t/2

Tt
. ~7!

The general term of Eq.~7! is of density ordern21s1t/2,
where s50,1, . . . , t521,0,1, . . . . This term may be
written as

Vnst5Cnst

~e2!n1t/2

T1/21n/213s/21t
. ~8!

The corresponding correlation part of the free energy follo
from Eq. ~5!, and gives

Fnst
corr5

1

n1t/2
Vnst . ~9!

The correlation energy can be calculated from Eq.~4!, and
reads

Unst
corr5

1

n1t/2
~3/21n/213s/21t!Vnst . ~10!

There is no difference betweenUnst
corr andVnst , if the pref-

actor in Eq.~10! is unity, leading to

n2t53~s11!.

This condition is fulfilled for the Debye limiting law where
n52, t521, ands50. The Debye contribution is a clas
sical term. The condition is also fulfilled for the~classical! e6

term, wheren53 ands5t50. Further terms, such as lad
der type terms are known; they correspond
n54,5,6, . . . ,s5t50. Moreover, there are logarithmi
terms and some more lower order diagrams which w
not be discussed here@19,23,24#. Only some of the coeffi-
cientsCnst are known explicitly@18#. The task is to set up
certain expression for̂ V& and discuss, e.g., the rati
Ucorr/^V&.

III. HARTREE-FOCK AND MONTROLL-WARD
APPROXIMATIONS

We consider high enough temperatures so that bo
states do not form and it is sufficient to consider only t
Hartree-Fock~HF! and the Montroll-Ward~MW! contribu-
tions to the thermodynamic functions. Our numerical disc
5-2
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KINETIC AND CORRELATION ENERGIES AND . . . PHYSICAL REVIEW E66, 046405 ~2002!
sion below refers only to the electron gas. The Hartree c
tribution is assumed to be compensated against the pos
background in which the OCP is embedded. The first can
date which produces a lowering of the kinetic energy as co
pared to the ideal situation is the Hartree-Fock contributi
In the low-density region, the Hartree-Fock term is of t
ordere2 ~see below for the self-consistent HF model!. From
Eq. ~7! it follows for n51 and fors5t50,

U100
corr52V10052^V&HF522

kBTk3

8p
p

nl3

kl
. ~11!

The total energy then reads

U5^K&HF1^V&HF, ^K&HF5^K& id1^V&HF.

As ^V&HF is negative, the mean value of the kinetic ener
^K&HF in a Hartree-Fock system is smaller than the id
kinetic energŷ K& id. In order to get a more reliable estima
concerning the possibility for a lowering of the mean kine
energy of a dense nonideal plasma we have to go beyond
Hartree-Fock contribution. Let us first restrict ourselves
high temperatures. Then it is sufficient to take into acco
only the so-called exchange-correlation~xc!-contributions,
i.e., ^V&5^V&xc andUcorr5Uxc . In the nondegenerate cas
the potential energy for xc for electrons can be written up
the ordern2 ~in a two component system, the heavier p
ticles are nondegenerate, too, if the electrons are; the he
particles may still be nondegenerate, if the electrons are
generate!. Accounting for the HF and MW terms we ge
~only e2 exchange!

^V&xc52
kBTk3

8p S 12
Ap

4
kl1p

nl3

kl D . ~12!

The correlation energy follows then to be

Uxc52
kBTk3

8p S 12
5Ap

16
kl1

2pnl3

kl D , ~13!

and the ratio

Uxc

^V&xc
512

Ap

16
kl1p

nl3

kl
~14!

is larger than unity, if

4\

e2Apme

~kBT!2.~kBT!3/2. ~15!

The inequality~15! is fulfilled, if kBT.1 Ry. In this way,
the density expansion~14! indicates the possibility of a low
ering of the mean kinetic energy for high temperatures b
for the electron gas and a multicomponent system.

Now we will perform a numerical evaluation of th
exchange-correlation contributions at any degeneracy inc
ing the HF and MW terms.

The mean value of the Hartree-Fock potential energy~be-
ing equal to the correlation part of the free energy! does not
change the sign for any degeneracy. One finds that the
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perature derivative being done numerically does not cha
the situation found in the nondegenerate case~Cf. @25#!. We
start from the expression@26#

1

V ^V&HF52
2e2

L4
IHF~a!, IHF~a!5E

2`

a

I 21/2
2 ~y!dy,

~16!

and have to consider

]

]T

1

L4
IHF~a!5

2

TL4
IHF~a!1

1

L4

]IHF

]T
, ~17!

whereV denotes the volume.I n are Fermi integrals, and th
connection betweena andT will be determined as follows.
We applyI 1/2(a)5@nL3/(2s11)# and get

]IHF

]T
5

]IHF

]a

]a

]T
52

3

2T
I 21/2I 1/2.

The limiting behavior forIHF is @see Ref.@19#, Eqs.~6.37!
and ~6.38!# at low degeneracy,

IHF~a!5
1

2
exp~2a!2

21/2

3
exp~3a!, ~18!

and at high degeneracy,

IHF~a!5
2

p
a22

p

3
ln a10.504. ~19!

The correlation part of the free energy follows to be~golden
rule! FHF5^V&HF, with ^V&HF given by Eq.~16!. Then, us-
ing Eqs.~2! and~3!, we get for the correlation energy relate
to the potential energy

UHF

^V&HF
5211

3

2

I 21/2~a!I 1/2~a!

IHF~a!
. ~20!

This ratio~20! is shown in Fig. 1 as a function of the densi
for a temperatureT553105 K ~dotted line!.

The limiting behavior in the weakly degenerate case c
be seen to be in agreement with the corresponding form
~11!, the ratio~20! gives the value 2. For high degenerac
the curve approaches unity; atT50 there is no difference
betweenUcorr and Fcorr. It turns out that, in Hartree-Fock
approximation at finite temperatures, there is alwa
^K&,^K& id, as the potential energy is negative.

Now we turn to the numerical calculation of the~gener-
alized! Montroll-Ward contribution for the quantum electro
gas. For this we need the contribution corresponding to
internal energy~6! which is determined by the free energ
and its derivative with respect to the temperature. Furth
more the mean value of the potential energy~2! has to be
calculated. For the numerical evaluation we start from
following expression for the Montroll-Ward contribution t
the mean value of the potential energy
5-3
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KRAEFT et al. PHYSICAL REVIEW E 66, 046405 ~2002!
^V&MW5VE
2`

` dv

2pE dp

~2p!3
nB~v!

3@ Im «21~p,v!1Im «~p,v!#. ~21!

The dielectric function«(p,v) is taken in random phase ap
proximation~see, e.g., Ref.@19#! and reads

«~p,v!511
8pe2

p2 E dp8

~2p!3

f ~p81p!2 f ~p8!

v1 i e1E~p8!2E~p81p!
.

~22!

The Bose-type functionnB(v)11/2 is an odd function ofv,
so are the functions Im«21 and Im«. In order to avoid prob-
lems with the plasmon peak, and taking into account t
both Im« and Im«21 fulfill sum rules, however, with oppo
site signs, e.g.,

E
2`

1`

dvv Im «21~p,v!52pvpl
2 ,

we rewrite the integrand of Eq.~21! for an integral between
0 and` only,

^V&MW5VE
0

`dv

2pE dp

~2p!3
Im «~p,v!F12

1

u«~p,v!u2
G

3F2nB~v!S 12
v

V

nB~V!

nB~v! D1S 12
v

V D G . ~23!

In practical calculations, dimensionless frequencies and
menta are used. The frequencyV is the maximum position
of Im«21 which is close to the plasma frequency and is,
small momenta,V5113@\p/(2me\vpl)

1/2#2. At v5V,
the integrand is zero and does no longer represent a prob
The integration overv in Eq. ~21! may be carried out using
Eq. ~23!. The remaining momentum dependence is sho
below in Fig. 5; this is just the momentum representation

FIG. 1. Ratio of correlation and potential energies for an el
tron gas versus density at the temperatureT553105 K in different
approximations: HF~dotted!, MW ~short dashed!, and HF1MW
~solid!; low-density expansion~14! ~long dashed!.
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the radial distribution function. For the determination of t
MW contribution to the correlation energy

UMW5FMW2T
]FMW

]T
,

we need still the free energy which is given by

FMW5VE dp

~2p!3E0

`dv

2p
cothS bv

2 D
3H arctan

Im «~p,v!

Re«~p,v!
2Im «~p,v!J . ~24!

The ratioUMW /^V&MW is presented in Fig. 1 for the tempera
tureT553105 K. At low densities it tends to unity which is
the result for the classical~Debye! limiting law. With in-
creasing density, first there is a decreasing behavior follow
by an increase at very high densities. It should be noti
that, atT50, the free energy is equal to the internal on
Here we haveUMW /^V&MW→0.5 in the high-density limit.
The solid line in Fig. 1 shows the numerical results for t
ratio Ucorr/^V& including the HF and MW contributions, i.e
Ucorr5UHF1UMW and ^V&5^V&HF1^V&MW . We see that
there is a range where the ratio is larger than unity. There
Hartree-Fock contribution plays the dominating role. This
the case, e.g., for such densities, where in the MW contri
tion, the deviations from the~Debye! limiting law are small,
and where the HF term is big enough. For comparison,
results following from the asymptotic expansion~14! are
presented, too. As expected, the curves coincide at low d
sities.

The resulting behavior for the mean kinetic energy can
seen in Fig. 2 for different temperatures.

Here, the ratiô K&/^K& id is shown in different approxi-
mations as a function of the density. As discussed abo
there is alwayŝ K&,^K& id in the Hartree-Fock approxima
tion ~dotted lines!. The situation changes if the MW
contribution is included~solid lines!. Now, at the lower tem-
peratureT513105 K, the ratio is larger than unity in the
density range shown. However, at the higher temperatu
there is a range with a well developed lowering of the me
kinetic energy which corresponds to the case where the r
Ucorr/^V& exceeds unity as shown in Fig. 1. This fact is,
general, of interest in connection with recent efforts to inv
tigate possibilities ofcoolingof nonideal plasmas. The resu
obtained in this paper follows from the inclusion of quantu
and correlation effects which was realized here in exchan
correlation approximation including the Hartree-Fock a
the Montroll-Ward contributions. Thus, one of our main r
sults is the ratiô K&/^K& id:1 at finite temperatures, pre
sented in Fig. 2. It clearly shows regions, where the kine
energy of an interacting system is smaller than the kine
energy of a free system. This is impossible atT50. Indeed,
at higher densities the ratio^K&/^K& id is larger than unity and
it merges into the curve for the limiting caseT50.

-
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A more precise presentation of the behavior just discus
is shown in Fig. 3 for a temperatureT513106 K. Addition-
ally, the results following from the low-density expansio
~12! and ~13! are given there.

FIG. 2. Ratio of the mean kinetic energy of the interacting el
tron gas and that of the ideal system versus density for diffe
temperatures. Different approximations are considered: HF~dotted!,
HF1MW ~solid!, HF1MW at T50 ~dashed!.

FIG. 3. Ratio of the mean kinetic energies versus density for
temperatureT513106 K: HF1MW approximation~solid!, low-
density expansion~dotted!, HF1MW in the limit T50 ~dashed!.
04640
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IV. SINGLE PARTICLE AND RADIAL
DISTRIBUTION FUNCTIONS

So far we determined thermodynamic functions start
with certain approximation for the mean value of the pote
tial energy. Thermodynamic functions may also be de
mined from the density as a function of the chemical pot
tial, if the single-particle spectral functionAa(pv) is known.
We may write

na~ma ,T!5(
sa

E dv

2p

dp

~2p!3
f a~v!Aa~p,v!, ~25!

with f a(v) being the Fermi function. Further thermody
namic functions may be expressed in terms of single-part
properties. For example, the mean value of the total ene
reads@27#

U5^H&5(
a

(
sa

E dp

~2p!3

dv

2p

v1
p2

2m

2
Aa~p,v! f a~v!,

and the mean value of the potential energy is

^V&5(
a

(
sa

E dp

~2p!3

dv

2p

v2
p2

2m

2
Aa~p,v! f a~v!.

The main ingredient of Eq.~25! is the single-particle distri-
bution function~Wigner function! f a(p), which is defined as

f a~p!5(
sa

E dv

2p
f a~v!Aa~p,v!. ~26!

According to Eq.~3! the Wigner function determines th
behavior of the kinetic energy, which was investigated in
preceding sections. Therefore, it is also of special interes
study how the interaction influences the behavior of
single-particle distribution. It is known that there might b
algebraic tails in contrast to the simple shape of Fermi fu
tions f id for ideal systems. We want to find out how the effe
of the lowering of the mean kinetic energy is reflected in t
behavior of the single-particle distribution functionf a(p).

The self energySa is the key quantity entering the spe
tral function. The latter has the general shape

Aa~p,v!5
2 ImSa~p,v!

Fv2
p2

2ma
2ReSa~p,v!G2

1@ Im Sa~p,v!#2

,

~27!

where the imaginary part of the self-energy, ImSa(p,v), is
related to the damping of the single-particle states, and
real part ReSa(p,v) determines the energy shift.

The simplest example is the Hartree-Fock case. Then
have ImSa50, and

-
nt

e
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Aa~p,v!52pdS v2
p2

2ma
2Sa

HF~p! D . ~28!

The ~real! self-energy takes the form (Vaa-Coulomb poten-
tial!

Sa
HF~p!52E dq

~2p!3
Vaa~p2q! f a~E„q!…,

E~q!5
q2

2ma
1Sa

HF. ~29!

The nondegenerate formula for the Hartree-Fock self-ene
reads
t
m
is

u

en

le
k
th
to
s

in
on
b

t
l
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y

Sa
HF~p!52

2ea
2

2sa11
naLa

2
1F1S 1,

3

2
;2

\2p2

2makBTD . ~30!

with 1F1 being the confluent hypergeometric function. In t
HF case, the Fermi distribution function for the electrons
given by

f HF~p!5 f aS p2

2m
1Sa

HF~p! D ~31!

The next order~MW contribution! is very difficult ~see, e.g.,
Refs.@29–31#!. In this case, the self energy has an imagina
part leading to a broadening of the spectral function and t
to a damping of the single-particle motion. The real a
imaginary parts of the MW self-energy to be used in Eq.~27!
read in first-order iteration
Im Sa
MW~p,v!522p\E dp8

~2p!3E dv8

2p
Vaa~p8!

3„12 f a~p81p!1nB~v8!…Im «21~p8,v81 i e!dS \~v2v8!2
\2

2ma
~p1p8!2D ~32!

and

ReSa
MW~p,v!522\PE dp8

~2p!3E dv8

2p
Vaa~p8!

12 f a~p1p8!1nB~v8!

\~v2v8!2
\2

2ma
~p1p8!2

Im «21~p8,v81 i e!. ~33!
e
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For more general spectral functions one has to go beyond
HF and MW approximations of the self-energy. For syste
with the possibility of the formation of bound states it
necessary to use the~screened! ladder (T-matrix! approxima-
tion.

If Im Sa(p,v) is small, the spectral function~27! may be
expanded with respect to the latter quantity. The result wo
be theextended quasiparticle approximation, consisting of a
d-distribution part and a widened part. For a two-compon
plasma, the latter accounts also for bound states@19,28#.

As an example, we solve the Eqs.~31! and ~29! self-
consistently for the electron gas, i.e., with HF quasipartic
~Hartree-Fock model@30,31#!. We find that the Hartree-Foc
self energy leads to higher momenta in the distribution, if
chemical potentialbm is unchanged. However, we want
compare expressions for the kinetic energy at a given den
~25! for a free and for an interacting system. To determ
the densityn of the electron gas, the momentum integrati
and spin summation over the distribution function have to
performed,

n5E dp

~2p!3
f ~p!. ~34!

For bm fixed, Eq.~34! gives different results forf id and f HF.
Therefore we choosebm in the density integrals such tha
the density according to Eq.~34! is equal. For the therma
he
s

ld

t

s

e

ity
e

e

wavelengthl/aB55, our numerical result is as follows: Th
value bm55 for free particles corresponds tobm53.9473
for f HF, while bm51 for f id leads tobm50.530 02 forf HF.
Consequently, for the physical system given, the distribut
functions in the HF model are shifted to lower momenta
compared to the ideal system. This can be seen in Fig
where in addition, the functionsp2f HF(p) are shown.

Once the distribution function is known, the mean val
of the kinetic energy has to be determined according to
~3!. For the first situation mentioned above, the kinetic e
ergy of the HF system is 96% of that of the ideal situation,
the second one we get 91%.

This means, in the HF model, the correlation energy
larger than the mean potential energy in agreement with
results discussed in the preceding section.

Finally, we will analyze the consequences of quantum a
correlation effects on the radial distribution function of th
electron gas. The radial distribution functiong(p) ~as a func-
tion of the momentum! may be calculated from the mea
value of the potential energy discussed above as a functi
derivative with respect to the interaction potential. The rad
distributiong(r ) is then determined by the Fourier transfo
mation. We have the identity

1

V ^V&5
n2

2 E dp

~2p!3
V~p!g~p!5

n2

2 E drV~r !g~r !. ~35!
5-6
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The first nontrivial term is the contribution corresponding
the ideal exchange of two particles~HF contribution of the
two-particle Green’s function!. In momentum representation
we have

gHF~p!5
2

n2

mekBT

~2p!2p
E

0

` qdq

expS 1

2
l2q22bm D11

3 lnH 11exp@21/2l2~q1p!21bm#

11exp@21/2l2~q2p!21bm#
J . ~36!

Both Eq.~36! and its Fourier transform are given in Fig.
The latter, in the low-density case including the direct id
term, reads@32#

gid~r !512
1

2
expS 2

r 2

l2D . ~37!

The next order of the momentum representation of the ra
distribution function follows from Eq.~21! omitting the mo-
mentum integration and the Coulomb potential included
the dielectric functions,

gMW~p!5
2

n2E2`

` dv

2p

nB~v!

V~p!
@ Im «21~p,v!1Im «~p,v!#.

~38!

After a Fourier transformation of Eq.~38!, the radial distri-
bution is found in position space. It is also shown in Fig
together with the momentum representation. An electron
is considered with temperaturekBT51 Ry and number den
sity n51.3531023 cm23. As expected, for not too high den
sities, there is excellent agreement between the Montr
Ward approximation and the Debye distribution at larg
distances. This can be seen in Fig. 6 where the radial di
bution function of the quantum electron gas,

FIG. 4. Single-particle distribution function of an electron gas
a function of (lp)2/2: Ideal system~dashed! and HF model~solid
line!. There is included also the distribution function multiplied b
(lp)2/2. The parameters arel/aB55, bm51 ~free!, and bm
50.530 02~HF!.
04640
l

al

n

as

ll-
r
ri-

g~r !5gid~r !1gMW~r !, ~39!

with gid(r )511gHF(r ) is compared to that in the~classical!
Debye limit gD512e2/(kBT)•exp(2kr)/r, which diverges
at zero distance. However, here it is not sufficient to ta
only HF and MW. There follows an unphysical behavi
with negative values at small distances. If higher densi
and higher temperatures are considered the HF and MW
proximations are more justified. In Fig. 7, such a situation
given for an electron gas with temperatureT513106 K and
density n51.931024 cm23. For comparison, different ap
proximations are shown. In contrast to the Debye appro
mation, we get positive radial distribution functions at a
distances.

V. CONCLUSION

The aim of this paper was to study the influence of qu
tum and correlation effects on the different parts of the int
nal energy as well as on the distribution functions for den
nonideal plasmas using quantum statistical theory. In part

s FIG. 5. Correlation functionsg21 for an electron gas in HF and
MW approximations: Ther dependence (p dependence! for HF is
shown by the dash-dotted~dotted! line and for MW by the solid
~dashed! one. The results in the Debye limit are given by circle
Temperature and density arekBT51 Ry andn51.3531023 cm23.

FIG. 6. Radial distribution functiong(r )5gid(r )1gMW(r ) for
an electron gas withkBT51 Ry andn51.3531023 cm23 ~solid!.
The corresponding distribution function in the Debye limit is giv
by the dashed curve.
5-7
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lar, the Hartree-Fock and Montroll-Ward approximatio
were applied to the quantum electron gas. Usually, the
relations in quantum systems lead to an increase of the m
value of the kinetic energy. However, we found that the o
posite case is possible, too, i.e., for certain densities
temperatures there is a lowering of the mean kinetic ene
as compared to that of an ideal system. This fact has als
be expected for electron-ion plasmas. This special correla
effect follows if the Hartree-Fock term dominates t
exchange-correlation contribution to the internal energy.

FIG. 7. Radial distribution functiong(r ) for an electron gas in
different approximations:g5gid1gMW ~solid!, gid ~dashed!, g51
1gMW ~dotted!, Debye approximation~long dashed!.
e

04640
r-
an
-
d
y
to
n

t

the same time the single-particle distribution function
shifted to smaller momenta. The radial distribution
changed as compared to the Debye behavior.

Our calculations confirm results found in path integ
Monte Carlo simulations by Pierloniet al., for fully ionized
hydrogen, and those recently found by Militzer and Pollo
@22# for the electron gas model at finite temperatures. In R
@22#, hydrogen was considered, too.

In this way, the quantum statistical calculations presen
here are of importance for closing the gap between analyt
approaches and numerical simulations. Furthermore, the
sults may be of interest for the understanding of special f
tures, such as cooling of strongly coupled plasmas. Mo
over, a detailed investigation of the EOS is of interest fo
determination of the speed of sound for the interpretation
solar oscillations, and for the features of the hygoniots fr
shock experiments@33#.
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