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Chaos and flights in the atom-photon interaction in cavity QED
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We study dynamics of the atom-photon interaction in cavity quantum electrodynamics, considering a cold
two-level atom in a single-mode high-finesse standing-wave cavity as a nonlinear Hamiltonian system with
three coupled degrees of freedom: translational, internal atomic, and the field. The system proves to have
different types of motion including vy flights and chaotic walkings of an atom in a cavity. The corresponding
equations of motion for expectation values of the atom and field variables have two characteristic time scales:
fast Rabi oscillations of the internal atomic and field quantities and slow translational oscillations of the center
of the atom mass. It is shown that the translational motion, related to the atom recoils, is governed by an
equation of a parametric nonlinear pendulum with a frequency modulated by the Rabi oscillations. This type of
dynamics is chaotic with some width of the stochastic layer that is estimated analytically. The width is fairly
small for realistic values of the control parameters, the normalized detdhamgl atomic recoil frequency.

We consider the Poincasections of the dynamics, compute the Lyapunov exponents, and find a range of the
detuning,| 5|=3, where chaos is prominent. It is demonstrated how the atom-photon dynamics with a given
value of o depends on the values éfand initial conditions. Two types of vy flights, one corresponding to

the ballistic motion of the atom and the other corresponding to small oscillations in a potential well, are found.
These flights influence statistical properties of the atom-photon interaction such as distribution of ‘Poincare
recurrences and moments of the atom positioThe simulation shows different regimes of motion, from
slightly abnormal diffusion with(x?)~ 712 at §=1.2 to a superdiffusion witf{x?)~ %2 at §=1.92 that
corresponds to a superballistic motion of the atom with an acceleration. The obtained results can be used to find
new ways to manipulate atoms, to cool and trap them by adjusting the deténing
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[. INTRODUCTION “quantum chaos” just refers to the behavior of quantum sys-
tems whose classical counterparts behave chaotically.
Cavity quantum electrodynami¢®QED) is a rapidly de- Through the paper the notion “chaos” will be used only in
veloping field of physics studying the interaction of atomsthat meaning since all our consideration will be semiclassi-
with photons in high-finesse cavities in a wide range of thecal. The key issue of quantum chaos is the correspondence
electromagnetic spectrum, from microwaves to visible light,between the classical and quantum pictures of chaotic dy-
in such conditions under which both atoms and fields mayamics. Chaotic dynamics in the atom-photon physics ap-
manifest their quantum naturéor reviews on quantum and peared in the papgi6], where the semiclassical model of a
atom optics, see, Refl,2]). Modern experiments in cavity single-mode, resonant, and homogeneously broadened laser,
QED have achieved the exceptional circumstance of strongonsidered as an open dissipative system, has been shown to
atom-field coupling for which the strength of the coupling be equivalent to a Lorentz-type strange attractor, and the pa-
exceeds both the atomic dipole decay and the cavity fielgher [17], where Hamiltonian semiclassical chaos has been
decay providing manipulations with single atoms and pho-shown to arise in the Dicke model with nonresonant terms
tons [3-7]. Trapped atoms and ions, interacting with laserdescribing the interaction of an ensemble of identical two-
fields in the regime of the strong coupling, have been usetevel atoms with their own radiation field in an ideal resonant
not only to study fundamentals of quantum mechah&8]  cavity. The fully quantum version of the latter model has
but also for applications in the rapidly growing fields of been considered in R€f18]. It was shown in Ref[18] that
guantum computing, quantum communicati@ee, for ex- in a parameter range, corresponding to classical chaos, the
ample, Refs[10,11]], quantum chaog12,13, and decoher- evolution of the system becomes essentially quantum after
ence[14,15. the so-called “breaking time’; [19] that obeys in this re-
A special comment should be related to the notion ofgime the logarithmic lawr, ~\ ~tIn(constk), where\ is
chaos that we use in the paper. The real system is quantuthe maximal Lyapunov exponent. All results presented here
and the quantum chagser sedoes not exist. The notion as chaotic dynamics are valid up tte 7, .
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The physical mechanism of semiclassical chaos in thelegrees of freedom and the cavity field. A corresponding
Dicke model is tied to virtual transitions that are describedone-dimensional model, including the interaction of all those
by nonresonanior counter rotating terms in the Dicke degrees of freedom, has been introduced in pa3&¢0Q in
Hamiltonian. They are small under usual conditions. Tryingthe context of Hamiltonian chaos. In this paper, we use a
to find another mechanism of local instability in the Hamil- slightly generalized version of that model with three degrees
tonian atom-photon dynamics without pump and losses, thef freedom to study the effects of chaos andry.dlights in
authors of Refs[20,21] proposed the semiclassical model the strongly-coupled atom-field system. _
with atoms moving through a standing-wave cavity in a di- In Sec. Il the semmlassma_tl bas_lc equations in the Heisen-
rection along which the cavity sustains a space-periodic field?€d representation are derived in the form of six coupled
The standing-wave modulates the atom-field coupling proponllnear equations with two control parameters,lthe_normal-
viding in a certain range of the system’s parameters interm;tiZ€d detunings and atomic recoil frequency. Taking into
tent Rabi oscillations. Another way to change the atom-field@ccount that the frequency of the atontand field Rabi
coupling is modulating the cavity length, studied in Ref. osplllatlons is m_uch more larger than t_he frequepcy of trans-
[22]. New effects in the model with moving atoms may ariselational oscillations, reduced Bloch-like equations of the
beyond the simple semiclassical approximation. Chaoti@tom'f'el_d internal motion are derived and S(_)Ived in Sec. lll.
vacuum Rabi oscillations, a new kind of reversible sponta-'"€ motion of the center of the atom mass is governed by a
neous emission, have been shofi@8,24 to occur in the Single equation of a parametrically perturbed pendulum. This
model with interatomic quantum correlations. dynamics generates a stochastic layer with an exponentially

Experiments to study the quantum dynamics of classicallgmall width. In Sec. IV we simulate the basic set of equa-
chaotic systems for the atom-photon interaction in cavitiedions at the fixed value of the normalized recoil frequency
and traps have been intensively studied with cold atoms in & =10~ corresponding to a light atom in a microcavity with
phase-modulated standing waj@5] and in an amplitude- realistic para.me,ter$3.—7]. The maximal Lyapunov expo-
modulated standing wa@6] [following to the proposition N€Nts and_ Pomcasﬁctlo_ns are calculafced and.lt_ is found that
of Ref. [27]], and in a pulsed standing way28,29. Cold the Qe.tunlngé is a crucial parameter in transition to chaos.
sodium or cesium atoms, which are kicked by a periodicallyStatistical properties of the atom-photon interaction are con-
pulsed standing wave of far-detuned light, is an excellenfideéred in Sec. V. We give an evidence of two types ofyLe
experimental realization of a paradigm model of quantunflights of an atom, one corresponding to an almost linear
chaos, ad-kicked guantum rotor. Dynamical localization, dependence of the atomic positiaron time (superdiffusive
that was observed in the atomic momentum distribution, i€nd superballistic regimeand the other corresponding to
the quantum suppression of the classical momentum diffusmall regular oscillations of the atom in the potential well.
sion. A typical underlying phase-space structure of classical e Levy flights influence strongly such statistical properties
chaotic systems consists of stochastic webs, islands, arff a&loms and photons as distribution of Poincaeurrences
chains of islands embedded in the stochastic sea. The chaofi@d moments ok. The distribution of recurrences and time
motion occupies a certain area in phase space. Because @folution of the moments depend on the value of the detun-
islands and their boundaries, typical behavior of chaotic sysid 6 demonstrating different regimes from an almost normal
tems can be intermittent with loriguasjregular oscillations ~ diffusion to a superdiffusion. In Sec. VI we discuss briefly
(the so-called ey flights) interrupted by the chaotic pieces Ways to manipulate the atomic motion by varying control
of trajectories. This intermittency leads to the anomalous difParameters and initial internal atomic states. It is possible, in
fusion with Levy distribution functions or a similar one, particular, to cool and trap atoms by adjusting the detuning.
which have power-wise tailgor reviews on L&y processes
in physics see Ref30], where the term “strange kinetics” Il. BASIC EQUATIONS

was coined, and Ref31]]. It was found with kicked cold The basic model of interaction of radiation with matter

cesium atom$32] that for certain pulses amplitudes, where describes the energy exchange between a two-level atom and
the respective classical analog may exhibit anomalous diffu= """, 9y 9 e , : .
a single mode of the quantized radiation field in an ideal

sion, the momentum distributions were not exponentially Io—Iossless cavity41]. In general, this interaction should in-
calized for the time of observatidsee, also Ref$33—35]. -ng . o )
volve not only the internal atomic transitions and field states

It should be mentioned that anomalous diffusion aneyl.e cPUt also the center-of-mass motion of the atom. With the

flights have been even earlier found with cold atoms an recoil effect to be included into consideration, the standard

employed in a subrecoil laser cooling schef86—38. . . L ]
In experiments withs-kicked atoms, the detuning be- Jaynes-Cummings Hamiltonian can be extended as follows:

tween the optical and atomic transition frequencies is large ~y

(relative to the natural linewidihso the probability is small =" 17,8 +fiwAa a—h0s(a*s +as,)coskX,

to find an atom, initially prepared in the ground state, in the m

excited state, and the excited state amplitude can be adiabati- D
cally eliminated[27]. In this approximation, an effective - .

Hamiltonian is that of a driven nonlinear oscillator with 3/2 Wherex and p are the atomic position and momentum op-
degrees of freedom. Generally speaking, the atom-photon irgrators, respectively. Transitions between two electronic
teraction in a high-finesse cavity is, mainly, the interactionstates, separated by the enetgy,, are described by the
between internalelectroni¢ and externalmotiona) atomic  spin operators with the commutation relations, ,s_]
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=2s,and[s,,s.]=*+s. . The photon annihilation and cre- X=ap,

ation operators with the commutation rjle,a”]=1 char-

acterize a selected mode of the radiation field of the fre- I5=—2(ax3x+ a,s,)sinx,
guencyw; and the wave numbdy; in a lossless cavity of the

Fabry-Perot type. The paramet@y, is the amplitude value S=— Js,+ 2a,S,C08X,

of the atom-field dipole coupling that depends on the posi-
tion of an atom inside a cavity. As it is usually adopted in
cavity QED, we write down the Heisenberg equations for

the external atomic operators, and p, and for slowly
varying amplitudes of the field and spin operatc%r(st)
:aeAXp(_iaA’ft)v a"(t)=a"exp{wit), S.(t)=s.exp(Fioft) éy:sxcosx 3)
ands,(t)=s,,

Sy= 0Sy— 2a,S,C08X,

a,= — S,COSX,

A that describes the interaction between three degrees of free-
d. p dom in the strongly-coupled atom-field system, translational
&X: m’ (p,x), electronic 6,s,), and thg field éx.,ay) ones. The
dot in Egs.(3) denotes the derivative with respect to the
normalized timer= () ,t. The control parameters are the nor-

af): —fikiQo(a™s_+as,)sinkx, malized recoil frequencyr=7%k?/mQ, and the normalized
detuning between the frequencies of the field mode and the
d. A o A electronic transitiong=(w;— w,)/Q,. The system3) con-
T i(wi—wy)Sy+2iQpa"s, coskX, serves the energy
d W= = 2(a,8,+a,8,)cosX— 8 (4
.~ . A . = =p°—2(a,s,ta,s,)cosx— s,
JiS- = i(w1— wg)s_ — 210088, coskyX, 2 e ‘
and it possesses two additional first integrals
agz:—iQo(éJr%f—égHCOSkf;(' SG+si+si=S%, ait+ai+s,=N. (5)
d The first one is simply the conservation of the atomic prob-
aé*z—i90§+coskf§<, ability, and the second one is a conserved total number of

excitations, which is known to be a constant in the rotating-
wave approximation. The equation of motion for the atomic

d. inversions, is easily derived with the help of the integns)

e iQ)oS_coskiX. (2

_ o S,=2(@,Sy— a,Sy) COSX. (6)

To avoid cumbersome notations in E¢8) we use for the

amplitudes the same notations as for the respective wholehe semiclassical approximation, we used for €. means

operators. . _ that the atom as a classical particle with external and internal
In order to derive a tractable closed set of equations foktates moves in a self-consistent classical radiation field.

expectation values from the Heisenberg operator equations From the dynamical systems point of view E¢3) rep-

(2), we use the semiclassical approximation. It means that allesent a system with three degrees of freedone degree of

the operators and their products in E(®.are averaged over freedom per a canonically conjugate pair of the generalized

an initial quantum state, which is supposed to be a produghomentum and coordingtén six-dimensional phase space.

state of the translational, electronic, and field states. The Xt deed. we reinsert Ed6) for s. into Eq. (3). After that the
. , s .(3).

: X gystem(?,) describes three degrees of freedom: the atom ex-
th? PrOdE‘?ts of Ehe rgspgctweA ei<pectat|or] values, €Oternal coordinates X;p), the atom internal coordinates
((a's_+as,)sinkx)=((@"}(s-)+(@)s.)sink(X)). By (ss,), and the field coordinatesa(,a,). There are two
choosing the following dimensionless expectation values: constrains: energy integré= H(p,X;sx,Sy;ay,ay) and the
spin integralS. The number of excitations should be used
x=kf<§<>, pz(f))/ﬁkf, ale(é+é+>, ay=£.<é—é+), to determines, as r_alfunc;tion pf other .variablles. That means
2 2i that full dynamics is defined in four-dimensional hyperspace
and should have domains of chaos due to its nonintegrability.
A a A a One can say that the location of the domains of chaotic mo-
SX:§<S*+S+>' Sy:Z<S*_S+>' tion, islands of regular dynamics, set of stationary points,
and boundaries define a topology of the system’s flow. The
as dynamical variables, we finally get from E@8) a non-  topology is two parametricE,S) and very complicated. Its
linear dynamical system description needs a separate investigation.

046222-3



S. V. PRANTS, M. EDELMAN, AND G. M. ZASLAVSKY PHYSICAL REVIEW E66, 046222 (2002

IIl. REDUCED DYNAMICS AND THE ESTIMATION u2+02+N(2s,)%?=R (12)
OF THE STOCHASTIC LAYER WIDTH
plays a role of the length of Bloch vector, and the general

We can simplify further the basic equatiof® introduc- solution of the Bloch-like equationd.0) can be found

ing the combined atom-field variables

2 [ 5)\2 5
u=2(a,Sxtaysy), v=2(a;S,—asy) (7) u=u(0)|N| =—| +| =] cosQn7|+ =—v(0)sinQy7
Qy Oy Qy
and using the integralés). As a result, one arrives at the
closed five-dimensional dynamical system I gfo 5,(0)(1—cosQy7),
X=ap, N
0 (0)sinQ 7+ v (0)cos) +4NC (0)sinQ)
N R v=——Uu Sin TTU CcO Tt —S Sin T,
p= —usinx, Oy N N Q2 N
. (12
u=adv,
_ _ co C )
U:_5U+2(2NSZ_SS§+SZ)COSX, S,= U(O)Q_ﬁ(l_COSQN’T)_Q_NU(O)S|nQNT+SZ(O)
. 2 2
S,= — v COSX, (8) K 2c
X o, +N O cosQy7|,

which generalizes the corresponding equations of the paper
[40] [see Eqs(3) therein, which were derived in the limit of where the quantity

largeN]. It is obvious from Eqs(8) that at exact resonance,

5=0, the slow translational variablesand p are separated Qn=V6*+(2¢)°N (13

from the fast atom-fields, v, ands,, and the systent8) = )

becomes integrable. A3=0, the atom moves in a spatially IS Similar to the Rabi frequency. _
periodic optical potentiall = —u(0)cosx with u(0)=u(r Since the fu_nctl_on casvaries in time sloyvly comparing
=0)=const, and its center-of-mass motion satisfies the perf® the fast oscillating, v, andz, the atom-field variable:
dulum equatiork + au(0)sinx=0. It is easy to find that the may be considered approximately as a spatially independent

) . ) ) - frequency- and amplitude-modulated signal that parametri-
dyn'amlcs of _the internal atomic variabde satisfies the fol- cally excites the translational motion:
lowing equation:

s,= +21/s,(s>—Ns,— %)+ C cosx, 9) X+au(n)sinx=0, (149
. _ i i ) that follows from the first two equations of the systé@).

whereC is an integration constant, anq7) is a solution of  The modulation has especially simple form for initial condi-

the pendulum equation mentioned above. The(Bncan be  {jonsy(0)=v(0)=0 ands,(0)=|S|, that corresponds to the

mtggrated in terms of elliptic Jacobian functions with a SO-atom prepared initially in the upper state while the field may

lution that converges to the well-known Jaynes-Cummingg,e initially at any state, and=1:

semiclassical solution41] in the Raman-Nath limitx

=const. - _ 4N 5' S|
Out of resonance, ai#0, the systen(8) exhibits chaotic u(n)= > (1—cosQy7). (15)
dynamics. In order to clarify the origin of chaos, consider Qf

Eqgs.(8) in the limit of large number of excitatioN and large
detuningsé comparing toS?. Taking into account that the
normalized Rabi frequency is of the order-ef/N>1 and is
much more larger than the frequency of small translational _

oscillations,/a<1, the equations for the fast atom-field os- H= Exz— w? cosx+ w? cosQy7 cosx="Hy+V, (16)
cillations are reduced to the Bloch-like form

The Eq.(14) is derived from the following effective classical
Hamiltonian

whereH, is the unperturbed Hamiltonian of a free pendulum

u=dv, with the following frequency of small oscillations:
v =— Su+4Ns, cosx, 2
v % =N (17)
N

S,= — v COSX, (10)

Rewriting the perturbatioV = w? cosQyr cosx in the form

where the function casmay be considered approximately as

a constant over a period of time of many Rabi oscillations.
In this approximation, the quantity

2
V= %[cogx+QN7)+coqx—QNr)], (18)
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one may consider Eq16) as the Hamiltonian of a particle defines the stochastic layer width that can be estimated in the
moving in the field of three plane waves in a frame movingcase of the large parametéry/w>1 (see the respective
with the phase velocity of the first wave, while the phaseestimations with real atoms in the concluding sedtias
velocities of the second and third waves afh, and follows:
—Qy, respectively. 3

As it follows from the general theory of perturbed motion SE.=|E,,,—E |<8WQNeX'{ _
of Hamiltonian systems with 3/2 degrees of freedpid], sTiEn+l s 2w
the Hamiltonian(16) induces chaotic dynamics in the so-
called stochastic layer that appears due to the separatrix splithe dimensionless width of the stochastic layer is finally
ting. Let us consider the motion in the neighborhood of un-given by
perturbed separatrix of the pendulut®6). Consider the

(27)

incar ikov i SE Q)2 mQ
PoincareMelnikov integral _252877(_N) ex;{ _ N), 28)
@ 20
AE= ,dezf X sin(x— Qy7)dr, (19
Jlm{Ho fr=o ﬂcxsm(x n)d7, (19 where the large parameter
where{H,,V} is the Poisson bracket. This integral describes Qn 5%+ 4N 29
changes of the atomic translational energy at the separatrix ©  2JaN|o||S

Ho=Es=w?. To estimate Eq(19) for the dynamics near the

separatrix, one can use farandx their known unperturbed under the conditions|, 6>|9|=1 and 6°<4N is estimated
separatrix solutions as

Xs=4 arctan exp+ o(7— 7,)], O 2 N 30
W =2Vag 0

. 2w
Xs= icosr[w(r— ™ ]’ (20 For the considered case the width of the stochastic layer of
the reduced atom-field dynamics is exponentially small in

where 7, is introduced as an initial condition. Using the so- Eq. (28), multiplied by a large parameter. Due to Eg0) the

lutions (20), we get final width depends on the control parametisy, and 5,
) Q and the formulg28) is useful in estimating the ranges of the
AE,= iZwZJ sinl x— —N¢— b, 1) control parameters Where_one may expect chaotic motion.
_«cosht 1) The estimation(28) provides the lower bound for the the

width of the stochastic layer that appears due to the simplest
where the new timé= w(7— 7,)) and phaseb,,=Qy7, were  harmonic modulatioril5). Small changes in energy produce
introduced. The integrall) has been calculated to give comparatively small changes in frequency of oscillations.

Nearby the bottom of potential wells and high over potential

AE,=AEssing,, (22)  hills (where the energy is much less and much greater than

Es), small changes in frequency give rise to, respectively,

AE.— 27 2 exp(mQy/2w) 23 small changes in phase during the period of oscillations.
s Nsinh( 7Qy/w) Nearby the unperturbed separatrix, where the period goes to

infinity, even small changes in frequency lead to dramatic
The oscillating functiolAE,, has simple zeroes that implies changes in phase. This is the reason of exponential instability
transversal intersections of stable and unstable heteroclinief the parametric oscillatdrl4) and(15) which models cha-
manifolds of saddle points known as a complicated heteroetic motion of the atom moving through a periodic standing
clinic structure. On the basis of general properties of motiorwave.
near the separatrix, the separatrix map can be introduced

[42]: IV. LYAPUNOV EXPONENTS AND POINCARE SECTIONS

E,.1=E,t+AEgsing,, (24) In this section, we present numerical simulations with the
basic set of Eqs(3) and the integrals of motiot4) and (5)
Qy 32E, with S?=3/4 (the actual value 082 has no importance since
$n1= bt FINE——F - (25 it always can be renormalized t9 andN=10. The system
" s (3) has two control parameters, the normalized detuning
The condition between the atomic transition and cavity frequencies and the
normalized recoil frequency. As it will be estimated in the
){&ﬁnﬂ ‘ 2708 exp(wQ\/20)|sin ¢y concluding sectiong is in the range from 10° to 10 2 for
K=ma 5hr [E,..1—EJsinn 7Oy /o) real atoms. We choose=10° in simulations throughout
the paper.
=1 (26) The detunings, as it was shown in Ref$39,4Q, is the

(O]
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crucial parameter in transition to chaos in the atom-field sys- a
tem with the center-of-mass motion. It is obvious from the 0.1
set(8), which is equivalent to the basic o(®), that at exact
resonancep=0, the motion is regular. At large detunings
6>N the motion is expected to be quasiregular since the
nonlinear term in the fourth equation of the $8} is small,
compared to the linear term of the same equation. With far- 0.06
detuned light, one does not expect pronounced atomic Rak<
oscillations. In order to find the range of the detunings, g4}
where the motion is expected to be chaotic, we compute the
dependence of the maximal Lyapunov exponknbn the

0.08

detuningsd. 0.02f
Lyapunov exponents characterize the behavior of close
trajectories in phase space. Consider a trajectory, some s¢ 03 > =
guence of time instantsy, 7,7, ... with equal intervals
A7, and a ball around the initial point of the trajectory.
Lyapunov numbers; (j=1, ... M; Mis a number of vari- 0.1
ables show per-intervalA 7 changes of the axes of the “el- )
lipsoid” of the deformed ball: contraction or expansigt6].
In our caseM =6 after exclusion of,. Thekth Lyapunov 0.08
exponent is defined as,=In A,. Typically A, depends on :
time and\ should be replaced by their mean val(i46]. In 0.06
Hamiltonian systems, due to the phase volume conservatior
Ag-Ayeee Apy=1 and Ay +--+X\y=0. For integrable
system all\, are pure imaginary and they make paixs: 0.041
=—N1, Ag= —\3, A\g= — A5, Since the numbe¥ of equa-
tions is even. This result follows from the so-called 0.02}
Liouville-Arnold theorem[47]. In our case, for the reduced
system of six variablesp(x;a,,ay;sy,S,) and two con- 0 ) ) ) )
strains(integrals of motiol, we have two imaginary pairs, -3 2 -1 0 1 2 3
say Ny o= *i01, Ng4=*ioy (01, rea), and \s, g that d
satisfy the conditiomA5- Ag=1, i.e. Ag=1/A5. The chaos ¢
means thaks ¢ are real43,44. If, say As<1 (A5<<0), then 0.1

Ag>1 (Ag>0) andAg is called maximal Lyapunov expo-
nent. It has a nice physical meaning; the maximal Lyapunov g gg|
exponent measures a rate of the separation of initially close
trajectories, and typically for the practical goal, the mean

value A =\g over time is used. To compute, we use the 0.061
standard algorithni43] <
0.04}
1o, Al :
A= lim—= In—, 31
-y gl A(7e-1) ) 0.021
whereA(7,_4) is a distance between two close trajectories 0 . . : . .
: -3 2 -1 0 1 2 3
at time 7.4, and the value\ (7 )/A(7_4) shows the level 5

of separations of the trajectories during the interval
(Tk-1,74)- ) ) FIG. 1. The maximal Lyapunov exponenin units of the maxi-

In the case that separation doesn't go exponentially, mal atom-field coupling rat, versus the atom-field detuningjin
=0. This happens whed=0 since the system becomes units of Q,. (a) s,(0)=—0.863.(b) s,(0)=0. (c) s,(0)=0.863.
integrable, and the exponential separation disappears.

The corresponding results of computing maximalyg jts ground state for whick,= — \3/2. Note that the un-
Lyapunov exponerk are presented in Fig. 1 with three dif- ysyal amplitude values of the atomic population inversion
ferent initial values of the atomic population inversion e have are the result of the chosen normalizati&n
sz_(_0)= —0.863, 0, 0.86_3, respectively. The other initial con- —3/4 The atom witls,(0)=0.863 is prepared closely to its
ditions are the following:a,(0)=s,(0)=0, x(0)=3.14,  excited state. In both the cases, the initial components of the
p(0)=2, anday(0) ands,(0) are found from the Eqé4)  transition electric dipole momens,(0) ands,(0), are al-
and (5) with given S=/3/2 andN=10. The values,(0)  most zero with's,(0)|=0.863. The atom witls,(0)=0 has
= —0.863 corresponds to the atom initially prepared closelya maximal electric dipole moment.
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X

FIG. 2. Projections of the Poincasections on the plane of the atomic momeniuin units of#k; and the position in units d{f_l. )]
s,(0)=—0.866 0254 ands=1.2. (b) s,(0)=—0.863 ands=1.2. (¢) s,= —0.866 0254,5=1.92, andp(0)=2.1 in all the above frag-
ments.(d) s,= —0.863, §=1.92, andp(0)=20. x,p are dimensionless.

As it was expected, at exact resonanée-Q), the maxi- the maximal Lyapunov exponent is computed over the rather
mal Lyapunov exponent is exactly equal zero in all the casekng trajectory.
assuming a regular motion. As it follows from the results of The model Hamiltoniar(1) can be easily generalized to
previous section, a stochastic layer appears with infinitesian ensemble of indistinguishable two-level atoms. In the
mally small values of detuning, but its width decreases fastemiclassical approximation, we have not observed any pro-
with increasings [see, Eqs(28) and (29)]. We findA=0  nounced differences in the strength of chéibst is charac-
with [5[=3. In physical terms, it means that at exact reso+erized by the values ok) with different initial internal
nance an atom will periodically exchange excitation with theatomic states. Interatomic quantum correlations, which occur
field, whereas far off resonance its internal states will ”Otthrough the mediation of the field generated by the atomic

(alm_osh be affected by the field. This _interplay results in 2 ensemble, have been shown in Rif4] (where the model
maximum of theh () dependence with aimost the same in hot moving atoms but without recoil has been consid-

maximal values fos,(0)=0.863 and 0. The resuits, how- ered to play a significant role in the atom-field dynamics.

ﬁv;ar, a|1re d'ﬁf:ﬁm n th? :gng¢355§3 V\Il'tth dlfferer:t |n|-_ Much more strong chaos has been numerically fo@4d in

al values of Ih€ popuiation INversios}. 1 1S €asy 10 U= .o /acyum Rabi oscillations with atoms initially prepared in
derstand why it is. As it follows from the Bloch-like solution h _called superfluorescent statéth all the atoms to be
(12 for s,, the atom starting, say, in its ground state,t € so-cated Sup : . .

z uncorrelated initially and occupying their excited statbsn
s,(0)=—3/2 andu(0)=0v(0)=0, could reach the upper yjth atoms initially prepared in the superradiant statith
states,= /3/2 only with §=0. The same is valid with the initially strongly correlated atoms having a macroscopic
other initial values ofs,(0): the atom starting withs,(0) electric dipole moment
= \/Slg [or with s,(0)=0] will not reachs,=—/3/2 (or s, We numerically construct single-trajectory Poincaeg-
=+ /3/2) except for the case of exact resonanée,0. tions of motion in the syster(8) with three degrees of free-
Thus, the dependencieg 6) are different in the range-3 dom and project them on the plane of the atomic external
=< 6=3 with different values 0§,(0) in spite of the fact that variables &,p). Figure 2 presents these sections with the
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atom initially prepared close to the ground state and with two
different values of the atom-field detuning=1.2 [see(a)
and (b) fragment$ and §=1.92[see(c) and(d) fragments.

In the latter case chaos is not as strong as in the first/cagse
Fig. 1(a)]. A fairly regular web structure, that is seen in the
fragment(b) computed over a comparatively short integra-
tion time, breaks down with increasing integration tifitiee
fragment(a)]. For comparison, we present in Fig(cR the
Poincaresection computed under the same conditions as in
Fig. 2@ but with §=1.92 [an additional trajectory with
p(0)=0.2 is plotted in the fragment)]. Figure Zd) dem-
onstrates the Poincasection até=1.92 with an increased
initial momentump(0)=20.

1.57 X 4.71 6.28

V. STATISTICAL PROPERTIES OF THE ATOM-PHOTON
INTERACTION

In this section a detailed analysis of the atom and photon
chaotic dynamics will be considered. A sensitive control pa-
rameter is6=(w;— w,)/Q,, detuning of the field and atom
frequencies. For the sake of convenience we specify two
values ofé: 1.2 and 1.92. It follows from calculating maxi-
mal Lyapunov exponents in the previous section that the
smaller isé (in the range 0.5|6§|=<3), the stronger is mix-
ing and chaos, and one can expect that the case #ith
=1.92 is, being chaoti¢but not with the atom prepared in
the upper state or close t9,itmore intermittent than the case -
6=1.2. This property of the atom-photon dynamics will be 0 157 X a7 6.28

guantitatively characterized below. o .
The difference of a trajectory projection on the-p FIG. 3. The same as in Fig. 2 with,(0)=—0.863 andp(0)

plane @,=s,=0) is evident from Fig. 3 where the density =1. Change of density appears aftey A7=75000 and5=1.2
modulation has been used: a change of each density appe&fd (b) A7=49 000 ands=1.92.x, p are dimensionless.

after A7 points of the mapping the trajectoriefA . . s .
=75000 for(a) and A 7=49 000 for(b)]. The narrow strips  acteristics of the atom-photon variables: distribution of Poin-

’

of the same density in Fig.B) indicate a long stay of atom Care recurrences and moments of the atom coordinate
in the corresponding part of the- p plane with oscillations ~ Consider a small phase volumd™ andP(AT'; 7) as a prob-
in the potential well and a small change of the amplitude of@Pility density of a trajectory to return first time backAd"
the oscillations. In contrast to this pattern, the distribution ofat time instantre (7+dr) if initially started atAI' at 7
densities in Fig. @) is more uniform manifesting much bet- =0. Then the density probability to return first timeAd’ is
ter mixing, although some traces of the intermittency persist. 1

The difference betweed=1.2 and5§=1.92 is also evi- P(7)= lim —=P(AT;7) (32)
dent from Fig. 4 where a dependence x(7) is shown. The ar—oAT
intermittent case §=1.92) has very long “flights” known
also as Ley flights [30,31]. There are two types of flights in with a normalization condition
Fig. 4(b). One category of flights corresponds to the almost
linear dependence af= x(7), while the other corresponds to f
the stagnation of the trajectory near some valua. dfigure
4(c) shows the flight in thex—p plane where the ballistic
dynamics coexists or alternate stagnations. Both categorieshe probabilityP(7) does not depend on the choice AF

of flights are well understood from Figs(@ and 2d), bal-  and for “good” chaotic mixing decays exponentia[l$1,44
listic dynamics alongx in Fig. 2(c) is responsible for the

linear dependence of=x(7), while the trajectory can stay P(7)=(1Mh)e " (34
very long near the saddle points as in Figd)Athe dark area
near a saddle pointThe case ofs=1.2 in Figs. 2a) and  With the mean recurrence time
2(b) is very different and flights of both categories are rare, if B
ever.
Just the presence of flights and intermittent behavior of Trec= 1N= fo P(ndr, (39
the physical variables strong fluences the statistical proper-
ties of atoms and photons. We will use two important char-andh as Kolmogorov-Sinai entropy.

[

® 1
P(r)d7= lim —— | P(AI';7)dr=1. (33
0 AFHOAF 0
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The general situation is more complicated since an alge-
braic behavior

P(r)~1/7Y, 71— (36)

is possible for larger due to intermittent chaos. For bounded
Hamiltonian dynamicsr,.< (Kac lemma, and the condi-
tion y>2 should exist. Nevertheless, strongly intermittent
dynamics sometimes does not permit us to achieve the limit
at 7—o and many different intermediate asymptotics can
appear. Figure 5 shows the distribution of recurrences that is
close to the exponential one as in E&4) for 5=1.2 and to
the algebraic one as in E¢36) with y=2(7>10) for &
=1.92.

The difference due to intermittency also occurs for the
moments

(X2~ 7T, (37)

where the so-called transport expongt{im) varies for dif-
ferent time windows. The behavior x> is shown in Fig.

5. For 6=1.2, the valueu(1) is close to 2 forr<10® and
corresponds to the ballistic dynamics. Fer10° and &
=1.2, we haveu(1)~1.13 that corresponds to a weak su-
perdiffusion that is fairly close to the normal diffusion with
n(1)=1. Avery different behavior for moments appears for
6=1.92, where there are many long-lasting flights. For
>10°, u(1)~2.2 that corresponds to a superballistic trans-
port with an acceleration. This behavior can be explained as
a result of long flights when atoms move in the photon’s field
acquiring acceleration. This type of transport is self-similar
and u(4)~8.8=4u(1).

VI. MANIPULATION OF ATOMS

In this section we would like to make a few comments
related to the manipulation of atoms by changing different
control parameters. As it was shown in Sec. V, a chang® of
leads to a possibility of a sensitive control of thevidlights
and, as a result, to cool the atoms which have the lower
chaotic dispersion the longer the flight is. At the same time,
simulations show fast mixing on tha,—a, and s,—s,
planes. More precisely, spectral properties of the atomic dy-
namics are sensitively controlled by the paramétetet us
demonstrate it using a simplified analysis.

Considerx=x(7) as the only variable that describes the
dynamics or the most essential part of the dynamics, and
introduce a generation function

G(x,rv)=€ "X =%l x =x(0). (39

Then

FIG. 4. Levy flights of an atom in a cavity@) A long ballistic
flight at 6=1.2 is evident.(b) Ballistic flights intermittent with
stagnation phases of motion&t 1.92 are shown(c) Two different

[(7;Xg)= fiodv G(X,7;v)=2wd[X(17)—X%Xo]. (39

types of the Ley flights in the plane<— p. Time is in units of},*.  The expressiori (7;X,) can be “coarse-grained” ovex,

X,p,7 are dimensionless. i.e.,
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a dX(T
40— . . . (I %X0))x, = P(r)= > const
_‘_,.. XOEAXO 0 X(T) X
*. (41)
m .
32 o .
§° . The expressioni41) shows that for “good” chaotic systems
_8 .
Al 20000 T 110000 |[dx(7)/dxo| ~exph7), (42
&
% and we arrive at Eq.34). For the intermittent dynamics, the
S sum in Eq.(41) consists of two types of terms, the same as
§°16 Eq. (42 and the algebraic growth
~ Y
al slope=1.13 |dx/dxo|~ 77, (43)
m=1 with the value ofy depending on the type of intermittency.
For a fairly larger, the term(43) survives and we arrive at
0 . : , the cas€36).
2 3 I 4 5 6 From another side,
AT
40 2m<G(X!T; V>v:O:(_l)m<|X(T)_XO|2m>! (44)
and we obtain the moments af 7). This shows that the
32r moments and their spectral properties are coupled to the re-
currences distribution through the generating function
G(x,7;v) which one would expect to obtain from experi-
Ao ments. When the moments are infinite, the expres&idn
5_ can be replaced by the following:
>
2
oo o
21 ﬁ(G(XB:T? vP),—o=cons{|x(7) —xo|”) (45
14
with an appropriate value g8 [see more discussion in Ref.
[45]].
The main way of controlling the properties G{x, 7;v) is
to change the system’s topology in phase space. Speaking

4 about the topology, we have in mind the phase pattsee,
log T also, the end of the Sec,) lihat includes the singular points,
10 curves, and partitioning of the domains of chaos and islands.
FIG. 5. Time evolution of the @ith-order moments of the atom 10 illustrate how the system is sensitive to small variations
positionx on a logarithmic scale with the values of slopes indicatedOf the initial conditions that change the full energy, we show
for eachm. The insets show the respective distributions of the Poinin Figs. 6a) and b) the Poincaresections withs,(0)
carerecurrences(a) 6=1.2. (b) 6=1.92.x,r are dimensionless.  =0.863 ands,(0)=0.866 025 4, respectively, @=0.4 and
under the other equal conditions. Very small difference in the
1 o values of the initial tipping z_ing_le be_tween the _directio_n of
{1(7;%0) )x E_f dxol (7,%Xg) = _f dXgd[X(7) —Xo]. the Bloch vector and the axsgives rise to cardinally dif-
0 AXo Axo ferent motion withp(0)=2, chaotic oscillations in the wide
(40) range of the atomic momenta wit}(0)=0.863 and small
regular translational oscillations nearly the bottom of a po-
The presence of-function indicates recurrencesxg within  tential well with s,(0)=0.866 025 4. Transition from order
an intervalAxg at time instant- within an intervalA 7,. For  to chaos takes place with the latter value of the initial atomic
T—0o0 we can neglech-triple recurrences froon=2 and population inversion only with much more large values of
leave only the first recurrences. Then the initial momentump(0)=40.
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a
120 - . .

60

0 157 x 471628 0 157 x 471628

FIG. 7. Bifurcation of the saddle point into the elliptic point on
the planex—p under changing the detuning) x,p are dimension-
less.

VII. CONCLUSION

A system with one or more cold atoms strongly coupled to
a single mode of the cavity field is ideal for testing funda-
mentals of quantum mechanics and its corresponding to clas-
sical mechanics. Based on our understanding of the nonlinear
dynamics of the atom-photon interaction in a standing-wave
high-finesse cavity, new ways to manipulate and control
atomic motion can be opened. We have shown that the mo-
tion is very sensitive to the atom-cavity detunidgVarying
8, one can design topology of the underlying phase space
creating zones of trapping, quasitrapping or acceleration,
quasiregular and stochastic webs, etc. It may provide new
schemes for cooling, trapping, and accelerating atoms.

To give an idea about the values of the magnitudes we
have used in numerical simulations, we need to estimate the
range of values of the normalized recoil frequenay
=nkZ/mQ, with real atoms and cavities. We will use the
parameters of the real experiments with single atoms in the
strong-coupling regimé3,6], for which the maximal atom-
field coupling strength(), exceeds the decay rates of the
cavity field and of the atomic dipole. Atoms were collected
in a magneto-optical trap and cooled downu¥ tempera-
tures, before entering a microscopic high-finesse Fabry-Perot
cavity with Q=1, Qo=2m(10'-1¢) Hz and k;=2=
x 10°Pm~ 1. With these values of the parameters, one can es-
timate « to be in the range 10°—10 ? depending on the
0 1.57 X 4.71 6.28 atomic mass anél,.

Noted added in proofGiven the recognized difficulty in

FIG. 6. The same as in Fig. 2 but wii{0)=2, §=0.4, and the  atttributing a sensible meaning to the notion of “quantum
atom initially prepared nearly in its excited state with two slightly chaos” (QC), it is useful to add the following clarification.
different values of the population inversiofa) s,(0)=0.863.(b)  While chaos in classical systems means a sensitivity to the
s,(0)=0.866 025 4[for comparison, additional trajectories with infinitesimal changes of initial conditions, which leads to the
p(0)>2 are showh x,p are dimensionless. exponential growth of distances between trajectories, the no-

o tion of quantum chaos is uset in literally the same sense
~ The original systent3) has three degrees of freedom andp,; 55 a manifestation of quantum features of quantum sys-
it is not studied yet. Nevertheless, we were able to demongems that are chaotic foli=0. There is a definite signifi-
strate by simulation a bifurcation of a hyperbolic point into c5nce in use of the notion QC since some features of ran-
the elliptic one, although we are not able to provide an anagomness persist in quantum systems, although this

lytical description at the moment since the Fig. 7 is just 8andomness is not the same as the randomness of the chaotic
projection of a trajectory in the four-dimensional hyperspacesystemS in the classical limit=0.

onto the planef,x). By a change of5 near* ~0.222, the

sa_dd_le on thex—p plang W|thax=_sX=0 transforms_ mtq the ACKNOWLEDGMENTS
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