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Localization of wave patterns on classical periodic orbits in a square billiard
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The connection between wave functions and classical periodic trajectories in a square billiard is analytically
constructed by using the representation of(f8loherent states. The analytical function form is modified to
show that the wave patterns can be apparently localized on the classical periodic trajectories by superposing a
few nearly degenerate eigenfunctions. Based on the analogy between thdigpér@and Helmholtz equa-
tions, the features of wave functions are experimentally studied from the transverse pattern formation in a
laterally confined microcavity laser. The experimental transverse pattern in a square-shaped microcavity agrees
very well with the constructed wave pattern concentrated along classical periodic orbits.
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[. INTRODUCTION the reason why the wave functions related to classical peri-
odic orbits often appear in weakly perturbed integrable sys-

The two-dimensional2D) square billiard is one of the tems[16,17. In experiment, the analogy between the Sehro
simplest billiards that is completely integrable in classicaldinger and Helmholtz equatiori48] enables us to connect
mechanicg1,2]. One common periodic orbit in a 2D square the features of wave functions with the transverse modes in a
billiard is usually denoted byl,1). As shown in Fig. 1, the laterally confined microcavity laser. The experimental trans-
(1,1 periodic orbits can be characterized by a parameter verse pattern in a square-shaped cavity is generally found to
that is related to the wall positions of specular reflectionbe concentrated along classical periodic orbits. This result
points[3,4]. Some examples of periodic orbits are shown inconfirms that the wave functions related to classical periodic
Fig. 1. According to Bohr’s correspondence principle, theorbits provide a more physical description of a phenomenon
classical limit of a quantum system should be achieved whehan the true eigenstates in mesoscopic systems.
the quantum numbers go to infinity. However, the conven-
tional eigenstates of a square billiard in most quantum me-
chanics do not manifest the properties of classical periodic
orbits even in the correspondence limit of large quantum
numbers.

Although semiclassical periodic orbit theory has been Recently, Polletet al. [19] demonstrated that the wave
used to explain the scarred wave functions in quantum chagsinction of the SW2) coherent state for 2D quantum har-
[5-7], the wave functions related to stable periodic orbitsmonic oscillation is particular simple and well localized on
seem to have been overlooked. The reason for this disregatfe corresponding classical elliptical trajectory. Mathemati-
is probably that most work has focused on energy levels anga”y, the SU2) coherent state for 2D quantum harmonic
energy level statisticf8—10. Furthermore, there are some qqjjation is a superposition of eigenstates leading to a state
. X ; . . asSOuith a minimum uncertainty oAxAy, wherex andy are the
C|a§ed with the wave functions in terms of classical pe”Od'CCartesian coordinate4,15. For 2D integrable Cartesian
orbits [11-13. Therefore, to construct the connection be'.systems, the S(2) minimum-uncertainty state® y(x,y: 7)

tween Fhe eigenfunctions and clas_sical periodic trajet_:tories '8an be expressed as the superposition of number eigenstates
essentially helpful for understanding quantum-classical cor-

respondence as well as quantum transport in mesoscopic syg-Kle_E(Xﬁ.) where N is an integer constant and
tems. e
In this paper, we use the representation of Zldoherent
states[14,15 to analytically construct the wave functions N 1
related to the classical periodic trajectories in the 2D square oy — 2y —N/2 K
billiard. The noticeable I?‘inding is t]hat a superposition %on— Pn(xys D=1+ KEZO (K) TNk
taining only a few nearly degenerate eigenfunctions is al- (1)
ready sufficient for localization of the wave function inten-
sity on the classical periodic trajectory. This result explains
The parameter is, in general, complex and has a physical
meaning in thatr|? is the ratio of the average values of two
*Author to whom correspondence should be addressed. FAXguantum numbers. In the limit—0 (or 7— =), the SU2)
(886-35 729134. Electronic address: yfchen@cc.nctu.edu.tw coherent states becomes the eigenstaigy(x,y) [or

II. WAVE FUNCTIONS RELATED TO CLASSICAL
PERIODIC ORBITS
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Figure 2 depicts the) dependence of the wave function
|Wn(X,Y; ¢)|? for N=25. It can be seen that the behavior of
|W\(x,y;0)|? agrees very well with the classical periodic
orbit shown in Fig. 1. Furthermore, the distribution of
|Wn(x,y; ¢)|? illustrates geometrically Bohr’'s correspon-
dence principle: the velocity of the classical particle is at a
minimum at the specular reflection points of the motion, and
therefore the distribution has a peak at these points.

The wave function given in Ed3) represents a traveling-
wave property. The standing-wave representations can be ob-
tained by usingW¥y(x,y;¢) =P (X,Y;¢). Including the
normalization constant, the standing-wave forms can be ex-
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FIG. 1. Some classical periodic orbits. The periodic orbits are in
terms of the parametep which is related to the wall positions of
specular reflection points. W(X,Y;p)=

N

(2/a) ( N) 12

172
EQO(E)sinZ K¢}

Uno(X,y)]. In terms of the eigenstates of a 2D square bil-

liard, ¥ n—k(X,Y) is given by . . .
X (sinK¢)sin (K+1)?}
r{ wy}
2 X Xsin (N—K+1)—]|. (5)
P N-k(X,Y) = aSir{(K“‘l)?} a

The N dependence of the wave patt¢thl(x,y; ¢)|? is pre-
Ty X ) N
(N—K+1)—}, K=0,1,...N, (2 sented in Fig. 3. Here we only show the wave pattern
a |WS(x,y;#)|? because the wave patteft 3 (x,y;¢)|? is
generally the same; the value of the parametés fixed to

] _ be @/2 for convenient representation. It can be seen that a
wherea is the length of the square boundary. The numer|ca|arge quantum numbe is not necessary for the localization

calculation reveals that the classical periodic orbits shown inyf the probability density on the classical trajectory. Even so,
Fig. 1 can be figured out by setting=e'®. Using Egs.(1) it should be noted that the wave function in E@—(5) is

and (2), the condition|7|*=1 can lead to(v,)/(vy)=1  not a stationary state because the eigenstate components are
where(v,) and(v,) are the average speeds alongxrend  not degenerate for the Hamiltoni&h Nevertheless, the cal-

y axes. In other words, the general relatione'? is consis-  culation result shown in Fig. 4 reveals th&H/(H) is pro-

tent with the requirement ofv,)/(v,)=1 for the classical portional to 1N. In other words,AH/(H)—0 as N—®.
periodic obits shown in Fig. 1. Substituting E@®) and 7  This result guarantees the coherent state in B)s(5) to be

=¢e'% into Eq. (1) yields a stationary state in the classical limit.

X sin
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FIG. 2. The¢ dependence of the wave patteiiy(x,y; ¢)|? FIG. 3. TheN dependence of the wave pattdii§(x,y; ¢)|?
from Eq. (3) for N=25. The wave patterns correspond to thosefrom Eq. (4) obtained by fixinge to be #/2 to show the standing-
shown in Fig. 1. wave property.
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FIG. 4. The calculation result shown fdrH/(H) versus the 52.7 (x’ y’ 0557[)
guantum numbeN.

Equations(3)—(5) indicate that the wave function repre-
sentation consists o+ 1 Hamiltonian eigenstates. How-
ever, the numerical analysis reveals that a superposition of
only a few eigenstates is already sufficient to result in the
localization on the classical trajectory. To reflect this prop-
erty, we define the partially coherent states corresponding to
Egs.(3)—(5) as
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FIG. 5. TheM dependence of wave patte¥ry \,(x,y; ¢) from

x sin (N—K+1) my ®) Eq. (7) obtained by fixinge to be 0.55r to show the dependence of
al wave localization on the number of eigenstates.
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40 F T T T ] length have been used to study the transverse pattern forma-
tion [22—-25. VCSEL's inherently emit a single-longitudinal-
mode wave because of their extremely short cavity length.
The single-longitudinal-mode laser is a useful laboratory to
study transverse phenomena without the influence of other

30 1 degrees of freedom. Hegarét al. [24] reported interesting
transverse mode patterns from oxide-confined square-shaped
VCSEL's with large aperture. Their experimental results re-
vealed that a wave incident upon the current-guiding oxide
= 20 . boundary would undergo total internal reflection because of

large index discontinuities between the oxide layer and the
surrounding semiconductor material. In other words, the
VCSEL cavity can be considered as a planar waveguide with
10k 4 a dominant wave vector along the vertical direction.

According to the waveguide theof26], the electromag-
netic fields with a predominantly direction of propagation
can be approximated as

n*+m? =272 +27%

0 1 1 1 LJ > - . s
0 10 20 30 40 E(x,y,z,t)=E(x,y)e'Fz~ !, (10)

m where w is the angular frequency angl is the propagation
FIG. 6. A diagram illustrating the eigenspectrum of the squareC()nSt"Jmt along_the d'reCt'On'_ Using eXPreSS"?ﬁlO) in the
billiard. Each gray point represents an eigenvalue; the solid Iiné\/laxwe'II equations for f’i uniform medium gives the well-
indicates the curve of the equatiod+m2= 27+ 272 the circles ~ Known Helmholtz equatiofi26]

are the eigenstates that are selected for the wave patterns shown in 5 .
Fig. 5. [Vi+(k?—B?)]E=0, (11

where the indexM=N—2q+1 represents the number of \yherev? is the transverse part of the Laplacian operatds,
eigenstates used in the wave function. All partially coherente total propagation constant related to the angular fre-
states in Eqs(6)—(8) have similar density localization; we quency byk=w/c, andc is the wave speed. In fact, lasing
conveniently choos#y \(x,y; ¢) to demonstrate thM de-  modes in a conventional laser are usually characterized by
pendence of the wave pattern, as shown in Fig. 5. Here WRear-paraxial propagation normal to the resonator mirrors,
fix ¢ to be 0.55r only for the presentation. It can be seen yith polarization in the plane of the mirrof27,2§. Within

that only 5-9 eigenstates are adequate to localize the wayfe framework of the scalar paraxial approximation, the mag-
pattern on the classical trajectory. The eigenvalue of the emjtyde of the longitudinal fieldE,| is very much smaller
ergy corresponding to the eigenstat¢m_1,-1(X.Y)  than that of the transverse fie&,| [27]. Therefore, trans-

= (2/a)sinm(mx/a)]sin(n(my/a)] is given by verse modes in a vertical-cavity laser can be determined by
52 [\ 2 the Helmholtz equation for the transverse field. The solutions
E=——|—| (m*+n?. (9) to the Helmholtz equation with total internal reflection
2mia boundaries ;=0 at the boundajyare equivalent to the

. . lutions of the 2D Schdinger equation with hard wall
The degenerate eigenstate depends on the sum of two inte e%undariesWN:O at the boundagyof the same geometry.

squares ifi>+n?). Figure 6 shows that the eigenstates of the . .
partially coherent states in Fig. 5 are not exactly degeneratgecently’ Doyaet al. [29,30] have introduced the paraxial

but nearly degenerate. The partially coherent states in qupproxmatlon to establish an analogy between light propa-

(6)—(8) may often become the eigenstates in weakly per_g'ation along a multimode fiber and quantum confined sys-

turbed 2D square billiardsl6,17] because they can be com- tems. ACtl."a”Y’ t_he guiding _chara(_:ter i_n the oxide-confined
posed of only a few nearly degenerate eigenstates. In fact r;sssléfsés 2&2'&; tgftczgs'gl_f)spﬂ%ﬂe?bfv:’sb E(;/rea?ioSnO'cct)?ree-
the wave patterns, like partially coherent states to be local- ond trul l?o stationary states of the s stemp

ized on classical periodic orbits, have been discussed extefiP Due tg );he anallo }t;etween the SCd}l/ er.and Helm-
sively in ballistic quantum dot$20,21]. In the following 9y g

section, we demonstrate that the wave patterns of the pap-o.ItZ equa}tions[18], it is es;_entia_lly feaSible to use 'the
tially coherent states can be experimentally observed usin Xidgéc?gfrlge?es\égtsEu;nisxtlswseclrl;iicrg:crg\':\é?]\tlg | sva;\ll:ge?n
the transverse pattern formation of a confined microcavity;, .’ P q P L
laser. this case, the transverse. patterns can _revegl the probability
density of the corresponding wave functions in the 2D quan-
Il EXPERIMENTAL RESULTS AND DISCUSSION tum billiards. Here we experimentally study thg transverse
pattern formation in a square-shaped VCSEL with large ap-
Recently, vertical-cavity surface emitting semiconductorerture to compare with the wave functions in the 2D square
lasers(VCSEL's) of large transverse section and short cavitybilliards.
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FIG. 7. The experimental result for the near-field pattern of the, P P P P

) ) shown in Fig. 7.
square-shaped VCSEL device near lasing threshold. 9

mental transverse pattern and the wave pattern of the par-

Square-shaped VCSEL's with large apertures are fabritially coherent state shown in Fig. 6 indicates that the
cated by metal organic chemical vapor deposition to emit agxperimental transverse pattern can be described in terms of
a wavelength aroundl,= 795 nm. The wafers were wet oxi- a few nearly degenerate eigenstates of a perfect square bil-
dized at 425°C and the oxidation time is controlled to fab-liard. The optical spectrum information shown in Fig. 8 im-
ricate a 40um oxide aperture in a 11@m mesa structure. plies that the nearly degenerate modes are phase synchro-
The device structure of these oxide-confined VCSEL's isnized to a common frequency by the mechanism of
similar to that described by Reff24]. Experimental results cooperative frequency lockinf83]. Previous laser experi-
show that the transverse patterns of VCSEL's can be eviments have proved cooperative frequency locking to be an
dently divided into two regimes of low-divergence and high-important process in transverse pattern formafidf—34.
divergence emissions. Hereafter we will concentrate on th@s seen in Fig. 6, a lot of nearly degenerate modes can be
high-divergence emission, which appears only at reducegelected in the process of cooperative frequency locking.
temperature and near-threshold operation. It is expected thifowever, the mode selection rule is based on the criterion
the thermal-lensing effect will switch the device into the that the resultant field structure should have the minimum
low-divergence regime because joule heating induces a tenmode volume for the lowest lasing threshold. The criterion of
perature rise across the device cross section. Typically, higha minimum-volume mode that corresponds to the minimum
divergence patterns are very symmetric and those of lowiree energy is equivalent to wave localization along the clas-
divergence are more irregular. Therefore it is easy to differsical trajectory. This is why the experimental transverse pat-
entiate the regimes in which the lasers are being operated.terns have a connection with the partially coherent states

The near-field patterns are measured with a chargerelated to classical trajectories. This result confirms that the
coupled device camer@oherent, Beam-Codleand an opti-  wave functions related to classical periodic orbits provide a
cal setup similar to that described in Rg€24]. The trans- more physical description of a phenomenon than the true
verse mode spectral information of the laser is monitored byigenstates in mesoscopic systems.
an optical spectrum analyzékdvantest Q834) The present
spectrum analyzer employs a Michelson interferometer with
a Fourier spectrum system to reach a resolution of 0.002 nm.
The transverse mode spacing can be derived Aas We have analytically connected the wave function with
~)\§/(4a2)=0.0785 nm. Since the resolution of the spec-the classical periodic trajectory in a square billiard using the
trum analyzer is 0.002 nm, the transverse mode spectral irrepresentation of S(@) coherent states. We have further
formation can be clearly resolved. We cooled the device to anodified the analytical form to demonstrate that only a few
temperature around 0—10 °C. Near lasing threshold the trangearly degenerate eigenfunctions are already adequate to re-
verse pattern emitted from the present VCSEL device isult in the localization of the wave pattern on the classical
found to be linearly polarized and highly concentrated alongperiodic trajectory. In the experiment, we use the analogy
the classical orbit, as shown in Fig. 7. The measurement dfetween the Schdinger and Helmholtz equations to study
the optical spectrum for the laser beam is depicted in Fig. 8the features of wave functions from transverse pattern forma-
The result reveals that the linearly polarized transversdion in a laterally confined microcavity laser. In a square-
pattern is a single-frequency oscillation; namely, it is a stashaped microcavity, the experimental transverse pattern
tionary state. The excellent similarity between the experi-agrees very well with the theoretical wave pattern concen-

IV. CONCLUSIONS
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