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Local scaling of the flux for standardlike maps
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Results of systematic numerical explorations of local scaling of the flux near a critical invariant circle for a
class of standardlike maps are reported. The scaling law is universal and the universality class is determined
apparently only by the tail in the rotation number of the critical invariant circle. The flux near just created
cantori is also studied, and another type of scaling is indicated, which is a combination of the scaling laws in
the critical and the strongly supercritical regimes.
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I. INTRODUCTION

The main impediment to a successful development o
theory of transport in the phase space of a typical Ham
tonian system is the existence of complicated structures
all scales@1–8#. In two extreme cases of an integrable and
fully chaotic systems the descriptions of transport are re
tively simple. In the first case, the dynamics is a simple co
bination, fixed by the distribution of the initial points, o
ergodic systems on the corresponding invariant tori of h
the dimension of the phase space. In the second case
initial distribution is spread by a diffusion process all ov
the entire energy surface, and the standard theory of d
sion could be successfully applied@9,10#. Near-integrable
systems, or systems on a part of the phase space almost
by the invariant KAM tori, can be treated by perturbatio
theories of the adiabatic invariants. The transport in syste
close to a fully chaotic one is also well described by negle
ing small domains with regular dynamics and with any ne
critical structures such as the reminiscent of the KAM to
The later, usually called cantori@11#, or the Aubry-Mather
sets@12,13#, are known to represent very strong but part
barriers for the transport@14#.

Most of the essential features of the problem are pres
already in systems with only two degrees of freedom, and
associated maps on the sections of the surfaces of con
energy, i.e., one-parameter families of area-preserving m
The parameter is interpreted as related to the energy of
system, and usually describes the deviations from an i
grable linear map. Genericity conditions require the map
be smooth diffeomorphisms, and it is physically plausible
consider only the maps for which the action variable is p
portional to the difference between the successive iterate
the angle coordinate. The maps that satisfy the stated co
tions are known as the twist area-preserving diffeom
phisms of a cylinder, and are the systems for which the pr
lems of transport have been studied most extensively@3#.
The central quantity in such theories is the flux of poin
from certain noninvariant domains in one iteration of t
map. In particular, domains bounded by the so-called ro
tional curves, i.e., those that go around the cylinder, and
be thought of as graphs of functions, i.e., motion along
curve preserves orientation, are analyzed.

As was pointed out, the main difficulty is to describe t
transport near and across the strong partial barriers, th
1063-651X/2002/66~4!/046221~8!/$20.00 66 0462
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across just created rotational cantori, and thus local pro
ties of the flux near the critical tori and just created cant
are the most important. Besides the rotational cantori, wh
represent the main partial barriers for the transport along
cylinder, the structure of islands around elliptic period
points of increasing order with their sticky boundaries a
also responsible for the anomalous properties of the di
sion, and have to be taken into account in a more comp
theory of transport@15#.

All regular ~periodic and quasiperiodic! rotational orbits
of such diffeomorphisms of the cylinder are enumerated b
single quantity, the corresponding rotation number or the
quency, and the flux through rotational curves also can
considered as a function of it. Thus, one is led to conside
one-parameter family of functional relations between the fl
and the rotation number. The dependence on the parame
smooth; but the dependence on the rotation number, fo
fixed nonzero value of the parameter, is very complicate

Important quantities for typical Hamiltonian systems d
play fractal dependence on the frequency with evidence
global and local self-similarity. Examples are the critic
functions @16–18#, critical invariant circles@19,20#, bound-
ary circles@21#, and actions of minimizing orbits@22#. The-
oretical explanation of the local scaling properties of su
self-similar fractal objects is provided by the renormalizati
theory for the area-preserving twist maps@23#.

Also based on the renormalization theory is the idea t
the local scaling properties should depend only on
asymptotic tail in the continued fraction expansion of t
frequency, and that these properties should be universal f
class of the twist maps. For example, critical invariant circ
of a large class of area-preserving twist maps have the fra
spectra that depend only on the tail of the continued fract
expansion of the rotation number of the torus, and are in
pendent of the rotation number and the particular form of
map @20#.

Although, the existence and universality of a local simp
scaling should not, in the view of the renormalization theo
come as a surprise, the important fractal quantities with re
tively simple local scaling, the corresponding scaling re
tions, and the corresponding universality classes still rem
to be investigated. A local scaling law near a type of critic
invariant circles with the rotation numbers given by the s
called noble irrationals was obtained numerically for t
standard map, and justified by the renormalization analy
©2002 The American Physical Society21-1
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N. BURIC AND K. TODOROVIC PHYSICAL REVIEW E66, 046221 ~2002!
~see the following section!. The analogous formula has bee
conjectured for the flux near the critical invariant circles o
more general type, and is expected to be universal, but
are not aware of any reported numerical confirmation.

In this paper we report the results of systematic numer
investigations of the universal scaling properties of the fl
near a critical invariant torus with a quadratic irrational r
tation number for a class of area-preserving twist maps.
have then studied the variations of the scaling relations
neighborhood of a weakly supercritical cantorus.

II. DEFINITIONS

The class of twist maps of the cylinder to be considered
this paper is defined by the following equations:

pn115pn1
k

2p
f ~qn!, qn115~qn1pn11! mod 1,

~1!

where (q,p)PS13R and the functionf is a smooth, even o
odd, periodic function with a zero average*0

1f (q)50, rep-
resented by a finite trigonometric polynomial. In particul
the standard map of Taylor and Chirikov is obtained fro
Eq. ~1! when f (q)[ f 1(q)5sin(2pq), and the maps of the
class ~1! are often called generalized standard maps. T
periodicity of the functionf is an arbitrary integer.

Regular, i.e., periodic and quasiperiodic, orbits of a m
of the form~1! are characterized by their rotation numberr,
or frequency, that is defined as follows:

r~q0 ,p0!5 lim
i→`

xi

i
[ lim

i→`

p1T̄i~x0 ,p0!

i
, ~2!

wherex0[q0 andxiPR are the first coordinates of the su
cessive iterates of the point (x0 ,p0) by the lift T̄ of the map
~1! on R3R, andp1 denotes the projection on the first c
ordinate. If the point (q0 ,p0) belongs to a periodic or a qua
siperiodic orbit, then the quantity~2! is well defined and is
characteristic of the orbit. Rationalr correspond to the peri
odic and irrationalr to the quasiperiodic orbits.

The flux from any bounded domain in the phase spac
defined as the total area of points that leave the domai
one iteration of the map. The flux across a rotational cir
on the cylinder is defined as the flux from the semi-infin
domain bounded by the rotational circle, and is specia
important for the transport theory. Typically there is upwa
and downward flux across such circles, but they are the s
for maps of the form~1!. If the rotational circle is an invari-
ant circle the flux across it is obviously zero. Thus, the KA
tori represent complete barriers to the transport along thp
axes. Furthermore, the flux across broken KAM tori, the
called cantori, is known to be very small for the values of t
parameter that are not much larger than the correspon
critical value at which the invariant circle is destroyed. Th
good understanding and efficient computational procedu
for the flux across slightly supercritical cantori are crucial
the transport theory.
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We shall now very briefly recapitulate the basic eleme
of the theory that are needed for an explicit computation
the flux across rotational circles. The maps of the form~1!
are canonical, i.e., globally~or exactly! symplectic transfor-
mations of the phase space, and, as such, are given by
corresponding generating functionS(xi ,xi 11), (xi ,xi 11)
PR3R, defined by

S~xi ,xi 11!5~xi2xi 11!2/21
k

4p2 V~xi !, f ~x!52
dV~x!

dx
,

~3!

and the map is then given by

pi52
]S

]xi
, pi 115

]S

]xi 11
. ~4!

The generating function is used to define action function
on sequences of real numbers, which are then used to ca
late the areas between rotational circles and ultimately
flux. In particular, periodic orbits of the periodn are given as
stationary points of the following action functional on th
finite sequences ofn real numbersxi ,i 50, . . . ,n21 subject
to the condition thatx01m5xn , for some integerm:

A~m/n,k!~x0 ,x1 , . . . ,xn21!5 (
i 50

i 5n21

S~xi ,xi 11!uxn5x01m .

~5!

There are, at least, one minimum and minimax station
points of Eq.~5! for eachm/n where (m,n) are coprime.
These give minimizing and minimax periodic orbits of th
map~1!, with the rotation numbers equal tom/n. Finally the
main object of interest in this paper, that is, the flux throu
a rotational curve constructed by the stable and unsta
manifolds of the minimizing (m/n) periodic orbit is given by
the difference of the corresponding minimax and minimu
of the periodic action~5! @2,3#

Aminmax~m/n,k!2Amin~m/n,k!ªF~m/n,k!. ~6!

The continued fraction expansion~CFE! of an irrationalr
5@0,a1 ,a2 , . . . ,aj , . . . # encodes the rotation numbers
the minimizing periodic orbitsmj /nj5@0,a1 ,a2 , . . . ,aj #
that give the best successive approximations~of a given
length n<nj ) of the quasiperiodic orbit. For a fixedk the
limit of the flux F(ml /nl ,k) over such a sequence of min
mizing periodic orbitsml /nl→r exists and is non-negativ
@13,12#. Depending onk the limit could be zero and then
there is an invariant circle supporting the quasiperiodic orb
with the rotation numberr. Otherwise, if the limit is nonzero
the quasiperiodic orbit with the rotation numberr is sup-
ported on a fractal invariant set, the cantorus. The sma
value of the parameterk at which the quasiperiodic orbit is
not supported on a smooth circle is called critical and
denoted byK(r). The flux through a cantorus is nonzer
and can be defined as the limiting value of the seque
F(mj /nj ,k) for the fixed value ofk.K(r), which is such
that the quasiperiodic orbit with the rotation numberr
←mj /nj is on the cantorus.
1-2
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LOCAL SCALING OF THE FLUX FOR STANDARDLIKE MAPS PHYSICAL REVIEW E66, 046221 ~2002!
For a quasiperiodic orbit on a circle or on a cantorus,
limit k5 limn→`n21 lnuuDTnuu where uuDTnuu is the norm of
the product of the derivatives of the map along the or
exists and is the same for almost any point with respect
unique ergodic invariant measure, generated by the qua
eriodic orbit. The limit gives the Lyapunov exponent of th
invariant circle, which is equal to zero, or the cantorus, wh
k>0. In typical cases, the Lyapunov exponent can be e
mated from the behavior of the residues of the minimiz
periodic orbits with the rotation numbersml /nl→r using the
fact thatnl

21 ln Rnl
→k @24#.

In general, the fluxF(m/n,k) is a complicated function o
m/n for any fixedk.0 and a smooth increasing function
k for any fixedm/n. Some of its properties are indicated
Fig. 1, which showsF(m/n,k) for the standard map and
set of rationals that belong to the first few levels of the Fa
tree, and for various values of the parameterk. The smallest
k in Fig. 1 is equal to the critical valueK(g)
50.971 635 . . . atwhich the last rotational invariant torus
destroyed.F„m/n,K(g)… clearly displays the fractal discon
tinuous structure with large relative variations. Such la
relative variations of the flux are present also in the wea
supercritical case, or near just created cantori. Fork suffi-
ciently large, most of the local structure becomes negligi
and the relative variations of the flux are very small. Simi
qualitative picture is obtained for other maps of the type~1!.

FIG. 1. The fluxF(m/n,k) for the first few levels of the Farey
tree and few values of the parameterk: k5K(g) ~diamonds!, k
51.2K(g) ~crosses!, and k51.5K(g) ~circles!. Log scale is used
for y axes, where the numbers indicate the powers of 10.
04622
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Good understanding of the critical and weakly supercriti
behavior of the flux is obviously most difficult.

III. LOCAL SCALING OF THE FLUX: COMPUTATIONS
AND RESULTS

Scaling relations of the flux have been studied befo
mostly using the standard map as an example, while so
sort of universality is expected due to the universal prop
ties of critical invariant circles suggested by the renormali
tion ideas. For example, it is known that the fluxF(m/n,k)
near the critical invariant circle withr[g5(A521)/2, i.e.,
in the limit over CFE approximates of the golden circle f
the standard map satisfies the following simple scaling re
tion @2,3#:

F~mj /nj ,K~r!!5Crb2 j for r5g, ~7!

and it has been conjectured that the same scaling, with
sameb, is asymptotically valid for any noble critical circle
of the standard map, that is, a critical circle with the CFE
the correspondingr that ends with a tail of an infinite se
quence of units. Renormalization ideas suggest that the s
ing should depend only on the tail for arbitrary tails a
furthermore should be universal for a class of the twist ar
preserving maps. Furthermore, a more general scaling r
tion

F„mj /nj ,K~r!…5Bnj
2a ~8!

has been suggested in Ref.@21# for any irrationalr with a
periodic tail of its CFE, and numerically tested for the sta
dard map. In the case of irrationals with the constant tail,
two scaling relations~7! and ~8! should be equivalent sinc
thennj'r j .

Much faster convergence to the limiting value of the fl
through a cantorus has been observed for strongly super
cal noble cantori of the standard map. In this case, the
lowing formula has been suggested@2,3#:

F„mj /nj ,k@K~r!…5F0~r!1Cl2nj , mj /nj→r, ~9!

whereF0 is the flux through the cantorus, andl appears to
be equal to the Lyapunov exponent of the cantorus. Thus
the strongly supercritical case the convergence is faster
exponential.

We have undertaken a systematic numerical check of
relations ~7!–~9! for various r with constant and periodic
tails in the CFE and for various maps in the class~1!. The
weakly supercritical case, i.e.,k slightly aboveK(r), is also
studied.

The numerical procedure consists basically in calculati
of sufficiently long periodic orbits. These are used first
estimate the critical valuesK(r), using the Greene criterion
@25#, and then for calculations of the actions and the flux
Eq. ~5!. Variations of the critical values of the paramet
K(r) of the order 1026 induce variations of the numerica
values of the parametersb or a of the order 1023. Calcula-
tion of long periodic orbits near a critical circle or a cantor
represents a nontrivial numerical task. Due to dynamical
1-3
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FIG. 2. Scaling relations~7! and~8! for the standard map: Shown in~a! and~b! are examples with constant tails equal to 1` ~boxes!, 2`

~crosses!, 3` ~diamonds!, 4` triangles, and 5` ~circles!. ~c!,~d! illustrate the scaling for the rotation numbers with periodic tails (1,2)` ~c!
and (1,2,1)` ~d!. The parameterk on each line is equal to the correspondingK(r i).
046221-4



LOCAL SCALING OF THE FLUX FOR STANDARDLIKE MAPS PHYSICAL REVIEW E66, 046221 ~2002!
FIG. 3. Universality of the scaling relations~7! ~a!,~c! and ~8! ~b!,~d! for three examples of the maps~1! with 2f (x)5sin(2px);f(x)
5sin(2px)/21sin(4px)/4 ~diamonds!, 3f (x)5sin(2px)/21sin(4px)/41sin(6px)/6 ~crosses!, and the standard map~boxes!. Constant or
periodic tails of the CFE are indicated on the figures.
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stability of such orbits, an initial error could easily lead
the convergence of the numerical results to a nearby o
with a similar rotation number that is stable for the cons
ered value of the parameter. This is specially true for
critical invariant circles or cantori with non-noble rotatio
numbers, because apparently there are always smooth in
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ant circles with a noble number and the corresponding sta
long periodic orbits nearby. We have used two independ
procedures for such calculations. The first one represen
numerically stable method to implement a generalization
the Newton method to find the extremal points of the pe
odic action~4! @26#. Thus, the initial guess and the outcom
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N. BURIC AND K. TODOROVIC PHYSICAL REVIEW E66, 046221 ~2002!
is a set ofn points that approximate the whole periodic orb
The other procedure is based on a generalization of the
section method to find zeros of polynomials with large ord
@27#. Efficiency and accuracy of both methods depend c
cially on the special techniques to determine a good ini
guess for the Newton algorithm, or a good choice of
initial characteristic polyhedra in the bisection method.

The results of our computations are summarized and
lustrated in the sequence of Figs. 2–4 and in Tables I–
We first present the results in the critical case and for
standard map.

Figures 2~a! and 2~b! represent the logarithm of the flux
ln F„mj /nj ,K(r)… for the standard map as a function of th
order j @Fig. 2~a!# and the denominatornj @Fig. 2~b!# of the
convergentmj /nj→r for the irrational rotation numbersr
with constant tails equal to (1)`,(2)`,(3)`,(4)`, and (5)`,
where ()` denotes that the tail consists of an infinite repe
tion of (). The corresponding data are collected in Table

For any critical invariant circle with the rotation numb
with the constant tail the scaling is of the form~7! or ~8! for
the corresponding sequence of periodic orbits with rotat
numbersmj /nj→r. Numerical values of the parameterb or
a, for the rotation numbers with the same tail, could
made the same by small variations of the critical values
the perturbation parameterK(r) of the order 1026. On the
other hand,b or a are clearly different for the rotation num
bers with different tails. Notice that the values ofa are simi-
lar for all critical circles that we have tested, i.e., those w

FIG. 4. Illustration of two types of scaling laws in the weak
supercritical regime: Shown are differencesF(mj /nj ,k)
2F(r i ,k) for the golden torir i ,i 51,2,3 of the maps as in Fig. 3
each for the correspondingk51.04K(r i).
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coefficients of the CFEai<5. The dependence on the tail o
the CFE of the scaling properties of the flux is more eas
detected in terms of the parameterb of the scaling relation
~7!. Both parameters increase with the~constant! tail l.

Figures 2~c! and 2~d! represent lnF„mj /nj ,K(r)… for the
standard map as a function of the orderj and the denomina-
tor nj of the convergentmj /nj→r for the irrational rotation
numbersr with periodic tails (1,2)` @Fig. 2~c!# and (1,2,1)`

@Fig. 2~d!#. The scaling~8! is still valid, and critical circles
with rotation numbers with the same tail appear to have
samea, and different tails imply differenta. On the other
hand the scaling relation~7! is no more valid. However, there
are subsequences of the convergents (mj /nj )

s, →`, such
that the flux over each of the sequences verifies the sca
~7! with the sameb. The number of such subsequences
equal to the length of the repeating string of the CFE.
again a unique value ofb can be associated with the period
tail.

TABLE I. Values of the coefficientsb anda in Eqs.~7! and~8!
for the standard map and critical invariant tori with rotation nu
bers as indicated.

r b a

@0,1`# 21.469 23.050
@0,1,2,1`# 21.471 23.048
@0,3,1`# 21.468 23.048
@0,2`# 22.699 23.064

@0,1,2`# 22.696 23.063
@0,3,2`# 22.700 23.064
@0,3`# 23.694 23.091

@0,3,1,3`# 23.713 23.089
@0,1,3`# 23.676 23.094
@1,4`# 4.589 3.182

@1,1,4`# 4.607 3.188
@1,5`# 5.273 3.216

@1,1,5`# 5.308 3.207
@0,(1,2)`# 22.038 23.101

@0,(1,2,1)`# 21.870 23.10

TABLE II. Values of the coefficientsb anda in Eqs.~7! and~8!
for the maps ~1! with 2f (x)5sin(2px);f(x)5sin(2px)/2
1sin(4px)/4, 3f (x)5sin(2px)/21sin(4px)/41sin(6px)/6, and
critical invariant tori with rotation numbers as indicated.

Tail f (x) b a

1` f 2(x) 21.469 23.055
1` f 3(x) 21.468 23.052
2` f 2(x) 22.697 23.062
2` f 3(x) 22.691 23.060
3` f 2(x) 23.692 23.092
3` f 3(x) 23.694 23.091

(1,2)` f 2(x) 22.042 23.101
(1,2)` f 3(x) 22.046 23.105

(1,2,1)` f 2(x) 21.875 23.093
(1,2,1)` f 3(x) 21.871 23.090
1-6
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LOCAL SCALING OF THE FLUX FOR STANDARDLIKE MAPS PHYSICAL REVIEW E66, 046221 ~2002!
To test the universality of the scalings~7! and ~8! in the
critical case we computed the flux, for orbits as in Fig. 3, b
for several maps of the form~1!. In discussions of the uni
versal properties of one-dimensional maps, important rol
played by the degree of inflection of the map. It is al
known that the qualitative behavior of the maps of the fo
~1! depends, to a certain extent, on this quantity. For
ample, if the degree of inflection is higher than three,
invariant circle can be broken and created several time
the parameterk is increased. If the degree is three, as for
standard map, the phenomenon of reoccurrence of an in
ant circle is not possible. On the other hand the degree
inflection larger than three does not seem to play impor
role when fractal properties of the critical circles of th
smooth maps~1! are considered@20,28#.

Figures 3 illustrates the scaling for the maps w
2 f 2(x)5sin(2px)/21sin(4px)/4 and 3f 3(x)5sin(2px)/2
1sin(4px)/41sin(6px)/6 compared with the standard ma
and for few frequencies with the same tail and for differe
tails @(1)`,(2)`,(3)`,(1,2)`,(1,2,1)`# The critical values of
the parameterk and the global shape of the critical functio
K(r) are different from the case of the standard map but
scaling is qualitatively the same and within the chosen ac
racy. The data are given in Table II.

The scaling is of the form~8!, for all rotation numbers
that we have tested, anda does not depend on the map, b
again only on the tail of the rotation number. The scaling~7!
is also valid, in the same generalized sense for the peri
tails, as for the standard map. We have tested maps
functionsf that have different slopes at zero, different orde
of the first derivative off at zero that is equal to zero~even or

TABLE III. Values of the coefficientl in Eq. ~9!, which are
equal, up to the given precision, with the Lyapunov exponents
the cantori, for the standard map and maps as in Table II and
few cantori with rotation numbers as indicated, all for the sa
supercriticalk51.2.

r f l

@0,1`# f 1 0.234
@0,3,1`# f 1 0.313
@0,2`# f 1 0.246

@0,1,2`# f 1 0.302
@0,3`# f 1 0.311

@0,1,3`# f 1 0.391
@0,1`# f 2 0.395

@0,3,1`# f 2 0.345
@0,2`# f 2 0.455

@0,1,2`# f 2 0.349
@0,3`# f 2 0.360

@0,1,3`# f 2 0.360
@0,1`# f 3 0.493

@0,3,1`# f 3 0.438
@0,2`# f 3 0.449

@0,1,2`# f 3 0.4798
@0,3`# f 3 0.517

@0,1,3`# f 3 0.270
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odd derivatives depending on the symmetry of the ma!,
different signs of the derivatives off, etc., but we have no
found that any of these qualitative properties of the funct
f plays any role in the type of the scaling law nor in th
actual values of the scaling constants. The periodicity of
map does not play the role, since a different period wo
only imply a modular transformation of the rotation num
bers, which leaves invariant the tail of the CFE. The fl
near critical circles for all maps of the form~1! had the same
scaling, with the same scaling constants that depend onl
the tail of the CFE. These results confirm the expectati
based on the renormalization theory.

Let us now discuss the scaling ofF(m/n,k) in the case of
supercriticalk. The results of our computations are illustrat
in Fig. 4. In the weakly supercritical case the fluxF(mj /nj )
over the sequence of convergents is characterized by
different types of scalings. The initial part of the sequence
differencesF(mj /nj )2F(r,k), though not very close tor
←mj /nj still satisfies the relation~7! or ~8!, with different
exponents. The exponential scaling with the order of the c
vergents breaks down close to the cantorus with the rota
numberr and is replaced by the scaling relation~9!. The
convergence to the limiting value of the flux through t
cantorus becomes faster. As the cantorus becomes stro
supercritical the scaling of the flux according to Eq.~9! be-
comes valid for periodic orbits further away from the ca
torus. The values of the flux for the periodic orbits wi
rotation numbers given by the first few rationals on the Fa
tree are sufficient for calculation of the flux everywhere.

The transition through different types of the scaling
qualitatively the same for all maps of the class~1! that we
have considered. However, we do not find any quantita
universality. Values of the scaling constants depend on
map, and within one map on the pair„k.K(r),r…. However,
the coefficientl in Eq. ~9! is numerically equal to the slop
of the linear relation between lnR(mj /nj) and nj in all the
cases that we have calculated. This supports the claim thl
is equal to the Lyapunov exponent of the cantorus. The
sults are illustrated in Table III, where we give values ofl
for a sample of maps and for cantori with different rotati
numbers, all fork51.2. Up to the presented accuracy, t
coefficientl, as given by the calculations of the flux and th
formula ~9!, and the slope of lnR(mj /nj) vs nj i.e., the Ly-
punov exponent of the cantorus, are the same. More rese
is needed to see whether there is any relation between
values of the flux F(m/n,k) between different pairs
(m/n,k).

IV. CONCLUSIONS

We have reported results of systematic numerical com
tation of the flux for a class of twist area-preserving maps
the cylinder. On the basis of the numerical evidence, we
formulate a conjecture about the universal scaling of the fl
as follows: Consider a sequence of the periodic orbits o
map of the form~1!, which approximate a critical invarian
circle with the rotation numberr and have rational rotation
numbers equal to the continued fraction approxima
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mj /nj→r. Then, for anyr with a constant or periodic tail in
the CFE and for any map of the form~1! the flux
F„mj /nj ,K(r)… satisfies the relation~8!, and if the tail is
constant the scaling~7! is also valid. In the case of the per
odic tails, there ares5 ~period of the CFE tail! subse-
quences ofM j /nj such that the scaling~7! is verified for
each of them with the sameb. The exponentsb and a
depend only on the tail ofr. This conjecture is consisten
with the renormalization theory for such dynamical system

The scaling of the flux in the supercritical regime, i.
over a sequence of periodic orbits that converge to a c
torus, has also been studied. We have observed that a tr
tion between two different types of convergence parallels
transition from the weakly supercritical to the strongly sup
critical regime. The weakly supercritical regime is charact
ized by two types of scalings: initial exponential decay w
nj of F(mj /nj ,k) and asymptotic, faster than exponent
with nj , approach the nonzero flux through the canto
F„r,k.K(r)…. In the strongly supercritical case the fast
than exponential convergence, given by the relation~9!,
s
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si-
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dominates. The coefficientl in Eq. ~9! is equal to the
Lyapunov exponent of the corresponding cantorus.

Our computations are restricted to the examples of tw
area-preserving maps known as the generalized stan
maps. The assumption about the symmetry of the maps in
considered class was helpful in the computations of the
riodic orbits, but does not seem to be fundamental, as
suggested by the renormalization arguments@23#. On the
other hand, one does not expect the same type of sca
universality to be valid for the twist maps with a differe
type of criticality.

Another restriction is the type of quasiperiodic orbits th
we have considered. All irrational rotation numbers that
have used had periodic tails of their continued fraction
pansions, and more systematic computations have been
with numbers with a constant tail. Furthermore, due to co
putational difficulties, we were not able to perform syste
atic computations of the approximating periodic orbits f
tails more than five. We cannot say anything about sca
near quasiperiodic orbits with Diophantine rotation numb
that are not quadratic irrationals.
.
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