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Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback
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The bifurcation diagram of a single-mode semiconductor laser subject to a delayed optical feedback is
examined by using numerical continuation methods. For this, we show how to cope with the special symmetry
properties of the equations. As the feedback strength is increased, branches of modes and antimodes appear,
and we have found that pairs of modes and antimodes are connected by closed branches of periodic solutions
~bifurcation bridges!. Such connections seem generically present as new pairs of modes and antimodes appear.
We subsequently investigate the behavior of the first connection as a function of the linewidth enhancement
factor and the feedback phase. Our results extend and confirm existing results and hypotheses reported in the
literature. For large values of the linewidth enhancement factor (a55 –6), bridges break through homoclinic
orbits. Changing the feedback phase unfolds the bifurcation diagram of the modes and antimodes, allowing
different types of connections between modes.
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I. INTRODUCTION

Semiconductor lasers with a long external cavity are v
sensitive to external signals. The light traveling back a
forth in the external cavity takes a long time relative to t
internal time scale of the laser, and produces a delayed in
action with a large delay. Because of the large delay, a sm
amount of optical feedback is enough to produce a variet
instabilities @1–4#. When the laser is pumped just abo
threshold, intensity dropouts occur irregularly. This pheno
enon, called low-frequency fluctuations~LFF!, has been in-
tensively studied during the last decade@5,6#. For lasers with
a short external cavity and for cleaved-coupled-cavity las
instabilities prevail if the feedback is sufficiently stron
@7–9#.

A minimal description of a single-mode semiconduc
laser exposed to weak optical feedback was proposed
Lang and Kobayashi~LK ! @10#. In dimensionless form, the
LK equations consist of two rate equations for the comp
electrical field E(t) and the excess carrier numberN(t).
They are given by@11#

dE

dt
5~11 ia!NE1k exp~2 iv0t!E~ t2t!,

T
dN

dt
5P2N2~112N!uEu2. ~1!

In these equations, timet is measured in units of the photo
lifetime tp (tp.1ps). T and t are the carrier lifetime and
the external round-trip time, respectively, normalized bytp
(T.1000, t.1000). v0 is the dimensionless frequency o

*Electronic address: bart.haegeman@fys.kuleuven.ac.be
1063-651X/2002/66~4!/046216~11!/$20.00 66 0462
y
d

r-
ll
f

-

s,

r
by

x

the solitary laser,k is the feedback strength (0<k!1), P is
the pump current above threshold (uPu,1), and a is the
linewidth enhancement factor.

The LK equations are delay differential equatio
~DDEs!, because the right-hand side of Eq.~1! does not only
depend onE(t) and N(t) at the present time, but also o
E(t2t). Moreover, in the LK problem, the delayt is large
and should be taken into account explicitly. The state sp
of DDEs is infinite dimensional. This complicates and lim
the theoretical understanding of the mathematical mo
Analytical calculation of the first Hopf bifurcation, for ex
ample, already leads to complicated mathematics@12#. Most
existing numerical investigations consist of simulations~time
integration! that are time consuming and only reveal t
stable solutions@9,13#. They do not allow two-paramete
studies. The first objective of this paper is to describe a
ferent numerical strategy in order to follow particular fe
tures of the bifurcation diagram.

Hohl and Gavrielides@13# investigated both experimen
tally and numerically how LFF appears as the result of c
cading bifurcations from external cavity modes~ECMs!. The
ECMs are periodic solutions of Eq.~1! exhibiting a constant
intensity, and they sequentially appear as the feedb
strengthk is increased. In the presence of a small numbe
ECMs, they observed a series of bifurcations between
destabilization of one ECM and the appearance of the n
stable one, which eventually leads to irregular behavior w
a broad spectrum and chaotic time traces. They showed
this irregular behavior gradually evolves into LFF for larg
values ofk ~and thus more destabilized ECMs!.

The bifurcation diagram in Ref.@13# was based on simu
lations of the LK equations in order to detect stable EC
and their bifurcations. In Ref.@14#, we reviewed this bifur-
cation diagram by using a continuation method. We disc
ered that Hopf bifurcation branches~bridges! are connecting
the isolated ECMs. Physically, these bridges correspond
©2002 The American Physical Society16-1



fo
a
e

s
et
fu

dy
m
ta
tin

ap

ue
ol
de
ha
re
.
b

m
o
e

e

ct
di

r
o
s

ly

n
e
,

i-
o
b

w
l-

tw
at
n
th
n

e

ub-

ting

ibe
ng

ia-
ef.

fur-

en-

,
ry

all
a-

le-

ing

Eq.

y

HAEGEMAN et al. PHYSICAL REVIEW E 66, 046216 ~2002!
the beating of two nearby ECMs and seem to appear
every pair of ECMs. How robust are these bridges as we v
the laser fixed parameters? Are other connections betw
modes possible? The second objective of this paper i
examine the behavior of these bridges by two param
studies. Specifically, we propose a detailed numerical bi
cation analysis of the LK equations, using DDE-BIFTOOL

@15,17#. This MATLAB software package calculates stea
state and periodic solutions for equations with a finite nu
ber of fixed discrete delays. Stability analysis of steady s
solutions is achieved through approximating and correc
the rightmost characteristic roots@18#. Periodic solutions are
computed using piecewise polynomial collocation and ad
tive mesh selection@16#. Stability of periodic solutions is
determined by computing approximations to the Floq
multipliers. Having access to both stable and unstable s
tions, the behavior of the bifurcation bridges can be
scribed. The LK equations exhibit a rotational symmetry t
needs to be exploited to calculate the phenomena of inte
This important point is explained in the following section

Asymptotic approximations of the bridges are possible
analyzing the largeT limit of the LK equations@19#. Ana-
lytical expressions for the amplitude of the solutions in ter
of the laser fixed parameters are thus available. They m
vate new numerical bifurcation studies on how bridg
change in terms of the laser fixed parameters. We choose
linewidth enhancement factora and the feedback phas
(v0t) mod (2p). The linewidth enhancement factora is a
laser material property that depends on the semicondu
laser. It has a definite effect on the stability of the perio
solutions as demonstrated experimentally in Refs.@20,21#.
The feedback phase (v0t) mod(2p) is a key parameter fo
stability diagrams. Varying the position of the external mirr
over one half optical wavelength (250–750 nm) cause
variation in the phase (v0t) mod (2p) over its full range
@0,2p#. However, this variation does not significant
modify the external round-trip timet itself, and the feedback
phase (v0t) mod (2p) is generally regarded as an indepe
dent parameter. We may also control the feedback phas
changing the pump, as in Ref.@22#. In the rest of the paper
we will use the notationv0t instead of (v0t) mod (2p).
We will be particularly interested in the stability of the b
furcation bridges. As we shall demonstrate, rupture may
cur either through the appearance of homoclinic orbits or
unfolding the diagram of the ECMs.

The continuation methods of DDE-BIFTOOL have been re-
cently used for other laser problems that we briefly revie
Sciamannaet al. @23,24# examined the response of vertica
cavity surface-emitting lasers~VCSELs! subject to optical
feedback. VCSELs are semiconductor lasers exhibiting
polarizations. The laser rate equations are more complic
than Eq.~1!, but the bifurcation diagram reveals bifurcatio
bridges between modes similar to the one observed for
regular LK problem. It also motivated a new bifurcatio
analysis of Eq.~1! for low values ofa @25#. A reduction of
Eq. ~1! where the carrier densityN is adiabatically elimi-
nated is examined by Pieroux and Mandel in Ref.@26#. Bi-
furcation bridges connecting modes are still observed. Gr
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and Krauskopf studied the bifurcation diagram of a laser s
ject to phase conjugated feedback@27,28#. There is one
phase and frequency locked solution. Branches of pulsa
intensity solutions are, however, possible.

The paper is organized as follows. In Sec. II, we descr
how we performed the numerical computations, exploiti
the rotational symmetry of the LK equations~1!. This section
is not needed for the comprehension of the bifurcation d
grams. Section III confirms and extends the results of R
@13# where extensive simulations were used to analyze bi
cations with respect to the feedback strengthk. In Secs. IV
and V, we investigate the dependence on the linewidth
hancement factora and the feedback phasev0t, respec-
tively. Section VI summarizes our main observations.

II. EXPLOITING SYMMETRY

The LK equations~1! exhibit a rotational symmetry, see
e.g., Ref.@29#, which can be exploited. Indeed, for eve
solution „E(t),N(t)…, the pair „E(t)exp(if),N(t)… with 0
<f<2p is a solution as well. The phasef has no physical
meaning. Hence, solutions with differentf can be consid-
ered as different members of one family of solutions. We c
this thef indeterminacy. This symmetry has important an
lytical and numerical consequences.

In order to study external cavity modes, which are sing
frequency periodic solutions of Eq.~1!, and their bifurca-
tions, we transform the original autonomous equations us
the substitution

E~ t !5A~ t !exp~ ibt !. ~2!

Inserting Eq.~2! into Eq. ~1!, the factor exp(ibt) can be di-
vided through as a consequence of thef indeterminacy. The
resulting system is again autonomous and has the form

dA

dt
5~11 ia!NA2 ibA1k exp@2 i ~v0t1b!#A~ t2t!,

T
dN

dt
5P2N2~112N!uAu2. ~3!

We now have two equations~one complex and one real! in
the complex variableA(t) and the real variableN(t), to-
gether with the unknown real parameterb. This form has the
advantage that the ECMs, which are periodic solutions of
~1!, can be calculated as steady state solutions of Eq.~2! for
an appropriately chosen value ofb. From now on, we will
call these types of solutions assteady state solutions. Simi-
larly, quasiperiodic solutions~periodic intensity! of Eq. ~1!
can be calculated as periodic solutions of Eq.~2!. We call
themperiodic solutions.

But the substitution~2! introduces another indeterminac
into the equations. Indeed, if„A(t),N(t),b… is a solution of
Eq. ~3!, then„A* (t),N* (t),b* … with

A* ~ t !5exp@ i ~b2b* !t#A~ t !,

N* ~ t !5N~ t !, ~4!
6-2
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STABILITY AND RUPTURE OF BIFURCATION . . . PHYSICAL REVIEW E66, 046216 ~2002!
andbÞb* being an arbitrary real number, is also a soluti
of Eq. ~3!, corresponding to the same solution„E(t),N(t)… of
Eq. ~1!. We call this theb indeterminacy.

It is important to note that the~asymptotic! stability of a
solution „A(t),N(t),b… under Eq.~3! is the same as the sta
bility of the corresponding solution„E(t),N(t)… under Eq.
~1!. Indeed, for fixedb, there is a one-to-one corresponden
between the solutions of both equations. An~un!stable per-
turbation for a solution of one equation will therefore
transformed in an~un!stable perturbation for the correspon
ing solution of the other equation.

A. Steady state solutions

To compute ECMs as steady state solutions of Eq.~2!, we
requireA(t)5As andN(t)5Ns to be constants. This is onl
possible for one particular choice of the parameterb, b
5bs . Hence, in this case theb indeterminacy is resolved an
bs is an extra unknown to be determined. Thef indetermi-
nacy is removed by fixing the phase ofAs , e.g., using
Im(As)50. InsertingAs5xs1 iys into Eq. ~3! leads to the
following nonlinear system for the (xs ,ys ,Ns ,bs):

F Nsxs1~bs2aNs!ys

1k cos@~v01bs!t#xs

1k sin@~v01bs!t#ys

G50,

F ~aNs2bs!xs1Nsys

2k sin@~v01bs!t#xs

1k cos@~v01bs!t#ys

G50,

P2Ns2~112Ns!~xs
21ys

2!50,

ys50. ~5!

B. Periodic solutions

Quasiperiodic solutions of Eq.~1! which emanate from
the ECMs from Hopf bifurcation points, have the for
„A(t)exp(ibpt),N(t)… with A(t)5A(t1Tp) and N(t)5N(t
1Tp) for all t, whereTp is a positive real number. Therefor
they can be computed as periodic solutions„Ap(t),Np(t),bp…

of Eq. ~3! with periodTp . Here, the requirement forAp(t) to
be periodic restricts the possible values forb* in Eq. ~4!.
They are given by

b* 5bp1n
2p

Tp
, ~6!

wheren is an arbitrary integer. Hence, the continuousb in-
determinacy is reduced to a discrete one, which does
pose numerical problems~see below!.

To remove thef indeterminacy, we introduce an extr
condition analogous to the one used for the classical ph
indeterminacy of periodic solutions@30#. When u„t;0,0)
5(A(t),N(t)… is a periodic solution, then so is

u~ t;s1 ,s2!5„A~ t1s1!exp~ is2!,N~ t1s1!… ~7!
04621
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for any reals1 ands2. Here,s1 presents a classical phas
shift in time, whiles2 presents a shift in thef indetermi-
nacy. Although theoretically various phase conditions can
imposed, an appropriate choice improves the robustness
the speed of the numerical calculations. Therefore, we u
phase condition that minimizes the distance between the
lution u(t;s1 ,s2) to be computed andu0(t), the initial ap-
proximation of the solution, i.e., we minimize

D~s1 ,s2![E
0

Tp
iu~ t;s1 ,s2!2u0~ t !i2dt. ~8!

The optimal solution satisfies]D/]s150 and]D/]s2 50.
This leads to the conditions

E
0

Tp
@Re„A08~ t !A~ t !…1N08~ t !N~ t !#dt50,

E
0

Tp
Im„A08~ t !A~ t !…dt50, ~9!

where the primes mean differentiation and a bar means
complex conjugate. Numerical continuation of branches
periodic solutions using the phase conditions~9! proved to
be reliable, while the use of other phase conditions of
produced false turning points~i.e., the continuation turns
back on another representation of the computed branc
places where the branch itself does not turn!.

Inserting A(t)5x(t)1 iy(t) into Eq. ~3!, we obtain the
following nonlinear system for a periodic solutio
„xp(t),yp(t),Np(t),bp ,Tp…:

dxp

dt
5Npxp1~bp2aNp!yp1k cos@~v01bp!t#xp~ t2t!

1k sin@~v01bp!t#yp~ t2t!,

dyp

dt
5~aNp2bp!xp1Npyp2k sin@~v01bp!t#xp~ t2t!

1k cos@~v01bp!t#yp~ t2t!,

T
dNp

dt
5P2Np2~112Np!~xp

21yp
2!,

xp~ t !5xp~ t1Tp!,

yp~ t !5yp~ t1Tp!,

Np~ t !5Np~ t1Tp!,

E
0

Tp
@x08~ t !x~ t !1y08~ t !y~ t !1N08~ t !N~ t !#dt50,

E
0

Tp
~x0~ t !y~ t !2y0~ t !x~ t !!dt50. ~10!
6-3
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HAEGEMAN et al. PHYSICAL REVIEW E 66, 046216 ~2002!
Note that the resulting value ofbp , satisfying the periodicity
condition, depends on the starting value chosen in the N
ton process to solve the system~10!.

III. A ONE-PARAMETER STUDY

In this section, we construct a detailed bifurcation d
gram using the DDE-BIFTOOL software package@15,17# with
the feedback strengthk as the bifurcation parameter. W
used the feature of DDE-BIFTOOL to introduce extra free pa
rameters and corresponding extra conditions, in order to c
with the nonuniqueness of solutions due to thef indetermi-
nacy. We use the same parameter values as in Ref.@13#, i.e.,

P50.001, T5t51000, a54, v0t521. ~11!

These values correspond to a distance of 15 cm between
laser and the mirror. For reasons of comparison, howeve
should be noted that Hohl and Gavrielides usedv0t5
21.45 to obtain their bifurcation diagram@31#.

A. Steady state solutions

The ECMs are steady state solutions of Eq.~3! and can be
computed analytically. Indeed, after eliminatingys , Ns , and
xs

2 from Eq. ~5!, we obtain

bs52k$a cos@~v01bs!t#1sin@~v01bs!t#%. ~12!

The solutions of this transcendental equation inbs together
with

Ns52k cos@~v01bs!t#,

xs
25

P2Ns

112Ns
, ~13!

correspond to the steady basic solutions of Eq.~1! whenever
xs

2>0.
The electric field amplitude as a function ofk is plotted in

Fig. 1. There is only one solution fork50, which corre-
sponds to the solitary laser~therefore called the solitary
mode!. Increasing the feedback strengthk, new solutions
appear in pairs through saddle-node bifurcations. By rec
puting these branches of steady state solutions using
DDE-BIFTOOL software, we can determine their stabili
properties, see Fig. 1. The solitary mode is initially sta
and changes stability at a Hopf bifurcation point. Furth
more, some of the upper branches, called modes, are init
stable and destabilize through Hopf bifurcation points, j
like the solitary mode. The lower branches, called antimod
are everywhere unstable. An exception is the branch wh
starts at zero amplitude and which is entirely unstable. T
branch corresponds to a mode, of which the stable part
the corresponding antimode were eliminated by the condi
xs

2>0. Note that on the mode and antimode branches a lo
additional Hopf bifurcations occur. Approximations of th
first Hopf bifurcation points on the mode branches can
determined analytically@12,19# or by using simulations. The
unstable Hopf bifurcation points have never been found
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fore. In the following section, we show that these bifurc
tions play a role in understanding the dynamics of the la

B. Periodic solutions

Solutions of Eq.~1! with a time-periodic intensity of the
field and their stability were computed using the collocati
procedure implemented in DDE-BIFTOOL. During computa-
tions we used piecewise polynomials of degree 3 or 4
~nonequidistant! meshes with 18–50 subintervals. Branch
were started from the Hopf bifurcations found above.

Figure 2 shows these solutions in the maxuEu vs k plane.
These branches exhibit an interesting structure. Each bra
that starts at a destabilizing Hopf bifurcation on a mode
creases in amplitude, undergoes some bifurcations, decre
in amplitude, and ends at a Hopf bifurcation on an antimo
In this way, different external cavity modes are connect
Hence, these connections are suggestive of a beating
nomena between mode and the antimode. This phenome
has been suspected for some time@34,35# and was substan
tiated analytically in Ref.@19#. Numerical evidence of such
connection, however, came only recently because the c
necting branch ends at an unstable Hopf point on an a
mode, which can only be found via a continuation of u
stable solutions. We will come back to this interpretation
Sec. IV B. This type of connection between modes and a
modes seems to be present in a generic way as more m
antimode pairs appear. For instance, branches starting
Hopf points on modes always go to the right, while tho
starting from Hopf points on antimodes go to the left. T
periodic solutions that start at the first Hopf point on a sta
ECM are of particular interest, because they can be obse
experimentally. Along each of these branches of periodic
lutions, the stability evolves in a similar way. At some poi
of the branch, two Floquet multipliers leave the unit circ
and a torus bifurcation occurs.

FIG. 1. Bifurcation diagram of the steady state intensity so
tions. The figure represents the field amplitudeuEu vs the feedback
ratek. The values of the fixed parameters are given in Eq.~11!. Full
and dashed lines correspond to stable and unstable solutions
spectively. Circles indicate Hopf bifurcations. All upper branch
undergo a change of stability through a Hopf bifurcation. Oth
Hopf bifurcations appear on the unstable branches.
6-4
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STABILITY AND RUPTURE OF BIFURCATION . . . PHYSICAL REVIEW E66, 046216 ~2002!
On some branches additional bifurcations occur. For
ample, the branch that originates from the first Hopf bifurc
tion on the solitary mode, undergoes two additional peri
doubling bifurcations. The period-doubled branch is entir
stable and quickly returns to the period-1 branch, just bef
a torus bifurcation destabilizes this branch. We will see
Sec. V how the first mode-antimode connection underg
further changes asv0t is varied.~The bifurcation diagram in
Ref. @13# additionally has a period-4 branch due to the d
ferent value forv0t.!

Figure 3 shows the evolution of the first mode-antimo
connection in a projection of the phase plane. Here,u is the
angle in the polar representation of the complex electr
field. Note that for steady state solutions,u(t)2u(t2t)
5bst. Starting at the Hopf point on the mode, the bran
grows, flips over to the right, and shrinks to the Hopf po
on the antimode. On each branch of periodic orbits, ther

FIG. 2. Top: Bifurcation diagram of the steady state and p
odic solutions. The figure represents the maxuEu vs the feedback
parameterk. Same values of the parameters as in Fig. 1. Full a
dashed lines represent stable and unstable solutions, respec
Hopf, torus, and period doubling bifurcation points are indicated
circles, stars, and squares, respectively. Bottom: Blow up of par
the diagram clarifying the branching behavior of some of the p
odic solutions. In the left figure, a first period-doubling bifurcati
point leads to a branch of periodic solutions that terminates
second period doubling bifurcation point located slightly below
torus bifurcation point. A very small domain of stable periodic s
lutions thus exists between the second period doubling bifurca
point and the torus bifurcation point. However, the torus bifurcat
point marks the real change of stability of the bridge, as we may
for the other upper branches.
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one orbit that passes through the origin in the complex pl
of the electric field. This explains the flip in Fig. 3 where o
side of the projected orbit is discontinuously shifted by
phase difference of 2p. As another consequence, when co
tinuing the branch from both sides, the profiles match only
one takes the~discrete! b indeterminacy into account.

IV. INFLUENCE OF THE LINEWIDTH
ENHANCEMENT FACTOR

To determine if the bifurcation bridges that connects pa
of ECM are generic bifurcation features of the LK equation
we shall investigate how they vary in terms of two importa
physical parameters, namely, the linewidth enhancement
tor a and the phase factorv0t. We first consider the effec
of a. Of particular physical interest is to determine how t
stability of the bifurcation bridges change witha and how
robust they are.

A. Two-parameter bifurcation sets

Specifically, we investigate the first bridge of periodic s
lutions (0,k<331023) asa is changed between 2 and 6
The values of the other parameters are documented in
@13#, see Eq.~11!. Three distinct bifurcations appear, whic
we analyze separately.

Steady state bifurcations. Figure 4 shows the stability re
gions for the ECMs. The leftmost gray area indicates wh
the solitary mode is stable. The other two gray areas co
spond to parameter values where the next upper E
branches in Figs. 1 and 2 are stable. These areas are bor
by a curve of saddle-node bifurcations~to the left! and a
curve of Hopf bifurcations~to the right!. For the parameter
values considered, one mode is always stable at a g
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y
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FIG. 3. Phase plane projection of some trajectories on the
mode-antimode connection. IfE5R exp(iu), we represent the car
rier densityN(t) as a function ofu(t)2u(t2t). The different tra-
jectories correspond tok50.7731023 ~Hopf on mode!, k50.81
31023, k51.4231023, k51.8431023, k51.8731023, k
52.1831023, k52.3831023, andk52.4231023 ~Hopf on anti-
mode!. As we progressively increasek, the periodic orbits first
encircle the mode and then the antimode.
6-5
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value ofk ~the maximum gain mode@32#!. The dashed curve
that starts at (a,k)5(2,2.531023) is the curve of Hopf
points on the antimode of the first ECM.

Five more curves are shown emanating from the pointp0.
Going counterclockwise aroundp0, these curves are respe
tively two curves, of steady pitchfork bifurcations, two Ho
curves and a saddle-node curve~note that one of the Hop
curves almost coincides with the saddle-node curve!. By tak-
ing into account its properties, we find thatp0 is located at
(k,a)5(k0 ,a0), where

k05t2151023 and a05p2v0t.4.14. ~14!

See Sec. V A for more details on this point. Figure 5 sho
the emergence of the Hopf and limit points asa passes the
valuea0.

Periodic bifurcations.Two of the Hopf bifurcation curves
shown in Fig. 4 are redrawn in Fig. 6. They are the first Ho
bifurcation on the solitary mode and the first Hopf bifurc
tion on the antimode of the first mode-antimode pair. Th
two points are connected by a branch of periodic solutio
as explained in the preceding section. The stability of th
periodic solutions is lost at period doubling or torus bifurc
tion points. Curves of these bifurcations are also shown
Fig. 6. If a decreases, the period-doubling bifurcations d
appear. Ifa increases, the torus bifurcation point merg
with the rightmost period-doubling bifurcation.

Typical bifurcation diagrams of the steady and perio
solutions are shown in Fig. 7. Ifa53, we observe the sim
plest bridge. The bridge connects a mode and an antim
and undergoes a torus bifurcation. Ifa53.6, a period-2
branch appears. After the torus bifurcation has disappe
by merging with the rightmost period-doubling bifurcatio
point (a.4.1), the period-doubled branch starts to fold a

FIG. 4. Stability diagrams of the ECMs in thea vs k diagram.
Gray colored regions correspond to parameter values where
ECM is stable. Saddle-node bifurcation~or limit point! curves are
shown by full lines. They mark the creation of pairs of mod
antimode solutions. The broken lines denote the Hopf bifurca
and the dashed broken lines the pitchfork bifurcation points. P
p0 is a degenerate bifurcation point.
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additional period-doubling bifurcations occur. For largera,
the period-4 branch follows a similar scenario possibly le
ing to a period-doubling cascade. Fora56, the bridge
breaks and includes homoclinic and period-doubling bifur
tions between the two Hopf points.

The breaking phenomenon shown in Fig. 7 fora56 fol-
lows a complicated Shil’nikov-type scenario~Fig. 8!. Be-
tweena55.2 anda55.3, the period-2 branch is intersecte
by a branch of homoclinic trajectories. Betweena55.3 and
a55.4, an isolated branch of periodic solutions merges
the left with the period-1 branch and to the right with th
period-2 branch, via a period-doubling bifurcation. Fora

an

n
t

FIG. 5. Bifurcation diagram of steady state solutions for diffe
ent values ofa close toa0.4.14. We representuEu vs k for a
54, 4.2, and 4.5. Stable and unstable branches are shown by
and dashed lines, respectively~for a54.2 and 4.5, there is a very
small region of stability between the steady limit point and the Ho
bifurcation point neark51, not shown!. Hopf bifurcation points
are marked by circles. Note the creation of the left steady li
point and the two Hopf bifurcation points asa.a0.4.

FIG. 6. Stability diagram of the first bifurcation bridge. The gra
region indicates the stability region in thea vs k diagram. Hopf,
period-doubling, and torus bifurcation points are shown by brok
broken dashed, and dashed lines, respectively.
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.5.8, another branch of homoclinic trajectories interse
the period-1 branch.

Homoclinic trajectories can play a prominent role in t
global dynamics. We approximate these trajectories by p
odic solutions with large period, i.e.,Tp@t. Figure 9 shows
two phase plane projections, together with the ECMs that
present in the system for these parameter values. The
homoclinic solution involves an antimode with two unstab
complex conjugated eigenvalues, the second one involv
mode with one unstable real eigenvalue. The former
moclinic is of Shil’nikov type, as indicated in Fig. 10, whic
reveals the typical oscillatory behavior of the period over
branch of periodic solutions approaching the homoclinic
bit.

B. Different types of dynamical behavior

The gradual complexity of the bifurcation diagram asa
increases is consistent with experimental studies@20,21#
where lasers with differenta have been tested. In the pre
ceding section, we showed that a bifurcation bridge conn

FIG. 7. Bifurcation diagram of the steady and periodic solutio
for selected values ofa. Each figure represents maxuEu vs k. From
left to right and from top to bottom, the figures correspond toa
53, a53.6, a55, anda56. Stable and unstable branches a
shown by full and dotted lines, respectively. Hopf, torus, a
period-doubling bifurcation points are shown by circles, stars,
squares, respectively.

FIG. 8. The progressive folding of the period-2 branch. We r
resent maxuEu vs k for the first bridge. From left to right, the thre
figures correspond toa55.2, a55.3, anda55.4, respectively. For
clarity, stability is not indicated. Period-doubling bifurcation poin
are shown by squares.
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ing two distinct modes progressively deteriorates asa ap-
proaches a56. The bridge undergoes period-doublin
bifurcations and breaks through homoclinic orbits. The d
appearance of the original bridge is also noticed by the t
traces and associated spectra. See Figs. 11 and 12.

For (a,k)5(4,1023), the laser intensity of the field is
almost harmonic, as can be seen in the optical spectrum.
right peak corresponds to the frequency at the Hopf point
the mode, and the left peak corresponds to the frequenc
the Hopf point on the antimode. Therefore, the two peaks
be interpreted as mode and antimode frequencies. Th
spectrum, which basically consists of one ac peak, is t
understood as the beating frequency between mode and
timode. This is consistent with an asymptotic analysis of
LK equations for large values ofT @19#. For largera, how-
ever, the frequency content of the intensity oscillations
much richer. Other peaks, not associated with mode or a

s

d

-

FIG. 9. Homoclinic orbits. Phase plane projection of two pe
odic orbits exhibiting very large period (Tp5105@t5103). Left:
k.7.731024 anda56. The figure represents ECMs@mode~s!,
antimode (3)] and a homoclinic orbit ending the left branch o
periodic solutions in Fig. 7. Right:k.1.5231023 anda56. The
figure represents ECMs@mode ~s!, antimode (3)] and the ho-
moclinic solution that is ending the right branch of periodic so
tions in Fig. 7.

FIG. 10. Shil’nikov bifurcation scenario. The figure represen
the period along a branch of periodic solutions approaching a
moclinic orbit of Shil’nikov type.a56, and stability is not indi-
cated. The period-doubling bifurcation points are shown by squa
6-7
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mode, can dominate the spectra. Close to a homoclinic s
tion, where the spectrum becomes large, the spectrum
comes almost continuous. The ECM that belongs to
homoclinic trajectory appears very clearly, see Fig. 12~right,
top!. Note that such low-frequency peaks are of a differ
nature than those that appear in the LFF regime.

V. CHANGING THE FEEDBACK PHASE

The feedback phasev0t is an interesting parameter be
cause it dramatically changes the relative positions of
ECMs ~see, for example, the bifurcation diagrams in Fig.
of Ref. @1#!. In this section we investigate the solutions of t
LK equations for 0,k<331023 and for 2p<v0t<p.
The other values of the parameters remain fixed and
documented in Ref.@13#, see Eq.~11!.

A. Steady state solutions

Figure 13 represents the stability diagram of the ste
state solutions. The gray area indicates the regions whe
mode is stable. Such a region is located between a sad

FIG. 11. Time traces for periodic solutions located on the fi
bridge. From left to right: (a,k)5(4,1023), (a,k)5(6,731024),
and (a,k)5(6,7.731024). Top: real part ofE. Bottom: field am-
plitude uEu.

FIG. 12. Spectra of time traces shown in Fig. 11. From left
right: (a,k)5(4,1023), (a,k)5(6,731024), and (a,k)5(6,7.7
31024). Top: optical spectrum. Bottom: rf spectrum. Note that t
rightmost case corresponds to a periodic solution with a large
riod, close to a homoclinic bifurcation.
04621
u-
e-
e

t

e

re

y
a

le-

node curve and a Hopf curve. The curve of the first Ho
bifurcation on an antimode~dashed line! is located in be-
tween these stable zones. The diagram shows that as a m
antimode pair is continued in the parameterv0t over a dis-
tance of 2p, we arrive at the next mode-antimode pair.
this way, the connecting branch of periodic solutions wh
we presented in the previous sections is transported from
pair of ECMs to the next by simply changing the feedba
phase. This explains why the structure of the differe
bridges, see Fig. 2, is so similar.

In a small region of parameter space, two modes
stable for the same parameter values. The branch of sad
node bifurcations, which delimits this region, has a cusp
p1. Analytically, it can be shown@33# that the pointp1 lies at

v0t5p2arctan~a!.1.816, ~15!

k5
1

tA11a2
.2.4331024. ~16!

Moreover, the ECM frequencybst50 at that point.
The saddle-node curve ends at the pointp2, together with

several other curves, i.e., two Hopf curves and two curve
pitchfork bifurcations. Along these curves, the intensity
the laser field goes to zero when approachingp2, which
allows its analytical determination. Note that the pointp0 in
Fig. 4 is of the same nature as pointp2, and can be deter
mined in a similar way.

To determine the values ofbs , v0t, andk at p2, we need
three conditions. A first condition is given by Eq.~12! for the
ECM frequency. At pointp2, a mode and an antimode ar
created. This implies a double zero of Eq.~12!. From the
conditiondk/dbs50, we obtain

t215k$a sin@~v01bs!t#2cos@~v01bs!t#%. ~17!

t

e-

FIG. 13. Stability diagram of the ECMs in thek vs v0t plane.
Light and dark gray regions mean one stable ECM and two sta
ECMs, respectively. Saddle-node, Hopf, and pitchfork bifurcatio
are shown by full, broken, and dashed-broken lines, respective
6-8
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Since the mode-antimode pair has zero field intensity,xs
2

50, from Eq.~13! we determine a third condition

P1k cos@~v01bs!t#50. ~18!

Equations ~12!, ~17!, and ~18! are three equations fo
bs ,v0t, andk. Note that our parameter values listed in E
~11! verify the relation

P5t21, ~19!

and implies from Eqs.~17! and ~18! that (v01bs)t5np
wheren is an integer. The pointp2 in Fig. 13 corresponds to
n51, and is located at

v0t5p2a.20.858, k5t2151023. ~20!

The critical ECM frequency is given bybst5a. At the point
p2, the characteristic equation has four zero character
roots. Butp2 is not a generic point. If the particular conditio
~19! is not verified, the point where the mode-antimode p
appears with zero field intensity does no longer fall on
branch of Hopf bifurcations.

B. Periodic solutions

The pointp2 at v0t.20.86 andk51023 is not only the
end point of curves of saddle node and Hopf bifurcations,
also the end point of several curves of bifurcation points
periodic solution branches. This is shown in Fig. 14 wh
for the sake of clarity, the parameterv0t is drawn without
the mod(2p) operation. Besides the two Hopf bifurcatio
curves that delimit the first connecting branch of perio
solutions, branches of period-doubling bifurcations, sadd
node bifurcations~for periodic solutions!, and homoclinic
trajectories~not shown! start at the pointp2. For increasing

FIG. 14. Stability diagram of periodic solutions in thek vs v0t
plane. The gray region corresponds to parameter values wher
periodic solutions on the first bridge are stable. Saddle node
periodic solutions, Hopf, period-doubling, and torus bifurcations
represented by full, broken, dashed broken, and dashed lines
spectively.
04621
.

ic

ir
a

t
n
e

-

v0t, these branches turn, merge, and split again to form
complicated bifurcation diagram. Additional saddle-node
furcations appear (v0t.1 and v0t.4.1) and disappea
again by splitting off an isolated branch of periodic solutio
(v0t.4.2). For largerv0t, the diagram becomes compa
rable to Fig. 6.

How these different bifurcation curves contribute to t
dynamical behavior can be seen in Figs. 15–17. For
values ofv0t, a bifurcation diagram in the parameterk is
shown. To the right of and close enough to the pointp2, the
branches of periodic solutions, which are born at the H
points, do not connect but tend to homoclinic trajector
from both sides. Compare, for instance, the situation
v0t50 in Figs. 14 and 15~lower part!, where there is no
connection yet, to the situation atv0t52p in Figs. 14 and
15 ~upper part!. The transition between these situations ha
pens basically in two steps.

First the two periodic branches glue together~at v0t
.1.5, see Fig. 16!. Then, a branch of periodic solution
connecting the two homoclinic trajectories, a branch t
connects a Hopf point on a mode, and a Hopf point on
antimode are obtained. This connection is in many asp
similar to those encountered before, except that mode

the
of
e
re-

FIG. 15. Bifurcation diagram of the periodic solutions; maxuEu is
represented as a function ofk for the first bridge andv0t50.
Stable and unstable branches are represented by full and br
lines, respectively. Hopf, torus, and period-doubling bifurcati
points are shown by circles, stars, and squares, respectively.

FIG. 16. Bifurcation diagram of the periodic solutions; maxuEu is
represented as a function ofk. From left to right,v0t51.4 and
v0t51.6. Stability is not indicated.
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antimode belong to the same steady state branch.
Second, the steady state branch, which connects a m

and an antimode, glues to the branch with the solitary m
~betweenv0t51.8 andv0t51.83, see Fig. 17!. As a result,
the branch now connects a mode and an antimode from
different branches. This~steady state! branching behavior
corresponds to the cusp in the branch of saddle-node b
cations~point p1 in Fig. 13!.

For largerv0t ~Fig. 14!, the branch of periodic solution
loses its saddle-node bifurcations and middle peri
doubling bifurcations. Further on, the two remaining perio
doubling bifurcations are replaced by a torus bifurcation i
scenario similar to that of Sec. IV.

VI. CONCLUSION

In this paper we studied the Lang-Kobayashi equati
for semiconductor lasers subject to optical feedback. O
study is based on the application of the numerical techniq
implemented in the package DDE-BIFTOOL for stability and
bifurcation analyses of delay differential equations. First,
showed how to exploit the symmetry properties of the eq
tions to enable the computation of both basic solutions~so-

FIG. 17. Bifurcation diagram of the periodic solutions; maxuEu is
represented as a function ofk. From left to right,v0t51.8 and
v0t51.83. Stable and unstable branches are represented by
and broken lines, respectively. Hopf, torus, and period-doubling
furcation points are shown by circles, stars, and squares, res
tively.
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lutions with constant field intensity! and solutions exhibiting
pulsating intensities. Then, we carried out a detailed bifur
tion analysis in the region of weak feedback. We showed
investigated the existence of branches of periodic soluti
connecting mode and antimode branches. Such connec
or bifurcation bridges have been suspected for some ti
but could not be shown directly without a computation
both stable and unstable parts of solution branches. The b
phenomenon here corresponds thus to a beating betwee
two frequencies associated with mode and antimode. We
ther investigated the influences of the linewidth enhancem
factor and feedback phase on the first mode-antimode bri
This analysis reveals that increasing the linewidth enhan
ment factor progressively changes the stability of the brid
but a must be high enough (a56) for rupture. Changing the
feedback phase has a different effect on the bifurcation
gram. Because the feedback phase modifies the relative
sition of nearby ECMs, bifurcation bridges are also twiste
In addition to the mode-antimode connection between d
tinct branches, a mode-antimode connection is possible
the same branch of ECM solutions~see Fig. 17!. For both the
linewidth enhancement factor and the feedback phase,
mechanism for rupture of the connecting branch of perio
solutions is through homoclinic orbits.
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