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Chaos and flights in the atom-photon interaction in cavity QED
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We study dynamics of the atom-photon interaction in cavity quantum electrodynamics, considering a cold
two-level atom in a single-mode high-finesse standing-wave cavity as a nonlinear Hamiltonian system with
three coupled degrees of freedom: translational, internal atomic, and the field. The system proves to have
different types of motion including Le´vy flights and chaotic walkings of an atom in a cavity. The corresponding
equations of motion for expectation values of the atom and field variables have two characteristic time scales:
fast Rabi oscillations of the internal atomic and field quantities and slow translational oscillations of the center
of the atom mass. It is shown that the translational motion, related to the atom recoils, is governed by an
equation of a parametric nonlinear pendulum with a frequency modulated by the Rabi oscillations. This type of
dynamics is chaotic with some width of the stochastic layer that is estimated analytically. The width is fairly
small for realistic values of the control parameters, the normalized detuningd and atomic recoil frequencya.
We consider the Poincare´ sections of the dynamics, compute the Lyapunov exponents, and find a range of the
detuning,udu&3, where chaos is prominent. It is demonstrated how the atom-photon dynamics with a given
value ofa depends on the values ofd and initial conditions. Two types of Le´vy flights, one corresponding to
the ballistic motion of the atom and the other corresponding to small oscillations in a potential well, are found.
These flights influence statistical properties of the atom-photon interaction such as distribution of Poincare´
recurrences and moments of the atom positionx. The simulation shows different regimes of motion, from
slightly abnormal diffusion witĥ x2&;t1.13 at d51.2 to a superdiffusion witĥx2&;t2.2 at d51.92 that
corresponds to a superballistic motion of the atom with an acceleration. The obtained results can be used to find
new ways to manipulate atoms, to cool and trap them by adjusting the detuningd.

DOI: 10.1103/PhysRevE.66.046222 PACS number~s!: 05.45.Mt, 42.50.Vk
s
th
ht
a

on
g
e

ho
e
se

of

o
tu

ys-
ally.
in
si-
nce
dy-
ap-
a
aser,
wn to
pa-
en

ms
o-
nt

as

, the
fter

ere
I. INTRODUCTION

Cavity quantum electrodynamics~QED! is a rapidly de-
veloping field of physics studying the interaction of atom
with photons in high-finesse cavities in a wide range of
electromagnetic spectrum, from microwaves to visible lig
in such conditions under which both atoms and fields m
manifest their quantum nature~for reviews on quantum and
atom optics, see, Refs.@1,2#!. Modern experiments in cavity
QED have achieved the exceptional circumstance of str
atom-field coupling for which the strength of the couplin
exceeds both the atomic dipole decay and the cavity fi
decay providing manipulations with single atoms and p
tons @3–7#. Trapped atoms and ions, interacting with las
fields in the regime of the strong coupling, have been u
not only to study fundamentals of quantum mechanics@8,9#
but also for applications in the rapidly growing fields
quantum computing, quantum communication@see, for ex-
ample, Refs.@10,11##, quantum chaos@12,13#, and decoher-
ence@14,15#.

A special comment should be related to the notion
chaos that we use in the paper. The real system is quan
and the quantum chaosper sedoes not exist. The notion
1063-651X/2002/66~4!/046222~12!/$20.00 66 0462
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‘‘quantum chaos’’ just refers to the behavior of quantum s
tems whose classical counterparts behave chaotic
Through the paper the notion ‘‘chaos’’ will be used only
that meaning since all our consideration will be semiclas
cal. The key issue of quantum chaos is the corresponde
between the classical and quantum pictures of chaotic
namics. Chaotic dynamics in the atom-photon physics
peared in the paper@16#, where the semiclassical model of
single-mode, resonant, and homogeneously broadened l
considered as an open dissipative system, has been sho
be equivalent to a Lorentz-type strange attractor, and the
per @17#, where Hamiltonian semiclassical chaos has be
shown to arise in the Dicke model with nonresonant ter
describing the interaction of an ensemble of identical tw
level atoms with their own radiation field in an ideal resona
cavity. The fully quantum version of the latter model h
been considered in Ref.@18#. It was shown in Ref.@18# that
in a parameter range, corresponding to classical chaos
evolution of the system becomes essentially quantum a
the so-called ‘‘breaking time’’t\ @19# that obeys in this re-
gime the logarithmic lawt\;l21ln(const/\), wherel is
the maximal Lyapunov exponent. All results presented h
as chaotic dynamics are valid up tot&t\ .
©2002 The American Physical Society22-1
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The physical mechanism of semiclassical chaos in
Dicke model is tied to virtual transitions that are describ
by nonresonant~or counter rotating! terms in the Dicke
Hamiltonian. They are small under usual conditions. Try
to find another mechanism of local instability in the Ham
tonian atom-photon dynamics without pump and losses,
authors of Refs.@20,21# proposed the semiclassical mod
with atoms moving through a standing-wave cavity in a
rection along which the cavity sustains a space-periodic fi
The standing-wave modulates the atom-field coupling p
viding in a certain range of the system’s parameters interm
tent Rabi oscillations. Another way to change the atom-fi
coupling is modulating the cavity length, studied in R
@22#. New effects in the model with moving atoms may ari
beyond the simple semiclassical approximation. Cha
vacuum Rabi oscillations, a new kind of reversible spon
neous emission, have been shown@23,24# to occur in the
model with interatomic quantum correlations.

Experiments to study the quantum dynamics of classic
chaotic systems for the atom-photon interaction in cavi
and traps have been intensively studied with cold atoms
phase-modulated standing wave@25# and in an amplitude-
modulated standing wave@26# @following to the proposition
of Ref. @27##, and in a pulsed standing wave@28,29#. Cold
sodium or cesium atoms, which are kicked by a periodica
pulsed standing wave of far-detuned light, is an excell
experimental realization of a paradigm model of quant
chaos, ad-kicked quantum rotor. Dynamical localization
that was observed in the atomic momentum distribution
the quantum suppression of the classical momentum d
sion. A typical underlying phase-space structure of class
chaotic systems consists of stochastic webs, islands,
chains of islands embedded in the stochastic sea. The ch
motion occupies a certain area in phase space. Becau
islands and their boundaries, typical behavior of chaotic s
tems can be intermittent with long~quasi!regular oscillations
~the so-called Le´vy flights! interrupted by the chaotic piece
of trajectories. This intermittency leads to the anomalous
fusion with Lévy distribution functions or a similar one
which have power-wise tails@for reviews on Le´vy processes
in physics see Ref.@30#, where the term ‘‘strange kinetics
was coined, and Ref.@31##. It was found with kicked cold
cesium atoms@32# that for certain pulses amplitudes, whe
the respective classical analog may exhibit anomalous d
sion, the momentum distributions were not exponentially
calized for the time of observation@see, also Refs.@33–35##.
It should be mentioned that anomalous diffusion and Le´vy
flights have been even earlier found with cold atoms a
employed in a subrecoil laser cooling scheme@36–38#.

In experiments withd-kicked atoms, the detuning be
tween the optical and atomic transition frequencies is la
~relative to the natural linewidth!, so the probability is smal
to find an atom, initially prepared in the ground state, in
excited state, and the excited state amplitude can be adia
cally eliminated @27#. In this approximation, an effective
Hamiltonian is that of a driven nonlinear oscillator with 3
degrees of freedom. Generally speaking, the atom-photon
teraction in a high-finesse cavity is, mainly, the interact
between internal~electronic! and external~motional! atomic
04622
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degrees of freedom and the cavity field. A correspond
one-dimensional model, including the interaction of all tho
degrees of freedom, has been introduced in papers@39,40# in
the context of Hamiltonian chaos. In this paper, we us
slightly generalized version of that model with three degre
of freedom to study the effects of chaos and Le´vy flights in
the strongly-coupled atom-field system.

In Sec. II the semiclassical basic equations in the Heis
berg representation are derived in the form of six coup
nonlinear equations with two control parameters, the norm
ized detuningd and atomic recoil frequencya. Taking into
account that the frequency of the atomic~and field! Rabi
oscillations is much more larger than the frequency of tra
lational oscillations, reduced Bloch-like equations of t
atom-field internal motion are derived and solved in Sec.
The motion of the center of the atom mass is governed b
single equation of a parametrically perturbed pendulum. T
dynamics generates a stochastic layer with an exponent
small width. In Sec. IV we simulate the basic set of equ
tions at the fixed value of the normalized recoil frequen
a51023 corresponding to a light atom in a microcavity wit
realistic parameters@3–7#. The maximal Lyapunov expo
nents and Poincare´ sections are calculated and it is found th
the detuningd is a crucial parameter in transition to chao
Statistical properties of the atom-photon interaction are c
sidered in Sec. V. We give an evidence of two types of Le´vy
flights of an atom, one corresponding to an almost lin
dependence of the atomic positionx on time ~superdiffusive
and superballistic regime!, and the other corresponding t
small regular oscillations of the atom in the potential we
The Lévy flights influence strongly such statistical properti
of atoms and photons as distribution of Poincare´ recurrences
and moments ofx. The distribution of recurrences and tim
evolution of the moments depend on the value of the det
ing d demonstrating different regimes from an almost norm
diffusion to a superdiffusion. In Sec. VI we discuss brie
ways to manipulate the atomic motion by varying cont
parameters and initial internal atomic states. It is possible
particular, to cool and trap atoms by adjusting the detuni

II. BASIC EQUATIONS

The basic model of interaction of radiation with matt
describes the energy exchange between a two-level atom
a single mode of the quantized radiation field in an id
lossless cavity@41#. In general, this interaction should in
volve not only the internal atomic transitions and field sta
but also the center-of-mass motion of the atom. With
recoil effect to be included into consideration, the stand
Jaynes-Cummings Hamiltonian can be extended as follo

H5
p̂2

2m
1\vaŝz1\v f â

1â2\V0~ â1ŝ21âŝ1!coskf x̂,

~1!

where x̂ and p̂ are the atomic position and momentum o
erators, respectively. Transitions between two electro
states, separated by the energy\va , are described by the
spin operators with the commutation relations,@ ŝ1 ,ŝ2#
2-2
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52ŝz and @ ŝz ,ŝ6#56 ŝ6 . The photon annihilation and cre
ation operators with the commutation rule@ â,â1#51 char-
acterize a selected mode of the radiation field of the
quencyv f and the wave numberkf in a lossless cavity of the
Fabry-Perot type. The parameterV0 is the amplitude value
of the atom-field dipole coupling that depends on the po
tion of an atom inside a cavity. As it is usually adopted
cavity QED, we write down the Heisenberg equations
the external atomic operators,x̂ and p̂, and for slowly
varying amplitudes of the field and spin operatorsâ(t)
5âexp(2ivft), â1(t)5â1exp(ivft), ŝ6(t)5 ŝ6exp(6ivft)
and ŝz(t)5 ŝz,

d

dt
x̂5

p̂

m
,

d

dt
p̂52\kfV0~ â1ŝ21âŝ1!sinkf x̂,

d

dt
ŝ152 i ~v f2va!ŝ112iV0â1ŝz coskf x̂,

d

dt
ŝ25 i ~v f2va!ŝ222iV0âŝz coskf x̂,

d

dt
ŝz52 iV0~ â1ŝ22âŝ1!coskf x̂,

d

dt
â152 iV0ŝ1coskf x̂,

d

dt
â5 iV0ŝ2coskf x̂. ~2!

To avoid cumbersome notations in Eqs.~2! we use for the
amplitudes the same notations as for the respective w
operators.

In order to derive a tractable closed set of equations
expectation values from the Heisenberg operator equat
~2!, we use the semiclassical approximation. It means tha
the operators and their products in Eqs.~2! are averaged ove
an initial quantum state, which is supposed to be a prod
state of the translational, electronic, and field states. The
pectation values of all the operator products are factorize
the products of the respective expectation values, e

^(â1ŝ21âŝ1)sinkfx̂&5(^â1&^ŝ2&1^â&^ŝ1&)sin(kf^x̂&). By
choosing the following dimensionless expectation values

x5kf^x̂&, p5^ p̂&/\kf , ax5
1

2
^â1â1&, ay5

1

2i
^â2â1&,

sx5
1

2
^ŝ21 ŝ1&, sy5

1

2i
^ŝ22 ŝ1&,

as dynamical variables, we finally get from Eqs.~2! a non-
linear dynamical system
04622
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ẋ5a p,

ṗ522~axsx1aysy!sinx,

ṡx52dsy12ayszcosx,

ṡy5dsx22axszcosx,

ȧx52sycosx,

ȧy5sxcosx ~3!

that describes the interaction between three degrees of
dom in the strongly-coupled atom-field system, translatio
(p,x), electronic (sx ,sy), and the field (ax ,ay) ones. The
dot in Eqs. ~3! denotes the derivative with respect to th
normalized timet5V0t. The control parameters are the no
malized recoil frequencya5\kf

2/mV0 and the normalized
detuning between the frequencies of the field mode and
electronic transition,d5(v f2va)/V0. The system~3! con-
serves the energy

W5
a

2
p222~axsx1aysy!cosx2dsz , ~4!

and it possesses two additional first integrals

sx
21sy

21sz
25S2, ax

21ay
21sz5N. ~5!

The first one is simply the conservation of the atomic pro
ability, and the second one is a conserved total numbe
excitations, which is known to be a constant in the rotatin
wave approximation. The equation of motion for the atom
inversionsz is easily derived with the help of the integralN,

ṡz52~axsy2aysx!cosx. ~6!

The semiclassical approximation, we used for Eq.~3!, means
that the atom as a classical particle with external and inte
states moves in a self-consistent classical radiation field.

From the dynamical systems point of view Eqs.~3! rep-
resent a system with three degrees of freedom~one degree of
freedom per a canonically conjugate pair of the generali
momentum and coordinate! in six-dimensional phase spac
Indeed, we reinsert Eq.~6! for ṡz into Eq. ~3!. After that the
system~3! describes three degrees of freedom: the atom
ternal coordinates (x,p), the atom internal coordinate
(sx ,sy), and the field coordinates (ax ,ay). There are two
constrains: energy integralE5H(p,x;sx ,sy ;ax ,ay) and the
spin integralS. The number of excitationsN should be used
to determinesz as a function of other variables. That mea
that full dynamics is defined in four-dimensional hyperspa
and should have domains of chaos due to its nonintegrab
One can say that the location of the domains of chaotic m
tion, islands of regular dynamics, set of stationary poin
and boundaries define a topology of the system’s flow. T
topology is two parametric (E,S) and very complicated. Its
description needs a separate investigation.
2-3
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III. REDUCED DYNAMICS AND THE ESTIMATION
OF THE STOCHASTIC LAYER WIDTH

We can simplify further the basic equations~3! introduc-
ing the combined atom-field variables

u52~axsx1aysy!, v52~aysx2axsy! ~7!

and using the integrals~5!. As a result, one arrives at th
closed five-dimensional dynamical system

ẋ5ap,

ṗ52u sinx,

u̇5dv,

v̇52du12~2Nsz23sz
21S2!cosx,

ṡz52v cosx, ~8!

which generalizes the corresponding equations of the p
@40# @see Eqs.~3! therein, which were derived in the limit o
largeN]. It is obvious from Eqs.~8! that at exact resonance
d50, the slow translational variablesx andp are separated
from the fast atom-fieldu, v, and sz , and the system~8!
becomes integrable. Atd50, the atom moves in a spatiall
periodic optical potentialU52u(0)cosx with u(0)5u(t
50)5const, and its center-of-mass motion satisfies the p
dulum equationẍ1au(0)sinx50. It is easy to find that the
dynamics of the internal atomic variablesz satisfies the fol-
lowing equation:

ṡz562Asz~sz
22Nsz2S2!1C cosx, ~9!

whereC is an integration constant, andx(t) is a solution of
the pendulum equation mentioned above. The Eq.~9! can be
integrated in terms of elliptic Jacobian functions with a s
lution that converges to the well-known Jaynes-Cummin
semiclassical solution@41# in the Raman-Nath limitx
5const.

Out of resonance, atdÞ0, the system~8! exhibits chaotic
dynamics. In order to clarify the origin of chaos, consid
Eqs.~8! in the limit of large number of excitationN and large
detuningsd comparing toS2. Taking into account that the
normalized Rabi frequency is of the order of;AN.1 and is
much more larger than the frequency of small translatio
oscillations,Aa!1, the equations for the fast atom-field o
cillations are reduced to the Bloch-like form

u̇5dv,

v̇52du14Nsz cosx,

ṡz52v cosx, ~10!

where the function cosx may be considered approximately
a constantc over a period of time of many Rabi oscillation
In this approximation, the quantity
04622
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u21v21N~2sz!
25R ~11!

plays a role of the length of Bloch vector, and the gene
solution of the Bloch-like equations~10! can be found

u5u~0!FNS 2c

VN
D 2

1S d

VN
D 2

cosVNt G1
d

VN
v~0!sinVNt

1
4Ndc

VN
2

sz~0!~12cosVNt!,

v52
d

VN
u~0!sinVNt1v~0!cosVNt1

4Nc

VN
sz~0!sinVNt,

~12!

sz5u~0!
cd

VN
2 ~12cosVNt!2

c

VN
v~0!sinVNt1sz~0!

3F S d

VN
D 2

1NS 2c

VN
D 2

cosVNtG ,
where the quantity

VN5Ad21~2c!2N ~13!

is similar to the Rabi frequency.
Since the function cosx varies in time slowly comparing

to the fast oscillatingu, v, andz, the atom-field variableu
may be considered approximately as a spatially indepen
frequency- and amplitude-modulated signal that parame
cally excites the translational motion:

ẍ1au~t!sinx50, ~14!

that follows from the first two equations of the system~8!.
The modulation has especially simple form for initial cond
tionsu(0)5v(0)50 andsz(0)5uSu, that corresponds to the
atom prepared initially in the upper state while the field m
be initially at any state, andc51:

u~t!5
4NduSu

VN
2 ~12cosVNt!. ~15!

The Eq.~14! is derived from the following effective classica
Hamiltonian

H5
1

2
ẋ22v2 cosx1v2 cosVNt cosx5H01V, ~16!

whereH0 is the unperturbed Hamiltonian of a free pendulu
with the following frequency of small oscillations:

v5
2

VN
AaNuduuSu. ~17!

Rewriting the perturbationV5v2 cosVNt cosx in the form

V5
v2

2
@cos~x1VNt!1cos~x2VNt!#, ~18!
2-4
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one may consider Eq.~16! as the Hamiltonian of a particle
moving in the field of three plane waves in a frame movi
with the phase velocity of the first wave, while the pha
velocities of the second and third waves areVN and
2VN , respectively.

As it follows from the general theory of perturbed motio
of Hamiltonian systems with 3/2 degrees of freedom@42#,
the Hamiltonian~16! induces chaotic dynamics in the s
called stochastic layer that appears due to the separatrix s
ting. Let us consider the motion in the neighborhood of u
perturbed separatrix of the pendulum~16!. Consider the
Poincare´-Melnikov integral

DE5E
2`

`

$H0 ,V%dt5v2E
2`

`

ẋ sin~x2VNt!dt, ~19!

where$H0 ,V% is the Poisson bracket. This integral describ
changes of the atomic translational energy at the separ
H05Es5v2. To estimate Eq.~19! for the dynamics near the
separatrix, one can use forx and ẋ their known unperturbed
separatrix solutions

xs54 arctan exp@6v~t2tn!#,

ẋs56
2v

cosh@v~t2tn!#
, ~20!

wheretn is introduced as an initial condition. Using the s
lutions ~20!, we get

DEn562v2E
2`

` dt

cosht
sinS x2

VN

v
t2fnD , ~21!

where the new timet5v(t2tn) and phasefn5VNtn were
introduced. The integral~21! has been calculated to give

DEn5DEs sinfn , ~22!

DEs52p VN
2 exp~pVN/2v!

sinh~pVN /v!
. ~23!

The oscillating functionDEn has simple zeroes that implie
transversal intersections of stable and unstable heteroc
manifolds of saddle points known as a complicated hete
clinic structure. On the basis of general properties of mot
near the separatrix, the separatrix map can be introdu
@42#:

En115En1DEs sinfn , ~24!

fn115fn1
VN

v
ln

32Es

uEn112Esu
. ~25!

The condition

K5maxUdfn11

dfn
21U. 2pVN

3

v

exp~pVN/2v!usinfnu
uEn112Esusinh~pVN /v!

*1 ~26!
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defines the stochastic layer width that can be estimated in
case of the large parameterVN /v@1 ~see the respective
estimations with real atoms in the concluding section! as
follows:

dEs[uEn112Esu&
8pVN

3

v
expS 2

pVN

2v D . ~27!

The dimensionless width of the stochastic layer is fina
given by

dEs

v2
.8pS VN

v D 3

expS 2
pVN

2v D , ~28!

where the large parameter

VN

v
5

d214N

2AaNuduuSu
~29!

under the conditionsN, d@uSu.1 andd2!4N is estimated
as

VN

v
.2A N

audu
. ~30!

For the considered case the width of the stochastic laye
the reduced atom-field dynamics is exponentially small
Eq. ~28!, multiplied by a large parameter. Due to Eq.~30! the
final width depends on the control parametersN, a, andd,
and the formula~28! is useful in estimating the ranges of th
control parameters where one may expect chaotic motio

The estimation~28! provides the lower bound for the th
width of the stochastic layer that appears due to the simp
harmonic modulation~15!. Small changes in energy produc
comparatively small changes in frequency of oscillatio
Nearby the bottom of potential wells and high over poten
hills ~where the energy is much less and much greater t
Es), small changes in frequency give rise to, respective
small changes in phase during the period of oscillatio
Nearby the unperturbed separatrix, where the period goe
infinity, even small changes in frequency lead to drama
changes in phase. This is the reason of exponential instab
of the parametric oscillator~14! and~15! which models cha-
otic motion of the atom moving through a periodic standi
wave.

IV. LYAPUNOV EXPONENTS AND POINCARE´ SECTIONS

In this section, we present numerical simulations with t
basic set of Eqs.~3! and the integrals of motion~4! and ~5!
with S253/4 ~the actual value ofS2 has no importance sinc
it always can be renormalized to 1! andN510. The system
~3! has two control parameters, the normalized detuningd
between the atomic transition and cavity frequencies and
normalized recoil frequencya. As it will be estimated in the
concluding section,a is in the range from 1025 to 1022 for
real atoms. We choosea51023 in simulations throughout
the paper.

The detuningd, as it was shown in Refs.@39,40#, is the
2-5
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crucial parameter in transition to chaos in the atom-field s
tem with the center-of-mass motion. It is obvious from t
set~8!, which is equivalent to the basic one~3!, that at exact
resonance,d50, the motion is regular. At large detuning
d@N the motion is expected to be quasiregular since
nonlinear term in the fourth equation of the set~8! is small,
compared to the linear term of the same equation. With
detuned light, one does not expect pronounced atomic R
oscillations. In order to find the range of the detunin
where the motion is expected to be chaotic, we compute
dependence of the maximal Lyapunov exponentl on the
detuningd.

Lyapunov exponents characterize the behavior of cl
trajectories in phase space. Consider a trajectory, some
quence of time instantst0 ,t1 ,t2 , . . . with equal intervals
Dt, and a ball around the initial point of the trajector
Lyapunov numbersL j ( j 51, . . . ,M ; M is a number of vari-
ables! show per-intervalDt changes of the axes of the ‘‘e
lipsoid’’ of the deformed ball: contraction or expansion@46#.
In our caseM56 after exclusion ofsz . The kth Lyapunov
exponent is defined aslk5 ln Lk . Typically Lk depends on
time andlk should be replaced by their mean values@46#. In
Hamiltonian systems, due to the phase volume conserva
L1•L2•••••LM51 and l11••1lM50. For integrable
system alllk are pure imaginary and they make pairs:l2
52l1 , l452l3 , l652l5, since the numberM of equa-
tions is even. This result follows from the so-calle
Liouville-Arnold theorem@47#. In our case, for the reduce
system of six variables (p,x;ax ,ay ;sx ,sy) and two con-
strains~integrals of motion!, we have two imaginary pairs
say l1,256 is1 , l3,456 is2 (s1,2 real!, and l5 , l6 that
satisfy the conditionL5•L651, i.e. L651/L5. The chaos
means thatl5,6 are real@43,46#. If, sayL5,1 (l5,0), then
L6.1 (l6.0) andl6 is called maximal Lyapunov expo
nent. It has a nice physical meaning; the maximal Lyapun
exponent measures a rate of the separation of initially c
trajectories, and typically for the practical goal, the me
value l5l6 over time is used. To computel, we use the
standard algorithm@43#

l5 lim
n→`

1

n (
k51

n

ln
D~tk!

D~tk21!
, ~31!

whereD(tk21) is a distance between two close trajector
at timetk21, and the valueD(tk)/D(tk21) shows the level
of separations of the trajectories during the inter
(tk21 ,tk).

In the case that separation doesn’t go exponentiallyl
50. This happens whend50 since the system become
integrable, and the exponential separation disappears.

The corresponding results of computing maxim
Lyapunov exponentl are presented in Fig. 1 with three di
ferent initial values of the atomic population inversio
sz(0)520.863, 0, 0.863, respectively. The other initial co
ditions are the following:ax(0)5sx(0)50, x(0)53.14,
p(0)52, anday(0) andsy(0) are found from the Eqs.~4!

and ~5! with given S5A3/2 andN510. The valuesz(0)
520.863 corresponds to the atom initially prepared clos
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to its ground state for whichsz52A3/2. Note that the un-
usual amplitude values of the atomic population invers
we have are the result of the chosen normalizationS2

53/4. The atom withsz(0)50.863 is prepared closely to it
excited state. In both the cases, the initial components of
transition electric dipole moment,sx(0) andsy(0), are al-
most zero withusz(0)u50.863. The atom withsz(0)50 has
a maximal electric dipole moment.

FIG. 1. The maximal Lyapunov exponentl in units of the maxi-
mal atom-field coupling rateV0 versus the atom-field detuningd in
units of V0. ~a! sz(0)520.863. ~b! sz(0)50. ~c! sz(0)50.863.
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FIG. 2. Projections of the Poincare´ sections on the plane of the atomic momentump in units of\kf and the position in units ofkf
21 . ~a!

sz(0)520.866 025 4 andd51.2. ~b! sz(0)520.863 andd51.2. ~c! sz520.866 025 4,d51.92, andp(0)52.1 in all the above frag-
ments.~d! sz520.863,d51.92, andp(0)520. x,p are dimensionless.
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As it was expected, at exact resonance (d50), the maxi-
mal Lyapunov exponent is exactly equal zero in all the ca
assuming a regular motion. As it follows from the results
previous section, a stochastic layer appears with infinit
mally small values of detuning, but its width decreases f
with increasingd @see, Eqs.~28! and ~29!#. We find l.0
with udu*3. In physical terms, it means that at exact re
nance an atom will periodically exchange excitation with t
field, whereas far off resonance its internal states will
~almost! be affected by the field. This interplay results in
maximum of thel(d) dependence with almost the sam
maximal values forsz(0)560.863 and 0. The results, how
ever, are different in the range23&d&3 with different ini-
tial values of the population inversionsz . It is easy to un-
derstand why it is. As it follows from the Bloch-like solutio
~12! for sz , the atom starting, say, in its ground sta

sz(0)52A3/2 andu(0)5v(0)50, could reach the uppe
statesz5A3/2 only with d50. The same is valid with the
other initial values ofsz(0): the atom starting withsz(0)
5A3/2 @or with sz(0)50] will not reachsz52A3/2 ~or sz

56A3/2) except for the case of exact resonance,d50.
Thus, the dependenciesl(d) are different in the range23
&d&3 with different values ofsz(0) in spite of the fact that
04622
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the maximal Lyapunov exponent is computed over the rat
long trajectory.

The model Hamiltonian~1! can be easily generalized t
an ensemble of indistinguishable two-level atoms. In
semiclassical approximation, we have not observed any
nounced differences in the strength of chaos~that is charac-
terized by the values ofl! with different initial internal
atomic states. Interatomic quantum correlations, which oc
through the mediation of the field generated by the atom
ensemble, have been shown in Ref.@24# ~where the model
with hot moving atoms but without recoil has been cons
ered! to play a significant role in the atom-field dynamic
Much more strong chaos has been numerically found@24# in
the vacuum Rabi oscillations with atoms initially prepared
the so-called superfluorescent state~with all the atoms to be
uncorrelated initially and occupying their excited states! than
with atoms initially prepared in the superradiant state~with
initially strongly correlated atoms having a macroscop
electric dipole moment!.

We numerically construct single-trajectory Poincare´ sec-
tions of motion in the system~3! with three degrees of free
dom and project them on the plane of the atomic exter
variables (x,p). Figure 2 presents these sections with t
2-7
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atom initially prepared close to the ground state and with t
different values of the atom-field detuningd51.2 @see ~a!
and ~b! fragments# andd51.92 @see~c! and ~d! fragments#.
In the latter case chaos is not as strong as in the first case@see
Fig. 1~a!#. A fairly regular web structure, that is seen in th
fragment~b! computed over a comparatively short integr
tion time, breaks down with increasing integration time@the
fragment~a!#. For comparison, we present in Fig. 2~c! the
Poincare´ section computed under the same conditions a
Fig. 2~a! but with d51.92 @an additional trajectory with
p(0)50.2 is plotted in the fragment~c!#. Figure 2~d! dem-
onstrates the Poincare´ section atd51.92 with an increased
initial momentump(0)520.

V. STATISTICAL PROPERTIES OF THE ATOM-PHOTON
INTERACTION

In this section a detailed analysis of the atom and pho
chaotic dynamics will be considered. A sensitive control p
rameter isd5(v f2va)/V0, detuning of the field and atom
frequencies. For the sake of convenience we specify
values ofd: 1.2 and 1.92. It follows from calculating max
mal Lyapunov exponents in the previous section that
smaller isd ~in the range 0.5&udu&3), the stronger is mix-
ing and chaos, and one can expect that the case wid
51.92 is, being chaotic~but not with the atom prepared i
the upper state or close to it!, more intermittent than the cas
d51.2. This property of the atom-photon dynamics will
quantitatively characterized below.

The difference of a trajectory projection on thex2p
plane (ax5sx50) is evident from Fig. 3 where the densi
modulation has been used: a change of each density ap
after Dt points of the mapping the trajectories@Dt
575 000 for~a! andDt549 000 for~b!#. The narrow strips
of the same density in Fig. 3~b! indicate a long stay of atom
in the corresponding part of thex2p plane with oscillations
in the potential well and a small change of the amplitude
the oscillations. In contrast to this pattern, the distribution
densities in Fig. 3~a! is more uniform manifesting much be
ter mixing, although some traces of the intermittency pers

The difference betweend51.2 andd51.92 is also evi-
dent from Fig. 4 where a dependencex5x(t) is shown. The
intermittent case (d51.92) has very long ‘‘flights’’ known
also as Le´vy flights @30,31#. There are two types of flights in
Fig. 4~b!. One category of flights corresponds to the alm
linear dependence ofx5x(t), while the other corresponds t
the stagnation of the trajectory near some value ofx. Figure
4~c! shows the flight in thex2p plane where the ballistic
dynamics coexists or alternate stagnations. Both catego
of flights are well understood from Figs. 2~c! and 2~d!, bal-
listic dynamics alongx in Fig. 2~c! is responsible for the
linear dependence ofx5x(t), while the trajectory can stay
very long near the saddle points as in Fig. 2~d! ~the dark area
near a saddle point!. The case ofd51.2 in Figs. 2~a! and
2~b! is very different and flights of both categories are rare
ever.

Just the presence of flights and intermittent behavior
the physical variables strong fluences the statistical pro
ties of atoms and photons. We will use two important ch
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acteristics of the atom-photon variables: distribution of Po
caré recurrences and moments of the atom coordinatex.
Consider a small phase volumeDG andP(DG;t) as a prob-
ability density of a trajectory to return first time back toDG
at time instanttP(t1dt) if initially started at DG at t
50. Then the density probability to return first time toDG is

P~t!5 lim
DG→0

1

DG
P~DG;t! ~32!

with a normalization condition

E
0

`

P~t!dt5 lim
DG→0

1

DGE0

`

P~DG;t!dt51. ~33!

The probabilityP(t) does not depend on the choice ofDG
and for ‘‘good’’ chaotic mixing decays exponentially@31,44#

P~t!5~1/h!e2ht ~34!

with the mean recurrence time

t rec51/h5E
0

`

tP~t!dt, ~35!

andh as Kolmogorov-Sinai entropy.

FIG. 3. The same as in Fig. 2 withsz(0)520.863 andp(0)
51. Change of density appears after~a! Dt575 000 andd51.2
and ~b! Dt549 000 andd51.92. x, p are dimensionless.
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FIG. 4. Lévy flights of an atom in a cavity.~a! A long ballistic
flight at d51.2 is evident.~b! Ballistic flights intermittent with
stagnation phases of motion atd51.92 are shown.~c! Two different
types of the Le´vy flights in the planex2p. Time is in units ofV0

21.
x,p,t are dimensionless.
04622
The general situation is more complicated since an a
braic behavior

P~t!;1/tg, t→` ~36!

is possible for larget due to intermittent chaos. For bounde
Hamiltonian dynamics,t rec,` ~Kac lemma!, and the condi-
tion g.2 should exist. Nevertheless, strongly intermitte
dynamics sometimes does not permit us to achieve the l
at t→` and many different intermediate asymptotics c
appear. Figure 5 shows the distribution of recurrences tha
close to the exponential one as in Eq.~34! for d51.2 and to
the algebraic one as in Eq.~36! with g*2(t.105) for d
51.92.

The difference due to intermittency also occurs for t
moments

^x2m&;tm(m), ~37!

where the so-called transport exponentm(m) varies for dif-
ferent time windows. The behavior of^x2m& is shown in Fig.
5. For d51.2, the valuem(1) is close to 2 fort,103 and
corresponds to the ballistic dynamics. Fort.103 and d
51.2, we havem(1)'1.13 that corresponds to a weak s
perdiffusion that is fairly close to the normal diffusion wit
m(1)51. A very different behavior for moments appears f
d51.92, where there are many long-lasting flights. Fort
.103, m(1)'2.2 that corresponds to a superballistic tran
port with an acceleration. This behavior can be explained
a result of long flights when atoms move in the photon’s fie
acquiring acceleration. This type of transport is self-simi
andm(4)'8.854m(1).

VI. MANIPULATION OF ATOMS

In this section we would like to make a few commen
related to the manipulation of atoms by changing differe
control parameters. As it was shown in Sec. V, a change od
leads to a possibility of a sensitive control of the Le´vy flights
and, as a result, to cool the atoms which have the lo
chaotic dispersion the longer the flight is. At the same tim
simulations show fast mixing on theax2ay and sx2sy
planes. More precisely, spectral properties of the atomic
namics are sensitively controlled by the parameterd. Let us
demonstrate it using a simplified analysis.

Considerx5x(t) as the only variable that describes th
dynamics or the most essential part of the dynamics,
introduce a generation function

G~x,t;n!5ein[x(t)2x0] , x0[x~0!. ~38!

Then

I ~t;x0![E
2`

`

dn G~x,t;n!52pd@x~t!2x0#. ~39!

The expressionI (t;x0) can be ‘‘coarse-grained’’ overx0,
i.e.,
2-9
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^I ~t;x0!&x0
[

1

Dx0
E dx0I ~t,x0!5

2p

Dx0
E dx0d@x~t!2x0#.

~40!

The presence ofd-function indicates recurrences tox0 within
an intervalDx0 at time instantt within an intervalDt0. For
t→` we can neglectn-triple recurrences fromn>2 and
leave only the first recurrences. Then

FIG. 5. Time evolution of the 2mth-order moments of the atom
positionx on a logarithmic scale with the values of slopes indica
for eachm. The insets show the respective distributions of the Po
carérecurrences.~a! d51.2. ~b! d51.92. x,t are dimensionless.
04622
^I ~t;x0!&x0
5P~t!5 (

x0PDx0

constY Udx~t!

dx0
U

x(t)5x0

.

~41!

The expression~41! shows that for ‘‘good’’ chaotic systems

udx~t!/dx0u;exp~ht!, ~42!

and we arrive at Eq.~34!. For the intermittent dynamics, th
sum in Eq.~41! consists of two types of terms, the same
Eq. ~42! and the algebraic growth

udx/dx0u;tg, ~43!

with the value ofg depending on the type of intermittenc
For a fairly larget, the term~43! survives and we arrive a
the case~36!.

From another side,

]2m

]n2m
^G~x,t;n&n505~21!m^ux~t!2x0u2m&, ~44!

and we obtain the moments ofx(t). This shows that the
moments and their spectral properties are coupled to the
currences distribution through the generating funct
G(x,t;n) which one would expect to obtain from exper
ments. When the moments are infinite, the expression~44!
can be replaced by the following:

]b

]nb
^G~xb,t;nb&n505const̂ ux~t!2x0ub& ~45!

with an appropriate value ofb @see more discussion in Re
@45##.

The main way of controlling the properties ofG(x,t;n) is
to change the system’s topology in phase space. Spea
about the topology, we have in mind the phase pattern~see,
also, the end of the Sec. II! that includes the singular points
curves, and partitioning of the domains of chaos and islan
To illustrate how the system is sensitive to small variatio
of the initial conditions that change the full energy, we sho
in Figs. 6~a! and 6~b! the Poincare´ sections withsz(0)
50.863 andsz(0)50.866 025 4, respectively, atd50.4 and
under the other equal conditions. Very small difference in
values of the initial tipping angle between the direction
the Bloch vector and the axisz gives rise to cardinally dif-
ferent motion withp(0)52, chaotic oscillations in the wide
range of the atomic momenta withsz(0)50.863 and small
regular translational oscillations nearly the bottom of a p
tential well with sz(0)50.866 025 4. Transition from orde
to chaos takes place with the latter value of the initial atom
population inversion only with much more large values
the initial momentum,p(0)*40.

d
-
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CHAOS AND FLIGHTS IN THE ATOM-PHOTON . . . PHYSICAL REVIEW E66, 046222 ~2002!
The original system~3! has three degrees of freedom a
it is not studied yet. Nevertheless, we were able to dem
strate by simulation a bifurcation of a hyperbolic point in
the elliptic one, although we are not able to provide an a
lytical description at the moment since the Fig. 7 is jus
projection of a trajectory in the four-dimensional hyperspa
onto the plane (p,x). By a change ofd neard* ;0.222, the
saddle on thex2p plane withax5sx50 transforms into the
elliptic point. The trapping potential well of the finite size o
x2p plane occurs as a result of the bifurcation, this bifurc
tion will be studied in detail in another paper.

FIG. 6. The same as in Fig. 2 but withp(0)52, d50.4, and the
atom initially prepared nearly in its excited state with two sligh
different values of the population inversion.~a! sz(0)50.863. ~b!
sz(0)50.866 025 4 @for comparison, additional trajectories wit
p(0).2 are shown#. x,p are dimensionless.
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VII. CONCLUSION

A system with one or more cold atoms strongly coupled
a single mode of the cavity field is ideal for testing fund
mentals of quantum mechanics and its corresponding to c
sical mechanics. Based on our understanding of the nonlin
dynamics of the atom-photon interaction in a standing-wa
high-finesse cavity, new ways to manipulate and con
atomic motion can be opened. We have shown that the
tion is very sensitive to the atom-cavity detuningd. Varying
d, one can design topology of the underlying phase sp
creating zones of trapping, quasitrapping or accelerat
quasiregular and stochastic webs, etc. It may provide n
schemes for cooling, trapping, and accelerating atoms.

To give an idea about the values of the magnitudes
have used in numerical simulations, we need to estimate
range of values of the normalized recoil frequencya
5\kf

2/mV0 with real atoms and cavities. We will use th
parameters of the real experiments with single atoms in
strong-coupling regime@3,6#, for which the maximal atom-
field coupling strengthV0 exceeds the decay rates of th
cavity field and of the atomic dipole. Atoms were collect
in a magneto-optical trap and cooled down tomK tempera-
tures, before entering a microscopic high-finesse Fabry-P
cavity with Q.106, V0.2p(107–108) Hz and kf.2p
3106m21. With these values of the parameters, one can
timate a to be in the range 1025–1022 depending on the
atomic mass andV0.

Noted added in proof.Given the recognized difficulty in
atttributing a sensible meaning to the notion of ‘‘quantu
chaos’’ ~QC!, it is useful to add the following clarification
While chaos in classical systems means a sensitivity to
infinitesimal changes of initial conditions, which leads to t
exponential growth of distances between trajectories, the
tion of quantum chaos is usednot in literally the same sens
but as a manifestation of quantum features of quantum
tems that are chaotic for\50. There is a definite signifi-
cance in use of the notion QC since some features of
domness persist in quantum systems, although
randomness is not the same as the randomness of the ch
systems in the classical limit\50.
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Éksp. Teor. Fiz.71, 1799 ~1976! @Sov. Phys. JETP44, 945
~1976!#.

@18# G.P. Berman, E.N. Bulgakov, and G.M. Zaslavsky, Chaos2,
257 ~1992!.

@19# G.P. Berman and G.M. Zaslavsky, Physica A91, 450 ~1978!.
@20# S.V. Prants and L.E. Kon’kov, Phys. Lett. A225, 33 ~1997!.
@21# S.V. Prants, L.E. Kon’kov, and I.L. Kirilyuk, Phys. Rev. E60,

335 ~1999!.
@22# V.I. Ioussoupov, L.E. Kon’kov, and S.V. Prants, Physica

155, 311 ~2001!.
@23# S.V. Prants, Phys. Rev. E61, 1386~2000!.
@24# S.V. Prants and L.E. Kon’kov, Phys. Rev. E61, 3632~2000!.
@25# F.L. Moore, J.C. Robinson, C. Bharucha, P.E. Williams, a
.

v.

.

re

.

,
l

M.G. Raizen, Phys. Rev. Lett.73, 2974~1994!.
@26# W.K. Hensinger, A.G. Truscott, B. Upcroft, M. Hug, H.M

Wiseman, N.R. Heckenberg, and H. Rubinsztein-Dunl
Phys. Rev. A64, 033407~2001!.

@27# R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev. A45,
R19 ~1992!.

@28# F.L. Moore, J.C. Robinson, C.F. Bharucha, Bala Sundar
and M.G. Raizen, Phys. Rev. Lett.75, 4598~1995!.

@29# H. Ammann, R. Gray, I. Shvarchuck, and N. Christens
Phys. Rev. Lett.80, 4111~1998!.

@30# M.F. Shlesinger, G.M. Zaslavsky, and J. Klafter, Nature~Lon-
don! 363, 31 ~1993!.

@31# G.M. Zaslavsky,Physics of Chaos in Hamiltonian System
~Imperial College Press, London, 1998!.

@32# B.G. Klappauf, W.H. Oskay, D.A. Steck, and M.G. Raize
Phys. Rev. Lett.81, 4044~1998!.

@33# B. Sundaram and G.M. Zaslavsky, Phys. Rev. E59, 7231
~1999!.

@34# A. Iomin and G.M. Zaslavsky, Phys. Rev. E60, 7580~1999!.
@35# R. Artuso and M. Rusconi, Phys. Rev. E64, 015204~2001!.
@36# F. Bardou, J.P. Bouchaud, O. Emile, A. Aspect, and C. Coh

Tannoudji, Phys. Rev. Lett.72, 203 ~1994!.
@37# J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand,

Salomon, and C. Cohen-Tannoudji, Phys. Rev. Lett.75, 4575
~1995!.

@38# B. Saubame´a, M. Leduc, and C. Cohen-Tannoudji, Phys. Re
Lett. 83, 3796~1999!.

@39# S.V. Prants and L.E. Kon’kov, Pis’ma Zh. E´ksp. Teor. Fiz.73,
200 ~2001! @JETP Lett.73, 180 ~2001!#.

@40# S.V. Prants and V.Yu. Sirotkin, Phys. Rev. A64, 033412
~2001!.

@41# E.T. Jaynes and F.W. Cummings, Proc. IEEE51, 89 ~1963!.
@42# G.M. Zaslavsky, R.Z. Sagdeev, D.A. Usikov, and A.A. Chern

kov, Weak Chaos and Quasiregular Patterns~Cambridge Uni-
versity Press, Cambridge, England, 1991!.

@43# A.J. Lichtenberg and M.A. Lieberman,Regular and Stochastic
Motion ~Springer, New York, 1983!.

@44# G.M. Zaslavsky, M. Edelman, and B. Niyasov, Chaos7, 159
~1997!.

@45# A.I. Saichev and G.M. Zaslavsky, Chaos7, 753 ~1997!.
@46# K.T. Alligood, T.D. Sauer, and J.A. Yorke,Chaos: an Introduc-

tion to Dynamical Systems~Springer, New York, 1997!.
@47# V.I. Arnold, Mathematical Methods in Classical Mechanic

~Springer, New York, 1988!.
2-12


