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Localization of wave patterns on classical periodic orbits in a square billiard
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The connection between wave functions and classical periodic trajectories in a square billiard is analytically
constructed by using the representation of SU~2! coherent states. The analytical function form is modified to
show that the wave patterns can be apparently localized on the classical periodic trajectories by superposing a
few nearly degenerate eigenfunctions. Based on the analogy between the Schro¨dinger and Helmholtz equa-
tions, the features of wave functions are experimentally studied from the transverse pattern formation in a
laterally confined microcavity laser. The experimental transverse pattern in a square-shaped microcavity agrees
very well with the constructed wave pattern concentrated along classical periodic orbits.
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I. INTRODUCTION

The two-dimensional~2D! square billiard is one of the
simplest billiards that is completely integrable in classi
mechanics@1,2#. One common periodic orbit in a 2D squa
billiard is usually denoted by~1,1!. As shown in Fig. 1, the
~1,1! periodic orbits can be characterized by a parametef
that is related to the wall positions of specular reflect
points @3,4#. Some examples of periodic orbits are shown
Fig. 1. According to Bohr’s correspondence principle, t
classical limit of a quantum system should be achieved w
the quantum numbers go to infinity. However, the conv
tional eigenstates of a square billiard in most quantum m
chanics do not manifest the properties of classical perio
orbits even in the correspondence limit of large quant
numbers.

Although semiclassical periodic orbit theory has be
used to explain the scarred wave functions in quantum ch
@5–7#, the wave functions related to stable periodic orb
seem to have been overlooked. The reason for this disre
is probably that most work has focused on energy levels
energy level statistics@8–10#. Furthermore, there are som
striking phenomena in open quantum ballistic cavities as
ciated with the wave functions in terms of classical perio
orbits @11–13#. Therefore, to construct the connection b
tween the eigenfunctions and classical periodic trajectorie
essentially helpful for understanding quantum-classical c
respondence as well as quantum transport in mesoscopic
tems.

In this paper, we use the representation of SU~2! coherent
states@14,15# to analytically construct the wave function
related to the classical periodic trajectories in the 2D squ
billiard. The noticeable finding is that a superposition co
taining only a few nearly degenerate eigenfunctions is
ready sufficient for localization of the wave function inte
sity on the classical periodic trajectory. This result expla
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the reason why the wave functions related to classical p
odic orbits often appear in weakly perturbed integrable s
tems@16,17#. In experiment, the analogy between the Sch¨-
dinger and Helmholtz equations@18# enables us to connec
the features of wave functions with the transverse modes
laterally confined microcavity laser. The experimental tra
verse pattern in a square-shaped cavity is generally foun
be concentrated along classical periodic orbits. This re
confirms that the wave functions related to classical perio
orbits provide a more physical description of a phenomen
than the true eigenstates in mesoscopic systems.

II. WAVE FUNCTIONS RELATED TO CLASSICAL
PERIODIC ORBITS

Recently, Polletet al. @19# demonstrated that the wav
function of the SU~2! coherent state for 2D quantum ha
monic oscillation is particular simple and well localized o
the corresponding classical elliptical trajectory. Mathema
cally, the SU~2! coherent state for 2D quantum harmon
oscillation is a superposition of eigenstates leading to a s
with a minimum uncertainty ofDxDy, wherex andy are the
Cartesian coordinates@14,15#. For 2D integrable Cartesian
systems, the SU~2! minimum-uncertainty statesCN(x,y;t)
can be expressed as the superposition of number eigens
cK,N2K(x,y) where N is an integer constant andK
50,1,2,...,N:

CN~x,y;t!5~11utu2!2N/2(
K50

N S N
K D 1/2

tKcK,N2K~x,y!.

~1!

The parametert is, in general, complex and has a physic
meaning in thatutu2 is the ratio of the average values of tw
quantum numbers. In the limitt→0 ~or t→`), the SU~2!
coherent states becomes the eigenstatec0,N(x,y) @or
:
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cN,0(x,y)]. In terms of the eigenstates of a 2D square b
liard, cK,N2K(x,y) is given by

cK,N2K~x,y!5
2

a
sinF ~K11!

px

a G
3sinF ~N2K11!

py

a G , K50,1,...,N, ~2!

wherea is the length of the square boundary. The numeri
calculation reveals that the classical periodic orbits show
Fig. 1 can be figured out by settingt5eif. Using Eqs.~1!
and ~2!, the condition utu251 can lead to^vx&/^vy&51
where^vx& and^vy& are the average speeds along thex and
y axes. In other words, the general relationt5eif is consis-
tent with the requirement of̂vx&/^vy&51 for the classical
periodic obits shown in Fig. 1. Substituting Eq.~2! and t
5eif into Eq. ~1! yields

FIG. 1. Some classical periodic orbits. The periodic orbits are
terms of the parameterf which is related to the wall positions o
specular reflection points.
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CN~x,y;f!5S 2

aD 1

2N/2 (
K50

N S N
K D 1/2

eiKf

3sinF ~K11!
px

a GsinF ~N2K11!
py

a G .
~3!

Figure 2 depicts thef dependence of the wave functio
uCN(x,y;f)u2 for N525. It can be seen that the behavior
uCN(x,y;f)u2 agrees very well with the classical period
orbit shown in Fig. 1. Furthermore, the distribution
uCN(x,y;f)u2 illustrates geometrically Bohr’s correspon
dence principle: the velocity of the classical particle is a
minimum at the specular reflection points of the motion, a
therefore the distribution has a peak at these points.

The wave function given in Eq.~3! represents a traveling
wave property. The standing-wave representations can be
tained by usingCN(x,y;f)6CN* (x,y;f). Including the
normalization constant, the standing-wave forms can be
pressed as

CN
c ~x,y;f!5

~2/a!

F(K50
N S N

K D cos2 Kf G1/2 (
K50

N S N
K D 1/2

3~cosKf!sinF ~K11!
px

a G
3sinF ~N2K11!

py

a G ~4!

and

CN
s ~x,y;f!5

~2/a!

F(K50
N S N

K D sin2 Kf G1/2 (
K50

N S N
K D 1/2

3~sinKf!sinF ~K11!
px

a G
3sinF ~N2K11!

py

a G . ~5!

TheN dependence of the wave patternuCN
c (x,y;f)u2 is pre-

sented in Fig. 3. Here we only show the wave patte
uCN

c (x,y;f)u2 because the wave patternuCN
s (x,y;f)u2 is

generally the same; the value of the parameterf is fixed to
be p/2 for convenient representation. It can be seen tha
large quantum numberN is not necessary for the localizatio
of the probability density on the classical trajectory. Even
it should be noted that the wave function in Eqs.~3!–~5! is
not a stationary state because the eigenstate componen
not degenerate for the HamiltonianH. Nevertheless, the cal
culation result shown in Fig. 4 reveals thatDH/^H& is pro-
portional to 1/N. In other words,DH/^H&→0 as N→`.
This result guarantees the coherent state in Eqs.~3!–~5! to be
a stationary state in the classical limit.

n
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FIG. 2. Thef dependence of the wave patternuCN(x,y;f)u2

from Eq. ~3! for N525. The wave patterns correspond to tho
shown in Fig. 1.
04621
FIG. 3. TheN dependence of the wave patternuCN
c (x,y;f)u2

from Eq. ~4! obtained by fixingf to bep/2 to show the standing-
wave property.
5-3
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Equations~3!–~5! indicate that the wave function repre
sentation consists ofN11 Hamiltonian eigenstates. How
ever, the numerical analysis reveals that a superpositio
only a few eigenstates is already sufficient to result in
localization on the classical trajectory. To reflect this pro
erty, we define the partially coherent states correspondin
Eqs.~3!–~5! as

CN,M~x,y;f!5
~2/a!

F(K5q
N2qS N

K D G1/2 (
K5q

N2q S N
K D 1/2

exp~ iKf!

3sinF ~K11!
px

a GsinF ~N2K11!
py

a G ,
~6!

CN,M
c ~x,y;f!5

~2/a!

F(K5q
N2qS N

K D cos2 Kf G1/2 (
K5q

N2q S N
K D 1/2

3~cosKf!sinF ~K11!
px

a G
3sinF ~N2K11!

py

a G , ~7!

and

CN,M
s ~x,y;f!5

~2/a!

F(K5q
N2qS N

K D sin2 Kf G1/2 (
K5q

N2q S N
K D 1/2

3~sinKf!sinF ~K11!
px

a G
3sinF ~N2K11!

py

a G , ~8!

FIG. 4. The calculation result shown forDH/^H& versus the
quantum numberN.
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FIG. 5. TheM dependence of wave patternCN,M
c (x,y;f) from

Eq. ~7! obtained by fixingf to be 0.55p to show the dependence o
wave localization on the number of eigenstates.
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where the indexM5N22q11 represents the number o
eigenstates used in the wave function. All partially coher
states in Eqs.~6!–~8! have similar density localization; w
conveniently chooseCN,M

c (x,y;f) to demonstrate theM de-
pendence of the wave pattern, as shown in Fig. 5. Here
fix f to be 0.55p only for the presentation. It can be see
that only 5–9 eigenstates are adequate to localize the w
pattern on the classical trajectory. The eigenvalue of the
ergy corresponding to the eigenstatecm21,n21(x,y)
5(2/a)sin@m(px/a)#sin@n(py/a)# is given by

E5
\2

2m S p

a D 2

~m21n2!. ~9!

The degenerate eigenstate depends on the sum of two in
squares (m21n2). Figure 6 shows that the eigenstates of t
partially coherent states in Fig. 5 are not exactly degene
but nearly degenerate. The partially coherent states in
~6!–~8! may often become the eigenstates in weakly p
turbed 2D square billiards@16,17# because they can be com
posed of only a few nearly degenerate eigenstates. In
the wave patterns, like partially coherent states to be lo
ized on classical periodic orbits, have been discussed ex
sively in ballistic quantum dots@20,21#. In the following
section, we demonstrate that the wave patterns of the
tially coherent states can be experimentally observed u
the transverse pattern formation of a confined microca
laser.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Recently, vertical-cavity surface emitting semiconduc
lasers~VCSEL’s! of large transverse section and short cav

FIG. 6. A diagram illustrating the eigenspectrum of the squ
billiard. Each gray point represents an eigenvalue; the solid
indicates the curve of the equationn21m252721272; the circles
are the eigenstates that are selected for the wave patterns sho
Fig. 5.
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length have been used to study the transverse pattern fo
tion @22–25#. VCSEL’s inherently emit a single-longitudinal
mode wave because of their extremely short cavity leng
The single-longitudinal-mode laser is a useful laboratory
study transverse phenomena without the influence of o
degrees of freedom. Hegartyet al. @24# reported interesting
transverse mode patterns from oxide-confined square-sh
VCSEL’s with large aperture. Their experimental results
vealed that a wave incident upon the current-guiding ox
boundary would undergo total internal reflection because
large index discontinuities between the oxide layer and
surrounding semiconductor material. In other words,
VCSEL cavity can be considered as a planar waveguide w
a dominant wave vector along the vertical direction.

According to the waveguide theory@26#, the electromag-
netic fields with a predominantlyz direction of propagation
can be approximated as

EW ~x,y,z,t !5EW ~x,y!ei ~bz2vt !, ~10!

wherev is the angular frequency andb is the propagation
constant along thez direction. Using expression~10! in the
Maxwell equations for a uniform medium gives the we
known Helmholtz equation@26#

@¹ t
21~k22b2!#EW 50W , ~11!

where¹ t
2 is the transverse part of the Laplacian operator,k is

the total propagation constant related to the angular
quency byk5v/c, andc is the wave speed. In fact, lasin
modes in a conventional laser are usually characterized
near-paraxial propagation normal to the resonator mirro
with polarization in the plane of the mirrors@27,28#. Within
the framework of the scalar paraxial approximation, the m
nitude of the longitudinal fielduEzu is very much smaller
than that of the transverse fielduEtu @27#. Therefore, trans-
verse modes in a vertical-cavity laser can be determined
the Helmholtz equation for the transverse field. The solutio
to the Helmholtz equation with total internal reflectio
boundaries (Et50 at the boundary! are equivalent to the
solutions of the 2D Schro¨dinger equation with hard wal
boundaries (CN50 at the boundary! of the same geometry
Recently, Doyaet al. @29,30# have introduced the paraxia
approximation to establish an analogy between light pro
gation along a multimode fiber and quantum confined s
tems. Actually, the guiding character in the oxide-confin
VCSEL’s is similar to that in optical fibers. Even so, th
transverse patterns of VCSEL’s under cw operation co
spond truly to stationary states of the system.

Due to the analogy between the Schro¨dinger and Helm-
holtz equations@18#, it is essentially feasible to use th
oxide-confined VCSEL cavities like microwave cavitie
@31,32# to represent quantum mechanical potential wells.
this case, the transverse patterns can reveal the proba
density of the corresponding wave functions in the 2D qu
tum billiards. Here we experimentally study the transve
pattern formation in a square-shaped VCSEL with large
erture to compare with the wave functions in the 2D squ
billiards.
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CHEN, HUANG, AND LAN PHYSICAL REVIEW E 66, 046215 ~2002!
Square-shaped VCSEL’s with large apertures are fa
cated by metal organic chemical vapor deposition to emi
a wavelength aroundlz5795 nm. The wafers were wet ox
dized at 425 °C and the oxidation time is controlled to fa
ricate a 40mm oxide aperture in a 110mm mesa structure
The device structure of these oxide-confined VCSEL’s
similar to that described by Ref.@24#. Experimental results
show that the transverse patterns of VCSEL’s can be
dently divided into two regimes of low-divergence and hig
divergence emissions. Hereafter we will concentrate on
high-divergence emission, which appears only at redu
temperature and near-threshold operation. It is expected
the thermal-lensing effect will switch the device into th
low-divergence regime because joule heating induces a
perature rise across the device cross section. Typically, h
divergence patterns are very symmetric and those of
divergence are more irregular. Therefore it is easy to dif
entiate the regimes in which the lasers are being operate

The near-field patterns are measured with a cha
coupled device camera~Coherent, Beam-Code! and an opti-
cal setup similar to that described in Ref.@24#. The trans-
verse mode spectral information of the laser is monitored
an optical spectrum analyzer~Advantest Q8347!. The present
spectrum analyzer employs a Michelson interferometer w
a Fourier spectrum system to reach a resolution of 0.002
The transverse mode spacing can be derived asDl t

'lz
3/(4a2)50.0785 nm. Since the resolution of the spe

trum analyzer is 0.002 nm, the transverse mode spectra
formation can be clearly resolved. We cooled the device
temperature around 0–10 °C. Near lasing threshold the tr
verse pattern emitted from the present VCSEL device
found to be linearly polarized and highly concentrated alo
the classical orbit, as shown in Fig. 7. The measuremen
the optical spectrum for the laser beam is depicted in Fig
The result reveals that the linearly polarized transve
pattern is a single-frequency oscillation; namely, it is a s
tionary state. The excellent similarity between the expe

FIG. 7. The experimental result for the near-field pattern of
square-shaped VCSEL device near lasing threshold.
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mental transverse pattern and the wave pattern of the
tially coherent state shown in Fig. 6 indicates that t
experimental transverse pattern can be described in term
a few nearly degenerate eigenstates of a perfect square
liard. The optical spectrum information shown in Fig. 8 im
plies that the nearly degenerate modes are phase syn
nized to a common frequency by the mechanism
cooperative frequency locking@33#. Previous laser experi
ments have proved cooperative frequency locking to be
important process in transverse pattern formation@34–36#.
As seen in Fig. 6, a lot of nearly degenerate modes can
selected in the process of cooperative frequency lock
However, the mode selection rule is based on the criter
that the resultant field structure should have the minim
mode volume for the lowest lasing threshold. The criterion
a minimum-volume mode that corresponds to the minim
free energy is equivalent to wave localization along the cl
sical trajectory. This is why the experimental transverse p
terns have a connection with the partially coherent sta
related to classical trajectories. This result confirms that
wave functions related to classical periodic orbits provide
more physical description of a phenomenon than the t
eigenstates in mesoscopic systems.

IV. CONCLUSIONS

We have analytically connected the wave function w
the classical periodic trajectory in a square billiard using
representation of SU~2! coherent states. We have furth
modified the analytical form to demonstrate that only a f
nearly degenerate eigenfunctions are already adequate t
sult in the localization of the wave pattern on the classi
periodic trajectory. In the experiment, we use the analo
between the Schro¨dinger and Helmholtz equations to stud
the features of wave functions from transverse pattern for
tion in a laterally confined microcavity laser. In a squar
shaped microcavity, the experimental transverse pat
agrees very well with the theoretical wave pattern conc

e
FIG. 8. A plot of the optical spectrum of the transverse patt

shown in Fig. 7.
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trated along classical periodic orbits. The experimental re
evidences that the wave function obtained as a linear su
position of a few nearly degenerate eigenstates can provi
more physical description of a phenomenon than the
eigenstates in mesoscopic systems.
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