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Eightfold quasipatterns in an optical pattern-forming system
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Quasipatterns with an eightfold rotational symmetry and irregular two- and three-mode patterns are found in
an experiment on optical pattern formation. The patterns exist in the transverse cross section of a laser beam
that traverses a system built from a sodium vapor cell and a plane feedback mirror with a quarter-wave plate
placed into the feedback loop. The occurrence of the quasipatterns is reproduced by numerical simulations and
explained by amplitude equations that contain only odd-order terms and are derived from the microscopic
model. The selection process is governed by the angle dependence of the cubic cross coupling coefficients in
the amplitude equations. Up to our knowledge it provides the first experimental example for a stabilization
mechanism proposed earlier that is based on an oscillatory dependence of the cubic cross coupling coefficient
on the angle between the interacting wave vectors. The relationship to the prediction of quasipatterns in a
similar setup without additional wave plgtehys. Rev. A53, 1072(1996)] is discussed.

DOI: 10.1103/PhysReVvE.66.046220 PACS nun)er89.75.Kd, 42.65.Sf, 47.54r, 42.25.Ja

I. INTRODUCTION derivatives to the model equatiof17]. On the level of the
amplitude equations these derivatives manifest themselves in
States that are quasiperiodic in space are known to occ@n oscillatory dependence of the cubic cross coupling coef-
in equilibrium systemgquasicrystald1,2]], as well as in ficient on the angle between the interacting wave vectors. We
self-organizing dissipative systems driven far from equilib-are not aware of a report in the literature on an experimental
rium [3-7]. Quasiperiodic states represent a remarkabl@bservation of a quasipattern relying on an oscillatory cross-
phase that has no periodicity in spite of a Fourier spectrun§oupling coefficient. As noted in Ref10] optical pattern
with well defined peaks and a well defined rotational sym-forming systems might be very well suited to demonstrate
metry [see e.g., Ref[1] and references therdinTwo-  this phenomenon since the diffraction occurring for propaga-
dimensional realizations of quasiperiodic spatial states in distion over a finite distance leads naturally to the occurrence of
sipative systems are often callequasipatterns Their  higher order derivatives. Thus we will address experimen-
properties and stabilization mechanisms have been a matttlly and theoretically the formation of quasipatterns in a
of considerable interedie.g., Refs[8—13]. Quasipatterns honlinear optical system in this paper.
with a twelvefold rotational symmetry were experimentally ~ The experimental systepsee Fig. 1is built from a non-
observed4,7] in systems without inversion symmetry. This linear medium and a single mirr¢i8—21. The medium is
particular configuration of a quasipattern is expected in theséradiated by an enlarged and collimated laser beam. During
systems since it is favored by quadratic coupling termghe propagation to the mirror and back different points in the
[8,9,11,14,1% transverse cross section of the beam are coupled by diffrac-
In systems with inversion symmetry the amplitude equadtion. If sodium vapor is used as the nonlinear medium, the
tions describing the dynamics of the bifurcating modes clos@pontaneous emergence of squares in the transverse beam
to threshold contain only odd-order terfiis]. In this case it~ Profile is observed for linear input polarization and a positive
was shown that different kinds of quasipatterns with eight-detuning between the frequency of the laser beam and the
fold, tenfold, twelvefold, or fourteenfold rotational symme- sodiumD; resonance lin¢22]. This is in accordance with
tries might be stable. The selection of a particular symmetrjheoretical expectatioi10,22—-26. For negative detuning
is determined by the dependence of the cubic cross couplingxperimentally no pattern formation was obsery2d], al-
coefficient on the angle between the interacting wave vectortiough eightfold quasipatterns were predicted to occur in a
[8-10,12,13,1F In a Faraday experimef,6] quasipatterns
with an eightfold and tenfold rotational symmetries were ob- / EOM
served indeed, in good agreement with theoretical predic- /]
tions[12,13. Furthermore it was predicted that in principle pLA—d —f—d—

- |
one can “engineer” quasipatterns of arbitrary rotational sym- \ I:I N | L I:I I:\ CCD,

metry by adding suitable terms involving high-order spatial

spatial filter | dye laser system
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*Andreas. Aumann@gmx.de
"t.ackemann@uni-muenster.de FIG. 1. Schematic of the experimental setup. EOM: electro-
*grosse.westhoff@uni-muenster.de optic modulator; LR, linear polarizers; SC: sodium celk/4:
Sw.lange@uni-muenster.de quarter-wave plate; FM: feedback mirror; L: focusing lens; GCD

Ihttp:// www.uni-muenster.de/Physik/AP/Lange/Welcome-e.html CCD,: charge coupled device cameras. See, text for details.
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FIG. 2. Patterns obtained for increasing input power. The iméaese) show the intensity distribution of the backward beam viewed
through a polarization analyzer, as explained in the text. The imdge§) show the optical Fourier transform of the transmitted beam.
ParametersT=341°C,A=8 GHz,d=210 mm, py, =300 hPa. The images—and all following ones—are depicted in a linear gray level
scale. In the near field images “white” denotes high intensity, whereas in the far field images “black” denotes high intensity. The frame size
of the near field images corresponds tx 4 mn? (integration time 1 ms The frame size of the far field images corresponds to 60
X 60 mm 2. The far field images show a small intense spot at the 10 o’clock position within the ring belonging to the critical wave number.
This spot is due to a parasitic reflection in the imaging system and is not related to pattern formation.

limiting case[no absorption, no diffusion10,27]]. In the  nents transverse to the propagation axis of the laser beam to
same limit the introduction of a quarter-wave plate in theless than 1uT. A longitudinal magnetic field component of
feedback loop is equivalent to an exchange of the sign of thg,~200 uT is applied to define the axis of quantization and
detuning[25]. It turns out that under the conditions of the to reduce the effect of residual stray fields. A plane mirror
real experiment the introduction of the quarter-wave platgyith a reflection coefficient 0R=0.99 is positioned at a

favors spatial instabilitie§28] and a pattern forming insta- gistanced of typically 200—300 mm behind the center of the
bility can be found on both sides of the sodily line in o).

this configuration[29]. For a negative frequency detuning
from the resonance, square patterns are f¢@ag which are
similar to those observed for a positive detuning in the sys

tem without a quarter-wave plate in the feedback g2l A linear polarizer (LB) is adjusted such that only the linear

For positive detuning, a new phenomenology arises which is o . .
described and analyzed in this paper. polarization component orthogonal to the input polarization

is transmitted. Thus the appearance of a signal behind this
polarizer indicates a polarization instabilifgee also Ref.
Il. EXPERIMENT [21]]. Patterned states appear also in the total transmitted
power as well as in the polarization component parallel to
the input polarization but the observation is done in the or-
A schematic of the experimental setup is shown in Fig. 1thogonal one since this component displays a pattern on zero
The output of a cw dye laser, operating within a range ofyackground, i.e., the contrast is optimum. A charge coupled
some atomic linewidths above tt2, resonance, is being gevice(CCD) camera records the intensity distribution in the
spaztially filtered using a single-mode fiber and expanded to §ansyerse plane positioned at a distaddeehind the mirror.
1/e” radius of 1.5 mm. The residual geometrical ellipticity of |, this plane the field distribution corresponds to the one of
the beam is lower than 1%. An electro-optic modulator isy,e refiected beam at the position of the cell. In the follow-
used for stabilization or scanning of the input power. Fmally,ing, we will refer to this intensity distribution as the “near

a linear polarizer (LP) ensures a linear polarization of the field picture” of the backward beam. A second CCD camera
laser beam. records the Fourier spectrum of the light field, which is ob-

B This laser be"?‘”.” IS |nJe_cted Into a heated ahgthL tained in the focal plane of a lens. We will refer to it as the
=15 mm) containing sodium vapor in a buffer gas atmo-“far field picture.”

sphere of 300 hPa N The buffer gas provides a strong ho-
mogeneous broadening, which masks both the hyperfine
splitting and the Doppler broadening of the sodilm line,

and quenches efficiently the occupation of the excited state. Figure 2 shows a typical sequence of patterns observed in
A cell temperature of about 340 °C results in a sodium para scan of the input power. The upper row displays the near
ticle density of~10'* cm™3. Two pairs of Helmholtz coils field patterns, the lower row the corresponding far field pat-

are used for compensation of static magnetic field compoterns; the input power increases from left to right.

In the light transmitted by the mirror, a second quarter-
wave plate undoes the change of polarization due to the
wave plate between the sodium cell and the feedback mirror.

A. Experimental setup

B. Experimental results: Patterns
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23 ® 9 L e B e .9 FIG. 4. Two- and three-mode patterns. The ima@s(d) show
e re. re the intensity distribution of the backward beam viewed through a
polarization analyzer, as explained in the tértegration time 0.25

ms). The imagede)—(h) show the optical Fourier transform of the
FIG. 3. Eightfold quasipatterns. The upper row of imaé¢ms- transmitted beam. Parameter®,,=200 mW, T=340°C, A
(c) shows the intensity distribution of the backward be@megra- =6 GHz, d=266 mm, pszgoo hPa.

tion time 1 m3. The lower row of imaged)—(f) shows the optical
Fourier transform of the transmitted beam. Parameters as in Figively acquired images of the optical Fourier transform of the
2(e). transmitted beam, shown in Figgd3-3(h), are almost iden-
tical. They are composed of four pairs of fundamental modes
At a power threshold oP;,=125 mW a weak signal con- mutually at an angle of 4522°, plus several sets of spatial
sisting of a bright spot surrounded by three fragmented ring&armonics. In contrast, the near field patterns might change
appears in the near field, see Figaj2In the optical Fourier  completely from one half frame of the video camera system
transform, shown in Fig. (2), there are two ring fragments to the next one, i.e., within 20 ms. On the other hand, there
lying opposite to each other. The bifurcation is supercriticalare no indications of a change of the near field patterns
within the accuracy of the experiment. For an input power ofwithin the integration time of a snapshot which was 1 ms.
Pi,=134 mW, the modulation of the near field intensity The time scale of alternation between the different near field
profile is more pronounced and consists of a number of ovagpatterns is typically some tens of milliseconds. These obser-
spots and ring fragments, see FigbR The optical Fourier vations indicate that the observed patterns are metastable
transform displays two ring fragmeniBig. 2(g)]. At an in-  states which are linked by transition phases of rather short
put power level ofP;,=144 mW, a modulated ring system duration. The experiments performed do not allow to identify
surrounds two bright spots in the center of the laser beanthe nature of the transition process.
see Fig. Zc). The optical Fourier transform, shown in Fig.  The near field patterns do not possess any apparent trans-
2(h), consists of a bright ring indicating the emergence of aational symmetry. However, all these patterns contain char-
characteristic spatial wave number. Superimposed on thigcteristic substructures of eight intensity maxima on a circle.
ring, eight local maxima can be seen. Figd)2shows a pat- In the individual pictures, the relative positions of these sub-
tern on the backward beam for an input power B, structures differ, but the orientation of these substructures
=165 mW. Close to the center of the laser beam, eightvith respect to each other is fixed. This means, there is a
bright spots are observed. The pattern has an approximateng rangeorientational order which characterizes these pat-
eightfold rotational symmetry. The corresponding opticalterns. The far field patterns have an approximate eightfold
Fourier transform is composed of eight bright spots whichrotational symmetry, which is known to be incompatible with
are regularly distributed on a circle. Finally, for the highesta translational symmetry of the corresponding near field im-
available input power oP;,,=219 mW, a complex patternis ages[e.g., Ref[8]].
observed which does not show any apparent translational or We interpret these structures as small portions of a spa-
rotational symmetry, see Fig(€. The corresponding optical tially extended quasipattern. The observed alternation be-
Fourier transform is composed of five systems of eight brightween different near field patterns is apparently due to noise-
spots regularly distributed on circles corresponding to differdriven switching between different—approximately equally
ent wave numbers, see FigjR The lesser intense spots can likely—realizations of this ‘ideal’ pattern in the limited
be interpreted as harmonics of the most intense fundamentakam. A similar behavior with similar time scales was found
modes. Three sets of harmonics have a higher wave numbbefore for hexagonal patterns with a different number of con-
than the fundamental modes and result from mixing of onestituents or different orientatidr20,30. Far above threshold,
mode with itself, with its next neighbor, or with its second the quasipatterns are the predominant structures. Once they
next neighbor. One set of harmonics has a lower wave numare formed, they persist when the input power is increased,
ber than the fundamental modes and results from mixing.e., no secondary bifurcations from eightfold quasipatterns
between two fundamental wave vectors enclosing a mutuab other structures have been observed.
angle of 135°. Aside from eightfold quasipatterns, patterns with an opti-
For nominally constant parameters different patterns areal Fourier transform composed of two and three pairs of
found in the near field of the backward beam in consecumodes are found. Examples are given in Fig. 4. Rhombic
tively acquired images, see Figs(aB-3(c). The consecu- patterns composed of a regularly ordered set of oval intensity
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patterns composed of fragmented rings are observed. The

- ,‘-1_-1 corresponding near field patterns are similar to those shown
s v in Figs. 4a) and 2b).
2404 An increase of the input power leads to the formation of
250 patterns, which possess an optical Fourier transform com-
200 posed of a clearly defined set of principal modes. There ex-
= ' Qs ! ists a region in the parameter space, in which exclusively
E My o _J., eightfold quasipatterns are observed. This region is denoted
a® 1604 . s ) by Q8 in the diagram.
1404 U ) -H'" U P In those parts of the instability region which are disjunct
120 et with the region denoted byQ8, nonstationary two- and
3 z z s e T three-mode structures can be found. At low input power they

coexist typically with the fragmented ring structures, which
A(GHz) are observed directly at threshold. At high input power lev-
. - . els, as indicated in the diagram, the two- and three-mode
FIG. 5. (Color online Stability diagram of patterns obtained for atterns become dominant gbut coexist with four-mode pat-
different values of the input powd?;, and detuningA. See text. P H L ' ibl . | d p
ParametersT =340 °C, d=210 mm, py,_ =300 hPa. terns. However, it is not possible to specify a c osed region
2 of stability of the two- or three-mode patterns. This region of
. ) ) coexistence of different patterns is denoted rhix in the
maxima, see Figs.(d) and 4b), are dominant for the set of iagram.
parameters cho.sen in Fig. 4. The opt!cal Fqurler trgnsform Of The structure of the parameter space displayed in Fig. 5 is
these patterns is composed of four intensity maxima COr€sparacteristic for the system under consideration. The struc-
sponding to two principal Fourier modes of equal wave numsy,re s found to be qualitatively independent of the sodium
ber, see F'gs'(? ar:d 4f). These two principal modes are at q|| temperature, which controls the particle number density
an angle of 4021 °. Three more sets of Fourier modes canf the sodium atoms. Moreover, it is found to be qualitatively
be observed, which can be interpreted as spatial harmonics mdependent of the distanakbetween the sodium cell and
the principal modes. _ _ _ feedback mirror. Of course, the range of cell temperatures
For nominally identical parameters—in coexistence withgnq the range ofl for which patterns can be found, respec-
the two-mode patterns—patterns with an optical Fouriege|y are limited by the available input power and the finite
transform composed of three principal modes or of four pairgyiqih of the Gaussian beam. The observed behavior is not

pf Foqrier peaks at the same wave number but of unequaltected by a rotation of the quarter-wave plate inside the
intensity can be observed. An example for a three-mode patsegpack loop.

tern is shown in Fig. @). Two of the three modes, which are
at an angle of 41%1°, are equally intense; a third mode is
weaker and forms an angle of 4691 ° with one of the more

intense modes. The corresponding near field intensity distri- A. The model
bution is composed of rather irregularly distributed intensity

maxima[Fig. 4c)]. In Fig. 4h) an example for a four-mode ing system involves the self-consistent calculation of the

pattern_is disploayed. The angle between the_: most iNtensgylinear dielectric polarizatiof81] of the medium and of
modes is 42% 1°, the angle between the less intense mode§he propagation of the light field within the system.

is 48°+1°. The corresponding images of the near field re- 1o conditions of the present experiment have been cho-
s_emble the near field images of the eightfold quasipatterns,, in such a way that the sodiuby line can be treated as
discussed above. a homogeneously broadende < J’ =1} transition with a
negligible population of the excited stag2]. In a formal
C. Experimental results: Stability diagram description[33,34] the light matter interaction is treated in
The behavior of the system in dependence on the twdhe framework of the density matrix formalisi®1]. The
parameters input power and frequency detuning is Summgesult of this treatment is an expression for the nonlinear
rized in the stability diagram shown in Fig. 5. For low input susceptibility y . of the medium for ther. circular polar-
power, the Gaussian input beam is homogeneously absorbgdation components of the light field. It is given by.
There is no emission of light in the linear polarization com- = xiin(1+ W), wherew denotes the so-called orientation of
ponent orthogonal to the input polarization. This state of th¢he vapor, i.e., the normalized population difference between
system is denoted by in Fig. 5. the two Zeeman sublevels of the ground state of the sodium
The black squares indicate the minimum input power lev-atom.
els at which an instability of the beam profile is observed. _
The power threshold of the pattern forming instability has a _ Nnol el A+i
local minimum at a frequency detuning of 8 GHz. For fre- Alin = 26ghl’y A241
guency detunings smaller than 5 GHz and larger than 13
GHz the power threshold exceeds the available input powedenotes the linear susceptibility of the mediuNy, is the
Directly above the power threshold of the instability, far field particle number density of the sodium atoms,=1.72

Ill. THEORY

The microscopic description of any optical pattern form-

@
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X107 2° Cm is the dipole matrix element of the transition. mal integration of the paraxial wave equation yields the fol-
A=2mA[T; is the detuning\ = vjuse— vp, Of the laser beam lowing expressions for the pump rates:

with respect to the sodiund;-line normalized to the so-
called transverse relaxation rdfg, i.e., the relaxation rate
of the dipole moment of the transition.

The propagation of the light field is calculated in the
paraxial approximatioh31]. It is assumed that the light field . I R
is purely transverse and that no new frequency componentsP« (T ,L,t) =R W|Pel®ot(d D=t Dlg_ (v 01)]?,

P.(r,,00)=P|E (1,003 (4)

P. (r, L )y=e 2000520 Dp_ (' 0f),  (5)

are created by the interaction of the light field with the me- (6)
dium. The medium is considered to be thin, so that diffrac- . ) . .
tion can be neglected during the propagation of the light field P.y(r,,0n)=e 2eot=eutlp (r Lt),  (7)

through the mediun{10,19. In the description of many .
single feedback mirror systems the absorption of the Iighf""th
field is also neglectefl0,21,23. In the present experimental

2
situation, however, absorption is not negligidig2]. We :i |:U~ei ®)
abandon this approximation and follow a recently demon- 16 4T ,12(A%+ 1)
strated refined approad@3] which employs a longitudinal
averageg of orientationw, The propagation operator
dv?
- 1 L - = —]i =
$(7, *‘):EJO w(r, ,zt)dz. @ i ex*{ "% ®

is defined via the corresponding power series, witkisethe
In addition, we consider the effect of atomic diffusion, which distance between the feedback mirror and the medium. Here,
provid_es a wave number (_jepending damping_ of structures iBt,f(rl,O,t) denotes the slowly varying amplitud81] of
the orientation. The resulting equation of motion for the lon-the &, circular polarization components of the forward beam
gitudinal averagep of the orientation of the vapor is at the input face of the medium. The prefactor of 3/16 in Eq.
(8) is a correction factor which accounts approximately for
J . ) - 1 - the fact that the efficiency of optical pumping is overesti-
S L. )=—(y=DVD)e(r, .+ m[_ P_«(r.,00)  mated in the)=1/2—J’ = 1/2-scheme considered here com-
pared to a complete level scheme of sodium atoms including
+P_((r, ,L)—P_ r, ,L,t)y+P_r, ,0f) the hyperfine structurg34]. Note that the presence of the
. . . quarter-wave plate in the feedback arm manifests itself in Eq.
+PLf(rp ,0) =P fr, L)+ Py (r, ,L,t) (6): The pump rate of ther_ circular polarization compo-
. nent of the backward beam is determined by déhecircular
=P y(r,00)]. (3 polarization component of the forward beam and vice versa.
As opposed to the simpler limiting case of a purely dis-
Here, the vector, =(x,y)T denotes the transverse coor- Persive mediunj25], a change of sign of the detuning does
dinates,Vf:[( 3219x2)+ (8219y?)] denotes the transverse not transform the Eqs§3)—(7).|nt0 those for the system with-
Laplacian.y denotes the smalh{=1 s 1) relaxation rate of out the quarter-wave plate in the feedback I@B&,Z_Eﬂ. The
the orientation due to collision§) denotes the diffusion co- fact thatthe dynamics of the ground state population depends
efficient of the sodium atoms in the buffer gas atmospHere, NIy on the modulus squared of circular field components
is the longitudinal length of the medium.ag= [see, Eqs(s), (4)—(7)] and not on their phases explains, vyhy
—kolm(x;)/2 is the small signal absorption coefficient of the behavior of the system does not depend on the orienta-

the medium and, is the vacuum wave number of the light tion of the principal aX'S_Of the quarter-wave pIa_te._
field. Note that the longitudinally averaged orientati¢ns the

single dynamical variable describing the system. Due to the

. ;—hﬁ eXpr.eSSic]’c”@t,f(U ’Zﬁt) and P p(r, ,z,t) on the A adiabatic elimination of the dynamics of the light field, all
right hand side of Eq(3) are the pump rates produced by t €the observables of the light field can be calculated from a

o« circular polarization components of the forward and th(.argiven transverse distribution @. In the following, we will

backward beams, respectively. They are evaluated at the it osent numerical and analytical results based on the Egs.

put (z=0) and the outputd=L) planes of the vapor. The (3)_(7) The numerical scheme is described in H&5).
pump rate is proportional to the intensity of the respective

polarization componersee, the following Eqg4) and(8)].
Temporal delays created by the finite speed of light are ne-
glected, since the slowest corresponding time scales Figure 6 displays the result of a numerical simulation for
(~10"° s) are much faster than the fastest time scales in thparameters corresponding to those of Fig. 2. A Gaussian in-
ground state of the atomic system {0 ° s). That is, the tensity profile of the input laser beam was used and Dirichlet
dynamics of the light field is adiabatically eliminated. A for- boundary conditiongy=0 were assumed on the border of a

B. Results of numerical simulations
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a) P=1.25x10° s™ P=1.40x10° s™ ) P=1.50x10°% s~ P=1.60x10° s™! g) P=2.10x10°% s

lb'y . . - . '

FIG. 6. Patterns for increasing pump rdg of the linearly polarized Gaussian input laser beam. The images shown are the result of a
numerical simulation assuming a Gaussian input laser beam and Dirichlet boundary conditions for the ii@d{gnBackward near field
intensity distribution of the linear polarization component orthogonal to the input polarizétjefi) Total far field intensity distribution.
(k)—(0) Transverse distribution of the longitudinally averaged orientagionParametersy,=1.3Xx10m3, A=5.0, d=210 mm, D
=2.5%x10"%m?/s, I';=9.9x10° s"1. The frame size of the near field imagggs)—(e)] and of the images of the orientatigfj)—(0)]
corresponds to 4 4 mn?. The frame size of the far field imagE$)—(i)] corresponds to 6666 mm 2. The power of the input laser beam
is in (@ 122 mW, (b) 136 mW, (c) 146 mW, (d) 156 mW, (e) 204 mW. It is calculated using tha®;,=cey/(mw3)(|€; (0)|?
+]£- 1(0)?) and Eqgs(4), (8).

circular area with a diameter of 6 m(for reasons of effi- image shows eight peaks at equal wave numbers, the wave
ciency of the numerical calculations the total extent of thevectors of which form vertex angles of 45°L°.

area represented by the numerical grid was assumed to be At an input pump rate oP,=1.60x10° s, a second
somehow smaller than the cell diameter of 8 mm used in theing of eight intensity maxima is visible in the image of the
experiments; the beam radius at the?dpoint of intensity y component of the backward laser beam. In the image of the
was 1.5 mm as in the experimgnThe input laser beam is orientation, a corresponding set of eight alternating minima
linearly polarized in thex direction. and maxima is found. The far field image shows a set of

When the input power is increased from zero, first a ho-eight intense maxima with vertex angles of 452°.
mogeneous state of zero magnetization is found. In this case A further increase of the input pump rate results in a fur-
there is noy component of the light field. When a threshold ther increase of the transverse extent of the near field pattern.
pump rate of P,=1.25x10° s! is exceeded, a central In the center of the laser beam a number of circles can be
slightly distorted ring system is found in the orientation, seeseen, each of them consisting of eight intensity maxisese
Fig. 6(k). In they component of the backward laser beam aFig. 6€)]. The far field image is composed of a ring of eight
central bright spot is found, which is surrounded by ringprincipal modes with at least three clearly visible sets of
fragments lying opposite to each other, see Fi{g).@Aftera  harmonics. In the corresponding image of the orientation
slight increase of the input pump rate, the patterns found ifiFig. 6(0)] a complex pattern can be seen, which also con-
the orientation and the near field stay nearly the same buhins characteristic substructures. These substructures are
occupy a slightly larger area on the Gaussian beam, see Figsomposed of maxima surrounded by eight minima each and
6(b) and Gl). The corresponding far field image shows aminima surrounded by eight maxima. The average value of
slightly perturbed ring of high intensitiFig. 6(g)] demon-  the orientation remains approximately zero throughout the
strating the emergence of a characteristic wave number. scan of the input pump rates.

For an input pump rate oP,=1.50x10° s~ 1, a pattern Figure 7 shows the result of three independent runs of the
of alternating maxima and minima is found in the orienta-numerical simulation for parameters identical to those of
tion, see, Fig. 6m). In the y component of the backward Figs. Ge), 6(j), and &o) with different random initial condi-
laser beam, shown in Fig(®, a pattern of intensity maxima tions. The near field images of the linear polarization com-
is found. A ring-like structure of eight intensity maxima is ponent orthogonal to the input polarization show different
formed slightly off center on the laser beam. The far fieldpatterns of bright spots. The patterns resemble each other in
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a) b) c) We remark that rhombic two-mode patterns were neither
found in numerical simulations with a plane wave input nor
with a Gaussian beam. Three-mode patterns occur sometimes
during the transient of pattern evolution close to threshold
with a plane wave input and periodic boundary conditions,
especially if the resolution of the grid in Fourier space is low.

f) With a higher resolution in Fourier space patterns are ob-
tained which are eightfold quasipatterns with a high preci-
sion; an ideal quasipattern cannot exist on a grid with peri-
odic boundary conditions.

C. Linear and nonlinear stability analysis

In the following, we will present the result of analytical
investigations of the pattern selection process. The way of
doing these calculations closely follows the one discussed in
Refs.[10,25. However, we consider the general case of both
non-negligible absorption and diffusion. We assume a lin-

FIG. 7. Eightfold quasipatterns obtained from numerical simu-early polarized plane wave input light field. The stress pa-
lation assuming a Gaussian input laser beam and Dirichlet boundafiameter of the system is the sum pump rate of the input light
conditions for the medium. The input laser beam is linearly polar-field at the input face of the medium, which is given by
ized in thex_ dlrectl_on. T_he images show the r_esult of three rU_”?_OfPS,O=‘If[|E+,f(rl,O,t)|2+ |5_,f(rb0’t)|2]_
the simulation for identical parameters, but different random initial Equation(3) possesses a unique stationary, spatially ho-
conditions.(@)—(c) Backward near field intensity distribution of the mogeneous solution, which is given by
linear polarization component orthogonal to the input polarization.
(d)—(f) Total far field intensity distribution(g)—(i) Transverse dis-
tribution of the longitudinally averaged orientatiah Parameters
as in Figs. 6e), 6(j), and o).

$r=0, (10
independently of the value #¥g.
Let us now consider a small perturbatiég of this ho-

the sense that in each of the images a number of rings qfogeneous solution. Substituting= ¢,+ 8¢ yields an

applies to the patterns present in the orientation of the vapor
[Fig. 7(g), 7(h), 7(i)]. Independent of the near field structure, J 1
all far field imagegFig. 7(d), 7(e), and 7f)] show a structure 1 0b=— (y—DA,)dp+ > Pgo(1—e 2a0t(1799))
of eight principal modes on a circle, which are separated by
angles of 45%1° and at least three other sets of modes,

which can be interpreted as the spatial harmonics of the prin-
cipal modes. These features match the observations in the
experiment. The near field images can be interpreted as a cut
from a spatially extended quasipattern at different locations.
In order to provide further support for this interpretation,
we performed numerical simulations assuming a plane wave
input light field with both periodic and Dirichlet boundary

X(1+R| PeiaOL(K+i)(1+5¢)|2)
1 —2agL(1+ 56)
— EPS]O(l—e 0 )

X(1+R| PeiaOL(Z+i)(1—5¢)|2)_

be found between the far field images obtained from theanalysis. Linearizing Eq(11) in 8¢ yields

simulations with periodic and those with Dirichlet boundary
conditions or between different runs of the simulation. More-
over, the near field patterns show a strong similarity to the
patterns obtained in the center of a Gaussian input laser
beam. Thus we conclude that the quasipatterns observed in
the Gaussian beam would also be selected in a homogeneous
system.

Some boundary effects are present close to threshold,
though. In numerical simulations with a plane wave input
laser beam, the quasipatterns emerge directly at the threshold
of the instability. When a Gaussian input laser beam is usedyith
the bifurcation to eightfold quasipatterns goes through an
intermediate state in which, as in the experiment, patterns of
ring fragments or slightly distorted rings are found. Thus

these intermediate patterns are due to finite size effects. Setting

046220-7
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conditions for the medium. No qualitative difference couldand the critical wave number by means of a linear stability
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_______ FIG. 9. Result of a multiple scales analysis. Cubic cross cou-
0.2F ] pling coefficienté(a) normalized to the cubic self coupling coeffi-
cient{ vs the anglex between the interacting modes. Parameters:
Npna=1.4x10"m™3, A=4.8, d=210 mm, D=2.26x10"* m?/s,
andI',=1.04x10° s~ 2.
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IA = pA; — §Ai|Ai|2_Ai2 & |IAP+O(A%). (19
]

FIG. 8. Result of a linear stability analysis. In the gray shadedThe functional form of the coefficients is rather complicated:;
regions in thekf-PSO space, the spatially homogeneous solution isit is given in the appendix. The cubic cross coupling coeffi-
unstable vs spatially periodic perturbations. Parameters as in Fig. @jentsgi’j depend not explicitly on the indicésj but only on
The dashed horizontal line denotes the maximal pump rate used ifhe anglex; ; between the wave vectors of the Fourier modes

the simulations. i andj. It is well known that it is this angular dependence
o that governs the pattern selection prock8).
Sp~ertTkirypce. (16) The amplitude equation&l9) are variational; i.e., they

can be derived from a Lyapunov functip@—10,25:
yields a growth exponent of the perturbation of

IA; G Y
u=—(y+Dk?)—PsoF(1+RF) (17 T oA with  —=<0, (20
2 2
~PsoR F(1—F) cos(% +Ksin(%”. (18 ~ Whichis given by
. . . { < 1 &
w is a real function of the parameters akﬁi That means gz—,uz |A|2+ > 2 |A] %+ 5 Z > Eai )| APA2
that stationary patterns rather than oscillatory ones are pre- =1 =1 =1

dicted. Figure 8 shows the sign af versusPg, and k?. In J#i

the gray shaded regionsis positive and hence the system is

unstable with respect to a perturbation at the respective wavene pattern which minimizes the Lyapunov function is the
number. As for any single feedback mirror system, there is gne expected to emerge most likely at thresHsle10,23.
sequence of instability balloong36]. Diffusion is rather The linear stability analysis fixes only the critical wave
strong in the present system and hence the minima of thgmperk, at threshold. Due to rotational symmetry, in prin-
individual instability balloons are shifted to significantly ciple an infinite number of modes withk,|=k. might
higher pump rates with increasitig . Close to the bifurca- emerge at threshold. However, usually the pattern selected by
tion point, the homogeneous state becomes unstable with rghe nonlinearities is build from a small subset of these
spect to perturbations of a single wave number given by thengdes, the simplest examples being striés=(), squares
minimum of the first instability balloon. _ (N=2, a=m/2) or thombs N=2, a+#m/2). For these

As noted earlief10,23,29, Eq. (11) possesses an inver- simple structures the calculation of the values of the

sion symmetry, i.e., it is invariant under a transformatibn | yapunov function is straightforward. The result is
— —¢. As a consequence, any amplitude equation derived

(21)

from this equation of motion must not include terms of even 2

order in the amplitudes. We derived the amplitude equations Gi=— Ll (22
by means of a multiple scales approach, similar to the one 2{

discussed in Refs[10,25. Indeed, the result is a set of

coupled amplitude equations of the form for the stripe patterns and
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2 a)
s S
Go=— 75— 23 _
200
for the two-mode patterns.
Figure 9 shows the angular dependence of the cross s 150 |- Qs

coupling coefficienté(a) versus the vertex angle of the E
wave vectors of the two Fourier modes for the parameters o o= 100 |
Fig. 6. For reasons of simplicity(«) is normalized to the
self-coupling coefficientZ. Both &(«) and ¢ are positive. s0 L

&(a) possesses three minima in the interf/@)], one at
exactly a=m/2, one at a~0.244r, and one ata , , , \
~0.756rr. The values of in these minima are identical. The 2 4 6 8 10
gualitative shape of the curve is typical for the present sys-
tem. The precise location of the minima depends on the ex

perimental parameters, especially on the detuing

For the two-mode problem, this structure&giw) implies
that the value of the Lyapunov function is identical for 5|
squares ¢=0.57) and rhombic two-mode patterns with a
vertex angle ofa~0.2447 [8,9,26. [This degeneracy is
lifted in the fifth order of the perturbation expansif2g].]
Since the minimum value @f(«)/¢ is smaller than unity, the
value of the Lyapunov function for the two-mode patterns is
also smaller than the value of the Lyapunov function for
stripe pattern$8,9].

When more than two modes are considered, regular solu -20 . 1 2 1 . .
tions of N Fourier modes of equal strength, which are sepa- 2 4 6 8 10
rated by an angle ofr/N are an important class of fixed A
solutions of the amplitudg8—10. An evaluation of the ) S . .
Lyapunov function for this class of patterns shows that the FIG. 10. Bifurcation diagram in dependence on the normalized
regular solution withN=4—i.e., a quasipattern with an detuningA. (a) Threshold curve and predicted patterns at threshold
e|ghtfo|d rotational Symmetry_minimizes the Lyapunov (Q8:qUaSipatternSS:Stripes).(b) Values of LyapUnOV function
function with respect to any other regular solution. More-9(N) normalized tou?. The numerical parameters are as in Fig. 9
over, since the square pattern minimizes the Lyapunov funcflmd correspond to the_ experimental ones of Fig. 5. The powezr of the
tion of the two-mode problem, the quasipattern with=4  'MPUt Iaser2 beam s calculated using  th#,=ceo/(mwo)
also minimizes the Lyapunov function with respect to any”(I€+.1(OI*+[€- (0)*) and Eds(4), (8).
other two-mode solution and to stripes.

The fransient occurrence of rhombic patterns in the EXdetuning smaller thah=3.0 (A=5 GHz) and larger than
periment cannot be explained by these theoretical investiga--
tions. For the parameters of Fig. 4, the Lyapunov approack =9-5 (A=15GHz) the threshold power exceeds
predicts eightfold quasipatterns at instability onset. However250 mW, which was the maximum available input power in
a minimum of the cubic cross-coupling coefficient occurs atthe experimentsee, e.g., Fig.)5 These values are in reason-
a=42 degrees, which agrees reasonably well with the exable agreement with the experiment findings.
perimentally found vertex angles of the rhombic patterns. Figure 1@b) shows a plot of the values of the Lyapunov

function normalized to the square of the linear growth rate
w? for an eightfold quasipatterngg), a two-mode pattern
D. Theoretical results: Bifurcation diagram (G,) and a stripe patterng). The values of the Lyapunov

The results of the theoretical analysis presented in thifunction for any other regular pattern are larger. In a range of
section are summarized in Fig. 10. The parameters corrghe normalized detuning from=3.0 toA=9.0[denoted by
spond to those of Fig. 5. Figure () shows a plot of the Q8 in Fig. 10a)] the eightfold quasipattern minimizes the
power threshold of the instability for a Gaussian input lasef yapunov functional. ForA>9.0, the stripe pattern mini-
beam, which is taken as the point where the peak intensityhizes the Lyapunov functiondtegionS).
passes the threshold calculated by means of the linear stabil- The prediction of eightfold quasipatterns at instability on-
ity analysis for a plane wave input beam. The shape of thiget in a wide range of the detuning is in qualitative accor-
threshold curve is similar to the one obtained in the experigance with the experimental findings discussed in Sec. Il C.
ment shown in Fig. 5. There is a flat minimum of about 85The stripe patterns predicted for large detunings were not
mW at a normalized detuning @f=5.1, which corresponds observed in the experiment. However, the region in which
to a detuning ofA=8 GHz. For values of the normalized stripe patterns are predicted at instability onset lies on the

10 =

10" G/
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border of the range of parameters which is accessible in thimstead of the predicted 48°. To some extent they can be

experiment due to power constraints. understood to be favorable since the vertex angle of about 41
degrees corresponds roughly to the minima of the cubic-
IV. DISCUSSION cross coupling coefficient obtained from our model. How-

ever, these two and three mode patterns could not be found

For positive detuning eightfold quasipatterns are the, nmerical simulations starting from noisy initial condi-
dominant structures in the experimental system. Since thg s Therefore, the exact interpretation of these patterns is
introduction of the quarter-wave plate in the feedbackgj open. They might represent a kind of metastable state
loop—as discussed in Reff25,28 and mentioned in the \hich is excited in the experiment due to spatially correlated
introduction—is in many respects equivalent to a change ofgjse.
detuning our experimental results are in qualitative agree- Fyrthermore, one should be aware of the fact that the
ment to the analysis of Leduet al.[26,27). This group pre-  model—though already quite elaborate and successful—is
dicted analytically the occurrence of quasipatterns for neganot complete, e.g., diffraction and refraction within the me-
tive detuning(and isotropic feedbaghkn a purely dispersive dium is neglected. This is a common approximation in the
model and confirmed by some numerical studies that smatiescription of these kind of systerfis,19,21,23,3Dsince a
amounts of absorption do not change the pattern selectionfull three-dimensional treatment of the propagation of two

Leducet al. [26,27] predict in addition square and stripe counterpropagating beams in an extended nonlinear medium
patterns for the parameters under study. These were not ols extremely demandinB8], especially if an additional spa-
served in the experiment but this is explained by our theotial coupling such as diffusion has to be taken into account.
retical treatment which takes into account the action of theThe common argument is that the approximation of a thin
guarter-wave plate in conjunction with absorption and pumpmedium is valid, if the free space propagation length is con-
depletion. The transition to stripéand possibly to squargs siderably larger than the length of the medium and indeed we
is shown to occur outside or at the boundary of the range ofound that this approximation often works very well already
parameters accessible in the present experiment. We remaidr L~15 mm<d=75 mmle.g., Refs[7,22,30]. However,
that the applicability of the plane wave theory to the analysisearly all of these investigations were done in a situation in
of pattern formation in a beam with a Gaussian profile canwhich the medium behaved self-focusing, i.e., the refractive
not be anticipated beforehand, but needs to be checked fandex increased with increasing intensity. Under these condi-
each specific situation. In the system analyzed here, it turngons the light tends to be attracted to regions of high inten-
out that the pattern selected with a Gaussian pump and witkity [see, e.g., Refd.39,40]]. Hence a bright spote.g., a
a plane wave pump is the same as soon as there is a suftienstituent of a pattejrwill stay localized during propaga-
ciently large area of the beam above threshold. For this caton. In a self-defocusing situation light will be pushed out of
incidence, it might be helpful that the homogeneous solutiorthe region of high intensity, i.e., modulations tend to be
is identical to zero for all pump powers and that the instabil-smoothed out. Therefore, one can expect that the threshold
ity regions do not have an upper lin{i€ig. 8). In contrast, for pattern formation will rise. If there are no special con-
we had found pronounced effects of the beam profile orfigurations of external fieldgas in Ref.[30]] self-focusing
pattern formation for situations, in which the homogeneousccurs for positive detuning from the resonance in atomic
solution changes strongly with pump power and/or in whichvapors[e.g., Refs[41,42], self-defocusing for a negative
the instability regions are bound¢e.g., Ref[37]]. one[e.g., Ref.[43]]. This might explain why the quasipat-

Furthermore, Leduet al. predict a secondary bifurcation terns were not observed without a quarter-wave plate, where
from eightfold quasipatterns first to a quasiperiodic threethey should form for negative detunirjdQ], but after the
mode patterns and then to rhombic two-mode patterns faransfer of the instability to positive detuning by the quarter-
above the instability threshold. This bifurcation could neitherwave plate. Note however, that even in a thin medium a
be reproduced in the experiment nor in numerical simulacomplete equivalence between the introduction of the
tions of our model. In both cases, once an eightfold quasiguarter-wave plate and a change of deturii2®] holds only
pattern was formed it persisted for increasing input pumpgn the dispersive limi{28].
rate or input power, respectively. The stabilization mecha- As discussed in Sec. Ill the equations of motion obey an
nism for the rhombic patterns proposed by Le@tial.relies  exact inversion symmetry in the case of linear input polar-
on the simultaneous instability of Fourier modes belongingzation considered here. Hence quadratic coupling does not
to different instability balloongmulticriticality). Diffusion,  have to be considered in the calculation of the cubic cross-
which is neglected in the analytical treatment by Leduccoupling coefficient and the system is an example for the
et al, shifts the higher instability balloons towards higher stabilization mechanism proposed in Ref8,17]. This is
pump rates, see Sec. lll C, E4.8), and Fig. 8. As a conse- also demonstrated by the fact that the cross-coupling func-
guence, due to the limited input power, true multicriticality is tion (Fig. 9) displays the characteristic minima in the angle
difficult to create in the experiment. Nevertheless, the patdependence which were postulated in REJs17] to enforce
terns observed to coexist with eightfold quasipatterns on théhe selection of the rotational symmetry.
wings of the threshold curve in the parameter space spanned We remark that the apparent existence of quadratic har-
by the input power and the detuningnix in Fig. 5 have a monics in Figs. 3 and 7 is due to the fact that we do not
phenomenological similarity with the patterns displayed inobserve the dynamical variablerientationw, respectively
Figs. 2, 3 of Ref[27], though the vertex angle is about 41° ¢) itself but the transmitted intensity distribution. Even har-
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monics are introduced in each of the polarization compoimodel. The quasipatterns are stabilized by an oscillatory de-
nents by the exponential dependence of the transmitted fieldendence of the cubic cross-coupling terms on the angle be-
on the orientatioEq. (5)] and the fact that one has to take tween the interacting wave vectors. This mechanisms was
the modulus squared of the optical field in order to calculatepostulated in previous theoretical papg9sl 7).

the pump ratdEq. (6)]. It turns out that the spatial phase

between the even harmonics in the pump field is the same for ACKNOWLEDGMENTS

poth polgrﬁzation component's SO t.hat they cancel out. exgctly This work was supported by the Deutsche Forschungsge-
in the driving term for the orientation, since the polarization ,ainschaft.

components pump antagonistically. This ensures the inver-

sion symmetry of the equation of motighl). Nevertheless, APPENDIX: DERIVATION OF COEEEICIENTS

the even harmonics present in the field distribution in the OF AMPLITUDE EQUATIONS

feedback arm might influence the pattern selection since they

mix with fundamental wave vectors if one calculates the In the following, the coefficients of the amplitude equa-
pump rate. This creates additional driving terms for the funtions of the two-mode problem will be derived by a multiple
damenta's_ Experimenta”y the inﬂuence of the even harmonscales anaIySiS. The calculations follow the ansatz described
ics in the field distribution on pattern selection can be demin [10,25. Further details can be found in RéR9]. The
onstrated by introducing a Fourier filter in the feedback loopstarting point is the expansion

in the manner described in Refd4,45. It turns out that the

— 2 3
quasipatterns give way to squares if their harmonics at Op=€op1t € ddyt e ot -, (A1)
2 cosr/8)~1.848 times the wave number of the fundamen- P=Pgo+ epy+ €2po+ - - -, (A2)
tal wave vector are cutoff. These issues will be investigated '
in more detail in the future. 0= 01 + €dy.+ €291 + €391 4+ - -, (A3)
0 1 2 3

Finally we discuss the relationship of our results to the

X , (A5)

X

X

: (A7)

K . dAL
+Asin — Ky

observations in the Faraday instability. Eightfold and tenfoldwheree is a small parameter. Substitution of this ansatz into
quasipatterns were observggi6] and received an explana- Eq. (3) yields a problem of the form
equation[12,13. These amplitude equations are also inver- [Lot €L+ €2Ly](€8d,+ €28¢,+ €28¢3)
sion symmetric and the pattern selection is governed by the
Y 0 0 Y — ENG(A, 8y, 5b;)+O(e, (A4)
case discussed here, the cross-coupling coefficient shows, g,
rather broad minimum arouner/2 in dependence of the
[8,9,12,13,48 but the order of the quasipattern depends very
critically on the shape of the minimum: In R¢f.3] a tran- daj) — [ dA)
cos — o +Asin — o
0 0
twelvefold patterns is predicted for only very small changes
of a bifurcation parameter. On the contrary, the rotational Ly=—dr,—psF(1+ RF)—p;FR(1-F)
oscillatory dependence of the cross coupling such as the one
depicted in Fig. 9. As discussed in REL0] the existence of
that the Laplace operator is contained up to very high orders Lo=—d7,— P2F(1+RF) = pFR(1-F)
in the model equationsf. Eq.(9)]. Thus such a dependence dA
1
cos( TR
V. SUMMARY : S . .
spatial derivatives. As a consequence of the inversion sym-
In summary, the observations in the present experimentahetry of the microscopic equation§z does not contain any
dictions of Leducet al. [10] (concerning the emergence of calculating the coefficients and undoing the transformations
eightfold quasipatternsand Scroggie and Firth25] (con-  (A1)—(A3), the final result are the coefficients
loop). However, a direct comparison between the experiment p~=(Pso=Pc)up, (A8)
and these predictions is not satisfying. An extended micro- _
{={s, (A9)
significantly improves the correspondence between experi- Ea)=E5(a). (A10)
ment and theory. The selection of the eightfold symmetry is 3

tion by amplitude equations derived from the Navier-Stokes
cubic cross-coupling coefficient. However, contrary to the
angle. This situation is also known to favor quasipattern £o=—d7,—(PsoF(1+RF)+y—DA,)—PgoFR(1-F)
sition from an eightfold to a fourteenfold via tenfold and
order of the pattern is obviously quite fixed, if one has an
cos{ - %

this pronounced oscillatory dependence is related to the fact
appears in a natural way in optical systems.

and A3 a third order polynomial ind¢,, 8¢, and their
system qualitatively confirm the core of the theoretical pre-ssecond order terms id¢ and its spatial derivatives. After
cerning the influence of a quarter-wave plate in the feedback
scopic model accounting for absorption and pump depletion
consistent with a multiple scale analysis of the microscopicThe expressions for the coefficients are given by
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d K2
CcO k_o

_ 2 d k2
{3={alF L?po[2+(7+A?)F R} + %[3+A2(— 1+F)—15F]F L?pgR cos{k—k°)
0

_ [dK
,up=F[—1—F R+(—1+F)R -I-Asin(k—)”, (A11)
0

3dK2
co ko

_ di2\ d K
—aﬁFszpoR[(— 1+A2)cos(4 K C) —2A sin(4 kokc) } (A12)
%
co k_o
S(d k[1-2 cos{a)]) - (d k§[1—2cos{a)]>
co + A sin

Ko Ko

2r 2r _
2d k] 1+cos(a)])+zxsin(2d K[ 1+cos(a)])
Ko Ko
2d k§[1+cos(a)]) _ (Zd k§[1+cos(a)])
—2 A sin
Ko Ko

S(ol K[1+2cosa)]) — (d k[1+2 coga)]
co + A sin
Ko Ko

ah— - , (AR} e , — [3dK
+5A[1+3A%(—1+F)— 13F]F L%poRsin| 1 —| = — (1+A%) (- 1+ F)F L?pR +A sin —
0

Ko

£3(@)=4 adF L1+ (3+AY)F R]po+2 a[1+A%(—1+F)-7F]F L°R

—ad(1+A?)(-1+F)FL%R 0

Po

-2 a%FZLZR[ (— 1+K2)cos(

Po

-2 aSFZLZR[ (— 1+K2)cos(

—ad(1+A%)(—1+F)FL2R

Po- (A13)

These coefficients were evaluated numerically using programs generated automatically by the software package
MATHEMATICA .
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