PHYSICAL REVIEW E 66, 046210 (2002
Rayleigh-Benard convection with a radial ramp in plate separation
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Pattern formation in Rayleigh-Bard convection in a large-aspect-ratio cylinder with a radial ramp in the
plate separation is studied analytically and numerically by performing numerical simulations of the Boussinesq
equations. A horizontal mean flow and a vertical large scale counterflow are quantified and used to understand
the pattern wave number. Our results suggest that the mean flow, generated by amplitude gradients, plays an
important role in the roll compression observed as the control parameter is increased. Near threshold, the mean
flow has a quadrupole dependence with a single vortex in each quadrant while away from threshold the mean
flow exhibits an octupole dependence with a counterrotating pair of vortices in each quadrant. This is con-
firmed analytically using the amplitude equation and Cross-Newell mean flow equation. By performing nu-
merical experiments, the large scale counterflow is also found to aid in the roll compression away from
threshold but to a much lesser degree. Our results yield an understanding of the pattern wave numbers observed
in experiment away from threshold and suggest that near threshold the mean flow and large scale counterflow
are not responsible for the observed shift to smaller than critical wave numbers.
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[. INTRODUCTION separation have generated intriguing results. Specifically, the
plate separation as a function of radius used in experiment is,
Rayleigh-B@ard convection in a thin horizontal fluid using the layer deptl to nondimensionalize,
layer heated from below is a canonical example of pattern

formation in a continuous dissipative system far from equi- 1 r<ryg
librium [1]. Under various conditions, wave number selec- h(r)= r—ro 2
tion mechanisms have been identifidd-4] that reduce the 1-6, 1—003(r . r=rq

1~ 1o

band of stable wave numbers, sometimes to a single value.

One such selection mechanism occurs when there is a one-h s d the radi | q h
dimensional spatial variation or ramping of the control pa-VN€r€or Is a constant and the radius valugsandr, are the

rametere; wheree=(R—R,)/R., Ris the Rayleigh number, locations where the ramp begins and ends, respectively. The

andR, is its critical value{5—10]. This can be accomplished "&MP always _extends to the_: sid_ewall. A schematic of the
by varying the plate separatiah such thate goes frome cosiné ramp 1S shown in Fig. 1, nqte theg and r, are
=€,>0 in the bulk of the layefi.e., the unramped region geomet_rlc cpnstants_ but, th_e location where the plate
to e<0 as a lateral boundary is approached. It is expecteccf‘aparat'On yieldRg, is a funciion of the ramp shape argl
that in the idealized case of an infinitely gradual one-Such that, for a ramp given by E), dr./dey>0.

- - : Experiments using the cosine ramp defined by &j.
dimensional ramp the wave number will eqlalat the po- .
sition where the layer depth yield?.. It has been shown have yielded unexpected results for the wave numdrl].

under very general conditions, that as long as the layer bé\_/lean pattern wave number measurenlémmg the Fourier
comes critical somewhere along the ramp this is sufficient tén€thods discussed in RéfL2]) yieldedk.=2.97<k.. Ad-

fix the wave numbeks in the bulk and over the rest of the ditionally, measurements of the local wave number defined at
ramp[6]. For slightly supercritical conditions it is expected €ach position in spacémethod discussed in Ref13]) dis-

that the selected wave number in the bulk can be expressédidyed interesting variation as, is increased. For the time

as
z

ks:Rc"' €y, (1) \
r

wherek.=k.=3.117[9] anda depends on the Prandtl num-

ber, o, and the s_pecnﬁcs of the rar_np. . . FIG. 1. Avertical cross section of a cylindrical convection layer
Recent Raylelgh—erd convection experimenit8,11]in it 4 radial ramp in plate separation, defines where the ramp
a cylindrical cell with a two-dimensional radial ramp in plate begins,r, defines where the ramp ends andis where the plate
separation corresponds to the critical Rayleigh number. The ramp
shown is a cosine ramp given by HE). For presentation purposes
*Electronic address: mpaul@caltech.edu; we show a steep ramp wit#} = 0.25(this domain is not used in the
URL http://www.cmp.caltech.edu/~stchaos simulations.
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independent patterns the bulk regiansry, contains ap-
proximately straight parallel rolls. Near threshold,
=0.048, a centered egg-shaped domain of convection rolls
with small wave numberk<k., extends through the con-
vection cell with the long-axigarallel to the roll axes. A
dramatic roll expansion frork~3.6 at the edge where the =10, andé,=0.15. A steep ramp is shown to clearly illustrate the
ramp begms. ik~2.6 in the center of th.e domain IS.Ob_ flow. Solid rvertical lines izdicatg the boundaries gf the spectral
Serveq. AsEq mcrea.lses’ the wave number field evolves mto. aelement grid used in the simulation, only a portion of the layer is
domain characterized by large wave numbers extendmghoWn emphasizing the ramped region.

through the layer with the long-axjgerpendicularto the roll

axes(see Fig. 3 of9]). Similar experiments without a ramp ¢ o) widths toward the center of the domain. For the

do not exhibit this wave number behavidr4—18. _gradual ramp used in experiment the large scale counterflow
In the experiments with a radial ramp in plate separation;g small in magnitude and has not been measured.
for €g=0.03, time dependent states were found through the

repeated formation of defects via an Eckhaus mechanism
consistent with the local wave numbers crossing the Eckhaus
stability boundary for an ideal infinite layer of two- In discussing the mean flow it will be convenient to first
dimensional rolls. Also in the ramped experiments, é&r  present the governing heat and fluid equations. The velocity
=0.18, defects were formed via a skewed varicose mechas, temperatureT, and pressur, evolve according to the
nism consistent with the local wave number exceeding th&oussinesq equations,

skewed varicose stability boundary for an ideal infinite layer

FIG. 2. Velocity vectors illustrating the large scale counterflow
for a vertical slice of a cylindrical convection layer for subcritical
conditions, ;= —0.063. The ramp parameters arg=7.66, r,

B. Mean flow

of two-dimensional rolls similar to what has been observed o Yo +u-V)u=—Vp+RTz+ V2, 3

in experiments in unramped cylindrical domains with rigid

sidewalls[17]. (d,+ u-v)T=V2T, (4)
It has been suggested that these features may be the result

of the interaction of the convective roll pattern and weak V.u=0, (5)

large scale flow$9]. The visualization and quantification of

these large scale flows is not possible in the current genergghere , indicates time differentiation, aris a unit vector

tion of experiments. However, we are able to make thesg, ihe vertical direction opposite to gravity. The equations are

measurements by performing full numerical simulations with,ondimensionalized in the standard manner using the layer

a new spectral element codéiscussed further in Sec. JlI depthd, the vertical diffusion time for heat,=d? x, where

We utilize the complete knowledge of the flow field together,. is the thermal diffusivity, and\T is the temperature dif-

with analytical results valid near threshold to explore thiStarence between the top and bottom surfaces, as the length,

further. time, and temperature scales, respectively. The lower and
upper surfaces are no-slip and are held at constant tempera-

Il. LARGE SCALE FLOWS ture. The sidewalls are also no-slip and, unless otherwise

noted, are insulating.

In this work the terminology large scale flows is used to The mean flow fieId,fJ(x,y), is the horizontal velocity
describe flows that extend over distances larger than that Gfitegrated over the depth and originates from the Reynolds
the convection roll scale. We would like to distinguish be-gyess induced by pattern distortions. As illustrated by the
tween two different large scale flowisrge scale counterflow g equations, Eqs(3) and (5), it is evident that the pres-
andmean flow sure is not an independent dynamic variable. The pressure is

determined implicitly to enforce incompressibility,
A. Large scale counterflow . N
, , _ V2p=—0"1V-[(u-V)u]+Ra,T. (6)

In the presence of a spatial ramp in plate separation a
large SICa|e Counterflt_)wlisdpresent (;‘orv\:;lll vaH@S of thedbu"q:ocussing on the nonlinear Reynolds stress term and rewrit-
control parametek,, including e,<<0. Warm fluid ascends ; _ o ;
the ram% eventuaﬁy reaching tohe sidewall and is forced t0 2 the pressure as=po(x.y) + p(x.y.2) yields
flow back toward the center of the domain over the cold top R .
wall causing it to descend resulting in a large zone of circu- po(X,Y)NU_lf dx'dy’In(1/[r=r'[){V"-[(u-V)u]),,
lation in the vertical plane over the ramp. The magnitude of 7)
the large scale counterflow depends upon the specifics of the
ramp and is roughly independent &f and o [18]. Figure 2  where(- ), represents an average in thdirection. In Eq.(7)
illustrates this with a vertical slice from a three-dimensionalthe In(1/r —r’|) is not exact, in order to be more precise the
numerical simulation where the entire convection layer isfinite system Green’s function would be required; however,
subcritical. As shown for this subcritical case the fluid mo-the long range behavior persists. This gives a contribution to
tion of the large scale counterflow generates axisymmetrithe pressure that depends on distant parts of the convection
convection near the base of the ramp which extends a coupfgattern. The Poiseuille-like flow driven by this pressure field
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subtracts from the Reynolds stress induced flow leading to a y

divergence free horizontal flow that can be described in -

terms of a vertical vorticity. e ™~
Near threshold an explicit expression for the mean flow is / >(

[19] /

D\,

G(x,y) = — yRY, - (RA2) — ¥, po(x,y), ® A

where y is a coupling constant given by=0.420"(o
+0.34)(c+0.51)", A? is the convection amplitude nor-
malized so that the convective heat flow per unit area relative \\ /
to the conducted heat flow & is |A|?R/R;, p, is a slowly " /

varying pressure, see E), andV, is the horizontal gradi- ]
ent operatofsee Refs[20,21] for the complete analysis and

more detail§ The mean flow is important not because of its i, 3. Cartesianx,y) and polar ¢, ) coordinates defined on a

strength; under most conditions the magnitude of the meagiddepth horizontal cross section of a cylindrical convection layer
flow is substantially smaller than the magnitude of the rollgontaining a field o rolls described byk =k x.

flow making it extremely difficult to quantify experimentally.

The mean flow is important because it is a nonlocal effect - : - L
; : . whereu, is the horizontal velocity field. Furthermore it will

acting over large distancesany roll widthg and changes b ent t K with th ficit tential defined

important general predictions of the phase equdti®@ The € convenient to work wi e vorticity potentid], define

mean flow is driven by roll curvature, roll compression, and®®

gradients in the convection amplitude. The resulting mean 5 ~ -

flow advects the pattern giving an additional slow time de- Vig==2(V XUy =~wy, (10)

pendence. It is important to note, that unlike the long range

counterflow, the magnitude of the mean flow vanishes wheWhere o, is the vertical vorticity andv{ is the horizontal

the convection layer becomes critichl]|~ ¢, for e;<1. Laplacian.

IV. ANALYTICAL DEVELOPMENT
IIl. NUMERICAL SIMULATION

) ) ) Near threshold, assuming straight parallel rolls, it is pos-

erning fluid and heat equations, E¢8)—(5), in a cylindrical  ¢onyenient to start from, given by the vertical component
geometry with a radial ramp in plate separation using a parf the curl of Eq.(8),

allel spectral element algorithrtdescribed in detail else-
where[22], see Refs[23,24 for related applications

For discussion purposes it will be convenient to define
Cartesian X,y) and polar ¢,0) coordinates centered on a Consid lindrical ion | ith dial .
middepth horizontal slice of a cylindrical convection layer onsi eracy_ln fica C-OT?VGC'[IOH- ayer with a r_a 'a ranjp n
containing a field of straight parallglrolls with wave vector ~Plate separation containing a field afrolls given by k
k=kox as shown in Fig. 3. The axis is perpendicular to the = KoX. The amplitude can be repzresented for laegeusing
roll axes, they axis is parallel to the roll axes artimeasures @n Zadlabatlc approximation, 8%= €(r)/g, for >0 and
the angle from the positive axis. |A]| =0 for e(r2)<0, making the amplitude a function of

We have investigated the results found in experiment byadius 0_”|Y|A| =f(r). This approximation is good except
performing simulations on a ramped cylindrical convectionfor the kink atr wheree=0. Inserting|A|*=f(r) into Eq.
layer for a variety of scenarios and initial conditions. Simu-(11) yields, after some manipulation, the following expres-
lations were performed over the rangg<0.2 and for simu-  Sion for the vertical vorticity,
lation times oft;> 7;,, wherer,=r3 is the time required for 5
heat to diffuse horizontally across the bulk region of the A
layer which has been suggested as the earliest time scale for W=~
the flow field to reach equilibriurh19].

The mean flow present in the simulation flow fields, 14 <orrect for nonadiabaticity and to smod&(r)|2 nearr.,

Ug(x,y), is investigated by calculating the depth averagedhe one-dimensional time independent amplitude equation is
horizontal velocity, solved,

w,=2-(V, xU)=—yz-V, X[KkV, - (K|A]®)]. (11

d?|Al2  1d|AJ?

dr? r dr

sin 26. (12

- 1. » o O°A )
Us(x,y)zf u,dz ©) 0=e(r)A+§oco§0F—go|A| A, (13
0
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FIG. 4. The solution of Eq(15 plotted asA?(r) for rq
=42.29, r,=47.56, r;=101.33, 5,=0.036, 0=0.87, and ¢,
=4.20x 10" 3. Also shown for comparison is(r)/g, .

where angular derivatives have been assumed srﬁéll,
=0.148,9,=0.6995-0.004% 1+ 0.0083 2, ande(r) is
determined by

€0
eo(h*=h3)/(1-h))

r<ro

e(r)= (14

r=rg,

whereh,=h(r.). In Eq. (11) w, is dominated by radial de-
rivatives, so Eq.(12) is still a good approximation for the
case|A|?=1(r,6), d/dr—a/dr. Due to the angular depen-
dence of the nonadiabaticitp|? is now # dependent which
will induce higher angular harmonics w,. We will neglect
these higher harmonics, assume a gid2pendence and ap-
proximately evaluate the magnitude using Ed2) and(13)

at = m/4. Equation(13) can be rewritten in a more conve-
nient form as,

(15

wherer = (e, Y%,cosf)r and A=(e,/9,)?A [19] (since
the amplitude goes to zero it can be shown thas now a
real quantity{ 25]). Equation(15) is solved numerically using

the boundary conditions;A=0 atr=0, and A=0 atr
= I‘l.

These analytical results are now used to investigate the

vertical vorticity generation in a large radially ramped cylin-
drical convection layer. We start by looking at the configu-

ration used in the recent experiments with input parameters:

ro=42.29,r,=101.33,8,=0.036, andr=0.87.
Wheneot2, 1 (r.—ro) <1 the amplitudeA?(r) is unable

to adiabatically follow the ramp, this nonadiabaticity results

in a considerable deviation froe(r)/g, as shown in Fig. 4.
However, wheney'%,*(r.—ro)>1 the amplitudeA?(r)
follows €(r)/g, adiabatically almost over the entire ramp
except for the small kink at, as shown in Fig. 5. The struc-
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FIG. 5. The solution of Eq.(15) plotted asA?(r) for r,
=42.29, r.=80.05, r;=101.33, §,=0.036, 0=0.87, and ¢,
=0.17. Also shown for comparison ir)/g, -

various values ok in Fig. 6 where the sin@ dependence
has been removed by choosifigr /4.

If the 6 dependence is included it is evident from Fig. 6
that the vertical vorticity has a quadrupole angular structure
for small g, i.e., four lobes of alternating positive and nega-
tive vorticity with one lobe per quadrant, and makes a tran-
sition to an octupole angular dependence for lakggroctu-
pole in the sense of an inner<r., and outer,r=r,
quadrupole. In addition, sincér./dey,>0 there is a radial
shift of the vorticity curves ag is increased.

In all cases the amplitud&?(r) decreases monotonically
with r and as a result-r ~* d|A|?/dr=0 thus generating
only positive vorticity. However, the term’|A|?/dr? can be
of either sign and is responsible for the quadrupole and oc-
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FIG. 6. Dependence of the radial variations®f= w,(r) with €
as determined analytically from Eg&l2) and (15) illustrating the
evolution from a mean flow with a quadrupole dependence to an
octupole dependence ag increases. Shown explicitly are,
curves fore,=7.2x10"2, 4.2<10 %, and 1.3<10 2 with the pa-
rametersr,=42.29,r,=101.33, §,=0.036, ando=0.87 labeled

ture of w, depends upon this adiabaticity and is shown for(a)—(c), respectively.
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3x10* T —T T T of Ak~1.0 (eg=0.012 see Fig. @) of [9]) a mean flow of
U~0.014 would be required, which is not found in the ana-
lytic results.
x10™
2x10 V. DISCUSSION
o
4 The large scale flows discussed in Sec. Il cannot be mea-
= . sured in current experiments placing us in a unique position
1107

to use the complete flow field information from our full nu-
merical simulations of Eq$3)—(5) together with the analyti-
cal results of Sec. IV to investigate how the mean flow and
the large scale counterflow induce wave number distortions
= ) . ; and the variation of this distortion with Rayleigh number.
25 50 75 100 It is computationally expensive to perform full three-
dimensional numerical simulations for the very large system
FIG. 7. Variation of the mean flow),(y=0) with ¢, as deter- used in experiment. We have, however, performed a variety
mined from Eq.(10). Shown explicitly are curves foe,=7.2  of simulations for radially ramped cylindrical convection
X103, 4.2x10°3, and 1.3<10® labeled (a)—(c), respectively, layers. The full three-dimensional simulations are of smaller
with the parameters,=42.29, r;=101.33, §,=0.036 ando  spatial extent with the precise ramp defined by &j}.and
=0.87. the specific input parameterst,=11.31, r,;=20, &,
=0.036, ando=0.87. Two-dimensional simulations of a
tupole angular structure iw,. As €, approaches zero the vertical slice of a three-dimensional domésee Fig. 1were
nonadiabaticity ofA’(r) increases untilA’(r) exhibits a  also performed for both the large experimental configuration
quadratic fall-off withr for r<rq resulting inw,(r)=0 for  and the smaller computational domain just described. Three-
all r. dimensional simulations were also conducted without a large
The mean flow generated by these vorticity distributionsscale counterflow by a specific choice of ramp parameters
is determined by solving Ed11) with the boundary condi- that will be discussed below.
tion {(r,)=0. The vorticity potential is rleated to the mean |nitially we consider prescribea roll initial conditions
flow in polar coordinates by, U ) =(r""dy¢,— ;). The  giyen py k=k.x. Other initial conditions such as random
vorticity potential is expanded radially in second-orderherma| perturbations or initiad rolls of varying wave num-
Bessel functions while maintaining the sif@ngular depen- pers \ere also investigated and found not to affect the final
dence. Of particular interest is the mean flow perpendmulabattem wave number or any of the conclusions drawn. Simu-
to the convection rollsU,(6=0) or equivalentlyU.(y  |ations were performed foe,=0.025, 0.054, 0.113, and
=0), which is shown in Fig. 7. 0.171. Figure 8 compares the wave numbers found in these

_As expected, regions of negative and positive vorticitysjmy|ations with recent experiments and will be discussed in
yield corresponding negative and positive values of the meagetail pelow.

flow. As €y vanishesu=0 for all r providing a mechanism  The final patterns in the simulations maintain taeoll
for roll expansion in the bulk. For largef, the mean flow  ¢onfiguration imposed by the initial conditions. Figure 9 dis-
becomes larger in magnitude and increasingly negative fop|ays the final pattern observed for three-dimensional simu-
r=ro providing a mechanism for roll compression. lations with e;=0.025 in paneka) and e;=0.171 in panel
To make the connection between mean flow and wavgy) Figure ga) illustrates that near threshold the convection
number quantitative it is noted that the wave number variago||s exhibit very little curvature indicating that the assump-
tion resulting from a mean flow across a fieldofolls can  tjon of straight parallek rolls in Sec. IV is valid. There is
be determined from the one-dimensional phase equation, more roll curvature apparent in Fig(® as would be ex-
ected for largek,. Figure 9 also illustrates the decreasin
Udx$=Ddxx, (16) gize of the sSbcroitica:J region as the supercriticality of thge
where the wave number is the gradient of the phase, bulk increases. All simulations settled to a time independent

=dyp, Dy=¢&r, ", and 7,1=19.65(s+0.5117)y * [1].  St@ate. _ ,
Assuming that fore,<1 the wave number is approximately It_ls illustrative to compare the_ analytlca! resultszof Sec.
k~k, everywhere and that the rolls are exposed to a constaf With the results of simulation. Figure 18 displaysA®(r)

mean flow the wave number change over the bulk can b the cases=0.025, as determined by E€L5). A signifi-
expressed as cant nonadiabaticity is present for this case as shown by the

deviation of A%(r) from e(r)/g,. For the ramped domain
Ak=k(ro)—k(r=0)= Uch||_er- (17 used in simulation, the distancg(egp) —rq is smaller than in
the larger domain with a more shallow ramp used in experi-
For example, for curvéc) in Fig. 7 the maximum value of ment. This results in the presence of more nonadiabaticity in
the mean flow isJ=4.92x 10 ° which yields a small roll the simulations when compared to experimental results at the
expansion ofAk=0.0035. If the mean flow were solely re- same control parameter. This is beneficial because this al-
sponsible for the dramatic roll expansion seen in experimerbws the exploration of highly nonadiabatic situations with-
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FIG. 8. Comparison of the mean wave number variation as a
function of the bulk Rayleigh numbéti.e., forr<r,), Ry, between
simulation (solid lines with symbols and experiment(dashed-
dotted line [9]. Unless otherwise noted,=11.31, r;=20, &,
=0.036, and ¢=0.87. The symbols represent:Of three-
dimensional simulations,[{) two-dimensional simulations,X)
three-dimensional simulations for a specific ramp construction
without a large scale counterflow, ane () two-dimensional simu-
lations withry=42.29 andr,=101.33. Dark solid lines denote the
approximate location of the neutréN) and EckhaugE) stability
boundaries for an ideal infinite layer of parallel rolls.

out having to perform the task of simulating near the con-
vective threshold, which becomes computationally difficult
because of the diverging time scales. . .
A comparison between theory and simulation of the ver- FIG- 9. Final convection patterns faf,=0.025 and 0.17 are
tical vorticity and the resulting mean flow is shown in Figs. Shown in panel¢a) and (b), respectively. Shaded contours of the
10(b) and 1@c). The theoretical predictions are based on thethermal perturbation are shown with dark regions representing cool

amplitude variation caused when straight parallel convectiorqescend!ng ﬂl.“d .and light regions warm asce.nd'ng fluid. The inner
dotted circle indicates where the ramp begms and the outer

_roIISs en(I:\(;ur;ter;:l ;ﬁdt'ﬁ | ramtp ml platt_e iepargtiﬁn as dlscf:153e otted circle indicates where the convection layer becomes critical
In Sec. [V. For bo e vertical voruicity an € mean flow Simulation parametersry,=11.31, r,=20, §,=0.036, o

the comparison is made in the absence of any adjustabf(if(') 87
parameters. For the vertical vorticity calculated in simulation

an angular average, weighted by sih & used for the com- due to the fact that as, increases other mean flow sources
parison. The agreement between theory and simulation isuch as roll curvature, see Figb® become important.

quite good. This illustrates quantitatively that the major Figure 12 illustrates the octupole structure in the vorticity
source of vertical vorticity and mean flow is indeed thepotential in panela) and the roll compression occurring in
variation in the convective amplitude caused by the radiathe bulk by plotting contours of the local wave number in
ramp in plate separation. Over the bulk of the domain thepanel(b) for e;=0.171. As illustrated in panéh) the mean
mean flow is negative and very small in magnitude with aflow has significant structure over the ramped region as well
maximum value olJ,(y=0)=—7.0x 10 * and by Eq(17) as extending into the subcritical region of the layesr,. It

the wave number variation would be extremely small inhas also been suggested that the mean flow extends into a
agreement with the near constant bulk wave numbers founslubcritical region in related experiments implementing
in simulation. “finned” boundaries[26].

A similar comparison between theory and simulation is  The vorticity potential displays an octupole structure con-
made in Fig. 11 foe,=0.171. As shown in Fig. 1&), A%(r) taining a pair of counterrotating vortices in each quadrant.
is much more able to follow the ramp(r)/g,, and exhibits  The inner quadrupole is localized aroungwhere gradients
very little nonadiabaticity except for the kink negy. This  in the amplitude of convection occur as the ramp in plate
results in a much stronger negative vertical vorticity in theseparation begins. The direction of rotation of the inner
bulk which in turn yields a larger negative mean flow asquadrupole causes a focusing of the mean flow into the bulk
shown in Figs. 1(b) and 11c). The agreement between region of the domain and is responsible for the larger wave
theory and simulation for the vertical vorticity is still quite numbers found ag; is increased as shown by th®] curve
good. The discrepancy in the mean flow comparison may b Fig. 8.

046210-6



RAYLEIGH-BENARD CONVECTION WITH A RADIAL . . . PHYSICAL REVIEW E 66, 046210 (2002

0.04 T T T 0.25f
0.03} 0.2
0.15}f
0.02f
01F
0.01f
0.05}f
0
0 0
0.015 T T T
|
r ) T T : T
0.01F 0] i 0.06| r,: i
Simulation ! :
004 Simulation | ]
------ Theory
N 0.02} '
'
3 |
0 '
'
|
-0.02}
N/ (b)
h
-0.04} M -
1 1 1 1
0.004 . . : 0 5 1'9 15 20
|
|
|
0.003F | - T T T T
Simulation : 0.02|- T
_ | T | ro
O 0.002 |
L Simulation
\:< — 0.01 ______
= 0.001 o
I
>
) S’
N | Dx 0
" (o)
-0.001 - L :
0 5 10 15 20
r
-0.01
FIG. 10. Panel(a shows the solution of Eq(15) plotted as 1 1 1 1 1
A?(r), shown for comparison is(r)/g,. Panel(b) compares the 0 5 1?, 15 20
vertical vorticity found analytically from Eq(15) with an angular
average, weighted by sif2of the vertical vorticity from simula- FIG. 11. Panel(@ shows the solution of Eq(15) plotted as

tion. Panelc) compares the mean flow found analytically from Eq. AZ2(r), shown for comparison ig(r)/g,. Panel(b) compares the
(10) with the mean flow from simulation flowing along theaxis at  vertical vorticity found analytically from Eq(15) with an angular
y=0. Parameters an=11.31,r,=13.20,r,=20.0, 5,=0.036,  average, weighted by sirf20f the vertical vorticity from simula-
0=0.87, ande;=0.025. tion. Panelc) compares the mean flow found analytically from Eq.
(10) with the mean flow from simulation flowing along tleaxis at
To make the connection between mean flow and wavg=0. Parameters ang,=11.31, r.=13.20, r;=20.0, 5,=0.036,

number quantitative, Eq(16) is applied to the simulation ¢=0.87, ande,=0.171.
results in the form
r<rg, found in simulation by simply measuring the distance
U=Dyk. Lok, (18)  between roll boundaries and makes evident the roll compres-
sion, k(r=0)>k(rg). Figure 13b) compares the mean flow
Figure 13a) illustrates the wave number variatiok(r) for  calculated from simulation with the predicted value of the
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FIG. 13. Pane{a), the variation in the local wave number along
FIG. 12. Contours of the vorticity potentigl panel(a), (light  the positivex axis, or equivalentlk(r) at =0. Panelb), a com-
indicates counterclockwise rotation drawn with solid contours andparison of the mean flow from simulatidsolid line) with the pre-
dark indicates clockwise rotation drawn with dashed confoamsl  gicted value calculated from E€L6) using the wave number varia-
the corresponding local wave number distributibnpanel(b). The  ion from panel(a). Simulation parameters,=11.31,r,=20, 5,
magnitude of the mean flow is approximately 2% of the magnitude- g 036, v=0.87, ande;=0.171 R,=2000).
of the velocity field,|U|/|u|~0.02. Local wave number distribu-
tions are shown only in the bulk,<r,. The inner dotted circle dimensional simulations were also performed, corresponding
indicates where the ramp beging, and the outer dotted circle to a vertical slice of the domain considered thus far, and in
indicates where the convection layer becomes critigalSimula-  addition to a more spatially extended domain as used in ex-
tion parameters,=11.31, r;=20, §,=0.036, c=0.87, andeg periment. In two dimensions the mean flow is absent, how-
=0.171 (Ry=2000). ever, the large scale counterflow persists. As shown by the
(¢) and (@) curves in Fig. 8 the wave numbers measured
mean flow required to produce the wave number variationn the two-dimensional simulations are not compressed to the
shown in Fig. 183 using Eq.(18). The agreement is good same extent as, increases as in the three-dimensional simu-
and the discrepancy neag, which is contained within one |ations with both mean flow and large scale counterflow
roll wavelength from where the ramp begins, is expectedhresent. As expected, the wave numbers found in the two-
because the influence of the ramp was not included in Ecdimensional simulations are also independent of aspect ratio.
(16). This illustrates quantitatively that the mean flow com- Additionally, for small e, the wave number found in simu-
presses the rolls in the bulk of the domain. lation does not deviate markedly from its critical value sug-
As mentioned earlier, the mean flow vanishesegsap-  gesting that the large scale counterflow is not responsible for
proaches critical whereas the large scale counterflow ithe wave number shift observed in experiment near threshold
present for alk,, and therefore could play a role near thresh-regardless of the spatial extent of the domain.
old in the determination of the final convection pattern. In  We also investigated the possibility that the vertical large
order to gain further insight into this possibility a radial ramp scale counterflow could bifurcate into a horizontal flow simi-
was constructed that did not drive a large scale counterflowar to the mean flow in the presence of a slight spatial asym-
This was accomplished by setting the temperature of thenetry. This was accomplished by giving the ramped domain
ramped surfacd,(r) to the value of the linear conduction used in the full three-dimensional simulations an eccentricity
profile at that height,T,(r)=h(r). This ramp, therefore, of e~0.8 for a variety of ramps 0.0365,<0.25 and simu-
does not bend the isotherms which is the source of the largating over a range of subcritical and supercritical conditions.
scale counterflow. The wave number variation for these~or all of the scenarios tested the large scale counterflow
simulations, see curve labeled witb>f in Fig. 8, does not remained vertical and did not undergo any significant
differ strongly from the simulations with a ramp producing changes.
large scale counterflow, see the curve labeled wif).(The Lastly, the possibility of wave number pinning was stud-
similarity in wave number results is strongest for smgll ied by varying the aspect ratio in increments of less than half
suggesting that the large scale counterflow is not responsiblef a roll width for both the two- and three-dimensional do-
for the shift of the critical wave number to smaller values asmains. In all of the scenarios tested the final pattern wave
seen in experiment. numbers were not appreciably affected by these small
To study the large scale counterflow further two-changes in aspect ratio.
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VI. CONCLUSION Although it is too expensive computationally to simulate

We have analytically and numerically investigated patternthe very large systems used in the experiments, we can use

formation in a cylindrical convection layer with a radial oo quantitative understanding of the ramp-generated mean
ramp in plate se Z\ration In particular weyhave studied uanflow’ validated by the simulations at smaller aspect ratio, to
ampinp P -np ' . d extrapolate our results to these larger systems. Furthermore
titatively the effects of two large scale flows; large scale

counterflow and mean flow. These larae scale flows are imCY" two-dimensional simulations in sizes equal to the experi-
. ) ge sc mental ones allow us to estimate the effect of the large scale
portant theoretically yet are extremely difficult to measure

\ counterflow on the wave number distribution. Despite these
experimentally.

Our results suggest that the mean flow plays an importa xhaustive efforts, we are unable to reproduce the Igrge shift
role in the observed pattern wave number and is generatednltn ;maller wave numbers obse_r\_/ed near threshold in th? ex
: . L 2 periments, and the physical origin of these results remains a
a different way, by the spatial variation p&|* driven by the
o o . mystery.
variation of e rather than the more usual variations in roll
curva‘ggre and wave number. The mean flow sources are ACKNOWLEDGMENTS
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