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Local scaling of the flux for standardlike maps
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Results of systematic numerical explorations of local scaling of the flux near a critical invariant circle for a
class of standardlike maps are reported. The scaling law is universal and the universality class is determined
apparently only by the tail in the rotation number of the critical invariant circle. The flux near just created
cantori is also studied, and another type of scaling is indicated, which is a combination of the scaling laws in
the critical and the strongly supercritical regimes.
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[. INTRODUCTION across just created rotational cantori, and thus local proper-
ties of the flux near the critical tori and just created cantori
The main impediment to a successful development of are the most important. Besides the rotational cantori, which
theory of transport in the phase space of a typical Hamilrepresent the main partial barriers for the transport along the
tonian system is the existence of complicated structures oaylinder, the structure of islands around elliptic periodic
all scaled1-8J. In two extreme cases of an integrable and apoints of increasing order with their sticky boundaries are
fully chaotic systems the descriptions of transport are relaalso responsible for the anomalous properties of the diffu-
tively simple. In the first case, the dynamics is a simple comsion, and have to be taken into account in a more complete
bination, fixed by the distribution of the initial points, of theory of transporf15].
ergodic systems on the corresponding invariant tori of half All regular (periodic and quasiperiodigotational orbits
the dimension of the phase space. In the second case, afsuch diffeomorphisms of the cylinder are enumerated by a
initial distribution is spread by a diffusion process all over single quantity, the corresponding rotation number or the fre-
the entire energy surface, and the standard theory of diffuguency, and the flux through rotational curves also can be
sion could be successfully applid®,10]. Near-integrable considered as a function of it. Thus, one is led to consider a
systems, or systems on a part of the phase space almost fillede-parameter family of functional relations between the flux
by the invariant KAM tori, can be treated by perturbation and the rotation number. The dependence on the parameter is
theories of the adiabatic invariants. The transport in systemsmooth; but the dependence on the rotation number, for a
close to a fully chaotic one is also well described by neglectfixed nonzero value of the parameter, is very complicated.
ing small domains with regular dynamics and with any near- Important quantities for typical Hamiltonian systems dis-
critical structures such as the reminiscent of the KAM tori.play fractal dependence on the frequency with evidence of
The later, usually called cantofll], or the Aubry-Mather global and local self-similarity. Examples are the critical
sets[12,13, are known to represent very strong but partialfunctions[16—18, critical invariant circle§ 19,20, bound-
barriers for the transpofil4]. ary circles[21], and actions of minimizing orbit22]. The-
Most of the essential features of the problem are presertretical explanation of the local scaling properties of such
already in systems with only two degrees of freedom, and theelf-similar fractal objects is provided by the renormalization
associated maps on the sections of the surfaces of constaheory for the area-preserving twist mdj2s].
energy, i.e., one-parameter families of area-preserving maps. Also based on the renormalization theory is the idea that
The parameter is interpreted as related to the energy of the local scaling properties should depend only on the
system, and usually describes the deviations from an inteasymptotic tail in the continued fraction expansion of the
grable linear map. Genericity conditions require the maps tdrequency, and that these properties should be universal for a
be smooth diffeomorphisms, and it is physically plausible toclass of the twist maps. For example, critical invariant circles
consider only the maps for which the action variable is pro-of a large class of area-preserving twist maps have the fractal
portional to the difference between the successive iterates apectra that depend only on the tail of the continued fraction
the angle coordinate. The maps that satisfy the stated condéxpansion of the rotation number of the torus, and are inde-
tions are known as the twist area-preserving diffeomorpendent of the rotation number and the particular form of the
phisms of a cylinder, and are the systems for which the probmap[20].
lems of transport have been studied most extensii@ly Although, the existence and universality of a local simple
The central quantity in such theories is the flux of pointsscaling should not, in the view of the renormalization theory,
from certain noninvariant domains in one iteration of thecome as a surprise, the important fractal quantities with rela-
map. In particular, domains bounded by the so-called rotatively simple local scaling, the corresponding scaling rela-
tional curves, i.e., those that go around the cylinder, and cations, and the corresponding universality classes still remain
be thought of as graphs of functions, i.e., motion along theo be investigated. A local scaling law near a type of critical
curve preserves orientation, are analyzed. invariant circles with the rotation numbers given by the so-
As was pointed out, the main difficulty is to describe thecalled noble irrationals was obtained numerically for the
transport near and across the strong partial barriers, that sandard map, and justified by the renormalization analyzes

1063-651X/2002/6@}/0462218)/$20.00 66 046221-1 ©2002 The American Physical Society



N. BURIC AND K. TODOROVIC PHYSICAL REVIEW E66, 046221 (2002

(see the following sectignThe analogous formula has been  We shall now very briefly recapitulate the basic elements
conjectured for the flux near the critical invariant circles of aof the theory that are needed for an explicit computation of
more general type, and is expected to be universal, but wihe flux across rotational circles. The maps of the fddmn
are not aware of any reported numerical confirmation. are canonical, i.e., globallgor exactly symplectic transfor-

In this paper we report the results of systematic numericamations of the phase space, and, as such, are given by the
investigations of the universal scaling properties of the fluxcorresponding generating functio8(X; ,X;+1), (Xi,Xj+1)
near a critical invariant torus with a quadratic irrational ro- e RXR, defined by
tation number for a class of area-preserving twist maps. We

have then studied the variations of the scaling relations in e 2, K _ o dv(x)
neighborhood of a weakly supercritical cantorus. S0 X2 = (X~ Xi40) 24 47° VOa), 100= dx '
()
II. DEFINITIONS and the map is then given by

The class of twist maps of the cylinder to be considered in JS JS

this paper is defined by the following equations: Pi=——, Pii=——. (4)
i X ) i+1 11
Prs1=Pnt %f(qn), Ans1=(qn+pPpsy) mod 1, The generating function is used to define action functionals

on sequences of real numbers, which are then used to calcu-
) late the areas between rotational circles and ultimately the

h i~ dthe f orf | h flux. In particular, periodic orbits of the periadare given as
where @,p) € S"XR and the functiorf is a smooth, even or - giatignary points of the following action functional on the

odd, periodic function with a zero averaggf(q) =0, rep- finite sequences af real numbers; ,i=0, ... n—1 subject

resented by a finite trigonometric polynomial. In particular, 5 the condition thak,+m=x,, for some integem:
the standard map of Taylor and Chirikov is obtained from "

Eq. (1) when f(q)=f4(q)=sin(27q), and the maps of the i=n-1
class (1) are often called generalized standard maps. TheA(M/n,k)(Xg, X1, - - - Xq_1)= >, S(X; Xi+1)|x, =xg+m-
periodicity of the functiorf is an arbitrary integer. =0
Regular, i.e., periodic and quasiperiodic, orbits of a map ®)
of the form(1) are characterized by their rotation numer  There are, at least, one minimum and minimax stationary
or frequency, that is defined as follows: points of Eq.(5) for eachm/n where (m,n) are coprime.
_ These give minimizing and minimax periodic orbits of the
. X 7T (Xo,Po) map(1), with the rotation numbers equal ba/n. Finally the
p(qo,p0)=‘|lmi—5 _I|m i ' 2 main object of interest in this paper, that is, the flux through

j—o j—o

a rotational curve constructed by the stable and unstable
manifolds of the minimizingif/n) periodic orbit is given by

wherexo=d, andx; R are the first coordina_tes of the suc- the difference of the corresponding minimax and minimum
cessive iterates of the poinkd,po) by the lift T of the map  f the periodic actior(5) [2,3]

(1) on RXR, andm; denotes the projection on the first co-
ordinate. If the pointdg,p,) belongs to a periodic or a qua- AnminmadmM/n,K) —Aqin(m/n,K) :=F(m/n,k). (6)
siperiodic orbit, then the quantit§®) is well defined and is
characteristic of the orbit. Rationalcorrespond to the peri- The continued fraction expansidi€FE) of an irrational p
odic and irrationap to the quasiperiodic orbits. =[0a;,az, ... aj, ...] encodes the rotation numbers of
The flux from any bounded domain in the phase space i§he minimizing periodic orbitsm;/n;=[0a;,a5, - . . ;]
defined as the total area of points that leave the domain ithat give the best successive approximati¢at a given
one iteration of the map. The flux across a rotational circldength n<n;) of the quasiperiodic orbit. For a fixekl the
on the cylinder is defined as the flux from the semi-infinitelimit of the flux F(m; /n, ,k) over such a sequence of mini-
domain bounded by the rotational circle, and is speciallymizing periodic orbitsm, /n— p exists and is non-negative
important for the transport theory. Typically there is upward[13,12. Depending ork the limit could be zero and then
and downward flux across such circles, but they are the sanibere is an invariant circle supporting the quasiperiodic orbits
for maps of the forn(1). If the rotational circle is an invari- Wwith the rotation numbep. Otherwise, if the limit is nonzero
ant circle the flux across it is obviously zero. Thus, the KAM the quasiperiodic orbit with the rotation numberis sup-
tori represent complete barriers to the transport alongpthe ported on a fractal invariant set, the cantorus. The smallest
axes. Furthermore, the flux across broken KAM tori, the sovalue of the parametedt at which the quasiperiodic orbit is
called cantori, is known to be very small for the values of thenot supported on a smooth circle is called critical and is
parameter that are not much larger than the correspondindenoted byK(p). The flux through a cantorus is nonzero,
critical value at which the invariant circle is destroyed. Thus,and can be defined as the limiting value of the sequence
good understanding and efficient computational procedure8(m;/n;,k) for the fixed value ok>K(p), which is such
for the flux across slightly supercritical cantori are crucial forthat the quasiperiodic orbit with the rotation number
the transport theory. «m;/n; is on the cantorus.
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F(m/n,k) Good understanding of the critical and weakly supercritical
behavior of the flux is obviously most difficult.

-’ . IIl. LOCAL SCALING OF THE FLUX: COMPUTATIONS
' ou o™ k=1.5K(y) AND RESULTS

s x Scaling relations of the flux have been studied before,
. < x . * mostly using the standard map as an example, while some
R o g0 - S k=1.2K(y) sort of universality is expected due to the universal proper-
% "f‘ ties of critical invariant circles suggested by the renormaliza-
. = AR tion ideas. For example, it is known that the flEm/n,k)
R A near the critical invariant circle witp=y=({5-1)/2, i.e.,
in the limit over CFE approximates of the golden circle for
s . k=K(y) t_he standard map satisfies the following simple scaling rela-
R R ot tion [2,3]:

5 5 T e e F(mj/n; K(p)=C,B7) for p=7y, (7)

S and it has been conjectured that the same scaling, with the
. sameg, is asymptotically valid for any noble critical circle
« of the standard map, that is, a critical circle with the CFE of
R the corresponding that ends with a tail of an infinite se-
guence of units. Renormalization ideas suggest that the scal-
ing should depend only on the tail for arbitrary tails and
: : : : furthermore should be universal for a class of the twi_st area-
0.2 0.3 0.4 0.5 preserving maps. Furthermore, a more general scaling rela-
tion

m/n

FIG. 1. The fluxF(m/n,k) for the first few levels of the Farey F(m;/n;,K(p))=Bn; “ (€)
tree and few values of the parameter k=K(y) (diamond$, k
=1.2K(y) (crosses andk=1.5K(y) (circles. Log scale is used has been suggested in RE21] for any irrationalp with a
for y axes, where the numbers indicate the powers of 10. periodic tail of its CFE, and numerically tested for the stan-
dard map. In the case of irrationals with the constant tail, the

For a quasiperiodic orbit on a circle or on a cantorus, th fwo scaling relation$7) and () should be equivalent since

i~ pl
limit «=limy_,.n"*In|DT7| where||DT"|| is the norm of e:[hel\r/llgr:h ?a.ster convergence to the limiting value of the flux
the product of the derivatives of the map along the orbit, 9 9

exists and is the same for almost any point with respect to 5hrough a cantorus has been observed for strongly supercriti-

unique ergodic invariant measure, generated by the guasi al noble cantori of the standard map. In this case, the fol-

eriodic orbit. The limit gives the Lyapunov exponent of the owing formula has been suggest3:
invariant circle, which is equal to zero, or the cantorus, when _ —n;

= ' ' ) F(m;/n; k>K =F +CA ", m;/n; , (9
x=0. In typical cases, the Lyapunov exponent can be esti- (m /ny (P))=Folp) e, 9

mared_from_the _behavior or_‘ the residues of the r_ninimizing\,\,here,:0 is the flux through the cantorus, andappears to
periodic orbits with the rotation numbens /n;— p using the e equal to the Lyapunov exponent of the cantorus. Thus, in
fact thatn, *In Ry —« [24]. the strongly supercritical case the convergence is faster than
In general, the flu¥ (m/n,k) is a complicated function of exponential.
m/n for any fixedk>0 and a smooth increasing function of =~ We have undertaken a systematic numerical check of the
k for any fixedm/n. Some of its properties are indicated in relations (7)—(9) for various p with constant and periodic
Fig. 1, which showd=(m/n,k) for the standard map and a tails in the CFE and for various maps in the class The
set of rationals that belong to the first few levels of the Fareyweakly supercritical case, i.& slightly aboveK(p), is also
tree, and for various values of the paramétefhe smallest studied.
k in Fig. 1 is equal to the critical valueK(y) The numerical procedure consists basically in calculations
=0.97163% ... atwhich the last rotational invariant torus is of sufficiently long periodic orbits. These are used first to
destroyedF(m/n,K(y)) clearly displays the fractal discon- estimate the critical valugs(p), using the Greene criterion
tinuous structure with large relative variations. Such largd 25], and then for calculations of the actions and the flux via
relative variations of the flux are present also in the weaklyEg. (5). Variations of the critical values of the parameter
supercritical case, or near just created cantori. suffi-  K(p) of the order 10° induce variations of the numerical
ciently large, most of the local structure becomes negligiblevalues of the parametefs or « of the order 10°. Calcula-
and the relative variations of the flux are very small. Similartion of long periodic orbits near a critical circle or a cantorus
qualitative picture is obtained for other maps of the type  represents a nontrivial numerical task. Due to dynamical in-
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FIG. 2. Scaling relation§7) and(8) for the standard map: Shown {a) and(b) are examples with constant tails equal fo(boxes, 2”
(crosses 3” (diamond$, 4~ triangles, and 5 (circles. (c),(d) illustrate the scaling for the rotation numbers with periodic tails (1,2)
and (1,2,1¥ (d). The parametek on each line is equal to the correspondp;).
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FIG. 3. Universality of the scaling relatior(g) (a),(c) and (8) (b),(d) for three examples of the may$) with 2f(x)=sin(2wx);f(x)
=sin(2mx)/2+ sin(4mx)/4 (diamond$, 3f(x)=sin(2mx)/2+ sin(4wx)/4+ sin(6mX)/6 (crossel and the standard mafboxes. Constant or
periodic tails of the CFE are indicated on the figures.

stability of such orbits, an initial error could easily lead to ant circles with a noble number and the corresponding stable
the convergence of the numerical results to a nearby orbibng periodic orbits nearby. We have used two independent
with a similar rotation number that is stable for the consid-procedures for such calculations. The first one represents a
ered value of the parameter. This is specially true for thenumerically stable method to implement a generalization of
critical invariant circles or cantori with non-noble rotation the Newton method to find the extremal points of the peri-
numbers, because apparently there are always smooth invadeic action(4) [26]. Thus, the initial guess and the outcome
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FIG. 4. lllustration of two types of scaling laws in the weakly
supercritical regime: Shown are difference&(m;/n; k)
—F(p; k) for the golden torip; ,i=1,2,3 of the maps as in Fig. 3,
each for the correspondirig=1.04&K(p;).

is a set ofn points that approximate the whole periodic orbit.
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TABLE I. Values of the coefficient® and« in Egs.(7) and(8)
for the standard map and critical invariant tori with rotation num-
bers as indicated.

p B o
[0,17] —1.469 —3.050
[0,1,2,17] —1.471 -3.048
[0,3,17] —1.468 —3.048
[0,27] —2.699 —3.064
[0,1,2°] —2.696 -3.063
[0,3,2°] —2.700 —3.064
[0,37] —3.694 —3.091
[0,3,1,3] —-3.713 —3.089
[0,1,3°] —3.676 —3.094
[1,47] 4.589 3.182
[1,1,47] 4.607 3.188
[1,57] 5.273 3.216
[1,1,57] 5.308 3.207
[0,(1,2)] —2.038 -3.101
[0,(1,2,1)] —-1.870 -3.10

coefficients of the CFB&;=<5. The dependence on the tail of
the CFE of the scaling properties of the flux is more easily
detected in terms of the paramei@rof the scaling relation
(7). Both parameters increase with tt@nstank tail I.

Figures 2c) and 2d) represent lir(m; /n; ,K(p)) for the
standard map as a function of the orflemd the denomina-
tor n; of the convergenin; /nj— p for the irrational rotation
numbersp with periodic tails (1,2§ [Fig. 2(c)] and (1,2,1¥
[Fig. 2d)]. The scaling(8) is still valid, and critical circles

The other procedure is based on a generalization of the biVith rotation numbers with the same tail appear to have the
section method to find zeros of polynomials with large orderS@mea, and different tails imply differentr. On the other

[27]. Efficiency and accuracy of both methods depend cru

hand the scaling relatiofT) is no more valid. However, there

cially on the special techniques to determine a good initiaf'® Subsequences of the convergents/()°, j—, such
guess for the Newton algorithm, or a good choice of thethat the flux over each of the sequences verifies the scaling

initial characteristic polyhedra in the bisection method.
The results of our computations are summarized and il

(7) with the sameB. The number of such subsequences is

equal to the length of the repeating string of the CFE. So,

lustrated in the sequence of Figs. 2—4 and in Tables |—I112gin a unique value ¢& can be associated with the periodic
We first present the results in the critical case and for thdail.

standard map.

Figures 2a) and Zb) represent the logarithm of the flux
In F(m; /nj ,K(p)) for the standard map as a function of the
orderj [Fig. 2@)] and the denominatar; [Fig. 2(b)] of the
convergentm; /n;— p for the irrational rotation numberg
with constant tails equal to (%)(2)*,(3)”,(4)”, and (5},
where () denotes that the tail consists of an infinite repeti-
tion of (). The corresponding data are collected in Table I.

For any critical invariant circle with the rotation number
with the constant tail the scaling is of the foiim or (8) for

the corresponding sequence of periodic orbits with rotation

numbersm; /nj— p. Numerical values of the parameigror
«a, for the rotation numbers with the same tail, could be

made the same by small variations of the critical values of

the perturbation paramet&(p) of the order 10°. On the
other handB or « are clearly different for the rotation num-
bers with different tails. Notice that the valuesmfare simi-

TABLE II. Values of the coefficient® and« in Egs.(7) and(8)

for the maps (1) with 2f(x)=sin(2mx);f(X)=sin(2mx)/2
+sin(4mx)/4,  3f(X)=sin(2mX)/2+ sin(4mx)/4+ sin(6mx)/6, and
critical invariant tori with rotation numbers as indicated.
Tail f(x) B a
1~ fo(x) —1.469 —3.055
1~ fa(x) —1.468 —3.052
27 fo(x) —2.697 —3.062
27 fa(x) —2.691 —3.060
3” fo(x) —3.692 —3.092
3” fa(x) —3.694 —3.091
(1,2)" f,o(x) —2.042 -3.101
(1,2)" fa(x) —2.046 —3.105
(1,2,1y fo(x) —1.875 —3.093
(1,2,1y fa(x) -1.871 —3.090

lar for all critical circles that we have tested, i.e., those with
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TABLE IIl. Values of the coefficient\ in Eq. (9), which are  odd derivatives depending on the symmetry of the map
equal, up to the given precision, with the Lyapunov exponents ofifferent signs of the derivatives df etc., but we have not
the cantori, for the standard map and maps as in Table Il and fofoynd that any of these qualitative properties of the function
few cantprl with rotation numbers as indicated, all for the sameg plays any role in the type of the scaling law nor in the
supercriticak=1.2. actual values of the scaling constants. The periodicity of the
map does not play the role, since a different period would

P f r only imply a modular transformation of the rotation num-
[0,17] fq 0.234 bers, which leaves invariant the tail of the CFE. The flux
[0,3,1°] fi 0.313 near critical circles for all maps of the for(tt) had the same
[0,2°] fi 0.246 scaling, with the same scaling constants that depend only on
[0,1,2°] f, 0.302 the tail of the CFE. These results confirm the expectations
[0,3°] fi 0.311 based on the renormalization theory.
[0,1,3] f, 0.391 Let us now discuss the scaling B{m/n,k) in the case of
[0,17] f, 0.395 supercriticak. The results of our computations are illustrated
[0,3,1°] f, 0.345 in Fig. 4. In the weakly supercritical case the flim; /n;)
[0,2°] f, 0.455 over the sequence of convergents is characterized by two
[0,1,2] f, 0.349 d!fferent types of scalings. The initial part of the sequence of
[0,3] f, 0.360 dlfferences_F(mj _/nj)—F(p,k), t_hough not very clpse tp
[01,3] f, 0360 «m;/n; still satisfies the_relat|o.m7) or (8), with different
[0,1°] f, 0493 exponents. The exponential scaling with the or<_jer of the con-
[03.1] s 0.438 vergents break_s down close to the can_torus Wlt_h the rotation
[0.2°] f 0.449 numberp and is replacgq by the scaling relati¢®). The
[0i2’°] f3 0.4798 convergence to the limiting value of the flux through the
[(‘) éc] f3 0'517 cantorus becomes fgster. As the cantorus becomes strongly
0 1 1 f3 0'270 supercritical the scaling of the flux according to E®). be-

1 3 .

comes valid for periodic orbits further away from the can-
torus. The values of the flux for the periodic orbits with
rotation numbers given by the first few rationals on the Farey
To test the universality of the scaling®) and (8) in the  tree are sufficient for calculation of the flux everywhere.
critical case we computed the flux, for orbits as in Fig. 3, but  The transition through different types of the scaling is
for several maps of the forr(l). In discussions of the uni- qualitatively the same for all maps of the clads that we
versal properties of one-dimensional maps, important role ipave considered. However, we do not find any quantitative
played by the degree of inflection of the map. It is alsouniversality. Values of the scaling constants depend on the
known that the qualitative behavior of the maps of the formmap, and within one map on the péir>K(p),p). However,
(1) depends, to a certain extent, on this quantity. For exthe coefficient in Eq. (9) is numerically equal to the slope
ample, if the degree of inflection is higher than three, arvf the linear relation between R(m;/ny) and n; in all the
invariant circle can be broken and created several times agases that we have calculated. This supports the claim\that
the parametek is increased. If the degree is three, as for thejs equal to the Lyapunov exponent of the cantorus. The re-
standard map, the phenomenon of reoccurrence of an invargyits are illustrated in Table Ill, where we give valueshof
ant circle is not possible. On the other hand the degree dbr a sample of maps and for cantori with different rotation
inflection larger than three does not seem to play importanfumbers, all fork=1.2. Up to the presented accuracy, the
role when fractal properties of the critical circles of the coefficient\, as given by the calculations of the flux and the
smooth mapg1) are consideref20,2§. _formula (9), and the slope of IR(m;/m;) vs n; i.e., the Ly-
Figures 3 illustrates the scaling for the maps withpyunov exponent of the cantorus, are the same. More research
2f5(x) =sin(2mx)/2+sin(4mx)/4 and F3(X)=sin(2mx)/2 s needed to see whether there is any relation between the

+ sin(4mx)/4+ sin(6mx)/6 compared with the standard map, values of the flux F(m/n,k) between different pairs
and for few frequencies with the same tail and for different my/n ).

tails[(1)*,(2)*,(3)",(1,2)*,(1,2,1)°] The critical values of
the parametek and the global shape of the critical function
K(p) are different from the case of the standard map but the
scaling is qualitatively the same and within the chosen accu-
racy. The data are given in Table II. We have reported results of systematic numerical compu-
The scaling is of the forn{8), for all rotation numbers tation of the flux for a class of twist area-preserving maps of
that we have tested, anddoes not depend on the map, but the cylinder. On the basis of the numerical evidence, we can
again only on the tail of the rotation number. The scalifg formulate a conjecture about the universal scaling of the flux
is also valid, in the same generalized sense for the periodias follows: Consider a sequence of the periodic orbits of a
tails, as for the standard map. We have tested maps wittnap of the form(1), which approximate a critical invariant
functionsf that have different slopes at zero, different orderscircle with the rotation numbes and have rational rotation
of the first derivative of at zero that is equal to zefeven or  numbers equal to the continued fraction approximates

IV. CONCLUSIONS
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m; /nj— p. Then, for anyp with a constant or periodic tail in
the CFE and for any map of the formil) the flux
F(m;/n;,K(p)) satisfies the relatiort8), and if the tail is
constant the scaling?) is also valid. In the case of the peri-
odic tails, there ares= (period of the CFE tail) subse-
quences ofM;/n; such that the scaling?) is verified for
each of them with the samB. The exponents3 and «
depend only on the tail op. This conjecture is consistent

with the renormalization theory for such dynamical systems

The scaling of the flux in the supercritical regime, i.e.,
over a sequence of periodic orbits that converge to a ca
torus, has also been studied. We have observed that a tran

n-=

PHYSICAL REVIEW E66, 046221 (2002

dominates. The coefficienk in Eq. (9) is equal to the
Lyapunov exponent of the corresponding cantorus.

Our computations are restricted to the examples of twist
area-preserving maps known as the generalized standard
maps. The assumption about the symmetry of the maps in the
considered class was helpful in the computations of the pe-
riodic orbits, but does not seem to be fundamental, as is
suggested by the renormalization argumef#8]. On the
other hand, one does not expect the same type of scaling
universality to be valid for the twist maps with a different
type of criticality.

. Another restriction is the type of quasiperiodic orbits that
We have considered. All irrational rotation numbers that we

tion between two different types of convergence parallels the,,e ysed had periodic tails of their continued fraction ex-
transition from the weakly supercritical to the strongly SUPerpansions, and more systematic computations have been done
critical regime. The weakly supercritical regime is characteryyith numbers with a constant tail. Furthermore, due to com-
ized by two types of scalings: initial exponential decay with pytational difficulties, we were not able to perform system-
n; of F(m;/n; k) and asymptotic, faster than exponential atic computations of the approximating periodic orbits for
with n;, approach the nonzero flux through the cantorusails more than five. We cannot say anything about scaling
F(p,.k>K(p)). In the strongly supercritical case the faster near quasiperiodic orbits with Diophantine rotation numbers

than exponential convergence, given by the relatiép

that are not quadratic irrationals.
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