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Theoretical study of the field-induced pattern formation in magnetic liquids
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When a thin layer of magnetic fluid confined with an immiscible nonmagnetic liquid is subjected to a
perpendicular field, the formation of hexagonal and labyrinthine patterns is observed experimentally. To de-
velop a coherent theoretical description of this phenomenon, the free energy functionals of both types of
magnetic structures are derived. Both energy functionals have the same form, which explains that the theoret-
ical results found in this paper for hexagonal and labyrinthlike striped patterns are analogous. The size of the
patterns is determined by minimizing the free energy. The influence of the method for computing the magnetic
energy on the theoretical results is studied. An accurate computation of the magnetic energy proves important
in predicting the experimental pattern size as a function of external field and of layer height. How the results
change, when a constant magnetization is assumed during the pattern formation is also investigated. The
transition between hexagonal and striped structures is studied by a comparison of their free energies. The ratio
of the magnetic to the nonmagnetic liquid is found to be an important factor for the relative stability of the
patterns. In agreement with experiments, striped structures are observed at large phase ratios, whereas at small
phase ratios hexagonal patterns predominate.

DOI: 10.1103/PhysRevE.66.046306 PACS number~s!: 47.54.1r, 47.65.1a, 77.84.Nh
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I. INTRODUCTION

When magnetic fluid films are subjected to an exter
magnetic field, the formation of static patterns can be
served experimentally@1#. For a field perpendicular to th
plane of the film, two types of patterns are found: labyrin
and hexagonal arrays of columns. The formation of la
rinths was reported in Refs.@2–5# ~labyrinthine instability!,
where the magnetic fluid is confined with an immiscible no
magnetic liquid between closely spaced horizontal gl
plates ~Hele-Shaw cell!. Labyrinths were also observed i
thin layers of demixed ferrofluids@6# or of magnetic liquids
forming aggregates@7# sealed in a Hele-Shaw cell with
height of several micrometers. A variation of the fie
strength can lead to a transition between labyrinthine
hexagonal structures@5–8#. Hexagonal patterns also appe
at the free surface of magnetic fluids subjected to a vertic
oriented magnetic field~Rosensweig instability! @1#. In our
laboratory, solid mesostructures of cobalt nanocrystals w
recently observed, when a solution of the magnetic nano
ticles is evaporated while applying a magnetic field@9#.
These mesostructures are also of hexagonal and labyrin
types.

The patterns are formed by the interface between
magnetic and the nonmagnetic phases and their forma
can be explained by the competition between the magn
and the surface energy. The surface tension tends to m
mize the area of the interface, whereas the interaction
tween the magnetic dipoles favors an extended interface

An understanding of the formation of these patterns is
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general interest. In a wide variety of physical and chemi
systems, the formation of similar structures is also attribu
to the presence of competing interactions. Thus, labyrin
and hexagonal patterns appear in magnetic garnets,
phiphilic ‘‘Langmuir’’ layers, films of block copolymers and
type I superconductors subjected to magnetic fields@10–13#.

A theoretical approach to describe the pattern formation
ferrofluids is proposed. The results obtained by this meth
~called ‘‘A’’ ! are compared to those of two approach
~called ‘‘B’’ and ‘‘ C’’ !, which were proposed in the literatur
@4,14#. All three methods are based upon a minimization
the free energy which was already successfully used to s
the Rosensweig instability@15,16#. The main difference be-
tween the three methods is the way of computing the m
netic energy, for which an exact computation is still a co
plicated task. In methodA, the magnetic energy is calculate
in the most accurate way. In particular, thenonuniformityof
the demagnetization field is taken into account. Usually,
energy difference between hexagonal and striped pattern
very small as we will show in the following. Therefore, hig
accuracy in the energy calculation is especially importan
the study of the transition between both structures, which
one of our objectives. The less accurate methodB was pro-
posed by Rosensweiget al. @4# who developed a theory fo
spacing of the labyrinthine stripes. The approximation w
made that the demagnetization field isuniform and equal to
that in the center of the labyrinthine stripes. It was recen
shown that this approach predicts the size and spacing o
stripes in good agreement with experiments only at l
fields @17#. At high fields, methodB fails to predict the de-
crease in the stripe width, which is correctly reproduced
methodA. A third way of computing the magnetic energ
~methodC) was recently used by Ytreberg and McKay@14#,
who developed a theory to predict the size and spacing
aggregates in a hexagonal pattern as a function of the e
nal field and the cell height. Their approach is based upon
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RICHARDI, INGERT, AND PILENI PHYSICAL REVIEW E66, 046306 ~2002!
assumption of aconstantmagnetization during the patter
formation due to particle aggregation.

A minimization of the free energy containing surfac
magnetic, and entropy terms gives the most favorable
and energy of the patterns.

The objective of this paper is twofold. First, the influen
of the methodsA, B, andC of computing the magnetic en
ergy upon the theoretical results is studied. The theoret
predictions are compared to experimental data. Second
energy functionals are derived for striped and hexagonal
terns. This enables us to compare the geometry and ener
both types of ferrofluid patterns. Thus, the relative stabi
of structures and possible transitions between labyrinth
and hexagonal patterns can be investigated theoretically
our knowledge, the theories published in the literature h
been restricted to either labyrinthine@4,17# or hexagonal pat-
terns@14# except for a very recent mean-field approach@18#.
As the energies of both types of patterns are usually v
close~less than 2%!, the free energy must be evaluated w
a high numerical precision to give correct information on t
relative stability.

The labyrinth is described by an idealized pattern of p
allel stripes. The presence of convolutions and nodes in
labyrinth are likely the result of nonequilibrium growth
These features are neglected in our approach follow
Rosensweiget al. @4,17#.

The paper is organized as follows. In Sec. II, the fr
energy functional for striped and hexagonal patterns are
rived and the different ways of computing the magnetic
ergy are discussed. In Sec. III, we describe the propertie
the ferrofluid systems, which are investigated here. The
oretical and experimental trends as a function of the fi
strength and of the cell height are compared in Sec. IV.
nally, the transition between hexagonal and striped patte
is investigated. These results are compared to experim
and other theories.

II. THEORY

A. Description of the magnetic patterns

Following Rosensweiget al. @1,4#, the labyrinth is ideal-
ized as a repeating pattern of infinitely long parallel strip
The hexagonal pattern is described as a hexagonal arra
cylindrically-shaped magnetic matter~see, Fig. 1!. Recent
experiments@19# have shown that aggregates in ferroflui
emulsions can have tapered or split ends. Here, we will
strict ourselves to the study of idealized structures, beca
the theoretical results obtained using this approach ar
good agreement with experimental data@17#. Drikis et al.
@20# recently studied the formation of real labyrinthine pa
terns by a theoretical approach. They show that the str
stripe distances of realistic labyrinthine patterns agree w
with the values calculated for the idealized system of stra
stripes studied here. Therefore, we think that in spite of
strong idealization the used description of the structures
give reasonable estimates of the pattern size. Moreover
inherent symmetries of these patterns can be used to com
very precise estimates of the free energy.
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The nomenclature is illustrated in Fig. 1.L denotes the
height of the cell. For the hexagonal pattern, the radius o
cylinder is r 0, while the width of a labyrinthine stripe is
denoted bywf . The energetically most favorable value ofr 0
or wf depends on the external fieldH0, the pattern heightL,
the magnetic susceptibilityx, the interfacial tensions and
the volume fractionf of the magnetic fluid. In the selecte
laboratory frame, thex axis is parallel to the direction of the
external magnetic field and for the striped pattern, the stri
are along they axis.

B. Magnetic energy

The free energy of the hexagonal and striped patterns
be formulated as the sum of the magnetostatic termFm , the
surface termFs and the entropy term2TS. In the following
section the computation of the magnetic energy is explai
for the most accurate approachA. Then, it will be shown
how the calculations change when the approximations
methodsB andC are introduced.

Method A. According to classical magnetostatics~see,
Jackson@21#, page 213! the energy change resulting from th
introduction of a magnetic medium to an empty region c
be written as

Fm5
1

2E H•Bdr2
m0

2 E H0
2dr ~1!

52
m0

2 E
Vm

M ~r !•H0dr . ~2!

Vm indicates that the integral is over the volume of the ma
netic medium. The magnetic inductionB is given by the
relationshipB5m0(H1M ). The total magnetic fieldH(r ) at
a point r within a stripe or a cylinder is the intensity of th
applied fieldH0 less the demagnetization fieldHd(r ),

FIG. 1. Sketch of the idealized structures used to describe la
rinth and hexagonal patterns. The shown structural fragments re
themselves to form an infinite periodic pattern in they andz direc-
tions. The geometric parameters are illustrated and the used g
frame is shown.
6-2
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THEORETICAL STUDY OF THE FIELD-INDUCED . . . PHYSICAL REVIEW E66, 046306 ~2002!
H~r !5H01Hd~r !. ~3!

Equation ~1! only holds for magnetic media with a linea
relationship between the magnetizationM (r ) and the mag-
netic fieldH(r ):

M ~r !5xH~r !5x@H01Hd~r !#, ~4!

where Eq.~3! was used.x is the susceptibility of the medium
within the cylinders or stripes.

The demagnetization fieldHd(r ) is calculated as follows
First, the fieldH i(r i) due to a single cylinder or stripe wit
its center atr i is evaluated from~see, Jackson@21#, p. 186!

H i~r i !5E
Vm

dr
1

4p~r2r i !
3

3H 2M ~r !1
3@M ~r !•~r2r i !#~r2r i !

~r2r i !
2 J . ~5!

Due to the complex dependence ofM (r ) upon r , the inte-
grals cannot be solved analytically. Therefore, the integ
were evaluated making use of the Romberg method@22#. To
reduce the computing time, the variation ofM (r ) in the x
direction was neglected during the evaluation ofH i(r ).
Therefore, the magnetizationM (r ) can be replaced by its
x-averaged valueM̄ (r ) in Eq. ~5!.

TheH i values of all cylinders or stripes are summed up
obtain the total demagnetization field atr :

Hd~r !5(
i

H i~r2r i !, ~6!

wherer i are the center positions of the labyrinthine stripes
of the cylinders in a hexagonal grid.

The details of the calculation of the demagnetization fi
are explained in the Appendix. In particular, the correct tre
ment of the long-range dipolar interactions is derived.

The magnetization in a hexagonal pattern is obtained
an iterative procedure for a given set of parametersf, x,
H0 , L, andr 0. It starts with the choice of an arbitrary initia
magnetizationMguess(r ). Then, at a large number of points
the cylinder, the demagnetization field is calculated from
magnetization using Eqs.~A2! and ~6!. The long-range cor-
rection from Eq.~A4! is taken into account. At each point
new estimate of the magnetization is calculated from

Mx,new~r !5
xH0

12xHd,x~r !/M̄ x,guess~r !
. ~7!

The use of this equation instead of the analogous relation
~4! greatly speeds up the convergence of the iterative pro
dure.

Self-consistency is reached, if the new magnetizat
Mnew(r ) agrees withMguess(r ). If self-consistency is not
reached, the iterative procedure restarts with the calcula
of the demagnetization field for the new magnetization
04630
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Mguess(r ). For the striped pattern, the magnetization is o
tained by an analogous iterative procedure.

Method B. This approach is the corrected form@17# of the
theory proposed by Rosensweiget al. @1#. The magnetic en-
ergy is obtained from the magnetization using Eq.~2! as
before. The only difference from methodA is the assumption
of a uniform demagnetization field in the pattern. The d
magnetization fieldsHd(0) at the center of the cylinders o
stripes are calculated as before using an arbitrary unifo
magnetizationM 8. Then the magnetization is approximate
by Mx(r )'xH0 /(12xHd,x(0)/M 8) @see, Eq.~7!#. An itera-
tion as in methodA is not necessary.

Method C. This method is based on the assumption int
duced by Cebers and Maiorov@3# and used in many paper
@14,20,23–25# that the magnetization of the ferrofluid is con
stant during the formation of patterns. This is a reasona
assumption for patterns which form due to the aggregation
ferromagnetic particles coated by surfactant with long al
chains @26#. Hong et al. @7# show that the particles form
small chains immediately after the application of the fie
Then, during the rather slow pattern formation, the partic
cannot change their orientation due to the interdigitation
the alkyl chains. If the particles are not superparamagne
the magnetic dipoles of the particles do not change dur
the pattern formation due to the fixed orientations. This le
to a constant magnetization within the aggregates during
pattern formation. The magnetization is uniform and has
value observed before the pattern formation. Due to the c
stant magnetization, the magnetic inductionB in Eq. ~1!
must be replaced by the magnetic fieldH:

Fm5
m0

2 E H•Hdr2
m0

2 E H0
2dr

5m0E Hd•H0dr1
m0

2 E Hd•Hddr , ~8!

where Eq.~3! was used.
The first term on the right side does not change during

pattern formation and can be ignored in the energy mini
zation. The second term represents the repulsion of the m
netic dipoles induced by the external field. The dipoles c
be represented as monopoles at the ends of the cylinde
stripes with the chargem0Mdzdy. Therefore, the second
term of Fm can be also calculated from the interaction b
tween the magnetic monopoles@see, Rosensweig@1#, page
30#:

Fm,25(
i 51

N0 M2m0

4p E dy1dz1E dyidzi

3H 1

A~s12si !
2

2
1

A~s12si !
21L2J . ~9!

The sum is over all cylinders or stripes in the pattern. T
first term in the parenthesis is the repulsion between the
and between the bottoms. The second term is the attrac
between the ends in opposite planes.si5(yi ,zi) denotes all
6-3
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RICHARDI, INGERT, AND PILENI PHYSICAL REVIEW E66, 046306 ~2002!
points at the top of the cylinder or stripei. Long-range cor-
rections are calculated in a way analogous to that which
be shown for the demagnetization field in the Appendix.

Jacksonet al. @24# show that there are two other equiv
lent forms of computing the magnetic energy beside Eq.~9!.
In particular, the third form derived in Ref.@24# is useful in
the computation for realistic models of labyrinthine patter
For the idealized structures studied here the integrals in
~9! were solved analytically and it was not necessary to
the other forms proposed in Ref.@24#.

In methodC the magnetization is calculated from its in
tial valueM init observed before the pattern formation:

M5
M init

f
5

x initH init

f
, ~10!

where x init5fx is the initial susceptibility, H init5H0
1Hd, init and Hd, init52M init . The way of calculating the
magnetization differs from that used in other papers@20,23–
25#.

Comparison of the three methods

To sum up, there are three different approaches to c
pute the magnetic energy. In approachesA and B, Fm is
obtained from the magnetization using Eq.~2!. It is assumed
that the magnetization changes during the pattern format
In the first approach,A, the magnetization is calculated by
self-consistent iterative procedure which has been discu
above. The only approximation is the neglect of the variat
of the magnetization in thex direction. Preliminary results
show that the deviation of the magnetic energy caused
this approximation is less than 1%@27#. This should be com-
pared to the energy difference of about 5% caused by
approximations of methodB proposed by Rosensweiget al.
@4#. This approach assumes a uniform demagnetization fi
The magnetization is calculated from its value at the cen
of the cylinders or stripes. The third approachC consists of
the use of Eq.~9! implying a constant magnetization durin
the pattern formation. Of course, the value of the magn
energy obtained by this method is completely different fro
the results of approachesA andB.

C. Surface energy and entropy term

Several forms of the surface energy have been used in
literature. For electrorheological fluids, Halsey and Torr@28#
propose a surface term, that depends upon the electric fi
The same form was also used by Liuet al. @29# for magne-
torheological fluids. The dependence of the surface term
the field accounts for the differences between the local fie
experienced by the nanoparticles at the surface and insid
cylinders or stripes. In contrast to Liuet al. @29# we explic-
itly take the nonuniformity of the demagnetization field in
account except for methodB. Therefore, we will use a simple
hypothesis introduced by Rosensweiget al. @4#, which as-
sumes that the interfacial tensions is independent of the
field and depends only on the two substances present a
interface. Measurements of ferrofluid surface tensions
confined geometries support this hypothesis@30#. Since we
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assumed a cylindrical shape of the magnetic matter, we m
introduce two terms for the surface energy of the hexago
pattern: one for the sides and the other one for the top and
the bottom. The surface energy for a single aggregate is

Fs,h5s~2pr 0L !12s8~pr 0
2!, ~11!

wheres and s8 denote the interfacial tension at the sid
and at the ends of the cylinders, respectively.

In order to compare the surface energy of the hexago
patterns for different radiir 0 , Fs,h is divided by the average
surface area per cylindersh ,

sh5pr 0
2/f. ~12!

Only the first term of the resulting equation depends onr 0.
Therefore, the second term can be ignored when the ener
cally favored radius of the cylinders is calculated~compare
with Ref. @14#!.

The surface energy of a stripe in a labyrinth is given
@4#

Fs,l52s~y0L !12s8~y0wf !, ~13!

where y0 is the length of the stripe.Fs is divided by the
average surface area per stripe

sl5y0wf /f. ~14!

For the same reason as discussed above the second te
Eq. ~13! can be ignored.

For micrometric cell heights, the entropy term of the fr
energy is expected to become significant. Therefo
Ytreberg and McKay@14#, calculated the entropy from th
numberN0 of aggregates in the cell. They proposed to u
N0! for the number of states accessible to the system. Us
the entropy termkBT ln N0! we have found that it is only
important in determining the pattern geometry at values foL
smaller than 2mm. As we restrict our study to cell height
larger than 2mm, this entropy term is not taken into accou
in the following. Moreover, we are not sure that the equat
N0! gives the correct number of accessible states. To
mind, this approach neglects the fact that the number of
ticles in the aggregates changes withN0. Another form of
taking the entropy into account is the use of the entropy o
gas on a lattice@18#. But in our way of describing the pat
terns this term is zero. More sophisticated entropy mod
are now being developed and might prove of interest in
ture studies of pattern formation on mesoscopic scales@9#.

D. The free energy functional of patterns in ferrofluids

In the methodsA andB the free energy per surface are
for the hexagonal pattern is formed by combining Eqs.~2!,
~11!, and ~12!. When we eliminate the terms which do n
depend onr 0 we arrive at

Fh5fH 2
L

r 0
s2

1

2
m0L^M &hH0J , ~15!
6-4
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THEORETICAL STUDY OF THE FIELD-INDUCED . . . PHYSICAL REVIEW E66, 046306 ~2002!
where ^M &h is the volume-averaged magnetization in t
magnetic phase of the hexagonal pattern.

Using Eqs.~2!, ~13!, and ~14! the free energy functiona
for the striped pattern can be written as

Fl5fH 2
L

wf
s2

1

2
m0L^M & lH0J . ~16!

^M & l is the volume-averaged magnetization in the magn
phase of the stripes. In methodC, the magnetic energy term
is replaced by the expression in Eq.~9!.

In accordance with Refs.@1,4,14,29# we treat the pattern
formation as a quasiequilibrium process. Indeed, studies
the dynamics of labyrinth formation indicate that the fin
geometry of the patterns is largely determined by the str
ture of the energy functional@23#. Thus, reasonable estimate
of the sizesr 0 andwf can be obtained by a minimization o
the free energy given in Eqs.~15! and~16!, respectively. The
minima are located numerically using the Newton-Raph
method@22#.

Let us compare Eqs.~15! and ~16!. We find that the free
energy functional has the same form for a hexagonal an
striped pattern except for an exchange ofr 0 andwf . More-
over, we will show that the field and, therefore, the mag
tization are very similar in both structures for the same v
ues of r 0 and wf . The similarity of the energy functional
explains why the theoretical trends observed for hexago
and striped patterns are analogous, as will be shown in
IV.

III. STUDIED SYSTEMS

The pattern formation in very different systems can
studied using the theory proposed here. Systems rang
diversity from ferrofluids confined with immiscible liquid
@4,5# to magnetic liquids forming aggregates@7,29#. To arrive
at general conclusions on the field-induced pattern form
tion, we have chosen to study two completely different s
tems.

~i! System 1 was examined both theoretically and exp
mentally by Rosensweiget al. @4#. A ferrofluid is confined
with an immiscible nonmagnetic fluid between two paral
plates separated by a height varying from 0.4 to 1.2 mm.
experimental values of the initial susceptibility and the int
facial tension are taken from Ref.@4# (x51.6 and s
50.0043 Nm21).

~ii ! System 2 is a pure ferrofluid confined between t
plates with a separation of several micrometers as studie
the experiments of Ref.@7# . The application of the magneti
field causes a separation of the ferrofluid into a highly c
centrated and a very diluted magnetic phase. The hexag
and labyrinthine patterns are made of the concentrated ph
where the magnetic particles can form aggregates and, th
fore, methodC can give valuable information. In compariso
with system 1, the second one is characterized by a la
susceptibility and a much smaller interfacial tension. In
cordance with Ref.@14#, we assume that the magnetic pa
ticles are randomly packed in the cylinders or stripes. Th
the volume fraction of magnetic particles in the aggregate
04630
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equal to the packing fraction for randomly placed sphe
(g50.638). The magnetic particles studied experimenta
in Ref. @7# have an average diameterd of 11.8 nm. From the
particle diameterd, the volume fractiong and the domain
magnetization of magnetite (4.463105 Am21) the initial
susceptibility within the aggregates can be estimated fr
the Langevin formula@Ref. @1#, page 59#. A value of 11.7 for
x is found. We employ the interfacial tension proposed
Ytreberg and Mckay@14# in their study of the experiment
by Honget al. (s51.131026 Nm21). The small value ofs
is in accordance with Bacriet al. @6#, who find for their
systems of demixed ferrofluids, that the surface tension
tween the two co-existent demixed phases is 10 000 tim
lower than in ordinary liquids.

A systematic study for both systems usingf values be-
tween 0.1 and 0.8 has been carried out. System 1 is studi
field intensities up to 0.25 T and for heights between 0.4 m
and 1.2 mm in accordance with the experimental res
given by Rosensweiget al. @4#. For system 2, the heightL
varies from 1mm to 50mm. The highest field strength
studied for this system range up to 0.03 T. At each st
point, the aggregate size is found by minimization of the fr
energy using the three different methods for the calculat
of the magnetic energy discussed above. We want to em
size that the results presented in the following section
particular states are used to illustrate the general conclus
drawn from the systematic study.

IV. RESULTS

A. Dependence of the results on the theoretical approach

In this section, we first compare the pattern sizes p
dicted by the three different methods of computing the m
netic energy. The evolution of the pattern size is studied a
function of the field strength and of the cell height. Here,
focus on either striped or hexagonal structures. The transi
between both structures is studied in the following sectio

In Fig. 2, plots of the energetically favorable width of th
labyrinthine stripes as a function ofH0 are shown for the

FIG. 2. Dependence of the normalized stripe widthwf /L in
labyrinths on the external fieldH0 for system 1. The theoretica
results of the three methods of computing the magnetic energy
compared to experimental data. The cell height and volume frac
are fixed atL50.9 mm and atf50.5. The experimental points
were obtained from Ref.@4#.
6-5
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RICHARDI, INGERT, AND PILENI PHYSICAL REVIEW E66, 046306 ~2002!
three approaches. Thex ands values correspond to syste
1. The volume fraction and the cell height are fixed atf
50.5 and atL50.9 mm. These parameters were chosen,
cause experimental data were published for this system
Ref. @4#. The dots in Fig. 2 are the experimental data poi
obtained from Ref.@4#. Rosensweiget al. @4# found that ap-
proach B correctly predicts the experimental data in t
whole range of studied fields. Recently, we observed that
good agreement between theory and experiment at
fields was only due to errors in the computation of the th
retical values made in Ref.@4# ~see, discussion in Ref.@17#!.
A correct recalculation of the energetically favorable str
widths using approachB indicates excellent agreement wi
the experimental data at low fields, as can be seen in Fig
In contrast, approachB is not able to correctly reproduce th
decrease inwf on increasing the field. The small variation
wf at high fields is due to the fact that the homogeneous li
of the magnetic energy expected forwf→0 is already
reached for values ofwf /L'0.3 @17#. Therefore, a further
reduction of the stripe width does not change the magn
energy and cannot contribute to a minimization of the f
energy.

The comparison with the results obtained from methodA
using a nonuniform demagnetization field shows the in
ence of the uniform approximation of approachB on the
calculated stripe widths. In both methods a minimum fie
value of about 0.01 T is required to establish the strip
pattern. The approach using nonuniform magnetization p
dicts a larger threshold value ofH0 for the pattern formation.
This larger threshold value cannot be confirmed by exp
ments. At low fields the new approachA gives larger stripe
widths. The decay of the stripe width observed experim
tally can be correctly reproduced by methodA. Obviously,
the neglect of the nonuniformity of the magnetization
methodB is an important factor, causing the wrong behav
of the approach proposed by Rosensweiget al. @4# at high
fields.

MethodsA and C give very close results. This is some
what surprising, because the two methods explain the pa
formation in very different ways. In methodA, the pattern
formation leads to a less negative demagnetization fi
SinceM5x(H01Hd), the magnetization within the ferro
fluid increases and, according to Eq.~2!, the magnetic energy
is reduced with formation of striped or hexagonal patterns
approachC, assuming a constant magnetization, the patt
formation is explained by the reduction of the interacti
energy between the magnetic moments caused by the i
calation of a nonmagnetic phase within the magnetic ma
We conclude that the assumption of a constant magnetiza
does not necessarily lead to a different size of the patt
which could be easily distinguished experimentally.

We now turn to the variation of the pattern size with t
cell height. Figure 3 is a plot of the energetically favorab
radius of cylinders as a function of the heightL using the
three methods to compute the magnetic energy. The value
x ands correspond to system 2. The external field and
volume fraction are fixed atB050.005 T and atf50.5,
respectively. In comparison with methodB, the results for
constant~methodC) and nonuniform magnetization~method
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A) are close. The results of the micrometric system 2
shown here, because most of the experimental studies on
decrease of the pattern size with the height were carried
under similar conditions@7,9,29,31#. Except at very smallL,
our theoretical data points can be well represented b
power law of the formr 05aLb. For methodsA andC, we
find an exponent close to 0.5, whereas approachB yields a
very different exponent around 0.9. These values can
compared with those obtained by a fit to experimental data
the literature. In Ref.@31# the exponent varies between 0.
and 0.67. Liuet al. @29# obtained an exponent of 0.37 fo
experiments with magnetorheological fluids. Obviously, t
exponents observed assuming nonuniform or constant m
netization fits well in the range of values observed expe
mentally in contrast to that of methodB.

B. Transitions between hexagonal and striped patterns

In several Refs.@5–7,9#, the transition between hexagona
and striped structures have been observed experimentall
changing the external field or the height. But it is still n
obvious, which geometric parameter should be taken to co
pare both patterns. We will first address to this questi
Then, the transition between both patterns is studied b
comparison of their free energy.

Hong et al. @7# focused on the aggregate-aggregate d
tance to compare hexagonal and striped patterns, while L
rand et al. @9# used the diameters of the columns and t
widths of the stripes. Figure 4 shows plots ofwf and r 0 of
striped and hexagonal patterns for system 1 as a functio
H0. The results from methodsA andC are shown. MethodB
gives similar agreement betweenwf and r 0. The height and
the volume fraction are fixed atL51.0 mm and atf50.5.
ApproachesA andC predict that under the same condition
such as the external field, the width of the wall in a strip
pattern should be close to the cylinder radius in a hexago

FIG. 3. Dependence of the cylinder radiusr 0 in hexagonal pat-
terns on the cell heightL for system 2. The theoretical results of th
three methods of computing the magnetic energy are compared.
external magnetic field and volume fraction are fixed atB0

50.005 T and atf50.5.
6-6
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pattern. This can be explained as follows. First, as discus
in Sec. IV, the free energy functional has the same form
both patterns, when the geometries are described bywf and
r 0. Second, the demagnetization field and the magnetiza
are very similar in both structures for the same value forwf
and r 0. We conclude that the stripe width should be co
pared to the cylinder radius when striped-hexagonal tra
tions in ferrofluids are investigated.

Finally, a last question arises: Can we understand the t
sitions between hexagonal and labyrinthine structures
served experimentally@5–7,9#? Thus, the energies of bot
types of patterns are compared. The free energy per sur
Fh andFl of both patterns are calculated from Eqs.~15! and
~16! using the energetically favorable values ofr 0 and wf .
Most structural transitions are experimentally observed b
variation of the magnetic field. Therefore, the normaliz
energy difference (Fl2Fh)/Fl in % is plotted as a function
of external field. The three Figs. 5~a!–5~c! show the theoret-
ical results for the three different ways of computing t
magnetic energy. Volume fractions varying fromf50.1 to
f50.8 were studied and the results for four representativf
values are given. The values ofx ands correspond to sys-
tem 1. The cell height is fixed atL51 mm. (Fl2Fh)/Fl
,0 indicate a higher stability of the striped patterns, wher
(Fl2Fh)/Fl.0 reveals the energetical preference of he
agonal structures. All three approaches predict the existe

FIG. 4. Comparison of the geometrical parameters used to
scribe hexagonal and striped patterns. The dependences ofr 0 and
wf on the external fieldH0 are shown for system 1. The cell heigh
and volume fraction are fixed atL51.0 mm and atf50.5. The
results of two methods of computing the magnetic energy are p
ted.
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FIG. 5. Normalized free energy differences (Fl2Fh)/Fl as a
function of the field for four representative ratiosf of the magnetic
to nonmagnetic phases. The results for~a! methodsA, ~b! B, and~c!
C are shown for system 1. The cell height is fixed atL51.0 mm.
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of hexagonal patterns at low volume fractions, whereas la
rinths should predominate at large values off. For methods
A and C, a critical phase ratio betweenf50.3 and 0.4 is
observed for the transition. The less accurate approacB
yields a smaller transition value off. Method B also pre-
dicts a transition to a labyrinth at very weak fields for sm
f, which is not confirmed by the more accurate approachA.
The comparison of the energy differences obtained by m
ods A and B indicates that the consideration of the nonu
formity of the demagnetization field strongly decreases
absolute energy differences at large values off. A thorough
study of the energy differences for system 2 usingL
52 mm qualitatively led to the same conclusions. In partic
lar, the samef is found for the structural transition.

The theoretical results for the pattern stability can
compared with experiments and other theories. Our appro
predicts very small energy differences, less than 1%, ov
broad range off and H0. Obviously, the morphologically
very different striped and hexagonal structures can be e
getically quite close. This gives the possibility of a transiti
between both patterns observed experimentally. The theo
ical results have revealed the importance of the phase
for the pattern stability. A systematic experimental study
the predominant pattern as a function off is still missing.
However, it is interesting that all the experiments whi
show the existence of hexagonal patterns were carried o
low f @e.g.,f50.2 in Ref.@5# andf50.2–0.3 in Ref.@7##.
In both experimental studies, increasing the fieldH0 leads to
the transition to a striped pattern. In our calculations us
the accurate methods,A and C, we have never observed
transition between hexagonal and striped structures b
variation of the field. Figures 5~a!–5~c! only show that the
stability of the hexagonal pattern with respect to the strip
one decreases on increasing the field for smallf. Ytreberg
et al. @14# proposed a theory to explain the transition b
tween hexagonal and striped structures by a variation of
field. They observed the loss of the local minimum in t
free energy of hexagonal patterns for very small and h
field intensities. The loss of this minimum also appears
very small cell heights. They concluded that, in these regi
of parameter space, hexagonal patterns will not be fou
and a transition to other patterns could be expected. T
they established a phase diagram, which seems to predic
transition between hexagonal and striped patterns as a f
tion of the magnetic field and of the cell height. In our ca
culations, a loss of the local minimum inFh is also found at
small H0 ~see, Fig. 2!. But it is due to the fact that a mini
mum field strength is required to establish the pattern
counteract the interfacial tension. The same is also obse
for the striped structures. Using methodsA and C, we find
that the theoretical threshold values of the field for the f
mation of hexagonal and striped patterns are almost
same. Our calculations do not predict any range of fie
where only one of both patterns exists. Therefore, we can
show that the loss of the minimum at small fields rea
involves a transition between hexagonal and striped st
tures. For all three approaches, we never observed a lo
the local minimum at high fields even with the entropy te
proposed in Ref.@14#. In methodC, which is very close to
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the approach in Ref.@14#, the energetically favorable radiu
of the cylinders markedly decreases at large fields, but
always well defined. Ng and Vanderbilt@32# studied similar
transition between striped and hexagonal droplet phases
two-dimensional~2D! model with dipolar interaction. In
spite of the idealization of a two-dimensional model th
results agree well with our observations. The striped str
ture is stable near area fraction 0.5 with transition to
hexagonal pattern at 0.286.

At the time of writing, we became aware of a mean-fie
approach which was developed by Lacoste and Luben
@18# to study the pattern formation in ferrofluids. In goo
agreement with our results, they observe hexagonal st
tures at lowf and labyrinths at largef. At an even larger
phase ratio an inverted hexagonal structure is found, wh
was not taken into account here. In a narrow range of
values they predict a field induced transition from hexago
to striped structures. This might be due to the inclusion
entropy terms in their model, their description of the patte
using 2D Fourier transforms or the density variations
lowed in their model. Recent experiments by Honget al. @8#
show that the transition from hexagonal to labyrinthine p
terns experimentally observed in Ref.@7# must be attributed
to the existence of long-range grain boundaries. If the nu
ber of grain boundaries is reduced, the field-induced tra
tion to labyrinths is no longer observed. Obviously, expe
ments and theoretical studies indicate that the labyrinth
patterns experimentally observed for small volume fractio
are only metastable. In fact, the theoretical study of the la
rinthine pattern formation by Langeret al. @23# agrees with
this conclusion. They studied the evolution of a circular f
rofluid drop between two plates after applying a field. C
culations show that the modes to a fission of connected st
tures into smaller droplet are not the most unstable on
Indeed, Langeret al. @23# observe that the initial drops al
ways form simply connected striped pattern and never br
up into smaller droplets, although the global minimum
actually obtained for widely dispersed droplets. This und
scores the necessity of considering the dynamics rather
statics in understanding the kind of patterns experiment
observed.

V. CONCLUSIONS

A free energy approach was developed which predicts
experimental geometries of field-induced hexagonal a
labyrinthine patterns. Correct handling of the nonuniform
of the demagnetization field is important to reproduce
experimental behavior at large fields. The experimen
trends of the pattern size as a function of cell height are a
better described by the nonuniform approach. Although
calculation of the magnetic energy by the methodC is very
different from the more accurate methodA, the calculated
results are quite similar. This shows that methodC widely
used in the literature@14,20,23–25# can give reliable results
in particular at high fields where methodB fails. In spite of a
completely different morphology, the theoretical results
the hexagonal and striped patterns are very close, as
served in experiments@5#. This is due to the fact that the fre
6-8
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THEORETICAL STUDY OF THE FIELD-INDUCED . . . PHYSICAL REVIEW E66, 046306 ~2002!
energy functionals of both patterns have the same form.
der the same conditions the cylinder radius of a hexago
pattern and the stripe width are very close. The compari
of the free energies of hexagonal and striped patterns sh
the importance of the ratio of the magnetic to the nonm
netic phases for the pattern stability. In agreement with
periments and other theories, hexagonal patterns are fou
low f, whereas labyrinths predominate atf.0.3. The
theory does not predict a transition between both patte
induced by a variation of the field in agreement with rec
experiments.
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APPENDIX

Let M̄ (r ) be thex-averaged magnetization

M̄ ~r !51/LE
2L/2

L/2

M ~r !dx. ~A1!

Due to the symmetry of the studied patterns, they and z
elements of thex-averaged magnetization are zero. It follow
immediately that we can restrict ourselves to the calcula
of the x element of Hd which will give Mx from Mx

5x(H01Hd,x). M is replaced byM̄ in Eq. ~5!. Employing
the independence ofM̄ x of x, the integral overx in Eq. ~5!
can be solved analytically. E.g., in the case of a hexago
pattern, the field due to a cylinder is calculated from

Hi ,x~r i !52
1

4pE2r 0

r 0
dyE

2Ar 0
2
2y2

Ar 0
2
2y2

dzM̄x~r !

3H L/22xi

@~L/22xi !
21~y2yi !

21~z2zi !
2#3/2

2
2L/22xi

@~2L/22xi !
21~y2yi !

21~z2zi !
2#3/2J .

~A2!
n,

gn

I
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The computing time for the demagnetization field was dr
tically reduced using the symmetry properties of the stud
patterns. The long-range interaction between the magn
dipoles is a serious problem in the calculation of the dem
netization field in a magnetic pattern, which is supposed
be infinite in the directionsy andz perpendicular to the field
In the case of the hexagonal pattern, the problem was so
in the following way. For the sum in Eq.~6!, a spherical
cutoff is applied settingHi ,x(r2r i) to zero forr i.r c , where
r c is the cutoff radius. At very large separations from t
central cylinder (r i@r 0) the difference (r2r i) in Eq. ~5! can
be replaced by (r i). For thex element ofH i , Eq. ~5! reduces
to

Hi ,x
lr ~r i !5

pr 0
2L^Mx&

4pr i
3 H 211

3xi
2

r i
2 J , ~A3!

where^Mx& is the x element of the volume-averaged ma
netization.

Then, a long-range correction forHd,x can be evaluated
by integratingHi ,x

lr (r i) due to all the cylinders beyond th
cutoff r c,

Hd,x
lr ~r !5

2pf

pr 0
2 Er c

`

dssHi ,x
lr ~s,x!

5
Lf^Mx&

2 H 2
1

~r c
21x2!1/2

1
x2

~r c
21x2!3/2J , ~A4!

wheres is a vector in theyz plane. In our calculations we
took care that the cutoff, beyond which the long-range c
rection is applied, was sufficiently large to give accurate
sults. The Ewald summation which is used in other pap
@10# is an alternative way to take the long-range interactio
into account. It is expected to give the same results.

Particular attention was paid to the computation
Hd,x(r ) at the bottom and the top of the cylinder, because
integrand in Eq.~A2! has an integrable singularity ifxi
5L/2 or xi52L/2.

The derivation of the relationship for the demagnetizat
field in a striped pattern is very similar to the hexagonal c
discussed above.
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