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Eightfold quasipatterns in an optical pattern-forming system
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Quasipatterns with an eightfold rotational symmetry and irregular two- and three-mode patterns are found in
an experiment on optical pattern formation. The patterns exist in the transverse cross section of a laser beam
that traverses a system built from a sodium vapor cell and a plane feedback mirror with a quarter-wave plate
placed into the feedback loop. The occurrence of the quasipatterns is reproduced by numerical simulations and
explained by amplitude equations that contain only odd-order terms and are derived from the microscopic
model. The selection process is governed by the angle dependence of the cubic cross coupling coefficients in
the amplitude equations. Up to our knowledge it provides the first experimental example for a stabilization
mechanism proposed earlier that is based on an oscillatory dependence of the cubic cross coupling coefficient
on the angle between the interacting wave vectors. The relationship to the prediction of quasipatterns in a
similar setup without additional wave plate@Phys. Rev. A53, 1072~1996!# is discussed.

DOI: 10.1103/PhysRevE.66.046220 PACS number~s!: 89.75.Kd, 42.65.Sf, 47.54.1r, 42.25.Ja
cc

ib
b
u
m

di

at

lly
is
es
m

ua
os

ht
e-
tr
li
to

b
di
le
m
tia

s in
ef-
We
ntal
ss-

ate
ga-

of
en-

a

ring
the
rac-
the
beam
ive

the

n a

l

ro-
I. INTRODUCTION

States that are quasiperiodic in space are known to o
in equilibrium systems@quasicrystals@1,2##, as well as in
self-organizing dissipative systems driven far from equil
rium @3–7#. Quasiperiodic states represent a remarka
phase that has no periodicity in spite of a Fourier spectr
with well defined peaks and a well defined rotational sy
metry @see e.g., Ref.@1# and references therein#. Two-
dimensional realizations of quasiperiodic spatial states in
sipative systems are often calledquasipatterns. Their
properties and stabilization mechanisms have been a m
of considerable interest@e.g., Refs.@8–13##. Quasipatterns
with a twelvefold rotational symmetry were experimenta
observed@4,7# in systems without inversion symmetry. Th
particular configuration of a quasipattern is expected in th
systems since it is favored by quadratic coupling ter
@8,9,11,14,15#.

In systems with inversion symmetry the amplitude eq
tions describing the dynamics of the bifurcating modes cl
to threshold contain only odd-order terms@16#. In this case it
was shown that different kinds of quasipatterns with eig
fold, tenfold, twelvefold, or fourteenfold rotational symm
tries might be stable. The selection of a particular symme
is determined by the dependence of the cubic cross coup
coefficient on the angle between the interacting wave vec
@8–10,12,13,17#. In a Faraday experiment@3,6# quasipatterns
with an eightfold and tenfold rotational symmetries were o
served indeed, in good agreement with theoretical pre
tions @12,13#. Furthermore it was predicted that in princip
one can ‘‘engineer’’ quasipatterns of arbitrary rotational sy
metry by adding suitable terms involving high-order spa
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derivatives to the model equations@9,17#. On the level of the
amplitude equations these derivatives manifest themselve
an oscillatory dependence of the cubic cross coupling co
ficient on the angle between the interacting wave vectors.
are not aware of a report in the literature on an experime
observation of a quasipattern relying on an oscillatory cro
coupling coefficient. As noted in Ref.@10# optical pattern
forming systems might be very well suited to demonstr
this phenomenon since the diffraction occurring for propa
tion over a finite distance leads naturally to the occurrence
higher order derivatives. Thus we will address experim
tally and theoretically the formation of quasipatterns in
nonlinear optical system in this paper.

The experimental system@see Fig. 1# is built from a non-
linear medium and a single mirror@18–21#. The medium is
irradiated by an enlarged and collimated laser beam. Du
the propagation to the mirror and back different points in
transverse cross section of the beam are coupled by diff
tion. If sodium vapor is used as the nonlinear medium,
spontaneous emergence of squares in the transverse
profile is observed for linear input polarization and a posit
detuning between the frequency of the laser beam and
sodiumD1 resonance line@22#. This is in accordance with
theoretical expectation@10,22–26#. For negative detuning
experimentally no pattern formation was observed@22#, al-
though eightfold quasipatterns were predicted to occur i

FIG. 1. Schematic of the experimental setup. EOM: elect
optic modulator; LP1/2: linear polarizers; SC: sodium cell;l/4:
quarter-wave plate; FM: feedback mirror; L: focusing lens; CCD1 ,
CCD2: charge coupled device cameras. See, text for details.
©2002 The American Physical Society20-1
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FIG. 2. Patterns obtained for increasing input power. The images~a!–~e! show the intensity distribution of the backward beam view
through a polarization analyzer, as explained in the text. The images~f!–~j! show the optical Fourier transform of the transmitted bea
Parameters:T5341 °C, D58 GHz, d5210 mm,pN2

5300 hPa. The images—and all following ones—are depicted in a linear gray
scale. In the near field images ‘‘white’’ denotes high intensity, whereas in the far field images ‘‘black’’ denotes high intensity. The fra
of the near field images corresponds to 434 mm2 ~integration time 1 ms!. The frame size of the far field images corresponds to
360 mm22. The far field images show a small intense spot at the 10 o’clock position within the ring belonging to the critical wave n
This spot is due to a parasitic reflection in the imaging system and is not related to pattern formation.
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limiting case @no absorption, no diffusion@10,27##. In the
same limit the introduction of a quarter-wave plate in t
feedback loop is equivalent to an exchange of the sign of
detuning@25#. It turns out that under the conditions of th
real experiment the introduction of the quarter-wave pl
favors spatial instabilities@28# and a pattern forming insta
bility can be found on both sides of the sodiumD1 line in
this configuration@29#. For a negative frequency detunin
from the resonance, square patterns are found@29#, which are
similar to those observed for a positive detuning in the s
tem without a quarter-wave plate in the feedback loop@22#.
For positive detuning, a new phenomenology arises whic
described and analyzed in this paper.

II. EXPERIMENT

A. Experimental setup

A schematic of the experimental setup is shown in Fig
The output of a cw dye laser, operating within a range
some atomic linewidths above theD1 resonance, is being
spatially filtered using a single-mode fiber and expanded
1/e2 radius of 1.5 mm. The residual geometrical ellipticity
the beam is lower than 1%. An electro-optic modulator
used for stabilization or scanning of the input power. Fina
a linear polarizer (LP1) ensures a linear polarization of th
laser beam.

This laser beam is injected into a heated cell~length L
515 mm) containing sodium vapor in a buffer gas atm
sphere of 300 hPa N2. The buffer gas provides a strong h
mogeneous broadening, which masks both the hyper
splitting and the Doppler broadening of the sodiumD1 line,
and quenches efficiently the occupation of the excited st
A cell temperature of about 340 °C results in a sodium p
ticle density of'1014 cm23. Two pairs of Helmholtz coils
are used for compensation of static magnetic field com
04622
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nents transverse to the propagation axis of the laser bea
less than 1mT. A longitudinal magnetic field component o
Bz'200 mT is applied to define the axis of quantization a
to reduce the effect of residual stray fields. A plane mir
with a reflection coefficient ofR50.99 is positioned at a
distanced of typically 200–300 mm behind the center of th
cell.

In the light transmitted by the mirror, a second quart
wave plate undoes the change of polarization due to
wave plate between the sodium cell and the feedback mir
A linear polarizer (LP2) is adjusted such that only the linea
polarization component orthogonal to the input polarizat
is transmitted. Thus the appearance of a signal behind
polarizer indicates a polarization instability@see also Ref.
@21##. Patterned states appear also in the total transmi
power as well as in the polarization component parallel
the input polarization but the observation is done in the
thogonal one since this component displays a pattern on
background, i.e., the contrast is optimum. A charge coup
device~CCD! camera records the intensity distribution in th
transverse plane positioned at a distanced behind the mirror.
In this plane the field distribution corresponds to the one
the reflected beam at the position of the cell. In the follo
ing, we will refer to this intensity distribution as the ‘‘nea
field picture’’ of the backward beam. A second CCD came
records the Fourier spectrum of the light field, which is o
tained in the focal plane of a lens. We will refer to it as t
‘‘far field picture.’’

B. Experimental results: Patterns

Figure 2 shows a typical sequence of patterns observe
a scan of the input power. The upper row displays the n
field patterns, the lower row the corresponding far field p
terns; the input power increases from left to right.
0-2
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EIGHTFOLD QUASIPATTERNS IN AN OPTICAL . . . PHYSICAL REVIEW E 66, 046220 ~2002!
At a power threshold ofPin5125 mW a weak signal con
sisting of a bright spot surrounded by three fragmented ri
appears in the near field, see Fig. 2~a!. In the optical Fourier
transform, shown in Fig. 2~f!, there are two ring fragment
lying opposite to each other. The bifurcation is supercriti
within the accuracy of the experiment. For an input power
Pin5134 mW, the modulation of the near field intensi
profile is more pronounced and consists of a number of o
spots and ring fragments, see Fig. 2~b!. The optical Fourier
transform displays two ring fragments@Fig. 2~g!#. At an in-
put power level ofPin5144 mW, a modulated ring system
surrounds two bright spots in the center of the laser be
see Fig. 2~c!. The optical Fourier transform, shown in Fig
2~h!, consists of a bright ring indicating the emergence o
characteristic spatial wave number. Superimposed on
ring, eight local maxima can be seen. Fig. 2~d! shows a pat-
tern on the backward beam for an input power ofPin
5165 mW. Close to the center of the laser beam, ei
bright spots are observed. The pattern has an approxim
eightfold rotational symmetry. The corresponding optic
Fourier transform is composed of eight bright spots wh
are regularly distributed on a circle. Finally, for the highe
available input power ofPin5219 mW, a complex pattern i
observed which does not show any apparent translationa
rotational symmetry, see Fig. 2~e!. The corresponding optica
Fourier transform is composed of five systems of eight bri
spots regularly distributed on circles corresponding to diff
ent wave numbers, see Fig. 2~j!. The lesser intense spots ca
be interpreted as harmonics of the most intense fundame
modes. Three sets of harmonics have a higher wave num
than the fundamental modes and result from mixing of o
mode with itself, with its next neighbor, or with its secon
next neighbor. One set of harmonics has a lower wave n
ber than the fundamental modes and results from mix
between two fundamental wave vectors enclosing a mu
angle of 135°.

For nominally constant parameters different patterns
found in the near field of the backward beam in conse
tively acquired images, see Figs. 3~a!–3~c!. The consecu-

FIG. 3. Eightfold quasipatterns. The upper row of images~a!–
~c! shows the intensity distribution of the backward beam~integra-
tion time 1 ms!. The lower row of images~d!–~f! shows the optical
Fourier transform of the transmitted beam. Parameters as in
2~e!.
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tively acquired images of the optical Fourier transform of t
transmitted beam, shown in Figs. 3~d!–3~h!, are almost iden-
tical. They are composed of four pairs of fundamental mo
mutually at an angle of 45 °62°, plus several sets of spatia
harmonics. In contrast, the near field patterns might cha
completely from one half frame of the video camera syst
to the next one, i.e., within 20 ms. On the other hand, th
are no indications of a change of the near field patte
within the integration time of a snapshot which was 1 m
The time scale of alternation between the different near fi
patterns is typically some tens of milliseconds. These ob
vations indicate that the observed patterns are metast
states which are linked by transition phases of rather s
duration. The experiments performed do not allow to ident
the nature of the transition process.

The near field patterns do not possess any apparent tr
lational symmetry. However, all these patterns contain ch
acteristic substructures of eight intensity maxima on a circ
In the individual pictures, the relative positions of these su
structures differ, but the orientation of these substructu
with respect to each other is fixed. This means, there
long rangeorientational order which characterizes these p
terns. The far field patterns have an approximate eightf
rotational symmetry, which is known to be incompatible wi
a translational symmetry of the corresponding near field
ages@e.g., Ref.@8##.

We interpret these structures as small portions of a s
tially extended quasipattern. The observed alternation
tween different near field patterns is apparently due to no
driven switching between different—approximately equa
likely—realizations of this ‘ideal’ pattern in the limited
beam. A similar behavior with similar time scales was fou
before for hexagonal patterns with a different number of c
stituents or different orientation@20,30#. Far above threshold
the quasipatterns are the predominant structures. Once
are formed, they persist when the input power is increas
i.e., no secondary bifurcations from eightfold quasipatte
to other structures have been observed.

Aside from eightfold quasipatterns, patterns with an op
cal Fourier transform composed of two and three pairs
modes are found. Examples are given in Fig. 4. Rhom
patterns composed of a regularly ordered set of oval inten

ig.

FIG. 4. Two- and three-mode patterns. The images~a!–~d! show
the intensity distribution of the backward beam viewed throug
polarization analyzer, as explained in the text~integration time 0.25
ms!. The images~e!–~h! show the optical Fourier transform of th
transmitted beam. Parameters:Pin5200 mW, T5340 °C, D
56 GHz, d5266 mm,pN2

5300 hPa.
0-3
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AUMANN et al. PHYSICAL REVIEW E 66, 046220 ~2002!
maxima, see Figs. 4~a! and 4~b!, are dominant for the set o
parameters chosen in Fig. 4. The optical Fourier transform
these patterns is composed of four intensity maxima co
sponding to two principal Fourier modes of equal wave nu
ber, see Figs. 4~e! and 4~f!. These two principal modes are
an angle of 40 °61 °. Three more sets of Fourier modes c
be observed, which can be interpreted as spatial harmoni
the principal modes.

For nominally identical parameters—in coexistence w
the two-mode patterns—patterns with an optical Fou
transform composed of three principal modes or of four pa
of Fourier peaks at the same wave number but of uneq
intensity can be observed. An example for a three-mode
tern is shown in Fig. 4~g!. Two of the three modes, which ar
at an angle of 41 °61°, are equally intense; a third mode
weaker and forms an angle of 46°61° with one of the more
intense modes. The corresponding near field intensity di
bution is composed of rather irregularly distributed intens
maxima@Fig. 4~c!#. In Fig. 4~h! an example for a four-mode
pattern is displayed. The angle between the most inte
modes is 42°61°, the angle between the less intense mo
is 48°61°. The corresponding images of the near field
semble the near field images of the eightfold quasipatte
discussed above.

C. Experimental results: Stability diagram

The behavior of the system in dependence on the
parameters input power and frequency detuning is sum
rized in the stability diagram shown in Fig. 5. For low inp
power, the Gaussian input beam is homogeneously abso
There is no emission of light in the linear polarization co
ponent orthogonal to the input polarization. This state of
system is denoted byU in Fig. 5.

The black squares indicate the minimum input power l
els at which an instability of the beam profile is observe
The power threshold of the pattern forming instability ha
local minimum at a frequency detuning of 8 GHz. For fr
quency detunings smaller than 5 GHz and larger than
GHz the power threshold exceeds the available input pow
Directly above the power threshold of the instability, far fie

FIG. 5. ~Color online! Stability diagram of patterns obtained fo
different values of the input powerPin and detuningD. See text.
Parameters:T5340 °C, d5210 mm,pN2

5300 hPa.
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patterns composed of fragmented rings are observed.
corresponding near field patterns are similar to those sh
in Figs. 2~a! and 2~b!.

An increase of the input power leads to the formation
patterns, which possess an optical Fourier transform c
posed of a clearly defined set of principal modes. There
ists a region in the parameter space, in which exclusiv
eightfold quasipatterns are observed. This region is deno
by Q8 in the diagram.

In those parts of the instability region which are disjun
with the region denoted byQ8, nonstationary two- and
three-mode structures can be found. At low input power th
coexist typically with the fragmented ring structures, whi
are observed directly at threshold. At high input power le
els, as indicated in the diagram, the two- and three-m
patterns become dominant, but coexist with four-mode p
terns. However, it is not possible to specify a closed reg
of stability of the two- or three-mode patterns. This region
coexistence of different patterns is denoted bymix in the
diagram.

The structure of the parameter space displayed in Fig.
characteristic for the system under consideration. The st
ture is found to be qualitatively independent of the sodiu
cell temperature, which controls the particle number den
of the sodium atoms. Moreover, it is found to be qualitative
independent of the distanced between the sodium cell an
feedback mirror. Of course, the range of cell temperatu
and the range ofd for which patterns can be found, respe
tively, are limited by the available input power and the fin
width of the Gaussian beam. The observed behavior is
affected by a rotation of the quarter-wave plate inside
feedback loop.

III. THEORY

A. The model

The microscopic description of any optical pattern form
ing system involves the self-consistent calculation of
nonlinear dielectric polarization@31# of the medium and of
the propagation of the light field within the system.

The conditions of the present experiment have been c
sen in such a way that the sodiumD1 line can be treated a
a homogeneously broadenedJ5 1

2 ↔J85 1
2 transition with a

negligible population of the excited state@32#. In a formal
description@33,34# the light matter interaction is treated i
the framework of the density matrix formalism@31#. The
result of this treatment is an expression for the nonlin
susceptibilityx6 of the medium for thes6 circular polar-
ization components of the light field. It is given byx6

5x lin(17w), wherew denotes the so-called orientation
the vapor, i.e., the normalized population difference betw
the two Zeeman sublevels of the ground state of the sod
atom.

x lin52
NNaumeu2

2e0\G2

D̄1 i

D̄211
~1!

denotes the linear susceptibility of the medium.NNa is the
particle number density of the sodium atoms,me51.72
0-4
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EIGHTFOLD QUASIPATTERNS IN AN OPTICAL . . . PHYSICAL REVIEW E 66, 046220 ~2002!
310229 Cm is the dipole matrix element of the transitio
D̄52pD/G2 is the detuningD5n laser2nD1

of the laser beam

with respect to the sodiumD1-line normalized to the so
called transverse relaxation rateG2, i.e., the relaxation rate
of the dipole moment of the transition.

The propagation of the light field is calculated in th
paraxial approximation@31#. It is assumed that the light field
is purely transverse and that no new frequency compon
are created by the interaction of the light field with the m
dium. The medium is considered to be thin, so that diffr
tion can be neglected during the propagation of the light fi
through the medium@10,19#. In the description of many
single feedback mirror systems the absorption of the li
field is also neglected@10,21,25#. In the present experimenta
situation, however, absorption is not negligible@22#. We
abandon this approximation and follow a recently dem
strated refined approach@23# which employs a longitudina
averagef of orientationw,

f~rW' ,t !5
1

LE0

L

w~rW' ,z,t !dz. ~2!

In addition, we consider the effect of atomic diffusion, whi
provides a wave number depending damping of structure
the orientation. The resulting equation of motion for the lo
gitudinal averagef of the orientation of the vapor is

]

]t
f~rW' ,t !52~g2D¹'

2 !f~rW' ,t !1
1

2a0L
@2P2,f~rW' ,0,t !

1P2,f~rW' ,L,t !2P2,b~rW' ,L,t !1P2,b~rW' ,0,t !

1P1,f~rW' ,0,t !2P1,f~rW' ,L,t !1P1,b~rW' ,L,t !

2P1,b~rW' ,0,t !#. ~3!

Here, the vectorrW'5(x,y)T denotes the transverse coo
dinates,¹'

2 5@(]2/]x2)1(]2/]y2)# denotes the transvers
Laplacian.g denotes the small (g'1 s21) relaxation rate of
the orientation due to collisions,D denotes the diffusion co
efficient of the sodium atoms in the buffer gas atmospherL
is the longitudinal length of the medium.a05
2k0Im(x lin)/2 is the small signal absorption coefficient
the medium andk0 is the vacuum wave number of the ligh
field.

The expressionsP6, f(rW' ,z,t) and P6,b(rW' ,z,t) on the
right hand side of Eq.~3! are the pump rates produced by t
s6 circular polarization components of the forward and t
backward beams, respectively. They are evaluated at th
put (z50) and the output (z5L) planes of the vapor. The
pump rate is proportional to the intensity of the respect
polarization component@see, the following Eqs.~4! and~8!#.
Temporal delays created by the finite speed of light are
glected, since the slowest corresponding time scal
(;1029 s) are much faster than the fastest time scales in
ground state of the atomic system (;1026 s). That is, the
dynamics of the light field is adiabatically eliminated. A fo
04622
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mal integration of the paraxial wave equation yields the f
lowing expressions for the pump rates:

P6,f~rW' ,0,t !5CuE6, f~rW',0,t !u2, ~4!

P6,f~rW' ,L,t !5e22a0L(17f(rW' ,t))P6,f~rW',0,t !, ~5!

P6,b~rW' ,L,t !5R CuPeia0L(D̄1 i )[17f(rW' ,t)]E7, f~rW',0,t !u2,
~6!

P6,b~rW' ,0,t !5e22a0L[17f(rW' ,t)] P6,b~rW' ,L,t !, ~7!

with

C5
3

16

umeu2

4G2\2~D̄211!
. ~8!

The propagation operator

P5expF2 i
d ¹'

2

k0
G ~9!

is defined via the corresponding power series, whered is the
distance between the feedback mirror and the medium. H
E6, f(rW',0,t) denotes the slowly varying amplitude@31# of
thes6 circular polarization components of the forward bea
at the input face of the medium. The prefactor of 3/16 in E
~8! is a correction factor which accounts approximately
the fact that the efficiency of optical pumping is overes
mated in theJ51/2→J851/2-scheme considered here com
pared to a complete level scheme of sodium atoms includ
the hyperfine structure@34#. Note that the presence of th
quarter-wave plate in the feedback arm manifests itself in
~6!: The pump rate of thes2 circular polarization compo-
nent of the backward beam is determined by thes1 circular
polarization component of the forward beam and vice ver

As opposed to the simpler limiting case of a purely d
persive medium@25#, a change of sign of the detuning doe
not transform the Eqs.~3!–~7! into those for the system with
out the quarter-wave plate in the feedback loop@28,29#. The
fact that the dynamics of the ground state population depe
only on the modulus squared of circular field compone
@see, Eqs.~3!, ~4!–~7!# and not on their phases explains, wh
the behavior of the system does not depend on the orie
tion of the principal axis of the quarter-wave plate.

Note that the longitudinally averaged orientationf is the
single dynamical variable describing the system. Due to
adiabatic elimination of the dynamics of the light field, a
the observables of the light field can be calculated from
given transverse distribution off. In the following, we will
present numerical and analytical results based on the
~3!–~7!. The numerical scheme is described in Ref.@35#.

B. Results of numerical simulations

Figure 6 displays the result of a numerical simulation
parameters corresponding to those of Fig. 2. A Gaussian
tensity profile of the input laser beam was used and Dirich
boundary conditionsf50 were assumed on the border of
0-5
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FIG. 6. Patterns for increasing pump rateP0 of the linearly polarized Gaussian input laser beam. The images shown are the resu
numerical simulation assuming a Gaussian input laser beam and Dirichlet boundary conditions for the medium.~a!–~e! Backward near field
intensity distribution of the linear polarization component orthogonal to the input polarization.~f!–~j! Total far field intensity distribution.

~k!–~o! Transverse distribution of the longitudinally averaged orientationf. Parameters:NNa51.331019 m23, D̄55.0, d5210 mm, D
52.531024 m2/s, G259.93109 s21. The frame size of the near field images@~a!–~e!# and of the images of the orientation@~j!–~o!#
corresponds to 434 mm2. The frame size of the far field images@~f!–~i!# corresponds to 66366 mm22. The power of the input laser beam
is in ~a! 122 mW, ~b! 136 mW, ~c! 146 mW, ~d! 156 mW, ~e! 204 mW. It is calculated using thatPin5ce0 /(pw0

2)(uE1, f(0)u2

1uE2, f(0)u2) and Eqs.~4!, ~8!.
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circular area with a diameter of 6 mm~for reasons of effi-
ciency of the numerical calculations the total extent of
area represented by the numerical grid was assumed t
somehow smaller than the cell diameter of 8 mm used in
experiments; the beam radius at the 1/e2-point of intensity
was 1.5 mm as in the experiment!. The input laser beam is
linearly polarized in thex direction.

When the input power is increased from zero, first a h
mogeneous state of zero magnetization is found. In this c
there is noy component of the light field. When a thresho
pump rate of P051.253105 s21 is exceeded, a centra
slightly distorted ring system is found in the orientation, s
Fig. 6~k!. In the y component of the backward laser beam
central bright spot is found, which is surrounded by ri
fragments lying opposite to each other, see Fig. 6~a!. After a
slight increase of the input pump rate, the patterns found
the orientation and the near field stay nearly the same
occupy a slightly larger area on the Gaussian beam, see
6~b! and 6~l!. The corresponding far field image shows
slightly perturbed ring of high intensity@Fig. 6~g!# demon-
strating the emergence of a characteristic wave number.

For an input pump rate ofP051.503105 s21, a pattern
of alternating maxima and minima is found in the orien
tion, see, Fig. 6~m!. In the y component of the backwar
laser beam, shown in Fig. 6~c!, a pattern of intensity maxima
is found. A ring-like structure of eight intensity maxima
formed slightly off center on the laser beam. The far fie
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image shows eight peaks at equal wave numbers, the w
vectors of which form vertex angles of 45°61°.

At an input pump rate ofP051.603105 s21, a second
ring of eight intensity maxima is visible in the image of th
y component of the backward laser beam. In the image of
orientation, a corresponding set of eight alternating mini
and maxima is found. The far field image shows a set
eight intense maxima with vertex angles of 45°61°.

A further increase of the input pump rate results in a f
ther increase of the transverse extent of the near field pat
In the center of the laser beam a number of circles can
seen, each of them consisting of eight intensity maxima@see
Fig. 6~e!#. The far field image is composed of a ring of eig
principal modes with at least three clearly visible sets
harmonics. In the corresponding image of the orientat
@Fig. 6~o!# a complex pattern can be seen, which also c
tains characteristic substructures. These substructures
composed of maxima surrounded by eight minima each
minima surrounded by eight maxima. The average value
the orientation remains approximately zero throughout
scan of the input pump rates.

Figure 7 shows the result of three independent runs of
numerical simulation for parameters identical to those
Figs. 6~e!, 6~j!, and 6~o! with different random initial condi-
tions. The near field images of the linear polarization co
ponent orthogonal to the input polarization show differe
patterns of bright spots. The patterns resemble each oth
0-6
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EIGHTFOLD QUASIPATTERNS IN AN OPTICAL . . . PHYSICAL REVIEW E 66, 046220 ~2002!
the sense that in each of the images a number of ring
eight intensity maxima can be found. A similar observati
applies to the patterns present in the orientation of the va
@Fig. 7~g!, 7~h!, 7~i!#. Independent of the near field structur
all far field images@Fig. 7~d!, 7~e!, and 7~f!# show a structure
of eight principal modes on a circle, which are separated
angles of 45°61° and at least three other sets of mod
which can be interpreted as the spatial harmonics of the p
cipal modes. These features match the observations in
experiment. The near field images can be interpreted as a
from a spatially extended quasipattern at different locatio

In order to provide further support for this interpretatio
we performed numerical simulations assuming a plane w
input light field with both periodic and Dirichlet boundar
conditions for the medium. No qualitative difference cou
be found between the far field images obtained from
simulations with periodic and those with Dirichlet bounda
conditions or between different runs of the simulation. Mo
over, the near field patterns show a strong similarity to
patterns obtained in the center of a Gaussian input la
beam. Thus we conclude that the quasipatterns observe
the Gaussian beam would also be selected in a homogen
system.

Some boundary effects are present close to thresh
though. In numerical simulations with a plane wave inp
laser beam, the quasipatterns emerge directly at the thres
of the instability. When a Gaussian input laser beam is us
the bifurcation to eightfold quasipatterns goes through
intermediate state in which, as in the experiment, pattern
ring fragments or slightly distorted rings are found. Th
these intermediate patterns are due to finite size effects.

FIG. 7. Eightfold quasipatterns obtained from numerical sim
lation assuming a Gaussian input laser beam and Dirichlet boun
conditions for the medium. The input laser beam is linearly po
ized in thex direction. The images show the result of three runs
the simulation for identical parameters, but different random ini
conditions.~a!–~c! Backward near field intensity distribution of th
linear polarization component orthogonal to the input polarizati
~d!–~f! Total far field intensity distribution.~g!–~i! Transverse dis-
tribution of the longitudinally averaged orientationf. Parameters
as in Figs. 6~e!, 6~j!, and 6~o!.
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We remark that rhombic two-mode patterns were neit
found in numerical simulations with a plane wave input n
with a Gaussian beam. Three-mode patterns occur somet
during the transient of pattern evolution close to thresh
with a plane wave input and periodic boundary conditio
especially if the resolution of the grid in Fourier space is lo
With a higher resolution in Fourier space patterns are
tained which are eightfold quasipatterns with a high pre
sion; an ideal quasipattern cannot exist on a grid with p
odic boundary conditions.

C. Linear and nonlinear stability analysis

In the following, we will present the result of analytica
investigations of the pattern selection process. The way
doing these calculations closely follows the one discusse
Refs.@10,25#. However, we consider the general case of b
non-negligible absorption and diffusion. We assume a
early polarized plane wave input light field. The stress p
rameter of the system is the sum pump rate of the input li
field at the input face of the medium, which is given b
PS,05C@ uE1, f(rW',0,t)u21uE2, f(rW',0,t)u2#.

Equation~3! possesses a unique stationary, spatially
mogeneous solution, which is given by

fh[0, ~10!

independently of the value ofPS,0 .
Let us now consider a small perturbationdf of this ho-

mogeneous solution. Substitutingf5fh1df yields an
equation of motion for the perturbation

]

]t
df52~g2DD'!df1

1

2
PS,0~12e22a0L(12df)!

3~11RuPeia0L(D̄1 i )(11df)u2!

2
1

2
PS,0~12e22a0L(11df)!

3~11RuPeia0L(D̄1 i )(12df)u2!. ~11!

As a first step, we will determine the instability thresho
and the critical wave number by means of a linear stabi
analysis. Linearizing Eq.~11! in df yields

]

]t
df52~g2DD'!df2PS,0F~11R F!df ~12!

2PS,0F R~12F ! ~13!

3FcosS dD'

k0
D2D̄ sinS dD'

k0
D Gdf. ~14!

with

F5e22a0L. ~15!

Setting

-
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-
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df;emt1 ikW'rW1c.c. ~16!

yields a growth exponent of the perturbation of

m52~g1Dk'
2 !2PS,0F~11RF! ~17!

2PS,0R F~12F !FcosS dk'
2

k0
D 1D̄ sinS dk'

2

k0
D G . ~18!

m is a real function of the parameters andk'
2 . That means

that stationary patterns rather than oscillatory ones are
dicted. Figure 8 shows the sign ofm versusPS,0 andk'

2 . In
the gray shaded regionsm is positive and hence the system
unstable with respect to a perturbation at the respective w
number. As for any single feedback mirror system, there
sequence of instability balloons@36#. Diffusion is rather
strong in the present system and hence the minima of
individual instability balloons are shifted to significant
higher pump rates with increasingk'

2 . Close to the bifurca-
tion point, the homogeneous state becomes unstable wit
spect to perturbations of a single wave number given by
minimum of the first instability balloon.

As noted earlier@10,23,25#, Eq. ~11! possesses an inve
sion symmetry, i.e., it is invariant under a transformationf
→2f. As a consequence, any amplitude equation deri
from this equation of motion must not include terms of ev
order in the amplitudes. We derived the amplitude equati
by means of a multiple scales approach, similar to the
discussed in Refs.@10,25#. Indeed, the result is a set o
coupled amplitude equations of the form

FIG. 8. Result of a linear stability analysis. In the gray shad
regions in thek'

2 -PS,0 space, the spatially homogeneous solution
unstable vs spatially periodic perturbations. Parameters as in Fi
The dashed horizontal line denotes the maximal pump rate use
the simulations.
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] tAi5mAi2zAi uAi u22Ai(
j

j i , j uAj u21O~A5!. ~19!

The functional form of the coefficients is rather complicate
it is given in the appendix. The cubic cross coupling coe
cientsj i , j depend not explicitly on the indicesi, j but only on
the anglea i , j between the wave vectors of the Fourier mod
i and j. It is well known that it is this angular dependenc
that governs the pattern selection process@8,9#.

The amplitude equations~19! are variational; i.e., they
can be derived from a Lyapunov function@8–10,25#:

]Ai

] t
52

]G
]Ai*

with
]G
] t

<0, ~20!

which is given by

G52m(
i 51

N

uAi u21
z

2 (
i 51

N

uAi u41
1

2 (
i 51

N

(
j Þ i
j 51

N

j~a i , j !uAj u2uAi u2.

~21!

The pattern which minimizes the Lyapunov function is t
one expected to emerge most likely at threshold@8–10,25#.

The linear stability analysis fixes only the critical wav
numberkc at threshold. Due to rotational symmetry, in pri
ciple an infinite number of modes withuk'u5kc might
emerge at threshold. However, usually the pattern selecte
the nonlinearities is build from a small subset of the
modes, the simplest examples being stripes (N51), squares
(N52, a5p/2) or rhombs (N52, aÞp/2). For these
simple structures the calculation of the values of t
Lyapunov function is straightforward. The result is

G152
m2

2z
~22!

for the stripe patterns and

d

6.
in

FIG. 9. Result of a multiple scales analysis. Cubic cross c
pling coefficientj(a) normalized to the cubic self coupling coeffi
cient z vs the anglea between the interacting modes. Paramete

NNa51.431019 m23, D̄54.8, d5210 mm, D52.2631024 m2/s,
andG251.043109 s21.
0-8
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G252
m2

z1j~a!
~23!

for the two-mode patterns.
Figure 9 shows the angular dependence of the cr

coupling coefficientj(a) versus the vertex anglea of the
wave vectors of the two Fourier modes for the parameter
Fig. 6. For reasons of simplicity,j(a) is normalized to the
self-coupling coefficientz. Both j(a) and z are positive.
j(a) possesses three minima in the interval@0,p#, one at
exactly a5p/2, one at a'0.244p, and one at a
'0.756p. The values ofj in these minima are identical. Th
qualitative shape of the curve is typical for the present s
tem. The precise location of the minima depends on the
perimental parameters, especially on the detuningD̄.

For the two-mode problem, this structure ofj(a) implies
that the value of the Lyapunov function is identical f
squares (a50.5p) and rhombic two-mode patterns with
vertex angle ofa'0.244p @8,9,26#. @This degeneracy is
lifted in the fifth order of the perturbation expansion@26#.#
Since the minimum value ofj(a)/z is smaller than unity, the
value of the Lyapunov function for the two-mode patterns
also smaller than the value of the Lyapunov function
stripe patterns@8,9#.

When more than two modes are considered, regular s
tions of N Fourier modes of equal strength, which are se
rated by an angle ofp/N are an important class of fixe
solutions of the amplitude@8–10#. An evaluation of the
Lyapunov function for this class of patterns shows that
regular solution withN54—i.e., a quasipattern with a
eightfold rotational symmetry—minimizes the Lyapuno
function with respect to any other regular solution. Mor
over, since the square pattern minimizes the Lyapunov fu
tion of the two-mode problem, the quasipattern withN54
also minimizes the Lyapunov function with respect to a
other two-mode solution and to stripes.

The transient occurrence of rhombic patterns in the
periment cannot be explained by these theoretical invest
tions. For the parameters of Fig. 4, the Lyapunov appro
predicts eightfold quasipatterns at instability onset. Howe
a minimum of the cubic cross-coupling coefficient occurs
a542 degrees, which agrees reasonably well with the
perimentally found vertex angles of the rhombic patterns

D. Theoretical results: Bifurcation diagram

The results of the theoretical analysis presented in
section are summarized in Fig. 10. The parameters co
spond to those of Fig. 5. Figure 10~a! shows a plot of the
power threshold of the instability for a Gaussian input la
beam, which is taken as the point where the peak inten
passes the threshold calculated by means of the linear st
ity analysis for a plane wave input beam. The shape of
threshold curve is similar to the one obtained in the exp
ment shown in Fig. 5. There is a flat minimum of about
mW at a normalized detuning ofD̄55.1, which corresponds
to a detuning ofD58 GHz. For values of the normalize
04622
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detuning smaller thanD̄53.0 (D55 GHz) and larger than

D̄59.5 (D515 GHz) the threshold power exceed
250 mW, which was the maximum available input power
the experiment~see, e.g., Fig. 5!. These values are in reason
able agreement with the experiment findings.

Figure 10~b! shows a plot of the values of the Lyapuno
function normalized to the square of the linear growth r
m2 for an eightfold quasipattern (G4), a two-mode pattern
(G2) and a stripe pattern (G1). The values of the Lyapunov
function for any other regular pattern are larger. In a range
the normalized detuning fromD̄53.0 toD̄59.0 @denoted by
Q8 in Fig. 10~a!# the eightfold quasipattern minimizes th
Lyapunov functional. ForD̄.9.0, the stripe pattern mini
mizes the Lyapunov functional~regionS).

The prediction of eightfold quasipatterns at instability o
set in a wide range of the detuning is in qualitative acc
dance with the experimental findings discussed in Sec. I
The stripe patterns predicted for large detunings were
observed in the experiment. However, the region in wh
stripe patterns are predicted at instability onset lies on

FIG. 10. Bifurcation diagram in dependence on the normaliz

detuningD̄. ~a! Threshold curve and predicted patterns at thresh
(Q85quasipatterns,S5stripes).~b! Values of Lyapunov function
G(N) normalized tom2. The numerical parameters are as in Fig
and correspond to the experimental ones of Fig. 5. The power o
input laser beam is calculated using thatPin5ce0 /(pw0

2)
3(uE1, f(0)u21uE2, f(0)u2) and Eqs.~4!, ~8!.
0-9
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border of the range of parameters which is accessible in
experiment due to power constraints.

IV. DISCUSSION

For positive detuning eightfold quasipatterns are
dominant structures in the experimental system. Since
introduction of the quarter-wave plate in the feedba
loop—as discussed in Refs.@25,28# and mentioned in the
introduction—is in many respects equivalent to a change
detuning our experimental results are in qualitative agr
ment to the analysis of Leducet al. @26,27#. This group pre-
dicted analytically the occurrence of quasipatterns for ne
tive detuning~and isotropic feedback! in a purely dispersive
model and confirmed by some numerical studies that sm
amounts of absorption do not change the pattern selecti

Leducet al. @26,27# predict in addition square and strip
patterns for the parameters under study. These were no
served in the experiment but this is explained by our th
retical treatment which takes into account the action of
quarter-wave plate in conjunction with absorption and pu
depletion. The transition to stripes~and possibly to squares!
is shown to occur outside or at the boundary of the range
parameters accessible in the present experiment. We re
that the applicability of the plane wave theory to the analy
of pattern formation in a beam with a Gaussian profile c
not be anticipated beforehand, but needs to be checked
each specific situation. In the system analyzed here, it tu
out that the pattern selected with a Gaussian pump and
a plane wave pump is the same as soon as there is a
ciently large area of the beam above threshold. For this
incidence, it might be helpful that the homogeneous solut
is identical to zero for all pump powers and that the insta
ity regions do not have an upper limit~Fig. 8!. In contrast,
we had found pronounced effects of the beam profile
pattern formation for situations, in which the homogeneo
solution changes strongly with pump power and/or in wh
the instability regions are bounded@e.g., Ref.@37##.

Furthermore, Leducet al. predict a secondary bifurcatio
from eightfold quasipatterns first to a quasiperiodic thr
mode patterns and then to rhombic two-mode patterns
above the instability threshold. This bifurcation could neith
be reproduced in the experiment nor in numerical simu
tions of our model. In both cases, once an eightfold qu
pattern was formed it persisted for increasing input pu
rate or input power, respectively. The stabilization mec
nism for the rhombic patterns proposed by Leducet al. relies
on the simultaneous instability of Fourier modes belong
to different instability balloons~multicriticality!. Diffusion,
which is neglected in the analytical treatment by Led
et al., shifts the higher instability balloons towards high
pump rates, see Sec. III C, Eq.~18!, and Fig. 8. As a conse
quence, due to the limited input power, true multicriticality
difficult to create in the experiment. Nevertheless, the p
terns observed to coexist with eightfold quasipatterns on
wings of the threshold curve in the parameter space span
by the input power and the detuning (mix in Fig. 5! have a
phenomenological similarity with the patterns displayed
Figs. 2, 3 of Ref.@27#, though the vertex angle is about 41
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instead of the predicted 48°. To some extent they can
understood to be favorable since the vertex angle of abou
degrees corresponds roughly to the minima of the cub
cross coupling coefficient obtained from our model. Ho
ever, these two and three mode patterns could not be fo
in numerical simulations starting from noisy initial cond
tions. Therefore, the exact interpretation of these pattern
still open. They might represent a kind of metastable st
which is excited in the experiment due to spatially correla
noise.

Furthermore, one should be aware of the fact that
model—though already quite elaborate and successful
not complete, e.g., diffraction and refraction within the m
dium is neglected. This is a common approximation in t
description of these kind of systems@10,19,21,23,30# since a
full three-dimensional treatment of the propagation of tw
counterpropagating beams in an extended nonlinear med
is extremely demanding@38#, especially if an additional spa
tial coupling such as diffusion has to be taken into accou
The common argument is that the approximation of a t
medium is valid, if the free space propagation length is c
siderably larger than the length of the medium and indeed
found that this approximation often works very well alrea
for L'15 mm,d&75 mm@e.g., Refs.@7,22,30##. However,
nearly all of these investigations were done in a situation
which the medium behaved self-focusing, i.e., the refract
index increased with increasing intensity. Under these con
tions the light tends to be attracted to regions of high int
sity @see, e.g., Refs.@39,40##. Hence a bright spot~e.g., a
constituent of a pattern! will stay localized during propaga
tion. In a self-defocusing situation light will be pushed out
the region of high intensity, i.e., modulations tend to
smoothed out. Therefore, one can expect that the thres
for pattern formation will rise. If there are no special co
figurations of external fields@as in Ref.@30## self-focusing
occurs for positive detuning from the resonance in atom
vapors @e.g., Refs.@41,42##, self-defocusing for a negative
one @e.g., Ref.@43##. This might explain why the quasipat
terns were not observed without a quarter-wave plate, wh
they should form for negative detuning@10#, but after the
transfer of the instability to positive detuning by the quart
wave plate. Note however, that even in a thin medium
complete equivalence between the introduction of
quarter-wave plate and a change of detuning@25# holds only
in the dispersive limit@28#.

As discussed in Sec. III the equations of motion obey
exact inversion symmetry in the case of linear input pol
ization considered here. Hence quadratic coupling does
have to be considered in the calculation of the cubic cro
coupling coefficient and the system is an example for
stabilization mechanism proposed in Refs.@9,17#. This is
also demonstrated by the fact that the cross-coupling fu
tion ~Fig. 9! displays the characteristic minima in the ang
dependence which were postulated in Refs.@9,17# to enforce
the selection of the rotational symmetry.

We remark that the apparent existence of quadratic h
monics in Figs. 3 and 7 is due to the fact that we do n
observe the dynamical variable~orientationw, respectively
f) itself but the transmitted intensity distribution. Even ha
0-10
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EIGHTFOLD QUASIPATTERNS IN AN OPTICAL . . . PHYSICAL REVIEW E 66, 046220 ~2002!
monics are introduced in each of the polarization com
nents by the exponential dependence of the transmitted
on the orientation@Eq. ~5!# and the fact that one has to tak
the modulus squared of the optical field in order to calcul
the pump rate@Eq. ~6!#. It turns out that the spatial phas
between the even harmonics in the pump field is the same
both polarization components so that they cancel out exa
in the driving term for the orientation, since the polarizati
components pump antagonistically. This ensures the in
sion symmetry of the equation of motion~11!. Nevertheless,
the even harmonics present in the field distribution in
feedback arm might influence the pattern selection since
mix with fundamental wave vectors if one calculates t
pump rate. This creates additional driving terms for the fu
damentals. Experimentally the influence of the even harm
ics in the field distribution on pattern selection can be de
onstrated by introducing a Fourier filter in the feedback lo
in the manner described in Refs.@44,45#. It turns out that the
quasipatterns give way to squares if their harmonics
2 cos(p/8)'1.848 times the wave number of the fundame
tal wave vector are cutoff. These issues will be investiga
in more detail in the future.

Finally we discuss the relationship of our results to t
observations in the Faraday instability. Eightfold and tenf
quasipatterns were observed@3,6# and received an explana
tion by amplitude equations derived from the Navier-Stok
equation@12,13#. These amplitude equations are also inv
sion symmetric and the pattern selection is governed by
cubic cross-coupling coefficient. However, contrary to t
case discussed here, the cross-coupling coefficient sho
rather broad minimum aroundp/2 in dependence of the
angle. This situation is also known to favor quasipatte
@8,9,12,13,46#, but the order of the quasipattern depends v
critically on the shape of the minimum: In Ref.@13# a tran-
sition from an eightfold to a fourteenfold via tenfold an
twelvefold patterns is predicted for only very small chang
of a bifurcation parameter. On the contrary, the rotatio
order of the pattern is obviously quite fixed, if one has
oscillatory dependence of the cross coupling such as the
depicted in Fig. 9. As discussed in Ref.@10# the existence of
this pronounced oscillatory dependence is related to the
that the Laplace operator is contained up to very high ord
in the model equations@cf. Eq. ~9!#. Thus such a dependenc
appears in a natural way in optical systems.

V. SUMMARY

In summary, the observations in the present experime
system qualitatively confirm the core of the theoretical p
dictions of Leducet al. @10# ~concerning the emergence o
eightfold quasipatterns! and Scroggie and Firth@25# ~con-
cerning the influence of a quarter-wave plate in the feedb
loop!. However, a direct comparison between the experim
and these predictions is not satisfying. An extended mic
scopic model accounting for absorption and pump deple
significantly improves the correspondence between exp
ment and theory. The selection of the eightfold symmetry
consistent with a multiple scale analysis of the microsco
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model. The quasipatterns are stabilized by an oscillatory
pendence of the cubic cross-coupling terms on the angle
tween the interacting wave vectors. This mechanisms
postulated in previous theoretical papers@9,17#.
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APPENDIX: DERIVATION OF COEFFICIENTS
OF AMPLITUDE EQUATIONS

In the following, the coefficients of the amplitude equ
tions of the two-mode problem will be derived by a multip
scales analysis. The calculations follow the ansatz descr
in @10,25#. Further details can be found in Ref.@29#. The
starting point is the expansion

df5e df11e2df21e3df31•••, ~A1!

P5PS,01ep11e2p21•••, ~A2!

] t5]T0
1e]T1

1e2]T2
1e3]T3

1•••, ~A3!

wheree is a small parameter. Substitution of this ansatz in
Eq. ~3! yields a problem of the form

@L01eL11e2L2#~edf11e2df21e3df3!

5e3N3~D' ,df1 ,df2!1O~e4!, ~A4!

with

L052]T0
2~PS,0F~11RF!1g2DD'!2PS,0FR~12F !

3FcosS 2
dD'

k0
D1D̄ sinS 2

dD'

k0
D G , ~A5!

L152]T1
2p1F~11RF!2p1FR~12F !

3FcosS 2
dD'

k0
D1D̄ sinS 2

dD'

k0
D G , ~A6!

L252]T2
2p2F~11RF!2p2FR~12F !

3FcosS 2
dD'

k0
D1D̄ sinS 2

dD'

k0
D G , ~A7!

and N3 a third order polynomial indf1 , df2 and their
spatial derivatives. As a consequence of the inversion s
metry of the microscopic equations,N3 does not contain any
second order terms indf and its spatial derivatives. Afte
calculating the coefficients and undoing the transformati
~A1!–~A3!, the final result are the coefficients

m'~PS,02Pc!mp , ~A8!

z5z3 , ~A9!

j~a!5j3~a!. ~A10!

The expressions for the coefficients are given by
0-11
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mp5FH 212F R1~211F !RFcosS d kc
2

k0
D 1D̄ sinS d kc

2

k0
D G J , ~A11!

z35$a0
2F L2p0@21~71D̄2!F R#%1

a0
2

2
@31D̄2~211F !215F#F L2p0R cosS d kc

2

k0
D

1
a0

2

2
D̄@113 D̄2~211F !213F#F L2p0R sinS d kc

2

k0
D 2

a0
2

2
~11D̄2!~211F !F L2p0RFcosS 3 d kc

2

k0
D 1D̄ sinS 3 d kc

2

k0
D G

2a0
2F2L2p0RF ~211D̄2!cosS 4 d kc

2

k0
D 22 D̄ sinS 4 d kc

2

k0
D G , ~A12!

j3~a!54 a0
2F L2@11~31D̄2!F R#p012 a0

2@11D̄2~211F !27 F#F L2RFcosS d kc
2

k0
D 1D̄ sinS d kc

2

k0
D Gp0

2a0
2~11D̄2!~211F !F L2RFcosS d kc

2@122 cos~a!#

k0
D 1D̄ sinS d kc

2@122 cos~a!#

k0
D Gp0

22 a0
2F2L2RF ~211D̄2!cosS 2 d kc

2@211cos~a!#

k0
D 12 D̄ sinS 2 d kc

2@211cos~a!#

k0
D Gp0

22 a0
2F2L2RF ~211D̄2!cosS 2 d kc

2@11cos~a!#

k0
D 22 D̄ sinS 2 d kc

2@11cos~a!#

k0
D Gp0

2a0
2~11D̄2!~211F !F L2RFcosS d kc

2@112 cos~a!#

k0
D 1D̄ sinS d kc

2@112 cos~a!#

k0
D Gp0 . ~A13!

These coefficients were evaluated numerically using programs generated automatically by the software
MATHEMATICA .
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