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Theoretical study of the field-induced pattern formation in magnetic liquids
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When a thin layer of magnetic fluid confined with an immiscible nonmagnetic liquid is subjected to a
perpendicular field, the formation of hexagonal and labyrinthine patterns is observed experimentally. To de-
velop a coherent theoretical description of this phenomenon, the free energy functionals of both types of
magnetic structures are derived. Both energy functionals have the same form, which explains that the theoret-
ical results found in this paper for hexagonal and labyrinthlike striped patterns are analogous. The size of the
patterns is determined by minimizing the free energy. The influence of the method for computing the magnetic
energy on the theoretical results is studied. An accurate computation of the magnetic energy proves important
in predicting the experimental pattern size as a function of external field and of layer height. How the results
change, when a constant magnetization is assumed during the pattern formation is also investigated. The
transition between hexagonal and striped structures is studied by a comparison of their free energies. The ratio
of the magnetic to the nonmagnetic liquid is found to be an important factor for the relative stability of the
patterns. In agreement with experiments, striped structures are observed at large phase ratios, whereas at small
phase ratios hexagonal patterns predominate.
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[. INTRODUCTION general interest. In a wide variety of physical and chemical
systems, the formation of similar structures is also attributed

When magnetic fluid films are subjected to an externako the presence of competing interactions. Thus, labyrinths
magnetic field, the formation of static patterns can be oband hexagonal patterns appear in magnetic garnets, am-
served experimentallyl]. For a field perpendicular to the phiphilic “Langmuir” layers, films of block copolymers and
plane of the film, two types of patterns are found: labyrinthstype | superconductors subjected to magnetic fiflds-13.
and hexagonal arrays of columns. The formation of laby- A theoretical approach to describe the pattern formation in
rinths was reported in Ref§2-5| (labyrinthine instability, ferrofluids is proposed. The results obtained by this method
where the magnetic fluid is confined with an immiscible non-(called “A”) are compared to those of two approaches
magnetic liquid between closely spaced horizontal glasscalled “B” and “ C” ), which were proposed in the literature
plates (Hele-Shaw cejl Labyrinths were also observed in [4,14]. All three methods are based upon a minimization of
thin layers of demixed ferrofluidgs] or of magnetic liquids the free energy which was already successfully used to study
forming aggregate$7] sealed in a Hele-Shaw cell with a the Rosensweig instabilityl5,16. The main difference be-
height of several micrometers. A variation of the field tween the three methods is the way of computing the mag-
strength can lead to a transition between labyrinthine andetic energy, for which an exact computation is still a com-
hexagonal structurd$—8]. Hexagonal patterns also appear plicated task. In method, the magnetic energy is calculated
at the free surface of magnetic fluids subjected to a verticalljn the most accurate way. In particular, thenuniformityof
oriented magnetic fieldRosensweig instabilify[1]. In our  the demagnetization field is taken into account. Usually, the
laboratory, solid mesostructures of cobalt nanocrystals werenergy difference between hexagonal and striped patterns is
recently observed, when a solution of the magnetic nanopasery small as we will show in the following. Therefore, high
ticles is evaporated while applying a magnetic fi¢f. accuracy in the energy calculation is especially important in
These mesostructures are also of hexagonal and labyrinthinke study of the transition between both structures, which is
types. one of our objectives. The less accurate metBodas pro-

The patterns are formed by the interface between th@osed by Rosensweigr al. [4] who developed a theory for
magnetic and the nonmagnetic phases and their formatiogpacing of the labyrinthine stripes. The approximation was
can be explained by the competition between the magnetimade that the demagnetization fielduisiform and equal to
and the surface energy. The surface tension tends to minihat in the center of the labyrinthine stripes. It was recently
mize the area of the interface, whereas the interaction beshown that this approach predicts the size and spacing of the
tween the magnetic dipoles favors an extended interface. stripes in good agreement with experiments only at low

An understanding of the formation of these patterns is ofields [17]. At high fields, metho fails to predict the de-

crease in the stripe width, which is correctly reproduced by
methodA. A third way of computing the magnetic energy

*Electronic address: richardi@sri.jussieu.fr (methodC) was recently used by Ytreberg and McKlay],

"Electronic address: ingert@sri.jussieu.fr who developed a theory to predict the size and spacing of
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address: pileni@sri.jussieu.fr; URL: http://www.sri.jussieu.fr nal field and the cell height. Their approach is based upon the
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assumption of econstantmagnetization during the pattern x4 lahyrinthine pattern
formation due to particle aggregation. —

A minimization of the free energy containing surface,
magnetic, and entropy terms gives the most favorable size
and energy of the patterns.

The objective of this paper is twofold. First, the influence
of the methodsA, B, andC of computing the magnetic en-
ergy upon the theoretical results is studied. The theoretical
predictions are compared to experimental data. Second, the
energy functionals are derived for striped and hexagonal pat-

terns. This enables us to compare the geometry and energy of . —E__t - i ——-']
both types of ferrofluid patterns. Thus, the relative stability iE . __,I_ e ey
of structures and possible transitions between labyrinthine L = T o
and hexagonal patterns can be investigated theoretically. To ;_‘_‘LE— :ﬂ_,j__- —*j
our knowledge, the theories published in the literature have f_[r-_r, = 4 _|:__:3___
been restricted to either labyrinthif®,17] or hexagonal pat- o N e

terns[14] except for a very recent mean-field approat8).
As the energies of both types of patterns are usually very FIG. 1. Sketch of the idealized structures used to describe laby-
close(less than 2% the free energy must be evaluated with rinth and hexagonal patterns. The.shpwn structyral fragmgnts repeat
a high numerical precision to give correct information on thethemselves to form an infinite periodic pattern in thandz direc-
relative stability. tions. The geometric parameters are illustrated and the used global
The labyrinth is described by an idealized pattern of par-'ame is shown.
allel stripes. The presence of convolutions and nodes in real o N
labyrinth are likely the result of nonequilibrium growth. ~ 1he nomenclature is illustrated in Fig. LL.denotes the
These features are neglected in our approach foIIowin@e',ght of'the cell. .For the hexagonal pattgrn, .the radms 'of a
Rosensweigt al. [4,17). cylinder isry, while the W!dth of a labyrinthine stripe is
The paper is organized as follows. In Sec. II, the freedenoted byw; . The energencally most favorable va[uer@f
energy functional for striped and hexagonal patterns are dé’ Wr depends on the external fielth, the pattern height,
rived and the different ways of computing the magnetic enthe magnetic susceptibility, the interfacial tensiorr and
ergy are discussed. In Sec. Ill, we describe the properties ¢h€ volume fractiong of the magnetic fluid. In the selected
the ferrofluid systems, which are investigated here. The theaboratory frame, the axis is parallel to the direction of the
oretical and experimental trends as a function of the fieldXternal magnetic field and for the striped pattern, the stripes
strength and of the cell height are compared in Sec. IV. Fiare along they axis.
nally, the transition between hexagonal and striped patterns
is investigated. These results are compared to experiments B. Magnetic energy

and other theories. The free energy of the hexagonal and striped patterns will
be formulated as the sum of the magnetostatic tEfm the
surface terntg and the entropy term TS. In the following
Il. THEORY section the computation of the magnetic energy is explained
for the most accurate approaéh Then, it will be shown
how the calculations change when the approximations of
Following Rosensweigt al. [1,4], the labyrinth is ideal- methodsB andC are introduced.
ized as a repeating pattern of infinitely long parallel stripes. Method A According to classical magnetostati¢see,
The hexagonal pattern is described as a hexagonal array 9cksorf21], page 21Bthe energy change resulting from the

cylindrically-shaped magnetic mattésee, Fig. 1 Recent introduction of a magnetic medium to an empty region can
experimentd 19] have shown that aggregates in ferrofluids pe written as

emulsions can have tapered or split ends. Here, we will re-

A. Description of the magnetic patterns

strict ourselves to the study of idealized structures, because 1 Mo 5

the theoretical results obtained using this approach are in szzf H~Bdr—? Hodr @
good agreement with experimental ddfer]. Drikis et al.

[20] recently studied the formation of real labyrinthine pat-

terns by a theoretical approach. They show that the stripe- __Ho M(r)-Hodr. 2)
stripe distances of realistic labyrinthine patterns agree well 2 Jvy,

with the values calculated for the idealized system of straight

stripes studied here. Therefore, we think that in spite of thé/\, indicates that the integral is over the volume of the mag-
strong idealization the used description of the structures canetic medium. The magnetic inductidd is given by the
give reasonable estimates of the pattern size. Moreover, threlationshipB= uqo(H+M). The total magnetic fielti(r) at
inherent symmetries of these patterns can be used to compuaepointr within a stripe or a cylinder is the intensity of the
very precise estimates of the free energy. applied fieldH, less the demagnetization fieldi(r),
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H(r)=Hgy+Hqg(r). (3 Mguesfr). For the striped pattern, the magnetization is ob-
tained by an analogous iterative procedure.
Equation (1) only holds for magnetic media with a linear ~ Method B This approach is the corrected fofti7] of the
relationship between the magnetizatibt(r) and the mag- theory proposed by Rosensweigal.[1]. The magnetic en-

netic fieldH(r): ergy is obtained from the magnetization using E2). as
before. The only difference from methddis the assumption
M(r)=xH(r)=x[Ho+Hg(r)]1, (4) of a uniform demagnetization field in the pattern. The de-

magnetization field$4(0) at the center of the cylinders or
where Eq(3) was usedy is the susceptibility of the medium stripes are calculated as before using an arbitrary uniform
within the cylinders or stripes. magnetizatiorM’. Then the magnetization is approximated
The demagnetization field 4(r) is calculated as follows. by M,(r)~xHq/(1— xHqx(0)/M") [see, Eq(7)]. An itera-
First, the fieldH;(r;) due to a single cylinder or stripe with tion as in methodA is not necessary.
its center ar; is evaluated fron{see, Jacksof21], p. 186 Method C This method is based on the assumption intro-
duced by Cebers and Maiord@] and used in many papers
1 [14,20,23-2bthat the magnetization of the ferrofluid is con-
Hi(rp)=[ dr ——— stant during the formation of patterns. This is a reasonable
Vi Amr(r=ri) assumption for patterns which form due to the aggregation of
3AIM(r)-(r—r)](r—r.) ferromagnetic particles coated by surfactant with long alkyl
! “t. (5) chains[26]. Hong et al. [7] show that the particles form
(r—ry? small chains immediately after the application of the field.
Then, during the rather slow pattern formation, the particles
Due to the complex dependence Mf(r) uponr, the inte-  cannot change their orientation due to the interdigitation of
grals cannot be solved analytically. Therefore, the integralshe alkyl chains. If the particles are not superparamagnetic,
were evaluated making use of the Romberg me{l22}l To  the magnetic dipoles of the particles do not change during
reduce the computing time, the variation Mf(r) in the x  the pattern formation due to the fixed orientations. This leads
direction was neglected during the evaluation téf(r). to a constant magnetization within the aggregates during the
Therefore, the magnetizatiod (r) can be replaced by its pattern formation. The magnetization is uniform and has the

X{ —=M(r)+

x-averaged valud/(r) in Eq. (5). value observed before the pattern formation. Due to the con-
TheH; values of all cylinders or stripes are summed up tostant magnetization, the magnetic inductiBnin Eq. (1)
obtain the total demagnetization fieldrat must be replaced by the magnetic figid
M M
Ha(r) =2 Hi(r=ry), (6) Fo="" H-Hdr—;"] HEdr
I
wherer; are the center positions of the labyrinthine stripes or :Mof Hq-Hodr +%f Hg-Hgdr, 8)

of the cylinders in a hexagonal grid.
The details of the calculation of the demagnetization field
are explained in the Appendix. In particular, the correct treatWhere Eq.(3) was used. . _
ment of the long-range dipolar interactions is derived. The first term on the right side does not change during the
The magnetization in a hexagonal pattern is obtained byattern formation and can be ignored in the energy minimi-
an iterative procedure for a given set of parameigysy zation. The second term represents the repulsion of the mag-
Ho, L, andr,. It starts with the choice of an arbitrary initial netic dipoles induced by the external field. The dipo_les can
magnetizatiomM g,e<{r). Then, at a large number of points in be. repre;ented as monopoles at the ends of the cylinders or
the cylinder, the demagnetization field is calculated from theStfiPes with the chargg.,Mdzdy. Therefore, the second
magnetization using Eq€A2) and (6). The long-range cor- t€rm of F, can be also calculated from the interaction be-
rection from Eq.(A4) is taken into account. At each point a tWeen the magnetic monopolgsee, Rosensweifl], page

new estimate of the magnetization is calculated from :

H & M?
Mx,ne\l\(r): X 0— . (7) Fm'zziz:l 4 J’ dylelJ dyidz
1_XHd,x(r)/Mx,gues£r)
The use of this equation instead of the analogous relationship ><| 1 _ 1 ] . 9)
(4) greatly speeds up the convergence of the iterative proce- V(si—5)?  J(s;—5)*+L?
dure.

Self-consistency is reached, if the new magnetizationThe sum is over all cylinders or stripes in the pattern. The
Mpew(r) agrees withMy,.¢{r). If self-consistency is not first term in the parenthesis is the repulsion between the tops
reached, the iterative procedure restarts with the calculatioand between the bottoms. The second term is the attraction
of the demagnetization field for the new magnetization adetween the ends in opposite plangs: (y;,z;) denotes all
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points at the top of the cylinder or stripeLong-range cor- assumed a cylindrical shape of the magnetic matter, we must

rections are calculated in a way analogous to that which wilintroduce two terms for the surface energy of the hexagonal

be shown for the demagnetization field in the Appendix.  pattern: one for the sides and the other one for the top and for
Jacksoret al. [24] show that there are two other equiva- the bottom. The surface energy for a single aggregate is then

lent forms of computing the magnetic energy beside (By. 5

In particular, the third form derived in Reff24] is useful in Fsh=0(2mrol) + 20’ (7rg), (12)

the computation for realistic models of labyrinthine patterns.

For the idealized structures studied here the integrals in Eqvhere o and ¢’ denote the interfacial tension at the sides

(9) were solved analytically and it was not necessary to us@nd at the ends of the cylinders, respectively.

the other forms proposed in R¢R4]. In order to compare the surface energy of the hexagonal
In methodC the magnetization is calculated from its ini- patterns for different radiio, Fs, is divided by the average
tial valueM;,; observed before the pattern formation: surface area per cylindey,,
M= Mdi)nit _ Xini';:;linit, (10) Sh= 7Tr(2)/¢. (12

Only the first term of the resulting equation depends gn
where xinii=¢x is the initial susceptibility, H;,;;=H,  Therefore, the second term can be ignored when the energeti-

+Hgint @and Hy init=—Mini. The way of calculating the cally favored radius of the cylinders is calculatedmpare

magnetization differs from that used in other pag@®23—  with Ref.[14]).

25]. The surface energy of a stripe in a labyrinth is given by
[4]

Comparison of the three methods

To sum up, there are three different approaches to com- Fs1=20(yol)+207(yows), (13)

pute the magnetic energy. In approactfesnd B, F, is , , .

obtained from the magnetization using EB). It is assumed wherey is the length of the stripefs is divided by the
that the magnetization changes during the pattern formatiorf2Verage surface area per stripe

In the first approachd, the magnetization is calculated by a

self-consistent iterative procedure which has been discussed S =YoWr/¢. (14)
above. The only approximation is the neglect of the variation

of the magnetization in the direction. Preliminary results For the same reason as discussed above the second term of
show that the deviation of the magnetic energy caused b§d. (13) can be ignored.

this approximation is less than 1f&7]. This should be com- For micrometric cell heights, the entropy term of the free
pared to the energy difference of about 5% caused by thenergy is expected to become significant. Therefore,
approximations of methoB proposed by Rosensweg al.  Yireberg and McKay14], calculated the entropy from the

[4]. This approach assumes a uniform demagnetization fieldumberN, of aggregates in the cell. They proposed to use
The magnetization is calculated from its value at the centeNo! for the number of states accessible to the system. Using
of the cylinders or stripes. The third approaCitonsists of the entropy ternkgT InNo! we have found that it is only

the use of Eq(9) implying a constant magnetization during important in determining the pattern geometry at values for

the pattern formation. Of course, the value of the magnetimaller than 2um. As we restrict our study to cell heights

energy obtained by this method is completely different fromlarger than 2um, this entropy term is not taken into account
the results of approachésandB. in the following. Moreover, we are not sure that the equation

No! gives the correct number of accessible states. To our
mind, this approach neglects the fact that the number of par-
ticles in the aggregates changes wiNp. Another form of
Several forms of the surface energy have been used in thgking the entropy into account is the use of the entropy of a
literature. For eIeCtrorheoIogicaI fluids, Halsey and '[@8] as on a |attic¢18]_ But in our way of describing the pat-
propose a surface term, that depends upon the electric fielgerns this term is zero. More sophisticated entropy models
The same form was also used by letal. [29] for magne-  are now being developed and might prove of interest in fu-

torheological fluids. The dependence of the surface term ofyre studies of pattern formation on mesoscopic sd@gs
the field accounts for the differences between the local fields

experienced by the nanoparticles at the surface and inside the
cylinders or stripes. In contrast to Lit al. [29] we explic-

itly take the nonuniformity of the demagnetization field into  In the methodsA and B the free energy per surface area
account except for methdsl Therefore, we will use a simple for the hexagonal pattern is formed by combining E&S,
hypothesis introduced by Rosensweaigal. [4], which as-  (11), and(12). When we eliminate the terms which do not
sumes that the interfacial tensien is independent of the depend orry we arrive at

field and depends only on the two substances present at the

interface. Measurements of ferrofluid surface tensions in Fo=d ZLU—E L(M),H (15)
confined geometries support this hypothd&8]. Since we h o 2 1o hrtofs

C. Surface energy and entropy term

D. The free energy functional of patterns in ferrofluids
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where (M), is the volume-averaged magnetization in the l4'ii ' ! _ '
magnetic phase of the hexagonal pattern. g . ':;"il’“""‘“"_'f ;
. H 2 == A (MO =Unirorm '.1|:IF?IU'.1L' 1]
Using I_Eqs.(2), (13), and (14 the free energy functional | . B i S
for the striped pattern can be written as i H .- C {constant magnetization)
L 1
Fi= ) 250~ 5 #o(M)iHo/. (16)

(M), is the volume-averaged magnetization in the magnetic
phase of the stripes. In meth@J the magnetic energy term _
is replaced by the expression in HE). 0 | ! e . =

In accordance with Ref§1,4,14,29 we treat the pattern R R N
formation as a quasiequilibrium process. Indeed, studies on ¢
the dynamics of labyrinth formation indicate that the final FIG. 2. Dependence of the normalized stripe width/L in
geometry of the patterns is largely determined by the structabyrinths on the external fieltf, for system 1. The theoretical
ture of the energy function@®3]. Thus, reasonable estimates results of the three methods of computing the magnetic energy are
of the sizes, andw; can be obtained by a minimization of compared to experimental data. The cell height and volume fraction
the free energy given in EqEL5) and(16), respectively. The are fixed atL=0.9 mm and at$=0.5. The experimental points
minima are located numerically using the Newton-Raphsonvere obtained from Ref4].
method[22].

Let us compare Eqg15) and (16). We find that the free equal to the packing fraction for randomly placed spheres
energy functional has the same form for a hexagonal and &y=0.638). The magnetic particles studied experimentally
striped pattern except for an exchanger gfandw; . More-  in Ref.[7] have an average diametiof 11.8 nm. From the
over, we will show that the field and, therefore, the magne®particle diameted, the volume fractiony and the domain
tization are very similar in both structures for the same val-magnetization of magnetite (4.46.0° Am™') the initial
ues ofr, andw; . The similarity of the energy functionals susceptibility within the aggregates can be estimated from
explains why the theoretical trends observed for hexagondhe Langevin formulgRef.[1], page 59. A value of 11.7 for
and striped patterns are analogous, as will be shown in Seg. is found. We employ the interfacial tension proposed by
\Y2 Ytreberg and Mckay14] in their study of the experiments
by Honget al. (c=1.1x10"® Nm™1). The small value ofr
is in accordance with Bacrét al. [6], who find for their
systems of demixed ferrofluids, that the surface tension be-

The pattern formation in very different systems can between the two co-existent demixed phases is 10000 times
studied using the theory proposed here. Systems range lawer than in ordinary liquids.
diversity from ferrofluids confined with immiscible liquids A systematic study for both systems usitigvalues be-

[4,5] to magnetic liquids forming aggregatés29|. To arrive  tween 0.1 and 0.8 has been carried out. System 1 is studied at
at general conclusions on the field-induced pattern formafield intensities up to 0.25 T and for heights between 0.4 mm
tion, we have chosen to study two completely different sysand 1.2 mm in accordance with the experimental results
tems. given by Rosensweigt al. [4]. For system 2, the height

(i) System 1 was examined both theoretically and experivaries from 1um to 50 um. The highest field strengths
mentally by Rosensweigt al. [4]. A ferrofluid is confined studied for this system range up to 0.03 T. At each state
with an immiscible nonmagnetic fluid between two parallel point, the aggregate size is found by minimization of the free
plates separated by a height varying from 0.4 to 1.2 mm. Thenergy using the three different methods for the calculation
experimental values of the initial susceptibility and the inter-of the magnetic energy discussed above. We want to empha-
facial tension are taken from Ref4] (y=1.6 and ¢  size that the results presented in the following section for
=0.0043 Nm ). particular states are used to illustrate the general conclusions

(i) System 2 is a pure ferrofluid confined between twodrawn from the systematic study.
plates with a separation of several micrometers as studied in
the experiments of Ref7] . The application of the magnetic IV. RESULTS
field causes a separation of the ferrofluid into a highly con-
centrated and a very diluted magnetic phase. The hexagona
and labyrinthine patterns are made of the concentrated phase, In this section, we first compare the pattern sizes pre-
where the magnetic particles can form aggregates and, therdicted by the three different methods of computing the mag-
fore, methodC can give valuable information. In comparison netic energy. The evolution of the pattern size is studied as a
with system 1, the second one is characterized by a largdunction of the field strength and of the cell height. Here, we
susceptibility and a much smaller interfacial tension. In acfocus on either striped or hexagonal structures. The transition
cordance with Ref[14], we assume that the magnetic par- between both structures is studied in the following section.
ticles are randomly packed in the cylinders or stripes. Then, In Fig. 2, plots of the energetically favorable width of the
the volume fraction of magnetic particles in the aggregates itabyrinthine stripes as a function &f, are shown for the

Ill. STUDIED SYSTEMS

| A. Dependence of the results on the theoretical approach
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three approaches. Theand o values correspond to system 10 - . T I T 1 - | - |
1. The volume fraction and the cell height are fixeddat —— A (nonuniform approach)
=0.5 and aL=0.9 mm. These parameters were chosen, be — B (uniform approximation)
cause experimental data were published for this system i 8 C (constant magnetization)
Ref.[4]. The dots in Fig. 2 are the experimental data points =
obtained from Ref[4]. Rosensweigt al. [4] found that ap-
proach B correctly predicts the experimental data in the's
whole range of studied fields. Recently, we observed that thi=-
good agreement between theory and experiment at hig, =
fields was only due to errors in the computation of the theo
retical values made in Ref4] (see, discussion in Ref17]).

A correct recalculation of the energetically favorable stripe
widths using approacB indicates excellent agreement with
the experimental data at low fields, as can be seen in Fig. :

=3

e

In contrast, approachB is not able to correctly reproduce the ol 1 i ; [ 1 o
decrease im; on increasing the field. The small variation of 0 10 20 30 40 50
ws at high fields is due to the fact that the homogeneous limi L [pm]

of the magnetic energy expected for;—0 is already
reached for values ofv;/L~0.3 [17]. Therefore, a further
reduction of the stripe width does not change the magnetiﬁ:

energy and cannot contribute to a minimization of the freeexternal magnetic field and volume fraction are fixed B

energy. =0.005 T and ap=0.5
The comparison with the results obtained from method ' $=05.

using a nonuniform demagnetization field shows the ianu—A) are close. The results of the micrometric system 2 are

enlce |0I Lhetqnlforrj;tspplroxtl)m;]tlon t%f gpproaShon thi. Idshown here, because most of the experimental studies on the
cacuiated stripe widins. In both methods a minimum e qchecrease of the pattern size with the height were carried out

Valt?e OfT?]bOUt 0.01 J IS required _tfo establish t;het_stnpe nder similar condition§7,9,29,31. Except at very small,
pattérn. The approach using nonunitorm magnetizalion prég,, - iheoretical data points can be well represented by a

dicts a larger threshold value bff, for the pattern formation. power law of the form o= aL?. For methodsA andC, we

This larger threshold value cannot be confirmed by experig - exponent close to 0.5, whereas apprddfields a
ments. At low fields the new approadhgives larger stripe very different exponent arouﬁd 0.9. These values can be

widths. The decay of the stripe width observed e.Xpe”menE:ompared with those obtained by a fit to experimental data in
tally can be correctly repr_oducgd by methéd Obv_|ou§Iy, ._the literature. In Ref[31] the exponent varies between 0.5
the negIept of_the nonuniformity Of. the magnetization Mand 0.67. Liuet al. [29] obtained an exponent of 0.37 for
methodB is an important factor, causing the wrong be.hav'orexperiments with magnetorheological fluids. Obviously, the
of the approach proposed by Rosensweigal. [4] at high exponents observed assuming nonuniform or constant mag-

fields. e - :
. . netization fits well in the range of values observed experi-
MethodsA and C give very close results. This is some- mentally in contrast to that of methdal

what surprising, because the two methods explain the pattern
formation in very different ways. In method, the pattern
formation leads to a less negative demagnetization field.
SinceM = x(Hy+Hy), the magnetization within the ferro- In several Refd.5-7,9, the transition between hexagonal
fluid increases and, according to Eg), the magnetic energy and striped structures have been observed experimentally on
is reduced with formation of striped or hexagonal patterns. Irchanging the external field or the height. But it is still not
approachC, assuming a constant magnetization, the pattermbvious, which geometric parameter should be taken to com-
formation is explained by the reduction of the interactionpare both patterns. We will first address to this question.
energy between the magnetic moments caused by the inteFhen, the transition between both patterns is studied by a
calation of a nonmagnetic phase within the magnetic mattecomparison of their free energy.
We conclude that the assumption of a constant magnetization Hong et al. [7] focused on the aggregate-aggregate dis-
does not necessarily lead to a different size of the patterriance to compare hexagonal and striped patterns, while Leg-
which could be easily distinguished experimentally. rand et al. [9] used the diameters of the columns and the
We now turn to the variation of the pattern size with thewidths of the stripes. Figure 4 shows plotswf andr of
cell height. Figure 3 is a plot of the energetically favorablestriped and hexagonal patterns for system 1 as a function of
radius of cylinders as a function of the heightusing the  H;. The results from methods andC are shown. Metho&
three methods to compute the magnetic energy. The values gfves similar agreement between andr,. The height and
x and o correspond to system 2. The external field and thehe volume fraction are fixed @&t=1.0 mm and ai)=0.5.
volume fraction are fixed aBy=0.005 T and at$p=0.5, ApproachesA andC predict that under the same conditions,
respectively. In comparison with methdsl the results for such as the external field, the width of the wall in a striped
constani{methodC) and nonuniform magnetizatidmethod pattern should be close to the cylinder radius in a hexagonal

FIG. 3. Dependence of the cylinder radiysin hexagonal pat-
rns on the cell heighit for system 2. The theoretical results of the
ree methods of computing the magnetic energy are compared. The

B. Transitions between hexagonal and striped patterns
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FIG. 4. Comparison of the geometrical parameters used to de’*:
scribe hexagonal and striped patterns. The dependenagsasfd %=
w; on the external fieldH, are shown for system 1. The cell height
and volume fraction are fixed @&t=1.0 mm and at$p=0.5. The
results of two methods of computing the magnetic energy are plot
ted. ;
& 0.05 ' 0.1 ' 0.15
pattern. This can be explained as follows. First, as discussel2) B, [tesla]
in Sec. IV, the free energy functional has the same form fol
both patterns, when the geometries are describedbgnd 3 - T 4 1
ro- Second, the demagnetization field and the magnetizatio - Method C  [— ¢=0.2

are very similar in both structures for the same valuevier
andr,. We conclude that the stripe width should be com-
pared to the cylinder radius when striped-hexagonal transw
tions in ferrofluids are investigated.

Finally, a last question arises: Can we understand the trar— g e e
sitions between hexagonal and labyrinthine structures ok=_
served experimentally5—7,9? Thus, the energies of both o
types of patterns are compared. The free energy per surfaf= Ak 7
F andF, of both patterns are calculated from E{k5) and
(16) using the energetically favorable valuesrgfand ws .
Most structural transitions are experimentally observed by
variation of the magnetic field. Therefore, the normalized
energy differenceR,—F;)/F, in % is plotted as a function -3 : 0.05 UI.I : 0.15
of external field. The three Figs(&-5(c) show the theoret- ' B, [tesla] i
ical results for the three different ways of computing the
magnetic energy. Volume fractions varying frogn=0.1 to
¢=0.8 were studied and the results for four representagive
values are given. The values gfand o correspond to sys-
tem 1. The cell height is fixed dt=1 mm. (F,—F)/F, FIG. 5. Normalized free energy differenceB, ¢ Fy,)/F, as a
<0 indicate a higher stability of the striped patterns, whereagunction of the field for four representative ratigsof the magnetic
(F\—Fp)/F,>0 reveals the energetical preference of hex-to nonmagnetic phases. The results(@rmethodsA, (b) B, and(c)
agonal structures. All three approaches predict the existendgare shown for system 1. The cell height is fixed_at 1.0 mm.

(]
T

—
=
I
1
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of hexagonal patterns at low volume fractions, whereas labythe approach in Ref14], the energetically favorable radius
rinths should predominate at large valuesfofFor methods of the cylinders markedly decreases at large fields, but it is
A and C, a critical phase ratio betweepp=0.3 and 0.4 is always well defined. Ng and VanderbB2] studied similar
observed for the transition. The less accurate apprd&ch transition between striped and hexagonal droplet phases in a
yields a smaller transition value @f. Method B also pre- two-dimensional(2D) model with dipolar interaction. In
dicts a transition to a labyrinth at very weak fields for smallspite of the idealization of a two-dimensional model their
¢, which is not confirmed by the more accurate approch results agree well with our observations. The striped struc-
The comparison of the energy differences obtained by methure is stable near area fraction 0.5 with transition to the
ods A andB indicates that the consideration of the nonuni-hexagonal pattern at 0.286.
formity of the demagnetization field strongly decreases the At the time of writing, we became aware of a mean-field
absolute energy differences at large valuegofA thorough  approach which was developed by Lacoste and Lubensky
study of the energy differences for system 2 usibg [1g] to study the pattern formation in ferrofluids. In good
=2 um qualitatively led to the same conclusions. In particu-agreement with our results, they observe hexagonal struc-
lar, the samep is found for the structural transition. tures at low¢ and labyrinths at large>. At an even larger
The theoretical results for the pattern stability can beppase ratio an inverted hexagonal structure is found, which
compared with experiments qnd other theories. Our approacfjss not taken into account here. In a narrow rangepof
predicts very small energy differences, less than 1%, over gq)es they predict a field induced transition from hexagonal
broad range okp andH,. Obviously, the morphologically 5 striped structures. This might be due to the inclusion of
very different striped and hexagonal structures can be enef oy terms in their model, their description of the patterns
getically quite close. This gives the possibility of::ttransﬂmnusing 2D Fourier transforms or the density variations al-
between both patterns observed experimentally. The theorefs,ved in their model. Recent experiments by Harigl. [8]
ical results have revealed the importance of the phase ratig,q,y that the transition from hexagonal to labyrinthine pat-
for the pattern stability. A systematic experimental study ofierng experimentally observed in REF] must be attributed
the predominant pattern as a function ¢fis still missing. 5 the existence of long-range grain boundaries. If the num-
However, it is interesting that all the experiments whichper of grain boundaries is reduced, the field-induced transi-
show the eX|stence_ of hexagonal patterns were carried out 8g, 1o labyrinths is no longer observed. Obviously, experi-
low ¢ [e.g.,#=0.2 in Ref.[5] and¢$=0.2-0.3 in Ref[7]].  ments and theoretical studies indicate that the labyrinthine
In both experimental studies, increasing the fididleads to  patterns experimentally observed for small volume fractions
the transition to a striped pattern. In our calculations using; e only metastable. In fact, the theoretical study of the laby-
the accurate method#, and C, we have never observed a (inthine pattern formation by Langet al. [23] agrees with
transition between hexagonal and striped structures by @is conclusion. They studied the evolution of a circular fer-
variation of the field. Figures(8-5(c) only show that the  4fiid drop between two plates after applying a field. Cal-
stability of the hexagonal pattern with respect to the stripedyjations show that the modes to a fission of connected struc-
one decreases on increasing the field for smallvytreberg  {yres into smaller droplet are not the most unstable ones.
etal. [14] proposed a theory to explain the transition be-|nqeed, Langeet al. [23] observe that the initial drops al-
tween hexagonal and striped structures by a variation of thgays form simply connected striped pattern and never break
field. They observed the loss of the local minimum in theup into smaller droplets, although the global minimum is
free energy of hexagonal patterns for very small and highyciyally obtained for widely dispersed droplets. This under-
field intensities. The loss of this minimum also appears acores the necessity of considering the dynamics rather than

very small cell heights. They concluded that, in these regiongatics in understanding the kind of patterns experimentally
of parameter space, hexagonal patterns will not be foundypserved.

and a transition to other patterns could be expected. Thus,

they _e;tabllshed a phase diagram, Whlch seems to predict the V. CONCLUSIONS

transition between hexagonal and striped patterns as a func-

tion of the magnetic field and of the cell height. In our cal- A free energy approach was developed which predicts the
culations, a loss of the local minimum H, is also found at  experimental geometries of field-induced hexagonal and
smallH, (see, Fig. 2 But it is due to the fact that a mini- labyrinthine patterns. Correct handling of the nonuniformity
mum field strength is required to establish the pattern tef the demagnetization field is important to reproduce the
counteract the interfacial tension. The same is also observezkperimental behavior at large fields. The experimental
for the striped structures. Using methoflsand C, we find  trends of the pattern size as a function of cell height are also
that the theoretical threshold values of the field for the for-better described by the nonuniform approach. Although the
mation of hexagonal and striped patterns are almost thealculation of the magnetic energy by the mett@is very
same. Our calculations do not predict any range of fieldgifferent from the more accurate methéd the calculated
where only one of both patterns exists. Therefore, we cannaesults are quite similar. This shows that meth©dvidely
show that the loss of the minimum at small fields reallyused in the literaturgl4,20,23—2%can give reliable results,
involves a transition between hexagonal and striped strudn particular at high fields where meth&ffails. In spite of a
tures. For all three approaches, we never observed a loss cdmpletely different morphology, the theoretical results for
the local minimum at high fields even with the entropy termthe hexagonal and striped patterns are very close, as ob-
proposed in Ref[14]. In methodC, which is very close to served in experimen{&]. This is due to the fact that the free
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energy functionals of both patterns have the same form. Unfhe computing time for the demagnetization field was dras-
der the same conditions the cylinder radius of a hexagonailcally reduced using the symmetry properties of the studied
pattern and the stripe width are very close. The comparisopatterns. The long-range interaction between the magnetic
of the free energies of hexagonal and striped patterns shovelipoles is a serious problem in the calculation of the demag-
the importance of the ratio of the magnetic to the nonmagnetization field in a magnetic pattern, which is supposed to
netic phases for the pattern stability. In agreement with exbe infinite in the directiong andz perpendicular to the field.
periments and other theories, hexagonal patterns are found lat the case of the hexagonal pattern, the problem was solved
low ¢, whereas labyrinths predominate &t>0.3. The in the following way. For the sum in Ed6), a spherical
theory does not predict a transition between both patternsutoff is applied settindd; ,(r —r;) to zero forr;>r., where
induced by a variation of the field in agreement with recentr. is the cutoff radius. At very large separations from the

experiments. central cylinder (;>r,) the difference {(—r;) in Eq. (5) can
be replaced byr(). For thex element ofH;, Eq. (5) reduces
ACKNOWLEDGMENTS to
_The guthor; thank Dr. J. Legrand and V. Germain for . rrréL(MX> 3 I2
fruitful discussions. Hi . (r))= 3 =1+ —, (A3)
' ] ri
APPENDIX where(M,) is the x element of the volume-averaged mag-
Let M(r) be thex-averaged magnetization netization. _
Then, a long-range correction féty , can be evaluated
— L2 by integratingH!" (r;) due to all the cylinders beyond the
M(r)=1/Lf M(r)dx. (A1) DY IntearatingHi.(ry Y Y
—L/2 (3]
Due to the symmetry of the studied patterns, thand z Ir 2w (= ;
elements of the-averaged magnetization are zero. It follows  Hdx(N="—"5 dssH'(s.x)
. . - X g e
immediately that we can restrict ourselves to the calculation
of the x element .ofHd which MI! give M, from MX CLa(My 1 X2
=x(Ho+Hg,). M is replaced byM in Eq. (5). Employing i - (r§+x2)1’2+ (Ex)| (A4)

the independence d¥l, of x, the integral ovex in Eq. (5)

can be solved analytically. E.g., in the case of a hexagongjheres is a vector in theyz plane. In our calculations we
pattern, the field due to a cylinder is calculated from took care that the cutoff, beyond which the long-range cor-

1 (o NavE. rection is applied, was suf_ficiently Iafge to giye accurate re-
H,  (r))=— —f dyf dzM,(r) sults. The Ewald summation which is used in other papers
' 4m)—rq —J2=y? [10] is an alternative way to take the long-range interactions
into account. It is expected to give the same results.

% L/2—X; Particular attention was paid to the computation of
[(LI2—x;)2+ (y—y;) 2+ (z—z)?]3? Hgy x(r) at the bottom and the top of the cylinder, because the

integrand in Eqg.(A2) has an integrable singularity X;

—L/2—x; =L/2 orxj=—L/2.

YY) Y 232 The derivation of the relationship for the demagnetization
[(=L/2=x)"+ (y=y)"+(z=2)7] field in a striped pattern is very similar to the hexagonal case
(A2) discussed above.
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