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Rayleigh-Bénard convection with a radial ramp in plate separation
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Pattern formation in Rayleigh-Be´nard convection in a large-aspect-ratio cylinder with a radial ramp in the
plate separation is studied analytically and numerically by performing numerical simulations of the Boussinesq
equations. A horizontal mean flow and a vertical large scale counterflow are quantified and used to understand
the pattern wave number. Our results suggest that the mean flow, generated by amplitude gradients, plays an
important role in the roll compression observed as the control parameter is increased. Near threshold, the mean
flow has a quadrupole dependence with a single vortex in each quadrant while away from threshold the mean
flow exhibits an octupole dependence with a counterrotating pair of vortices in each quadrant. This is con-
firmed analytically using the amplitude equation and Cross-Newell mean flow equation. By performing nu-
merical experiments, the large scale counterflow is also found to aid in the roll compression away from
threshold but to a much lesser degree. Our results yield an understanding of the pattern wave numbers observed
in experiment away from threshold and suggest that near threshold the mean flow and large scale counterflow
are not responsible for the observed shift to smaller than critical wave numbers.
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I. INTRODUCTION

Rayleigh-Bénard convection in a thin horizontal flui
layer heated from below is a canonical example of patt
formation in a continuous dissipative system far from eq
librium @1#. Under various conditions, wave number sele
tion mechanisms have been identified@1–4# that reduce the
band of stable wave numbers, sometimes to a single va
One such selection mechanism occurs when there is a
dimensional spatial variation or ramping of the control p
rametere; wheree[(R2Rc)/Rc , R is the Rayleigh number
andRc is its critical value@5–10#. This can be accomplishe
by varying the plate separationd such thate goes frome
5eo.0 in the bulk of the layer~i.e., the unramped region!
to e,0 as a lateral boundary is approached. It is expec
that in the idealized case of an infinitely gradual on
dimensional ramp the wave number will equalkc at the po-
sition where the layer depth yieldsRc . It has been shown
under very general conditions, that as long as the layer
comes critical somewhere along the ramp this is sufficien
fix the wave numberks in the bulk and over the rest of th
ramp @6#. For slightly supercritical conditions it is expecte
that the selected wave number in the bulk can be expre
as

ks5 k̃c1aeo , ~1!

wherek̃c5kc53.117@9# anda depends on the Prandtl num
ber,s, and the specifics of the ramp.

Recent Rayleigh-Be´nard convection experiments@9,11# in
a cylindrical cell with a two-dimensional radial ramp in pla
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separation have generated intriguing results. Specifically,
plate separation as a function of radius used in experimen
using the layer depthd to nondimensionalize,

h~r !5H 1 r ,r 0

12d rF12cosS r 2r 0

r 12r 0
p D G r>r 0

, ~2!

whered r is a constant and the radius valuesr 0 andr 1 are the
locations where the ramp begins and ends, respectively.
ramp always extends to the sidewall. A schematic of
cosine ramp is shown in Fig. 1; note thatr 0 and r 1 are
geometric constants butr c , the location where the plate
separation yieldsRc , is a function of the ramp shape ande0
such that, for a ramp given by Eq.~2!, ]r c /]e0.0.

Experiments using the cosine ramp defined by Eq.~2!
have yielded unexpected results for the wave number@9,11#.
Mean pattern wave number measurements~using the Fourier
methods discussed in Ref.@12#! yielded k̃c52.97,kc . Ad-
ditionally, measurements of the local wave number define
each position in space~method discussed in Ref.@13#! dis-
played interesting variation ase0 is increased. For the time

FIG. 1. A vertical cross section of a cylindrical convection lay
with a radial ramp in plate separation,r 0 defines where the ramp
begins,r 1 defines where the ramp ends andr c is where the plate
separation corresponds to the critical Rayleigh number. The ra
shown is a cosine ramp given by Eq.~2!. For presentation purpose
we show a steep ramp withd r50.25~this domain is not used in the
simulations!.
©2002 The American Physical Society10-1
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independent patterns the bulk region,r<r 0, contains ap-
proximately straight parallel rolls. Near threshold,e0
&0.048, a centered egg-shaped domain of convection
with small wave number,k,kc , extends through the con
vection cell with the long-axisparallel to the roll axes. A
dramatic roll expansion fromk'3.6 at the edge where th
ramp begins tok'2.6 in the center of the domain is ob
served. Ase0 increases, the wave number field evolves int
domain characterized by large wave numbers extend
through the layer with the long-axisperpendicularto the roll
axes~see Fig. 3 of@9#!. Similar experiments without a ram
do not exhibit this wave number behavior@14–16#.

In the experiments with a radial ramp in plate separati
for e0&0.03, time dependent states were found through
repeated formation of defects via an Eckhaus mechan
consistent with the local wave numbers crossing the Eckh
stability boundary for an ideal infinite layer of two
dimensional rolls. Also in the ramped experiments, fore0
*0.18, defects were formed via a skewed varicose mec
nism consistent with the local wave number exceeding
skewed varicose stability boundary for an ideal infinite lay
of two-dimensional rolls similar to what has been observ
in experiments in unramped cylindrical domains with rig
sidewalls@17#.

It has been suggested that these features may be the
of the interaction of the convective roll pattern and we
large scale flows@9#. The visualization and quantification o
these large scale flows is not possible in the current gen
tion of experiments. However, we are able to make th
measurements by performing full numerical simulations w
a new spectral element code~discussed further in Sec. III!.
We utilize the complete knowledge of the flow field togeth
with analytical results valid near threshold to explore t
further.

II. LARGE SCALE FLOWS

In this work the terminology large scale flows is used
describe flows that extend over distances larger than tha
the convection roll scale. We would like to distinguish b
tween two different large scale flows:large scale counterflow
andmean flow.

A. Large scale counterflow

In the presence of a spatial ramp in plate separatio
large scale counterflow is present for all values of the b
control parametere0, including e0,0. Warm fluid ascends
the ramp eventually reaching the sidewall and is forced
flow back toward the center of the domain over the cold
wall causing it to descend resulting in a large zone of cir
lation in the vertical plane over the ramp. The magnitude
the large scale counterflow depends upon the specifics o
ramp and is roughly independent ofe0 ands @18#. Figure 2
illustrates this with a vertical slice from a three-dimension
numerical simulation where the entire convection layer
subcritical. As shown for this subcritical case the fluid m
tion of the large scale counterflow generates axisymme
convection near the base of the ramp which extends a co
04621
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of roll widths toward the center of the domain. For th
gradual ramp used in experiment the large scale counter
is small in magnitude and has not been measured.

B. Mean flow

In discussing the mean flow it will be convenient to fir
present the governing heat and fluid equations. The velo
uW , temperatureT, and pressurep, evolve according to the
Boussinesq equations,

s21~] t1uW •¹W !uW 52¹W p1RTẑ1¹2uW , ~3!

~] t1uW •¹W !T5¹2T, ~4!

¹W •uW 50, ~5!

where] t indicates time differentiation, andẑ is a unit vector
in the vertical direction opposite to gravity. The equations
nondimensionalized in the standard manner using the la
depthd, the vertical diffusion time for heattv[d2/k, where
k is the thermal diffusivity, andDT is the temperature dif-
ference between the top and bottom surfaces, as the len
time, and temperature scales, respectively. The lower
upper surfaces are no-slip and are held at constant temp
ture. The sidewalls are also no-slip and, unless otherw
noted, are insulating.

The mean flow field,UW (x,y), is the horizontal velocity
integrated over the depth and originates from the Reyno
stress induced by pattern distortions. As illustrated by
fluid equations, Eqs.~3! and ~5!, it is evident that the pres
sure is not an independent dynamic variable. The pressu
determined implicitly to enforce incompressibility,

¹2p52s21¹W •@~uW •¹W !uW #1R]zT. ~6!

Focussing on the nonlinear Reynolds stress term and rew
ing the pressure asp5po(x,y)1 p̄(x,y,z) yields

po~x,y!;s21E dx8dy8ln~1/ur 2r 8u!^¹W 8•@~uW •¹W !uW #&z ,

~7!

where^•&z represents an average in thez direction. In Eq.~7!
the ln(1/ur 2r 8u) is not exact, in order to be more precise t
finite system Green’s function would be required; howev
the long range behavior persists. This gives a contribution
the pressure that depends on distant parts of the conve
pattern. The Poiseuille-like flow driven by this pressure fie

FIG. 2. Velocity vectors illustrating the large scale counterflo
for a vertical slice of a cylindrical convection layer for subcritic
conditions, e0520.063. The ramp parameters arer 057.66, r 1

510, andd r50.15. A steep ramp is shown to clearly illustrate t
flow. Solid vertical lines indicate the boundaries of the spec
element grid used in the simulation, only a portion of the layer
shown emphasizing the ramped region.
0-2
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RAYLEIGH-BÉNARD CONVECTION WITH A RADIAL . . . PHYSICAL REVIEW E 66, 046210 ~2002!
subtracts from the Reynolds stress induced flow leading
divergence free horizontal flow that can be described
terms of a vertical vorticity.

Near threshold an explicit expression for the mean flow
@19#

UW ~x,y!52gkW¹W'•~kWA2!2¹W'po~x,y!, ~8!

where g is a coupling constant given byg50.42s21(s
10.34)(s10.51)21, A2 is the convection amplitude nor
malized so that the convective heat flow per unit area rela
to the conducted heat flow atRc is uAu2R/Rc , po is a slowly
varying pressure, see Eq.~7!, and¹W' is the horizontal gradi-
ent operator@see Refs.@20,21# for the complete analysis an
more details#. The mean flow is important not because of
strength; under most conditions the magnitude of the m
flow is substantially smaller than the magnitude of the r
flow making it extremely difficult to quantify experimentally
The mean flow is important because it is a nonlocal eff
acting over large distances~many roll widths! and changes
important general predictions of the phase equation@19#. The
mean flow is driven by roll curvature, roll compression, a
gradients in the convection amplitude. The resulting me
flow advects the pattern giving an additional slow time d
pendence. It is important to note, that unlike the long ran
counterflow, the magnitude of the mean flow vanishes w
the convection layer becomes critical,uUW u;e0 for e0!1.

III. NUMERICAL SIMULATION

We have performed full numerical simulations of the go
erning fluid and heat equations, Eqs.~3!–~5!, in a cylindrical
geometry with a radial ramp in plate separation using a p
allel spectral element algorithm~described in detail else
where@22#, see Refs.@23,24# for related applications!.

For discussion purposes it will be convenient to defi
Cartesian (x,y) and polar (r ,u) coordinates centered on
middepth horizontal slice of a cylindrical convection lay
containing a field of straight parallelx rolls with wave vector
kW5kox̂ as shown in Fig. 3. Thex axis is perpendicular to the
roll axes, they axis is parallel to the roll axes andu measures
the angle from the positivex axis.

We have investigated the results found in experiment
performing simulations on a ramped cylindrical convecti
layer for a variety of scenarios and initial conditions. Sim
lations were performed over the rangee0&0.2 and for simu-
lation times oft f.th , whereth[r 0

2 is the time required for
heat to diffuse horizontally across the bulk region of t
layer which has been suggested as the earliest time scal
the flow field to reach equilibrium@19#.

The mean flow present in the simulation flow field
UW s(x,y), is investigated by calculating the depth averag
horizontal velocity,

UW s~x,y!5E
0

1

uW'dz, ~9!
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whereuW' is the horizontal velocity field. Furthermore it wil
be convenient to work with the vorticity potential,z, defined
as

¹'
2 z52 ẑ•~“'3UW s!52vz , ~10!

wherevz is the vertical vorticity and¹'
2 is the horizontal

Laplacian.

IV. ANALYTICAL DEVELOPMENT

Near threshold, assuming straight parallel rolls, it is p
sible to approximately determinevz analytically. It will be
convenient to start fromvz given by the vertical componen
of the curl of Eq.~8!,

vz5 ẑ•~¹W'3UW !52g ẑ•¹W'3@kW¹W'•~kW uAu2!#. ~11!

Consider a cylindrical convection layer with a radial ramp
plate separation containing a field ofx rolls given by kW

5kox̂. The amplitude can be represented for largee0, using
an adiabatic approximation, asuAu25e(r )/go for e.0 and
uAu250 for e(r ),0, making the amplitude a function o
radius onlyuAu25 f (r ). This approximation is good excep
for the kink atr c wheree50. InsertinguAu25 f (r ) into Eq.
~11! yields, after some manipulation, the following expre
sion for the vertical vorticity,

vz5
gko

2

2 Fd2uAu2

dr2
2

1

r

duAu2

dr Gsin 2u. ~12!

To correct for nonadiabaticity and to smoothuA(r )u2 nearr c ,
the one-dimensional time independent amplitude equatio
solved,

05e~r !A1jo
2cos2u

]2A

]r 2
2gouAu2A, ~13!

FIG. 3. Cartesian (x,y) and polar (r ,u) coordinates defined on a
middepth horizontal cross section of a cylindrical convection la

containing a field ofx rolls described bykW5kox̂.
0-3
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PAUL, CROSS, AND FISCHER PHYSICAL REVIEW E66, 046210 ~2002!
where angular derivatives have been assumed smalljo
2

50.148, go50.699520.0047s2110.0083s22, ande(r ) is
determined by

e~r !5H e0 r ,r 0

e0~h32hc
3!/~12hc

3! r>r 0,
~14!

wherehc5h(r c). In Eq. ~11! vz is dominated by radial de
rivatives, so Eq.~12! is still a good approximation for the
caseuAu25 f (r ,u), d/dr→]/]r . Due to the angular depen
dence of the nonadiabaticityuAu2 is now u dependent which
will induce higher angular harmonics invz . We will neglect
these higher harmonics, assume a sin2u dependence and ap
proximately evaluate the magnitude using Eqs.~12! and~13!
at u5p/4. Equation~13! can be rewritten in a more conve
nient form as,

05
e~ r̄ !

e0
Ā1

]2Ā

] r̄ 2
2Ā3, ~15!

where r 5(e0
21/2jocosu)r̄ and A5(e0 /go)1/2Ā @19# ~since

the amplitude goes to zero it can be shown thatA is now a
real quantity@25#!. Equation~15! is solved numerically using
the boundary conditions] r̄ Ā50 at r̄ 50, and Ā50 at r̄

5 r̄ 1.
These analytical results are now used to investigate

vertical vorticity generation in a large radially ramped cyli
drical convection layer. We start by looking at the config
ration used in the recent experiments with input paramet
r 0542.29, r 15101.33,d r50.036, ands50.87.

Whene0
1/2jo

21(r c2r 0)&1 the amplitudeA2(r ) is unable
to adiabatically follow the ramp, this nonadiabaticity resu
in a considerable deviation frome(r )/go as shown in Fig. 4.
However, whene0

1/2jo
21(r c2r 0)@1 the amplitudeA2(r )

follows e(r )/go adiabatically almost over the entire ram
except for the small kink atr c as shown in Fig. 5. The struc
ture of vz depends upon this adiabaticity and is shown

FIG. 4. The solution of Eq.~15! plotted as A2(r ) for r 0

542.29, r c547.56, r 15101.33, d r50.036, s50.87, and e0

54.2031023. Also shown for comparison ise(r )/go .
04621
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various values ofe0 in Fig. 6 where the sin 2u dependence
has been removed by choosingu5p/4.

If the u dependence is included it is evident from Fig.
that the vertical vorticity has a quadrupole angular struct
for smalle0, i.e., four lobes of alternating positive and neg
tive vorticity with one lobe per quadrant, and makes a tra
sition to an octupole angular dependence for largere0, octu-
pole in the sense of an inner,r &r c , and outer,r *r c ,
quadrupole. In addition, since]r c /]e0.0 there is a radial
shift of the vorticity curves ase0 is increased.

In all cases the amplitudeA2(r ) decreases monotonicall
with r and as a result2r 21 duAu2/dr>0 thus generating
only positive vorticity. However, the termd2uAu2/dr2 can be
of either sign and is responsible for the quadrupole and

FIG. 5. The solution of Eq.~15! plotted as A2(r ) for r 0

542.29, r c580.05, r 15101.33, d r50.036, s50.87, and e0

50.17. Also shown for comparison ise(r )/go .

FIG. 6. Dependence of the radial variation ofvz5vz(r ) with e0

as determined analytically from Eqs.~12! and ~15! illustrating the
evolution from a mean flow with a quadrupole dependence to
octupole dependence ase0 increases. Shown explicitly arevz

curves fore057.231023, 4.231023, and 1.331023 with the pa-
rametersr 0542.29, r 15101.33, d r50.036, ands50.87 labeled
~a!–~c!, respectively.
0-4
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tupole angular structure invz . As e0 approaches zero th
nonadiabaticity ofA2(r ) increases untilA2(r ) exhibits a
quadratic fall-off withr for r !r 0 resulting invz(r )>0 for
all r.

The mean flow generated by these vorticity distributio
is determined by solving Eq.~11! with the boundary condi-
tion z(r 1)50. The vorticity potential is related to the mea
flow in polar coordinates by (Ur ,Uu)5(r 21]uz,2] rz). The
vorticity potential is expanded radially in second-ord
Bessel functions while maintaining the sin 2u angular depen-
dence. Of particular interest is the mean flow perpendicu
to the convection rolls,Ur(u50) or equivalently Ux(y
50), which is shown in Fig. 7.

As expected, regions of negative and positive vortic
yield corresponding negative and positive values of the m
flow. As e0 vanishesU>0 for all r providing a mechanism
for roll expansion in the bulk. For largere0 the mean flow
becomes larger in magnitude and increasingly negative
r<r 0 providing a mechanism for roll compression.

To make the connection between mean flow and w
number quantitative it is noted that the wave number va
tion resulting from a mean flow across a field ofx rolls can
be determined from the one-dimensional phase equation

U]xf5D i]xxf, ~16!

where the wave number is the gradient of the phasek
5]xf, D i5jo

2to
21 , and to

21519.65s(s10.5117)21 @1#.
Assuming that fore0!1 the wave number is approximate
k'kc everywhere and that the rolls are exposed to a cons
mean flow the wave number change over the bulk can
expressed as

Dk5k~r 0!2k~r 50!5UkcD i
21r 0 . ~17!

For example, for curve~c! in Fig. 7 the maximum value o
the mean flow isU54.9231025 which yields a small roll
expansion ofDk50.0035. If the mean flow were solely re
sponsible for the dramatic roll expansion seen in experim

FIG. 7. Variation of the mean flow,Ux(y50) with e0 as deter-
mined from Eq. ~10!. Shown explicitly are curves fore057.2
31023, 4.231023, and 1.331023 labeled ~a!–~c!, respectively,
with the parametersr 0542.29, r 15101.33, d r50.036 and s
50.87.
04621
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of Dk'1.0 (e050.012 see Fig. 3~a! of @9#! a mean flow of
U'0.014 would be required, which is not found in the an
lytic results.

V. DISCUSSION

The large scale flows discussed in Sec. II cannot be m
sured in current experiments placing us in a unique posi
to use the complete flow field information from our full nu
merical simulations of Eqs.~3!–~5! together with the analyti-
cal results of Sec. IV to investigate how the mean flow a
the large scale counterflow induce wave number distorti
and the variation of this distortion with Rayleigh number.

It is computationally expensive to perform full three
dimensional numerical simulations for the very large syst
used in experiment. We have, however, performed a var
of simulations for radially ramped cylindrical convectio
layers. The full three-dimensional simulations are of sma
spatial extent with the precise ramp defined by Eq.~2! and
the specific input parameters:r 0511.31, r 1520, d r
50.036, ands50.87. Two-dimensional simulations of
vertical slice of a three-dimensional domain~see Fig. 1! were
also performed for both the large experimental configurat
and the smaller computational domain just described. Th
dimensional simulations were also conducted without a la
scale counterflow by a specific choice of ramp parame
that will be discussed below.

Initially we consider prescribedx roll initial conditions
given by kW5kcx̂. Other initial conditions such as random
thermal perturbations or initialx rolls of varying wave num-
bers were also investigated and found not to affect the fi
pattern wave number or any of the conclusions drawn. Sim
lations were performed fore050.025, 0.054, 0.113, and
0.171. Figure 8 compares the wave numbers found in th
simulations with recent experiments and will be discussed
detail below.

The final patterns in the simulations maintain thex roll
configuration imposed by the initial conditions. Figure 9 d
plays the final pattern observed for three-dimensional sim
lations with e050.025 in panel~a! and e050.171 in panel
~b!. Figure 9~a! illustrates that near threshold the convecti
rolls exhibit very little curvature indicating that the assum
tion of straight parallelx rolls in Sec. IV is valid. There is
more roll curvature apparent in Fig. 9~b! as would be ex-
pected for largere0. Figure 9 also illustrates the decreasin
size of the subcritical region as the supercriticality of t
bulk increases. All simulations settled to a time independ
state.

It is illustrative to compare the analytical results of Se
IV with the results of simulation. Figure 10~a! displaysA2(r )
for the casee050.025, as determined by Eq.~15!. A signifi-
cant nonadiabaticity is present for this case as shown by
deviation of A2(r ) from e(r )/go . For the ramped domain
used in simulation, the distancer c(e0)2r 0 is smaller than in
the larger domain with a more shallow ramp used in exp
ment. This results in the presence of more nonadiabaticit
the simulations when compared to experimental results at
same control parameter. This is beneficial because this
lows the exploration of highly nonadiabatic situations wit
0-5
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PAUL, CROSS, AND FISCHER PHYSICAL REVIEW E66, 046210 ~2002!
out having to perform the task of simulating near the co
vective threshold, which becomes computationally diffic
because of the diverging time scales.

A comparison between theory and simulation of the v
tical vorticity and the resulting mean flow is shown in Fig
10~b! and 10~c!. The theoretical predictions are based on
amplitude variation caused when straight parallel convec
rolls encounter a radial ramp in plate separation as discu
in Sec. IV. For both the vertical vorticity and the mean flo
the comparison is made in the absence of any adjust
parameters. For the vertical vorticity calculated in simulat
an angular average, weighted by sin 2u, is used for the com-
parison. The agreement between theory and simulatio
quite good. This illustrates quantitatively that the ma
source of vertical vorticity and mean flow is indeed t
variation in the convective amplitude caused by the rad
ramp in plate separation. Over the bulk of the domain
mean flow is negative and very small in magnitude with
maximum value ofUx(y50)527.031024 and by Eq.~17!
the wave number variation would be extremely small
agreement with the near constant bulk wave numbers fo
in simulation.

A similar comparison between theory and simulation
made in Fig. 11 fore050.171. As shown in Fig. 11~a!, A2(r )
is much more able to follow the ramp,e(r )/go , and exhibits
very little nonadiabaticity except for the kink nearr c . This
results in a much stronger negative vertical vorticity in t
bulk which in turn yields a larger negative mean flow
shown in Figs. 11~b! and 11~c!. The agreement betwee
theory and simulation for the vertical vorticity is still quit
good. The discrepancy in the mean flow comparison may

FIG. 8. Comparison of the mean wave number variation a
function of the bulk Rayleigh number~i.e., for r<r 0), R0, between
simulation ~solid lines with symbols! and experiment~dashed-
dotted line! @9#. Unless otherwise notedr 0511.31, r 1520, d r

50.036, and s50.87. The symbols represent: (s) three-
dimensional simulations, (h) two-dimensional simulations, (x)
three-dimensional simulations for a specific ramp construc
without a large scale counterflow, and (L) two-dimensional simu-
lations withr 0542.29 andr 15101.33. Dark solid lines denote th
approximate location of the neutral~N! and Eckhaus~E! stability
boundaries for an ideal infinite layer of parallel rolls.
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due to the fact that ase0 increases other mean flow sourc
such as roll curvature, see Fig. 9~b!, become important.

Figure 12 illustrates the octupole structure in the vortic
potential in panel~a! and the roll compression occurring i
the bulk by plotting contours of the local wave number
panel~b! for e050.171. As illustrated in panel~a! the mean
flow has significant structure over the ramped region as w
as extending into the subcritical region of the layer,r .r c . It
has also been suggested that the mean flow extends in
subcritical region in related experiments implementi
‘‘finned’’ boundaries@26#.

The vorticity potential displays an octupole structure co
taining a pair of counterrotating vortices in each quadra
The inner quadrupole is localized aroundr 0 where gradients
in the amplitude of convection occur as the ramp in pl
separation begins. The direction of rotation of the inn
quadrupole causes a focusing of the mean flow into the b
region of the domain and is responsible for the larger wa
numbers found ase0 is increased as shown by the (s) curve
in Fig. 8.

a

n

FIG. 9. Final convection patterns fore050.025 and 0.17 are
shown in panels~a! and ~b!, respectively. Shaded contours of th
thermal perturbation are shown with dark regions representing
descending fluid and light regions warm ascending fluid. The in
dotted circle indicates where the ramp beginsr 0, and the outer
dotted circle indicates where the convection layer becomes cri
r c . Simulation parameters,r 0511.31, r 1520, d r50.036, s
50.87.
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To make the connection between mean flow and w
number quantitative, Eq.~16! is applied to the simulation
results in the form

U5D ikc
21]xk. ~18!

Figure 13~a! illustrates the wave number variation,k(r ) for

FIG. 10. Panel~a! shows the solution of Eq.~15! plotted as
A2(r ), shown for comparison ise(r )/go . Panel~b! compares the
vertical vorticity found analytically from Eq.~15! with an angular
average, weighted by sin2u, of the vertical vorticity from simula-
tion. Panel~c! compares the mean flow found analytically from E
~10! with the mean flow from simulation flowing along thex axis at
y50. Parameters arer 0511.31, r c513.20, r 1520.0, d r50.036,
s50.87, ande050.025.
04621
e

r<r 0, found in simulation by simply measuring the distan
between roll boundaries and makes evident the roll comp
sion,k(r 50).k(r 0). Figure 13~b! compares the mean flow
calculated from simulation with the predicted value of t

FIG. 11. Panel~a! shows the solution of Eq.~15! plotted as
A2(r ), shown for comparison ise(r )/go . Panel~b! compares the
vertical vorticity found analytically from Eq.~15! with an angular
average, weighted by sin 2u, of the vertical vorticity from simula-
tion. Panel~c! compares the mean flow found analytically from E
~10! with the mean flow from simulation flowing along thex axis at
y50. Parameters arer 0511.31, r c513.20, r 1520.0, d r50.036,
s50.87, ande050.171.
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mean flow required to produce the wave number variat
shown in Fig. 13~a! using Eq.~18!. The agreement is goo
and the discrepancy nearr 0, which is contained within one
roll wavelength from where the ramp begins, is expec
because the influence of the ramp was not included in
~16!. This illustrates quantitatively that the mean flow com
presses the rolls in the bulk of the domain.

As mentioned earlier, the mean flow vanishes ase0 ap-
proaches critical whereas the large scale counterflow
present for alle0, and therefore could play a role near thres
old in the determination of the final convection pattern.
order to gain further insight into this possibility a radial ram
was constructed that did not drive a large scale counterfl
This was accomplished by setting the temperature of
ramped surfaceTb(r ) to the value of the linear conductio
profile at that height,Tb(r )5h(r ). This ramp, therefore
does not bend the isotherms which is the source of the la
scale counterflow. The wave number variation for the
simulations, see curve labeled with (x) in Fig. 8, does not
differ strongly from the simulations with a ramp producin
large scale counterflow, see the curve labeled with (s). The
similarity in wave number results is strongest for smalle0
suggesting that the large scale counterflow is not respons
for the shift of the critical wave number to smaller values
seen in experiment.

To study the large scale counterflow further tw

FIG. 12. Contours of the vorticity potentialz, panel~a!, ~light
indicates counterclockwise rotation drawn with solid contours a
dark indicates clockwise rotation drawn with dashed contours! and
the corresponding local wave number distribution,k, panel~b!. The
magnitude of the mean flow is approximately 2% of the magnitu

of the velocity field,uUW su/uuW u'0.02. Local wave number distribu
tions are shown only in the bulk,r<r 0. The inner dotted circle
indicates where the ramp beginsr 0, and the outer dotted circle
indicates where the convection layer becomes criticalr c . Simula-
tion parametersr 0511.31, r 1520, d r50.036, s50.87, ande0

50.171 (R052000).
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dimensional simulations were also performed, correspond
to a vertical slice of the domain considered thus far, and
addition to a more spatially extended domain as used in
periment. In two dimensions the mean flow is absent, ho
ever, the large scale counterflow persists. As shown by
(L) and (h) curves in Fig. 8 the wave numbers measur
in the two-dimensional simulations are not compressed to
same extent ase0 increases as in the three-dimensional sim
lations with both mean flow and large scale counterfl
present. As expected, the wave numbers found in the t
dimensional simulations are also independent of aspect r
Additionally, for smalle0 the wave number found in simu
lation does not deviate markedly from its critical value su
gesting that the large scale counterflow is not responsible
the wave number shift observed in experiment near thresh
regardless of the spatial extent of the domain.

We also investigated the possibility that the vertical lar
scale counterflow could bifurcate into a horizontal flow sim
lar to the mean flow in the presence of a slight spatial asy
metry. This was accomplished by giving the ramped dom
used in the full three-dimensional simulations an eccentric
of e'0.8 for a variety of ramps 0.036<d r<0.25 and simu-
lating over a range of subcritical and supercritical conditio
For all of the scenarios tested the large scale counterfl
remained vertical and did not undergo any significa
changes.

Lastly, the possibility of wave number pinning was stu
ied by varying the aspect ratio in increments of less than h
of a roll width for both the two- and three-dimensional d
mains. In all of the scenarios tested the final pattern w
numbers were not appreciably affected by these sm
changes in aspect ratio.

d

e

FIG. 13. Panel~a!, the variation in the local wave number alon
the positivex axis, or equivalentlyk(r ) at u50. Panel~b!, a com-
parison of the mean flow from simulation~solid line! with the pre-
dicted value calculated from Eq.~16! using the wave number varia
tion from panel~a!. Simulation parameters,r 0511.31, r 1520, d r

50.036,s50.87, ande050.171 (R052000).
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VI. CONCLUSION

We have analytically and numerically investigated patt
formation in a cylindrical convection layer with a radi
ramp in plate separation. In particular, we have studied qu
titatively the effects of two large scale flows; large sca
counterflow and mean flow. These large scale flows are
portant theoretically yet are extremely difficult to measu
experimentally.

Our results suggest that the mean flow plays an impor
role in the observed pattern wave number and is generate
a different way, by the spatial variation ofuAu2 driven by the
variation of e rather than the more usual variations in ro
curvature and wave number. The mean flow sources
quantified analytically and agreement is found with nume
cal results. The geometric structure and magnitude of
mean flow is used to explain quantitatively the wave num
variation found in the simulations.

The large scale counterflow is investigated numerica
and our results indicate a small roll compression effect aw
from threshold. In particular, although the large scale co
terflow is present at and near threshold it does not app
responsible for the dramatic wave number shift to values
than critical as seen in experiment.
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Although it is too expensive computationally to simula
the very large systems used in the experiments, we can
our quantitative understanding of the ramp-generated m
flow, validated by the simulations at smaller aspect ratio
extrapolate our results to these larger systems. Furtherm
our two-dimensional simulations in sizes equal to the exp
mental ones allow us to estimate the effect of the large s
counterflow on the wave number distribution. Despite the
exhaustive efforts, we are unable to reproduce the large s
to smaller wave numbers observed near threshold in the
periments, and the physical origin of these results remain
mystery.
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