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Controlling the ultimate state of projective synchronization in chaotic systems
of arbitrary dimension
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The ultimate state of projective synchronization is hardly predictable. A control algorithm is thus proposed
to manipulate the synchronization in arbitrary dimension. The control law derived from the Lyapunov stability
theory with the aid of slack variables is effective to any initial conditions. The method allows us to amplify and
reduce the synchronized dynamics in any desired scale with tiny control inputs. Applications are illustrated for
seven- and ten-dimensional chaotic systems.

DOI: 10.1103/PhysReVvE.66.046218 PACS nunid)er05.45-a

Adjacent chaotic trajectories governed by the same noni the coupled systerfil), the master system evolves inde-
linear systems may evolve into a state utterly uncorrelatedhpendently, while the slave system is driven by the coupling
but could be synchronized through a coupl{dg. The con- variablez that is governed by the master system. Once the
cept of chaos synchronization attracts considerable attentialacobianM (z) satisfies the criteria stated in the repjdr®],
[2-13. It may lead to some potential applications in securethe states of the master and slave systems will be synchro-
communicatiorf2], ecological systemi], and system iden- nized up to a common scaling factor in all corresponding
tification [4]. dimensions. Projective synchronization leads to a propor-

Different forms of synchronization phenomena have beerional relationship between the master and slave states, ex-
observed in a variety of chaotic systems, such as identicgressed as
synchronizatiori1], phase synchronizatidib], and general-
ized synchronizatiofi6]. In partially linear chaotic systems, lim ||au,—ugd =0, (2)
such as the Lorenz system, projective synchronization was t—oo
noticed [7] with the characteristic that the states of two
coupled systems synchronize up to a constant ratio known aghere the scaling factar is defined by the limit of the state
scaling factor[8]. Further investigatiori9] revealed that it ratio
occurs with a negative trace of the Jacobian matrix in three-
d|men§|onal systems. A recent stuw_)] d.er|ve_d a ger_1era| a=lim a(t)= lim|ug/||uy, (3)
condition for projective synchronization in arbitrary- t—oo t—oo
dimensional systems. The early repftf] showed that the

ultimate state of the SynChronization is Usua”y UnpredictableHere”.” denotes a norm of a vector. The state raﬂ@:)
Thus a control algorithni12] was developed to manipulate may vary at any particular instant before the occurrence of
projective synchronization in three-dimensional systemsprojective synchronization. Note that the scaling factor de-
And the technique is extended to realize projective synchropends on the initial conditions and chaotic variables of the
nization in nonpartially linear systems3]. However, for the  ynderlying systenj11]. Consequently, the ultimate state of
general case of arbitrary-dimensional systems, especially fafynchronization is hardly estimated.
high-dimensional systems, control of projective synchroniza- \we wish to generate projective synchronization in
tion poses a challenge. In this paper, we present a genergbupled partially linear systems of arbitrary dimension. We
control method that can be used to create and manipulaigish to control the ultimate state of synchronized dynamics
projective synchronization in arbitrary-dimensional systemsjn 3 favorable manner. Projective synchronization allows us
Projective synchronization results from the partial linear-to duplicate a chaotic system in distinct scales with the same
ity of coupled systems. A partially linear system refers to antopological characteristigsuch as Lyapunov exponents and
autonomous system in which the state veatoassociates fractal dimensions[11]. It can also be utilized to amplify or
Iinearly with its time derivativesi through Jacobian matrix reduce the response of the driven system.
M(2), whereM(z) e R"*" contains a variable that is non- We introduce a control method for projective synchroni-
linearly related to the state vectar A coupled system con-  zation in arbitrary dimension. By incorporating a controller

sists of a master systefdenoted by subscript) and a slave  to the master system, the general form of the controlled sys-
system(denoted by subscrig. The two subsystems linked tem is given as

with a coupling variable can be expressed in the form as
Un=M(2)um+§&,

Un=M(2)uy,
7=9(Upy,2), 1) z=9(Up,2), 4
Us=M (2)us. Us=M(2)us,
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where Uy, = (X1,X5,...Xp) T and us=(y1,Y2,....yn) ", and &  a “less than or equal to” type of inequality into an equality
=(&1,&,,...,&,) " is a control vector. We intend to develop a form in dealing with constrained conditions. A slack variable
control algorithm with global stability that enables the con-is defined as
trol to be effective to any initial conditions of the coupled
system. Therefore, the Lyapunov stability theory is employed _
for this intention. Ki=kieje; fori=12..n (10

To construct a proper Lyapunov function, we first look
into an error dynamics of projective synchronization by in-

) wherek;>0 is called theslack constantwhich can be any
specting the error vector

real positive value. The value & affects the convergence
5) rate of the control, which will be discussed later in numerical

applications. Add non-negative slack varialol®) into the
left side of inequality(9). The inequality(9) is thus con-
verted into an equality form as

e=(e1,8;,...,.8,) = a* Uy~ U,

wheree, = a*x;—y; fori=1,2,...n anda™* is a desired scal-
ing factor. Obviously, if the erro(5) tends to be zero, pro-
jective synchronization takes place with the desired scaling
Iﬂgt?(;rzri;:cordmgly. We thus consider a Lyapunov function in Lo &+ e;myet kie,e;+eyat £+ emoet koese,+ - -

+e,a* ¢, +e,met+k,e,e,=0. (12)

l n
V(e=52 ef. (6)
=1 Examining equatioii1l), a possible solution of the condition
(11) is that each component corresponding to eearan be

According to the Lyapunov stability theory, if the function set to zero, i.e..

(6) satisfies the first conditionV(e)>0 when e#0, V(e)
=0 whene=0, and the second conditioV(€)<0 whene
#0, V(e)=0 when e=0, the error vectore(t) asymptoti-  €1(a” &1t mietkie) =0, ey(a” &+ myetkaep)=0,...,
cally tends to zero leading to lim_|[|e* u,—ug|=0. Surely, e (a* & metk.e)=0. (12

the employed Lyapunov functioff) satisfies the first condi-
tion. For the second condition, the time derivation (6§

must be negative, given as Thus the control functions can be formulated as
n
. = — . . . * 1 =
V(e)=z ee<0 for e0. @ &=—[mietkg]/la* for i=12,.n (13
i=1
Insert &= a*X;,—V; into inequality (7) and rewrite the in- Note that the control functions contain the error terms.
equality as Maintaining a controlled projective synchronization only
needs tiny control inputs because the errors in the control
_ n functions(13) tend to zero after the synchronization is real-
V(e)=D e(a*x—V,)<0 for e#0. (8) ized. Therefore, the controlled system preserves the dynami-
i=1

cal characteristic of the original systems. In what follows, we

o . . shall apply the control method to newly explored high-
Substitutingk; = mju,+ & andy;=m;us into Eq.(8), where  gimensional chaotic systems.

m; is theith row of the Jacobian matrid, we obtained the Example 1 is to direct the ultimate state of projective
condition V(e)=={_,[e(a* (Muy,+&)—mug)]<0 that synchronization of a coupled system to a desired state ratio.
can be rearranged into the form as The system used here is a seven-dimensional chaotic system

recently explored by the authors. Linking such two systems

. together with the coupling variablg the coupled partially
V(e)ZiZl [eia”™&+emig]<0, fore#0.  (9) |inear system is given as

n

The inequality(9) carries the control functiog; . If the con-
trol functions are selected in such a way that the condition
(9) is satisfied, the control leads to lim e(t)=0 and con-

Um:M(Z)'um,

sequently lim__[la*upn—ug|=0. Thus projective synchro- z=3x1X3— 14z, (14)

nization is realized with the specified scaling faciof.

To derive the control functions, we convert the condition
(9) into an equality form by introducing alack vector S
=(K{,K,,...,K,) whereK; is a slack variable. Slack vari-
able is frequently used in optimization theddy] to convert  with the 6xX 6 Jacobian matrix,

US:M(Z)'usa
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The initial condition of the coupled systen(l4) is  The numerical experiment shows that the control algorithm
{X1,---X6:Z,Y1,--- Y6} ={1,2,...,6,7,8,...,3 The desired works very well in the manipulation of the outcome of pro-
scaling factora* is set to 2 and the slack constant is set atjective synchronization.

ki=2 fori=1, 2, ..., 6. The dynamical behavior of controlled  In example 2, we explore the effectiveness of the control
system is illustrated in Fig. 1. Figurdd shows the chaotic for a sharp change of the scaling factor and the effects of the
attractors of the master and slave systems in a threeselection of the slack constants in the control. The control
dimensional subspace. The dynamics of the master systemadgorithm (13) is applied to a coupled nineteen-dimensional
traced by solid line while the dynamics of the slave system isystem that was explored by the authors according to the
traced by dashed line. The time-history diagram in Fidp) 1 criteria [10]. In the coupled system, the master and slave
shows that the responses of two subsystems tend to be praystems are ten-dimensional linked by the variabl@he
portional with the scaling factor of 2. The state ratit) coupled chaotic system is given as

converges to the specified scaling factatt =2 ast—« U, =M(2)-u

[see Fig. 1c)]. The erron(5) of the synchronization decreases m m

exponentially to a level about 18° as shown in Fig. ). 2=3X1X3~ 72, (19

The inset in Fig. {d) displays a control input [g, against

the time. It can be seen that once the system is directed to a
desired synchronous state, the control input tends to be zerwith the 9xX9 Jacobian matrix

Us=M(2)- us,
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The couple system(15) can naturally (without contro)  while the dynamics of the slave system is traced by dashed
synchronize up to a scaling factor of Itiana(t) =9.4 when line.

the initial condition is taken at{xXy...Xg, Z, Y1...Yo} Three control experiments are carried out using different

={1, 2, 3,..., 19. Figure 2a) shows the chaotic attractors of Vvalues of slack constants for the coupled syst&8). In each

the master and slave systems in a three-dimension subspacentrol experiment, all the slack constants are the same. The
The response of the master system is traced by solid linecaling factor will be directed from a specified value
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a*=5 to a new desired value* =10 with a sharp incre- Clearly, the larger slack constant leads to the faster conver-
ment of 5. Each experiment runs for 10 time units in whichgence rate in the control. Figurée? illustrates the variation
the control for each scaling factor lasts 5 time units. Eachof the error Ife,| against time for the three control cases. The
control is conducted continuously in the time interval from error of the synchronization decreases at the different rates
t=0 to 10. All the parameters and initial conditions are thecorresponding to the different slack constants used. The
same in the experiments except the slack constant used. larger value of the slack constant leads to smaller error in
To view the effect of the selection of the slack constantsprojective synchronization and faster convergent rate in the
on the convergence of the control, we use three slack coreontrol. Figure 2f) shows the three control-input signals cor-
stantsk; =2, kj=4, andk;=10 fori=1,2,...,9 in the control responding to the different slack constants. The result shows
respectively. The results of each experiment are shown, rehat the required control input is relatively smaller in the
spectively, in Fig. 2. In Fig. @), by using the slack constant control when the larger slack constant is used.
k;=2, the control directs the scaling factor 4§ =5 after a In short, we provide a control algorithm to reorganize the
transient period about 3 time-units. At 5, the control still  dynamical scale of synchronized state for coupled partially
remains but the desired scaling factor is sharply adjusted ttnear chaotic systems of any dimension. The control law,
a*=10. A large fluctuation of the scaling factor is observedderived from Lyapunov stability theory with the aid of slack
in the transient period of=5~7, before the scaling factor variables, has the feature of global stability such that the
settles down to the new desired value. In Figc)2the slack  control is effective to any initial conditions of coupled sys-
constantk;=4 is used in the control. The control steers thetems. This control method could be employed to enforce a
state ratio to the desired scaling factor with shorter transientonsynchronous system to be synchronized, and manipulate
period and smaller fluctuation. In Fig(d}, a smooth transi- the ultimate state of projective synchronization to any de-
tion from one desired scaling factor to the other is observedired ratio. It allows us to use tiny control inputs to amplify
with the control of the larger slack constakt=10. Obvi-  or reduce the response of the driven system to any scale in a
ously, the three experiments show that the transient period afhort transient period. Numerical experiments have indicated
controlling the scaling factor to a target value is generallythe effectiveness of the control method for high-dimensional
reduced with an increase of the value of the slack constanthaotic systems.
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