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Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback
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The bifurcation diagram of a single-mode semiconductor laser subject to a delayed optical feedback is
examined by using numerical continuation methods. For this, we show how to cope with the special symmetry
properties of the equations. As the feedback strength is increased, branches of modes and antimodes appear,
and we have found that pairs of modes and antimodes are connected by closed branches of periodic solutions
(bifurcation bridges Such connections seem generically present as new pairs of modes and antimodes appear.
We subsequently investigate the behavior of the first connection as a function of the linewidth enhancement
factor and the feedback phase. Our results extend and confirm existing results and hypotheses reported in the
literature. For large values of the linewidth enhancement faater §—6), bridges break through homoclinic
orbits. Changing the feedback phase unfolds the bifurcation diagram of the modes and antimodes, allowing
different types of connections between modes.
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. INTRODUCTION the solitary laser is the feedback strength €0k<1), P is

_ . _ the pump current above thresholfP(<1), and « is the
Semiconductor lasers with a long external cavity are veryinewidth enhancement factor.

sensitive to external signals. The light traveling back and o |k equations are delay differential equations

forth in the external cavity takes a long time relative to the DDES), because the right-hand side of Etj) does not only
internal time scale of the laser, and produces a delayed intey; X

i : epend onE(t) and N(t) at the present time, but also on
action with a large delay. Because of the large delay, a sma f— M in the LK bl the delavis |
amount of optical feedback is enough to produce a variety o (t= ). Moreover, in the probiem, the delayis large
instabilities [1—4]. When the laser is pumped just above and shou_ld_bg t_aker_1 Into account _epr|C|tIy_. The state space
threshold, intensity dropouts occur irregularly. This phenom-Of DDEs is !nﬂmte dlmenspnal. This complicates _and limits
enon, called low-frequency fluctuatioisFF), has been in- the thgoreucal un.derstandmg of the m_athem_atlcal model.
tensively studied during the last decd@es]. For lasers with Analytical calculation of the flrst Hopf bifurcation, for ex-
a short external cavity and for cleaved-coupled-cavity lasers2Mple, already leads to complicated mathem4tic3. Most
instabilities prevail if the feedback is sufficiently strong €Xisting numerical investigations consist of simulati¢tse
[7-9]. integratior) that are time consuming and only reveal the
A minimal description of a single-mode semiconductorstable solutiond9,13]. They do not allow two-parameter
laser exposed to weak optical feedback was proposed kstudies. The first objective of this paper is to describe a dif-
Lang and KobayashiLK) [10]. In dimensionless form, the ferent numerical strategy in order to follow particular fea-
LK equations consist of two rate equations for the complextures of the bifurcation diagram.
electrical field E(t) and the excess carrier numbhi(t). Hohl and Gavrielideg13] investigated both experimen-
They are given by11] tally and numerically how LFF appears as the result of cas-
cading bifurcations from external cavity mod&CMs). The
dE ECMs are periodic solutions of E¢l) exhibiting a constant
a=(1+Ia)NE+KeXF(—Ia)OT)E(t—T), intensity, .an.d they sequentially appear as the feedback
strengthk is increased. In the presence of a small number of
ECMs, they observed a series of bifurcations between the
dN destabilization of one ECM and the appearance of the next
T ~P-N-(1+ 2N)|E|?. (1)  stable one, which eventually leads to irregular behavior with
a broad spectrum and chaotic time traces. They showed how
this irregular behavior gradually evolves into LFF for larger
In these equations, timeis measured in units of the photon values ofx (and thus more destabilized ECMs
lifetime 7, (7,=1ps). T and 7 are the carrier lifetime and The bifurcation diagram in Ref13] was based on simu-
the external round-trip time, respectively, normalized7y lations of the LK equations in order to detect stable ECMs
(T=1000, 7=1000). wq is the dimensionless frequency of and their bifurcations. In Refl14], we reviewed this bifur-
cation diagram by using a continuation method. We discov-
ered that Hopf bifurcation branchésridges are connecting
*Electronic address: bart.haegeman@fys.kuleuven.ac.be the isolated ECMs. Physically, these bridges correspond to
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the beating of two nearby ECMs and seem to appear foand Krauskopf studied the bifurcation diagram of a laser sub-
every pair of ECMs. How robust are these bridges as we varject to phase conjugated feedbafk7,28. There is one
the laser fixed parameters? Are other connections betwegrhase and frequency locked solution. Branches of pulsating
modes possible? The second objective of this paper is t#itensity solutions are, however, possible.

examine the behavior of these bridges by two parameter The paper is organized as follows. In Sec. Il, we describe
studies. Specifically, we propose a detailed numerical bifurhow we performed the numerical computations, exploiting
cation analysis of the LK equations, using DBETooL  the rotational symmetry of the LK equatiofiE). This section
[15,17. This MATLAB software package calculates steady!S Not needed for the comprehension of the bifurcation dia-
state and periodic solutions for equations with a finite num-9rams. Section Il confirms and extends the results of Ref.

ber of fixed discrete delays. Stability analysis of steady state}3] Where extensive simulations were used to analyze bifur-

solutions is achieved through approximating and correctin ations with respect to the feedback strengthin Secs. IV

the rightmost characteristic rodt$8]. Periodic solutions are nd V, we investigate the dependence on the finewidth en-
. . . . . hancement factorr and the feedback phase,r, respec-
computed using piecewise polynomial collocation and adap;.

tive mesh selectionf16]. Stability of periodic solutions is tively. Section VI summarizes our main observations.
determined by computing approximations to the Floquet
multipliers. Having access to both stable and unstable solu-
tions, the behavior of the bifurcation bridges can be de- . . .
scribed. The LK equations exhibit a rotational symmetry that The LK equations(1) exhibit a rotational symmetry, see,

. : .g., Ref.[29], which can be exploited. Indeed, for every
needs to be exploited to calculate the phenomena of interest.9-" . )
This important point is explained in the following section. solution (E(t),N(t)), the pair (E(t)exp(¢).N(1)) with O

Asymptotic approximations of the bridges are possible by<¢<27r 's a solution as well. The phagehas no physical

. - . meaning. Hence, solutions with differegt can be consid-
an_alyzmg the _Iargél' limit of th? LK equat|ons[1.9]. Ana— ered as different members of one family of solutions. We call
lytical expressions for the amplitude of the solutions in term

of the laser fixed 'pararr'leters are thus. available. They moa[;;i;rlmzﬁdlr;]due;g-:‘errrir::lglaggh'Srg(lqsuzﬁgnergetry has important ana

vate new numerical bifurcation studies on how bridges” |, orger to study external cavity modes, which are single-

change in terms of the laser fixed parameters. We choose ﬂPF‘equency periodic solutions of Eq1), and their bifurca-

linewidth enhancement factor and the feedback phase tions, we transform the original autonomous equations using

(wo7) mod (27). The linewidth enhancement factaris a  the substitution

laser material property that depends on the semiconductor

laser. It has a definite effect on the stability of the periodic E(t)=A(t)expibt). 2

solutions as demonstrated experimentally in RE28,21].

The feedback phaseor) mod(2w) is a key parameter for Inserting Eq.(2) into Eq. (1), the factor expbt) can be di-

stability diagrams. Varying the position of the external mirror vided through as a consequence of éhendeterminacy. The

over one half optical wavelength (250—-750 nm) causes &esulting system is again autonomous and has the form

variation in the phasedfgr) mod (27) over its full range dA

[0,27r]. However, this variation does not significantly 27 _ ; o i _

modify the external round-trip time itself, and the feedback dt =(I+i@)NA=IDA+ K exi] ~i(wor+b)JA(t=1),

phase (o) mod (27) is generally regarded as an indepen-

dent parameter. We may also control the feedback phase by dN )

changing the pump, as in Rg22]. In the rest of the paper, TH: P—N—(1+2N)[A]". )

we will use the notatiorwg7 instead of (o7) mod (27).

We will be particularly interested in the stability of the bi- We now have two equation®ne complex and one reah

furcation bridges. As we shall demonstrate, rupture may octhe complex variableA(t) and the real variablé(t), to-

cur either through the appearance of homoclinic orbits or byyether with the unknown real paramekeiThis form has the

unfolding the diagram of the ECMs. advantage that the ECMs, which are periodic solutions of Eq.
The continuation methods of DDEFTOOL have been re- (1), can be calculated as steady state solutions of Bdfor

cently used for other laser problems that we briefly reviewan appropriately chosen value bf From now on, we will

Sciamanneet al. [23,24] examined the response of vertical- call these types of solutions aseady state solutionSimi-

cavity surface-emitting laser®/CSELS subject to optical larly, quasiperiodic solutiongperiodic intensity of Eq. (1)

feedback. VCSELs are semiconductor lasers exhibiting tw@an be calculated as periodic solutions of E2). We call

polarizations. The laser rate equations are more complicatettiem periodic solutions

than Eq.(1), but the bifurcation diagram reveals bifurcation  But the substitutior(2) introduces another indeterminacy

bridges between modes similar to the one observed for thiato the equations. Indeed, (A(t),N(t),b) is a solution of

regular LK problem. It also motivated a new bifurcation Eq. (3), then(A* (t),N*(t),b*) with

analysis of Eq(1) for low values ofa [25]. A reduction of

II. EXPLOITING SYMMETRY

Eqg. (1) where the carrier densitil is adiabatically elimi- A*(t)=exdi(b—b*)t]A(t),
nated is examined by Pieroux and Mandel in R&g]. Bi-
furcation bridges connecting modes are still observed. Green N*(t)=N(t), (4
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andb+#b* being an arbitrary real number, is also a solutionfor any realo; ando,. Here,o; presents a classical phase

of Eq.(3), corresponding to the same soluti(t),N(t)) of  shift in time, while o, presents a shift in the indetermi-

Eq. (1). We call this theb indeterminacy. nacy. Although theoretically various phase conditions can be
It is important to note that théasymptoti¢ stability of a  imposed, an appropriate choice improves the robustness and

solution (A(t),N(t),b) under Eq.(3) is the same as the sta- the speed of the numerical calculations. Therefore, we use a

bility of the corresponding solutiofE(t),N(t)) under Eq. phase condition that minimizes the distance between the so-

(1). Indeed, for fixedy, there is a one-to-one correspondencelution u(t;o1,05) to be computed andy(t), the initial ap-

between the solutions of both equations. Am)stable per- proximation of the solution, i.e., we minimize

turbation for a solution of one equation will therefore be

transformed in arfun)stable perturbation for the correspond- ey 2
ing solution of the other equation. D(oy,09)= 0 lu(t; oy, 02) — uo(V)]|dt. ®
A. Steady state solutions The optimal solution satisfiedD/do;=0 anddD/do, =0.

To compute ECMs as steady state solutions of(@g.we  1his leads to the conditions

requireA(t) = A andN(t) = Ng to be constants. This is only .

possible for one particular choice of the paramderb f p[Re(A(’)(t)A(t))wLN(’)(t)N(t)]dt=O,

=Dbs. Hence, in this case tHeindeterminacy is resolved and 0

bs is an extra unknown to be determined. Téhd@ndetermi-

nacy is removed by fixing the phase &, e.g., using J'Tpl (
m

0

Im(Ag) =0. InsertingA,=xs+iys into Eq. (3) leads to the Ag(DA(1))dt=0, ©)

following nonlinear system for thex({,ys,Ng,by):

T N+ (bo— aN 7 where the primes mean differentiation and a bar means the
KXsT (bs—aNg)ys . . . .
complex conjugate. Numerical continuation of branches of
+ Kk €og (wotbg) 7]Xs | =0, periodic solutions using the phase conditig@s proved to
|+« sin (wo+bg) 7]Ys | be reliable, while the use of other phase conditions often
produced false turning point6.e., the continuation turns
(@Ng—bg)xs+ Nyys back on another representation of the computed branch at
places where the branch itself does not jurn
— ksin (wg+bg) 71X | =0, Inserting A(t) =x(t) +iy(t) into Eg. (3), we obtain the
| + k cog (wo+bg) 7]y following nonlinear system for a periodic solution

(%p(t),Yp(t),Np(t) by, Tp):
P—Ng—(1+2Ng)(x2+y2)=0,
%

yo—0. ©) at =NpXp+ (bp—aN,)yy+ k cog (wo+by) 7]X,(t—7)

+ ksin (wo+by) 7]y,(t—1),
B. Periodic solutions

Quasiperiodic solutions of Ed1l) which emanate from dyp i
the ECMs from Hopf bifurcation points, have the form g — (@Np~Pp)Xp+Npyp—xsinl(wo+Dby) 7]Xp(t—17)
(A(t)exp(bpt),N(t)) with A(t)=A(t+T,) and N(t)=N(t

+T,) for all t, whereT, is a positive real number. Therefore, + k cog (wo+bp) T]yp(t—17),

they can be computed as periodic solutiéAg(t),Ny(t),b,)

of Eq. (3) with periodT, . Here, the requirement fak,(t) to dN, S
be periodic restricts the possible values Bt in Eq. (4). TW: P=Np=(1+2Np) (x; +yp),

They are given by

20 Xp(1) =Xp(t+Tp),
b*=b,+ ns-, (6)

P Yp(D)=Yp(t+Ty),
wheren is an arbitrary integer. Hence, the continudum-
determinacy is reduced to a discrete one, which does not Np(t) =Ny(t+Tp),
pose numerical problemsee belowy

To remove the¢ indeterminacy, we introduce an extra T, , ,

condition analogous to the one used for the classical phase fo [Xo(1)X(1) +yo(1)y(t) + No(t)N(t) ]dt=0,
indeterminacy of periodic solutiong30]. When u(t;0,0)
=(A(t),N(t)) is a periodic solution, then so is

T, B
u(t;oq,09)=(A(t+ o) expio,),N(t+ o)) (7 Jo (Xo(D)Y(t) =¥o()X(t))dt=0. (10
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Note that the resulting value &f,, satisfying the periodicity 0.1
condition, depends on the starting value chosen in the New- ]
ton process to solve the systdd0). 008l _ _<f‘_ -a
e T
Ill. A ONE-PARAMETER STUDY — T T . -
o o oost TR
In this section, we construct a detailed bifurcation dia- - " T el -
gram using the DDBIFTOOL software packaggl5,17] with = 4 T
the feedback strengtk as the bifurcation parameter. We 0.04 [ o- - ]
used the feature of DDEKTOOL to introduce extra free pa- T~ S~z -
rameters and corresponding extra conditions, in order to cope g oo} -7 T~
with the nonuniqueness of solutions due to théndetermi- -7 T~o
nacy. We use the same parameter values as in[Ref.i.e., . ‘ ,/. . . . ‘
P=0.001, T=7=1000, a=4, wyr=—1. (11 ot 2 8 4 5 6 0_37
x1

These values correspond to a distance of 15 cm between the FIG. 1. Bifurcation diagram of the steady state intensity solu-

laser and the mirror. For reasons of conjpgrison, howEver, fions. The figure represents the field amplit{iE¢ vs the feedback
should be noted that Hohl and Gavrielides useglr= |16, The values of the fixed parameters are given in(E). Full

—1.45 to obtain their bifurcation diagraf81]. and dashed lines correspond to stable and unstable solutions, re-
spectively. Circles indicate Hopf bifurcations. All upper branches
A. Steady state solutions undergo a change of stability through a Hopf bifurcation. Other

The ECM:s are steady state solutions of B}.and can be Hopf bifurcations appear on the unstable branches.

computed analytically. Indeed, after eliminating, Ng, and

. fore. In the following section, we show that these bifurca-
x2 from Eq. (5), we obtain g

tions play a role in understanding the dynamics of the laser.

bs=— x{a cod (wg+bg) 7]+siM(we+by)7]}. (12
B. Periodic solutions

The solutions of this transcendental equatiorbjntogether Solutions of Eq(1) with a time-periodic intensity of the

with field and their stability were computed using the collocation
procedure implemented in DDEFTOOL. During computa-
tions we used piecewise polynomials of degree 3 or 4 on
(nonequidistantmeshes with 18—50 subintervals. Branches
_ P—Ns (13 were started from the Hopf bifurcations found above.
1+2Ng’ Figure 2 shows these solutions in the fi@ws « plane.

_ _ These branches exhibit an interesting structure. Each branch
cgrrespond to the steady basic solutions of @yjwhenever  that starts at a destabilizing Hopf bifurcation on a mode in-
Xs=0. creases in amplitude, undergoes some bifurcations, decreases

The electric field amplitude as a function efs plotted in  in amplitude, and ends at a Hopf bifurcation on an antimode.
Fig. 1. There is only one solution fot=0, which corre- In this way, different external cavity modes are connected.
sponds to the solitary lasdtherefore called the solitary Hence, these connections are suggestive of a beating phe-
mode. Increasing the feedback strengiy new solutions nomena between mode and the antimode. This phenomenon
appear in pairs through saddle-node bifurcations. By recomhas been suspected for some tif3d,35 and was substan-
puting these branches of steady state solutions using thtated analytically in Ref{19]. Numerical evidence of such a
DDE-BIFTOOL software, we can determine their stability connection, however, came only recently because the con-
properties, see Fig. 1. The solitary mode is initially stablenecting branch ends at an unstable Hopf point on an anti-
and changes stability at a Hopf bifurcation point. Further-mode, which can only be found via a continuation of un-
more, some of the upper branches, called modes, are initiallgtable solutions. We will come back to this interpretation in
stable and destabilize through Hopf bifurcation points, justSec. IV B. This type of connection between modes and anti-
like the solitary mode. The lower branches, called antimodesnodes seems to be present in a generic way as more mode-
are everywhere unstable. An exception is the branch whiclantimode pairs appear. For instance, branches starting from
starts at zero amplitude and which is entirely unstable. Thigopf points on modes always go to the right, while those
branch corresponds to a mode, of which the stable part anstarting from Hopf points on antimodes go to the left. The
the corresponding antimode were eliminated by the conditioperiodic solutions that start at the first Hopf point on a stable
x§>0. Note that on the mode and antimode branches a lot dECM are of particular interest, because they can be observed
additional Hopf bifurcations occur. Approximations of the experimentally. Along each of these branches of periodic so-
first Hopf bifurcation points on the mode branches can bdutions, the stability evolves in a similar way. At some point
determined analyticallj12,19 or by using simulations. The of the branch, two Floquet multipliers leave the unit circle,
unstable Hopf bifurcation points have never been found beand a torus bifurcation occurs.

Ng=—k co§ (wg+by) 7],

X3
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0.1
o.08} T -8 - Hopf on mode
Hopf on antimode
~0.06}
w
X
@
E0.04}
0.02}
0 I
0 1 2 3 4 5 6 7 . . . ,
K x 107 -6 -4 -2 0 2
o(t)-6(t-7)
., FIG. 3. Phase plane projection of some trajectories on the first
< \ mode-antimode connection. E=R exp(6), we represent the car-
N l_ rier densityN(t) as a function ofg(t) — 6(t— 7). The different tra-
-9 jectories correspond ta=0.77x 102 (Hopf on modg, «=0.81
B X1073, k=1.42x<1073, k=1.84x107° x=187x10° «
. =2.18<1073, k=2.38x 103, andx=2.42x 10~3 (Hopf on anti-
modeg. As we progressively increase, the periodic orbits first
6 7 encircle the mode and then the antimode.
-3
x 10

one orbit that passes through the origin in the complex plane
FIG. 2. Top: Bifurcation diagram of the steady state and peri-of the electric field. This explains the flip in Fig. 3 where one
odic solutions. The figure represents the f&aws the feedback side of the projected orbit is discontinuously shifted by a
parameterc. Same values of the parameters as in Fig. 1. Full anthhase difference of 2. As another consequence, when con-

dashed lines represent stable and unstable solutions, respective@huing the branch from both sides, the profiles match only if
Hopf, torus, and period doubling bifurcation points are indicated byyne takes thédiscrete b indeterminacy into account.
circles, stars, and squares, respectively. Bottom: Blow up of parts of

the diagram clarifying the branching behavior of some of the peri-
odic solutions. In the left figure, a first period-doubling bifurcation
point leads to a branch of periodic solutions that terminates at a

second period doubling bifurcation point located slightly below a  Tg determine if the bifurcation bridges that connects pairs
torus bifurcation point. A very small domain of stable periodic so- 5f ECM are generic bifurcation features of the LK equations,
lutions thus exists between the second period doubling bifurcatiog}ve shall investigate how they vary in terms of two important
point and the torus bifurcation point. However, the torus bifurcation hysical parameters, namely, the linewidth enhancement fac-
point marks the real change of stability of the bridge, as we may se r @ and the phase,factcw()r'. We first consider the effect

for the other upper branches. of a. Of particular physical interest is to determine how the

On some branches additional bifurcations occur. For ex—Stablllty of the bifurcation bridges change with and how

ample, the branch that originates from the first Hopf bifurca—rObUSt they are.
tion on the solitary mode, undergoes two additional period-
doubling bifurcations. The period-doubled branch is entirely
stable and quickly returns to the period-1 branch, just before Specifically, we investigate the first bridge of periodic so-
a torus bifurcation destabilizes this branch. We will see injutions (0< x<3x10"%) asa is changed between 2 and 6.
Sec. V how the first mode-antimode connection undergoe¥he values of the other parameters are documented in Ref.
further changes as, 7 is varied.(The bifurcation diagram in  [13], see Eq(11). Three distinct bifurcations appear, which
Ref. [13] additionally has a period-4 branch due to the dif-we analyze separately.
ferent value forwgt.) Steady state bifurcationgigure 4 shows the stability re-
Figure 3 shows the evolution of the first mode-antimodegions for the ECMs. The leftmost gray area indicates where
connection in a projection of the phase plane. Héres the  the solitary mode is stable. The other two gray areas corre-
angle in the polar representation of the complex electricabpond to parameter values where the next upper ECM
field. Note that for steady state solutiong(t)—6(t—7) branches in Figs. 1 and 2 are stable. These areas are bordered
=bg7. Starting at the Hopf point on the mode, the branchby a curve of saddle-node bifurcatioft® the lefy and a
grows, flips over to the right, and shrinks to the Hopf pointcurve of Hopf bifurcationgto the righj. For the parameter
on the antimode. On each branch of periodic orbits, there isalues considered, one mode is always stable at a given

IV. INFLUENCE OF THE LINEWIDTH
ENHANCEMENT FACTOR

A. Two-parameter bifurcation sets
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6 \ 0.012 T T ——
1 i - - -

: =45 .-~ -7

39 \ 0.01} a=48 P
\ - - - “
5 \ it AR =42 .~ L7
-] - - s
\\ 0.008} RN - c=4.0, -
45 R S - y ,
\ ’ ~
E L -’ \\ V4
s 4 w 0.006 v <
¢ v
e 4 \\

3.5 0.0041 o ) .

3 s\\ // \

/ \
0.002 AN ! \\
!
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0 05 K x107°

o . . FIG. 5. Bifurcation diagram of steady state solutions for differ-
FIG. 4. Stablllty diagrams of the ECMs in thevs « diagram.  gnt values ofa close toay=4.14. We represer{E| vs « for o

Gray colored regions correspond to parameter values where ang 4.2, and 4.5. Stable and unstable branches are shown by full
ECM is stable. _Saddle-node bifurcati¢or Ilmlt point) CUrves aré  and dashed lines, respectivefpr a=4.2 and 4.5, there is a very
shown by full lines. They mark the creation of pairs of mode- smg)| region of stability between the steady limit point and the Hopf
antimode solutions. The broken lines denote the Hopf bifurcation,ifyrcation point nearc=1, not showi Hopf bifurcation points
and the dashed broken lines the pitchfork bifurcation points. Poingre marked by circles. Note the creation of the left steady limit
Po is a degenerate bifurcation point. point and the two Hopf bifurcation points as> a,=4.

value ofk (the maximum gain modgs2]). The dashed curve
that starts at ¢,«)=(2,2.5x10 3) is the curve of Hopf
points on the antimode of the first ECM.

Five more curves are shown emanating from the pojnt
Going counterclockwise arourmh, these curves are respec-
tively two curves, of steady pitchfork bifurcations, two Hopf
curves and a saddle-node curirete that one of the Hopf
curves almost coincides with the saddle-node cur3g tak-
ing into account its properties, we find thag is located at
(k,a@)=(kg,ap), Where

additional period-doubling bifurcations occur. For larger
the period-4 branch follows a similar scenario possibly lead-
ing to a period-doubling cascade. Far=6, the bridge
breaks and includes homoclinic and period-doubling bifurca-
tions between the two Hopf points.

The breaking phenomenon shown in Fig. 7 for 6 fol-
lows a complicated Shil’nikov-type scenari&ig. 8). Be-
tweena=5.2 anda=5.3, the period-2 branch is intersected
by a branch of homoclinic trajectories. Betweer 5.3 and
a=5.4, an isolated branch of periodic solutions merges to
ko=7 1=10"2 and ap=7m—wor=4.14. (14 the left with the period-1 branch and to the right with the
period-2 branch, via a period-doubling bifurcation. Fer

See Sec. V A for more details on this point. Figure 5 shows
the emergence of the Hopf and limit points @agpasses the 5 . : —
value aq. 1 ~‘ | )
Periodic bifurcations.Two of the Hopf bifurcation curves 45! 1 \ ; g
shown in Fig. 4 are redrawn in Fig. 6. They are the first Hopf \ 1 i I
bifurcation on the solitary mode and the first Hopf bifurca- al \ 3 h
tion on the antimode of the first mode-antimode pair. These \ v 1 :
I

I

|

|

|

1

1

1

1

two points are connected by a branch of periodic solutions, \ w !
as explained in the preceding section. The stability of these 335 1 )
periodic solutions is lost at period doubling or torus bifurca- X
tion points. Curves of these bifurcations are also shown in I .
Fig. 6. If « decreases, the period-doubling bifurcations dis- 1
appear. Ifa increases, the torus bifurcation point merges 2.5¢ \ :
with the rightmost period-doubling bifurcation. \ \
Typical bifurcation diagrams of the steady and periodic 2 : ; : -
solutions are shown in Fig. 7. ti=3, we observe the sim- 0 03 ! 1,'(5 < Es _33
plest bridge. The bridge connects a mode and an antimode
and undergoes a torus bifurcation. df=3.6, a period-2 FIG. 6. Stability diagram of the first bifurcation bridge. The gray
branch appears. After the torus bifurcation has disappearedgion indicates the stability region in thevs « diagram. Hopf,
by merging with the rightmost period-doubling bifurcation period-doubling, and torus bifurcation points are shown by broken,

point (a¢=4.1), the period-doubled branch starts to fold andoroken dashed, and dashed lines, respectively.
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z, z
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s 1 15 2 25 3 85 1 15 2 25 3 2 5
N x10° « x10 »
0.06 -10n
o=6 N -5 T - 0
£0.05 ~ P o(t)-6(t-—) 6(t)-98(t-1)
= /d ~
a A . . . . .
o §004 ~ \ FIG. 9. Homoclinic orbits. Phase plane projection of two peri-
i ’ __\_‘_:\—::“(‘;' odic orbits exhibiting very large periodl,=10°>r=10°). Left:
1 03 o ] k=7.7x10"% and «=6. The figure represents ECNiswode (O),
3 0 1 2 3 antimode ()] and a homoclinic orbit ending the left branch of
-3

x107° x 10 periodic solutions in Fig. 7. Rightc=1.52x10" 3 and«a=6. The
figure represents ECMEmnode (O), antimode )] and the ho-
moclinic solution that is ending the right branch of periodic solu-

tions in Fig. 7.

FIG. 7. Bifurcation diagram of the steady and periodic solutions
for selected values af. Each figure represents mekvs «. From
left to right and from top to bottom, the figures corresponduato

=3, a=36, a=5, anda=6. Stable and unstable branches A"%ihg two distinct modes progressively deteriorateseaap-
shown by full and dotted lines, respectively. Hopf, torus, and 9 prog y P

period-doubling bifurcation points are shown by circles, stars, ancg_roaCh?S @=6. The bridge undergoe.s. pe”qd_dOUb“n.g
squares, respectively. ifurcations and breaks through homoclinic orbits. The dis-

appearance of the original bridge is also noticed by the time
~5.8, another branch of homoclinic trajectories intersectdraces and assomateg spectra. See Figs. 11 and 12.
the period-1 branch. For (a,k)=(4,10 %), the laser intensity of the field is
Homoclinic trajectories can play a prominent role in the @most harmonic, as can be seen in the optical spectrum. The

global dynamics. We approximate these trajectories by periight peak corresponds to the frequency at the Hopf point on
odic solutions with large period, i.€T,> . Figure 9 shows (N€ mode, and the left peak corresponds to the frequency at
two phase plane projections, together with the ECMs that arg”fee Hopf point on the antimode. Therefore, the two peaks can
present in the system for these parameter values. The fir9¢ interpreted as mode and antimode frequencies. The rf
homoclinic solution involves an antimode with two unstable SPeCtrum, which basically consists of one ac peak, is then

complex conjugated eigenvalues, the second one involves §'derstood as the beating frequency between mode and an-
mode with one unstable real eigenvalue. The former hollmode. This is consistent with an asymptotic analysis of the

moclinic is of Shilnikov type, as indicated in Fig. 10, which LK equations for large values df [19]. For largera, how-
reveals the typical oscillatory behavior of the period over the€Ver, the frequency content of the intensity oscillations is
branch of periodic solutions approaching the homoclinic or-much richer. Other peaks, not associated with mode or anti-
bit.

8000

B. Different types of dynamical behavior

The gradual complexity of the bifurcation diagram as
increases is consistent with experimental studi28,2]]
where lasers with differentt have been tested. In the pre- o
ceding section, we showed that a bifurcation bridge connect-

60001

4000f
0.055 0.055 0.055
= 005 = 005 = 005
¥ H 5 2000t
Eo.045 £0.045 E0.045
s 5 2 %5 1 s 2 %5 1 s 2 0 - : . .
€ 40 X 100 K10 1 1.2 1.4 1.6 1.8 _32
K

x10
FIG. 8. The progressive folding of the period-2 branch. We rep-

resent malE| vs « for the first bridge. From left to right, the three FIG. 10. Shinikov bifurcation scenario. The figure represents
figures correspond ta=5.2, «=5.3, anda=5.4, respectively. For the period along a branch of periodic solutions approaching a ho-
clarity, stability is not indicated. Period-doubling bifurcation points moclinic orbit of Shil'nikov type.a=6, and stability is not indi-

are shown by squares. cated. The period-doubling bifurcation points are shown by squares.
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FIG. 11. Time traces for periodic solutions located on the first
bridge. From left to right: &,«)=(4,10"3), (a,x)=(6,7X10"%),

and (a,x)=(6,7.7X 10 %). Top: real part ofE. Bottom: field am-
plitude |E|.

mode, can dominate the spectra. Close to a homoclinic solu- FIG. 13. Stability diagram of the ECMs in thevs wq7 plane.
tion, where the spectrum becomes large, the spectrum béight and dark gray regions mean one stable ECM and two stable
comes almost continuous. The ECM that belongs to th&CMs, respectively. Saddle-node, Hopf, and pitchfork bifurcations
homoclinic trajectory appears very clearly, see Fig(ght, ~ are shown by full, broken, and dashed-broken lines, respectively.
top). Note that such low-frequency peaks are of a different
nature than those that appear in the LFF regime. node curve and a Hopf curve. The curve of the first Hopf
bifurcation on an antimodédashed ling is located in be-
tween these stable zones. The diagram shows that as a mode-
antimode pair is continued in the paramedgyr over a dis-

The feedback phase, is an interesting parameter be- tance of 27, we arrive at the next mode-antimode pair. In
cause it dramatically changes the relative positions of thenjs way, the connecting branch of periodic solutions which
ECMs (see, for example, the bifurcation diagrams in Fig. 15ye presented in the previous sections is transported from one
of Ref [1]) In th|S SeCtion we inVeStigate the Solutions of thepair Of ECMs to the next by S|mp|y Changing the feedback
LK equations for 8<x=<3X10"% and for —m<wor<m.  phase. This explains why the structure of the different
The other values of the parameters remain fixed and arBridges, see Fig. 2, is so similar.
documented in Ref13], see Eq(11). In a small region of parameter space, two modes are
stable for the same parameter values. The branch of saddle-
node bifurcations, which delimits this region, has a cusp at
);/)1. Analytically, it can be showf33] that the poinip, lies at

V. CHANGING THE FEEDBACK PHASE

A. Steady state solutions
Figure 13 represents the stability diagram of the stead

state solutions. The gray area indicates the regions where a woT=T—arctafa)=1.816, (15
mode is stable. Such a region is located between a saddle-

10° 10° 10’ ! 2.43x10°4 (16)

K= —F/—=/4. .

optical optical optical 1+ a?

10* 10" 10

A ‘ ’ Moreover, the ECM frequency,7=0 at that point.
10_21 0 1 10 5 / 10°; o / The saddle-node curve ends at the ppisittogether with
frequency x 10°° frequency x 10°° frequency x 10°° several other curves, i.e., two Hopf curves and two curves of
e e o pitchfork bifurcations. Along these curves, the intensity of

RF
10

©

r

1 2

1 2
frequency x 1 0®

10
[¢]

frequency x1 0

0

1 2
frequency x 1 0

the laser field goes to zero when approachpyg which
allows its analytical determination. Note that the pgigtin
Fig. 4 is of the same nature as poji, and can be deter-
mined in a similar way.

To determine the values of, wy7, and« atp,, we need
three conditions. A first condition is given by Ed-=2) for the
ECM frequency. At pointp,, a mode and an antimode are

FIG. 12. Spectra of time traces shown in Fig. 11. From left tocreated. This implies a double zero of E42). From the

right: (a,x)=(4,10"%), (a,x)=(6,7X10"%), and (a,x)=(6,7.7

conditiond«/dbs=0, we obtain

X 10™4). Top: optical spectrum. Bottom: rf spectrum. Note that the
rightmost case corresponds to a periodic solution with a large pe-
riod, close to a homoclinic bifurcation.

7 1=k{asiN (wg+bs) 7]—cog (we+bg) 7]}. (17)
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X107 0.06
0.05f

0.041

0.03f

max(|E[)

0.02f .o "

0.01} EREN

0 0.5 1 15 2 25 3

o o o FIG. 15. Bifurcation diagram of the periodic solutions; s
FIG. 14. Stablllty.dlagram of periodic solutions in tkevs wq T represented as a function af for the first bridge andw,r=0.
plane. The gray region corresponds to parameter values where tkRaple and unstable branches are represented by full and broken
periodic solutions on the first bridge are stable. Saddle node Olﬁnes, respectively. Hopf, torus, and period-doubling bifurcation

periodic solutions, Hopf, period-doubling, and torus bifurcations areyoints are shown by circles, stars, and squares, respectively.
represented by full, broken, dashed broken, and dashed lines, re-

spectively. woT, these branches turn, merge, and split again to form a

complicated bifurcation diagram. Additional saddle-node bi-
furcations appear ifp7=1 and wyr=4.1) and disappear
again by splitting off an isolated branch of periodic solutions
(18) (wgr=4.2). For largerwg7, the diagram becomes compa-
rable to Fig. 6.
Equations (12), (17), and (18) are three equations for How these different bifurcation curves contribute to the
be, w7, andx. Note that our parameter values listed in Eq. dynamical behavior can be seen in Figs. 15-17. For five
(11) verify the relation values ofwg, a bifurcation diagram in the paramgterls
shown. To the right of and close enough to the ppisntthe
P=71 (199  branches of periodic solutions, which are born at the Hopf
points, do not connect but tend to homoclinic trajectories
and implies from Eqs(17) and (18) that (wg+bs)7=nm from both sides. Compare, for instance, the situation at
wheren is an integer. The point, in Fig. 13 corresponds to @o7=0 in Figs. 14 and 15lower par}, where there is no

Since the mode-antimode pair has zero field intensify,
=0, from Eq.(13) we determine a third condition

P+ k cog (wy+bg) 7]=0.

n=1, and is located at connection yet, to the situation afy7=27 in Figs. 14 and
15 (upper part The transition between these situations hap-
wor=m—a=—0.858, k=7 =103, (20 pens basically in two steps.

First the two periodic branches glue togethat wq7
The critical ECM frequency is given dy;7=«. Atthe point  =1.5, see Fig. 16 Then, a branch of periodic solutions
p., the characteristic equation has four zero characteristiconnecting the two homoclinic trajectories, a branch that
roots. Butp, is not a generic point. If the particular condition connects a Hopf point on a mode, and a Hopf point on an
(19 is not verified, the point where the mode-antimode pairantimode are obtained. This connection is in many aspects
appears with zero field intensity does no longer fall on asimilar to those encountered before, except that mode and
branch of Hopf bifurcations.

B. Periodic solutions 0.034 0.038
The pointp, at wyr=—0.86 andk =102 is not only the iy @‘ i}
end point of curves of saddle node and Hopf bifurcations, but¥ 0932 3 0034
also the end point of several curves of bifurcation points on® &
periodic solution branches. This is shown in Fig. 14 where  o¢.03 0.032
for the sake of clarity, the parameter is drawn without

6 8 10 12 6 8 10 12

the mod(2r) operation. Besides the two Hopf bifurcation < - « o
X X

curves that delimit the first connecting branch of periodic
solutions, branches of period-doubling bifurcations, saddle- FIG. 16. Bifurcation diagram of the periodic solutions; fjxs
node bifurcations(for periodic solutions and homoclinic  represented as a function af From left to right,wqr=1.4 and
trajectories(not shown start at the poinp,. For increasing wy7=1.6. Stability is not indicated.
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0.05 0.05 lutions with constant field intensifyand solutions exhibiting
pulsating intensities. Then, we carried out a detailed bifurca-
= = 004 tion analysis in the region of weak feedback. We showed and
w w . . . . . .
% Y investigated the existence of branches of periodic solutions
£ E 003 connecting mode and antimode branches. Such connections

or bifurcation bridges have been suspected for some time,
but could not be shown directly without a computation of
both stable and unstable parts of solution branches. The basic
phenomenon here corresponds thus to a beating between the
FIG. 17. Bifurcation diagram of the periodic solutions; s two f_reque_ncies asso_ciated with mode_and _antimode. We fur-
represented as a function a&f From left to right,w,7=1.8 and  ther investigated the influences of the linewidth enhancement
wo7=1.83. Stable and unstable branches are represented by flffictor and feedback phase on the first mode-antimode bridge.
and broken lines, respectively. Hopf, torus, and period-doubling bi-This analysis reveals that increasing the linewidth enhance-
furcation points are shown by circles, stars, and squares, respef2€nt factor progressively changes the stability of the bridge,
tively. but & must be high enougha(=6) for rupture. Changing the
feedback phase has a different effect on the bifurcation dia-
gram. Because the feedback phase modifies the relative po-
ition of nearby ECMSs, bifurcation bridges are also twisted.
7 addition to the mode-antimode connection between dis-
finct branches, a mode-antimode connection is possible for

0.02 0.02

o
-
n
(=)
-
N

x10°

antimode belong to the same steady state branch.
Second, the steady state branch, which connects a mo
and an antimode, glues to the branch with the solitary mod

(betweenw,7=1.8 andw,7=1.83, see Fig. I7As aresult, "o o hranch of ECM solutiofsee Fig. 17. For both the

g:; t:r?]rt\cgrnr?vx(]conr_}i(i:;s ta medet aﬁg%fr;] am?]mogehfrsimrtwﬁ)newidth enhancement factor and the feedback phase, the
ere anches. steady stalebranching benavior - e -nanism for rupture of the connecting branch of periodic
corresponds to the cusp in the branch of saddle-node bifur

. ; L solutions is through homoclinic orbits.
cations(point p; in Fig. 13.

For largerwgr (Fig. 14), the branch of periodic solutions
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