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Time-optimal chaos control by center manifold targeting
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Ott-Grebogi-Yorke control and its map-based variants work by targetingittear) stable subspace of the
target orbit so that after one application of the control the system will be in this subspace. | propestpn
variation, wheren is the dimension of the system, that sends any initial condition in a controllable region
directly to the target orbit instead of its stable subspace. This method is time optimal, in that, up to modeling
and measurement error, the system is completely controlled maftmrations of the control procedure. |
demonstrate the procedure using a piecewise linear and a nonlinear two-dimensional map, and indicate how the
technique may be extended to maps and flows of higher dimension.
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[. INTRODUCTION mized. An optimal control is usually either energy optimal,
where the total energEkpﬁw, (w is a weighting functioh
Since the paper of Ott, Grebogi, and Yorf®GY) [1] on  is minimal, or time optimal, where the time to control is
controlling chaotic dynamical systems appeared in 1990minimal. The energy-optimal solution in the context of clas-
there have been many methods designed explicitly to contraiical linear control theory is well knowfi8]. | aim to address
chaotic dynamics by stabilizing the saddle orbits alreadythe time optimality of OGY control, and introduce a time-
present in an attractor. Questions immediately arose abo@ptimal variation on map-based OGY.
the relation of OGY control to the traditional control theory,
including the question of optimality. Romeirast al. [2]
pointed out that OGY control was equivalent to making a OGY control, although “merely” a specialization of the
particular choice of regulator poles, and thus was a speciaklassical control theory is elegant because of the goal behav-
ized implementation of the pole placement problem of thgors it chooses to stabilize, the infinite set of unstable peri-
classical control theory. Chdi8] has suggested an energy- odic orbits that form the skeleton of an attractor. By its
optimal approach using the classical theory of optimal conclever choice of regulator poles, OGY control is already,

1. Time optimality of OGY

trol to control the saddle orbits in an attractor. very loosely, time optimal in the sense that only one pertur-
bation is required before the orbit is essentially
II. OGY AND CLASSICAL LINEAR CONTROL THEORY controlled—if the system is truly linear, once the perturba-

o tion is applied, there is nothing more to be done. The system

To implement OGY control, we locate a target orbiin will be on the stable manifold of the target orbit and the
the attractor and assume the local dynamics are well modelethtural dynamics of the system will thereafter, evolve the
by a linear mapx; , ; — x=A(x;— x) + g(p;— po) WhereA is  System state to the goal state. However, this is not strict time

annx n matrix, g= aﬁap andp, is the nominal value of the optimality, in that the system is not completely controlled,

scalar control parametgr; . The aim is to choosg; so that
the system state is steered to the stable manifold, represented 2. Energy optimality of OGY

in the linear approximation by the stable eigenveegraf- . . . . L
PP y g €9 A chaotic system is ergodic; a chaotic orbit will eventu-

ter a timeT, the period of the target orbit To approach the 5y yisit every neighborhood of the attractor, no matter how
problem as one of the classical Injear control by the po'%mall, given enough time. OGY control can be made energy
placement, we assumép;=p;—po is of the form dpi=" ntimal by waiting long enough so that the ergodicity of the
—c'(x,—x) wherec is a constant vector. Setting=%  map brings the system state close enough to the stable mani-
—X, we obtainéx;, ;=(A—gc") éx;. If the eigenvalues of fold of a fixed point so that the perturbatiaip that places

the regulator matrix A—gc') all have modulus less than the system state on the stable manifold of the periodic orbit
one, thendx;—0 asi—o. Choosing the gain vectar so  is as small as one desires. This is a bit of a cheat, though. A
that eigenvalues of the regulator matrix, called thgulator ~ chaotic system without control is also energy optimal in the
poles are less than one in modulus is thele placement same sense, any chaotic orbit will eventually approach any
problem There are many ways to choose the regulator poledarget saddle orbit in the attractor as closely as we like and
and OGY control amounts to settimg of these poles to the stay there as long as we like. What really counts is attaining
eigenvalues of the stable eigenvectorsfofind the rest to  the target orbit as quickly or as cheaply as possible, once we
zero[2]. decide to control the system.

although it is approaching a controlled state exponentially.

Optimal control Ill. GLOBAL TARGETING

A control method is optimal when some property of a We seldom have the luxury of being able to wait as long
sequence of control perturbatiopg,pq, . ...,pi_1 IS Mini-  as it takes just to save energy, or to expend as much energy
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as it takes to save time. Shinbret al. [4] addressed the in a time-optimal control for system states inside the control-
problem of steering a system state at a distant point in atable region; a single perturbation over one iterate of the map
attractor to the target neighborhood using the sensitivity ofs sufficient to place the system state on the fixed point by
the system to perturbations. A controllable region around théhe next iterate. Generically, however, a perturbation does
target orbit was iterated backwards until it covered the entirg,ot move the target orbit solely along the unstable direction,
attractor. Then, a sequence of small perturbations could stegp maps are only nearly linear in a small region near the
any point in the attractor to the controllable region where itayget orbit. Rollins and co-workef@0] improved on the
could be stabilized by OGY or some other local method.yegyits of Penget al. and Hunt by constructing a recursive
Bollt and Kostelich[S] used a graph theoretic approach 10 oono) ryle (recursive proportional feedback or RPfhat

determine the optimum path through an attractor to e ecteq the OPF rule for when the perturbation moved the
neighborhood of a target orbit, using roughly the same Steeli'arget orbit off the attractor

ing strategy. Bradley6] proposed a method whereby a large
database stored orbits for many different parameter settings,
and an optimal path from the current system state to the
desired system state was patched together from these orbits. Reyl et al. [21] demonstrated the control of a nuclear
The methods of Shinbroet al, Bradley, and Bolltetal.  magnetic resonance laser using a control rule designed so
greatly reduce the time to navigate through an attractor tehat a perturbation at stepwould minimize the deviation of
reach the neighborhood of a target orbit, but do not spealhe system state at step+ 1 from the target orbit. This is a
directly to the point of efficiently stabilizing that orbit once king of energy-optimal control, in that each perturbation

B. Optimal methods

the system state attains that neighborhood. aims, roughly, to minimize the energy needed for the next
perturbation. Epureanu and Dowgl2,23 proposed a time-
IV. LOCAL TARGETING optimal method for continuous chaotic systems using a time-

There are many options besides the original method oyarying parameter per'turbation to steer a system state di-
Ott, Grebogi, and Yorke once the neighborhood of the targefectly to a target orbit, once the system state entered a
orbit is attained. Variations on the OGY method fall into controllable region. Their method requires a continuous

roughly four categories: model of the system dynamics, either in the form of an equa-
(1) simplifications, tion of motion, or a local continuous model of the dynamics
(2) necessary modifications, between the surfaces of section, which can be built from
(3) continuous time methods, and data.

(4) optimal methods.

Among the necessary modifications, | include those of V. CONTROL BY CENTER MANIFOLD TARGETING
Dressler and Nitschg7] who modified the OGY strategy to (CMT)
take into account the use of time delay coordinates, and the ] )
modifications needed for controlling higher-dimensional sys-  While the proportional feedback methods can be close to
tems[8—10] and spatiotemporal chagd1—14. Among the time optimal _for nearl_y Imear_, almost one-dimensional sys-
continuous time methods are those of Pyraldds and So- tems, they fail to be time optimal if the control perturbation
colaret al.[16], which control by synchronizing with a time Moves the system state off the attractor. The method demon-
delayed version of the current system state, and Carr argfrated by Epureanu and Dowell, while time optimal, re-
Schwartz17] who used parameter perturbation, its duration,duires a continuous model of the system and will not work
and the delay before application as three separate parametd§ {rué maps or strict map-based models from surfaces of
to control high-dimensional continuous systems. Of thes&€Ction. _
categories, the optimal methods are of the greatest relevance | Propose and demonstrate arstep method, whera is

to the present work, while some aspects of certain simplififn€ dimension of the system, that requires only knowledge of
cations are germane. the dynamics of the surface of section map, and steers the

system state directly to the target orbit, under the same lin-

earity assumptions of OGY. There is no need for the attractor

to be nearly one dimensional. The method works for maps,
The first variations on the OGY method were simplifica- as well as continuous systems by targeting a sequence of

tions that could be made if the system was well characterizetbwer- and lower-dimensional slabs, terminating at the zero-

by a one-dimensional map. Peegal. [18] and Hunt[19] dimensional fixed point.

demonstrated that chemical and electronic systems, respec- | ot x= F(x,t,p) be a continuous time dissipative chaotic

tively, c.ould be controll_eq by applying a perturbation simply system with one accessible scalar parameteand target
proportional to the deviation of the current system state from ~, . — . - .
the target orbit when the system was highly dissipative. Thisorb'ti(t’p) of saddle type. I?es,lgnatg by(t,p) some orbit
type of control came to be known as occasional proportiona€@rX(t,p), and setx(t,p) =x(t,p) —x(t,p). If we take a
feedback(OPP, and its formulation assumed that perturba-surface of section transversexpthen neax the system can
tions moved the target orbit along the unstable direction. Fobe modeled as a linear map, ;= Ax; whereA is annXn

a one-dimensional linear map whose perturbation moved thmatrix assumed to have podependency fobp small. If we

target orbit along the unstable direction, the OGY rule resultperturb the system byp, the attractor, and hence the peri-

A. Simplifications
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the target orbit areSp(1 — A~ 1)g=x, a line of points along
the vector (—A~1)g parametrized byp.

Recall that Eq(2) gives the necessary perturbatiép to
place the system state in the stable manifeld Now sup-
pose we want to ensure that, ; is also in the(linean un-
stable manifolde, after an application of the map, that is, we
wish to ensure that the system state is mapped directly to the

target orbitx. Then we must have

fo- {[As&sfl + N yeufl] (X — 8pg) + Spg} =0.

he necessary perturbation in this case is

FIG. 1. This figure shows the perturbed and unperturbed mani:l.
folds during the control. The unperturbed manifolds are dashed, and

the perturbed manifolds are solid. On the left, a system state on the Ao foX
stable manifold is brought directly to the center manifold under the op= ° fs . 3)
perturbed dynamics. This is the special case where the perturbation As—1fs9

moves the target orbit along the stable manifold. On the right, . _ .
system state on the unstable manifold is brought directly to thf;rhe requirement thai;.., be in both the stable and unstable

center manifold under the perturbed dynamics. This is the specie{pameIds of the target orbit at time+1 is

case where the perturbation moved the target orbit along the un- A fooX N foox

stable manifold. p=—— 2 =_HY M "
)\s_lfs'g )\u_lfu'g

odic pointx will shift so thatx moves tox+ dpg, whereg AeAy—1) fy g

= 9x/dp. The stable and unstable eigenveckys, of A are IWED) @fs‘xz Cfs-x=fy-x.

local linear models for the stable and unstable manifolds near
x, and to control by OGY, we perturb the system so that The set of initial conditiong at timen that map to the fixed

lies in e after one iterate of the map. _ point at timei+1 are such that iﬁp is a vector collinear
Form the pair of vectorsf(,fs) with the properties with p, the projections ok; on the stable and unstable left
eigenvectors are proportional, and therefore lie in a straight
fse=1, fs-q=0, line. Thus, a linear segment of system states extending from
X to a point determined by the maximum allowable pertur-
fi-&=0, f,-&=1 (D pation Spmax Can be mapped to the target orbit after one

o ) application of OGY control. This is the final step in the con-
The system state is in th@inean stable subspace; when o] procedure.

Xi+1-f,=0. To determine the appropriate perturbation, we
solve f,- (X1 1— 8pg)=Tf,- A(X;— dpg) =0 for dp. SinceA
may be decomposed #s=[\.ef!+\ g,fl], we solve

We can targefg, in the same way we targeted the stable
manifold e; for standard OGY control. Lez, be such that

z,-x,=0. Then the condition

T T _
fu' {[)\sesfs + )\ueufu](xi —épg)+ 6pg} =0 Z, {[)\Sesf-sr_'— )\ueuf-Llj—](Xi —8pg)+ 5pg}: 0
to get the standard OGY control rule ensures that the system state is in theseaind leads to a
control rule
Ny furX
OP=3 7T 9 2 _AZyefe XNz, efx
u u op= . 4
)\szp' esfs' g+ )\Uzp' eufu -g— Zp' g

Notice that if the perturbatiodp shifts the target orbit ) ,
along the unstable manifold, theris parallel toe, , _and any The control strategy for center manifold targetif@MT)

point in the unstable manifold and close enougixwan be 'S 1 send the system state to x,, with control rule(4) at
brought to thetarget orbit itselfin one iteration of the con- iteratei+1, then tox at timei+2 using control rule(2).

trol. By the same geometric reasoning, if the target orbit isThus, for a two-dimensional linear map, we can place any
shifted along the stable manifold as a result of the controinitial condition in some control box about a target orbit
perturbation, any system state lying initially in the stabledirectly into the target orbit after two iterates of the map

manifold and close enough tocan be brought to the target USINg Egs(4) and (2) successively. For a nonlinear map or
orbit in one iterate of the control procedufgee Fig. 1 In surface of section map of a continuous system, the method

fact, for anyg there exists a linear segment that maps directlyVill P& more or less effective depending on the linearity of

to the target orbit. To see this, note that the condition that éhe map in the controllable region. The controllable region,

control perturbation has placed the system state on the targe®-, the preimages of aki, is a parallelogram centered on the
orbit is A(x— dpg) + dpg=0. Therefore, the preimages of target orbit. To see this, note that the preimage &
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relative to the direction of the eigenvectors, fogilies along

an eigenvector that is used to increase the dimension of the

slab, then the preimage of then(-1)-dimensional “sub-

space” is that subspace itself, and there may be no route to

the center manifold. Also, if the perturbation vectplies in

a subspace spanned by a set of eigenvectors all of whose

<« eigenvalues are expanding, then there may be no route to the
center manifold. So although CMT is capable of controlling
systems with more than one unstable direction, it is essential
that the perturbation vector not lie entirely in a subspace
spanned by eigenvectors all of whose eigenvalues are ex-

FIG. 2. The figure shows the perturbation veagoand its in- ~ Panding. _ S _
verse images which span the first and second preimages of the The significance of this construction is this: given a peri-
target orbit. odic orbit of any stability type, we can direct any orbit in the

m slab into them—1 slab in one iteration of the map via a
x(p)=p(g—A~1g). (5) perturbation of the control parameter=p;. The system
therefore, can be controlled by a succession of parameter
This is a vector of variable length parametrized foysee perturbations equal in number to the dimension of the sys-

spanned by
p (I-A"g+ p (KL (AM))g

P, (AL A" )g

—-

Fig. 2. tem, ending in a completely controlled state. At each step the
For any particular point dimension of the controllable region is reduced by one, until
the final step reduces it to a zero-dimensional region, the

Xi(8p) = Sup(g— A1) (6) target orbit.

on x;(p), we consider its preimages under perturbations pa-

rametrized byp. Since x (S.p)— pa= Sp(g—A-1g)— pg VI. CONTROL OF THE LOZI MAP BY CMT

=A(X;_1—pg), we have As a concrete example, let us consider the @4 map.
. . The Lozi map is a two-dimensional piecewise linear map
Xi—1(p)=A""[6p(g—A""9)—pg]+pg, (7)  whose dynamics are similar to those of the better known

th . of . Henon [25] map. The advantage of the Lozi map in this

so the preimage af;(p) is example is that we can compute every relevant parameter
X =5 olA 1= (A~ H21a+ o(1 = A Da. 8 exactly, due to the linearity of the map, and the successful
-1(p)=dupl (A7) Ja* o )9 ® control can be demonstrated rigorously. We use a Lozi map

Since A has a complete set of eigenvectoss,1— (A~ 1)2  of the form

and | —A~! will differ, and Eq. (8) is the sum of a fixed

vector parametrized byand another parametrized py Let

us replaces,p with p, andp by p4, so that we have

i_1(p)=pa[ A= (A" 1H2]g+p,(I—A™ Yg. 9 —
Xi-1(p)=pal ( )19+ pal 9 © Fora=1/2 andb=7/4 the Lozi map has a fixed point &t

This is a planar region parametrized py andp; (see Fig. :(4/(}%_ 4/13), so near this point the dynamics are gov-
2). erned by

Now p, is just a reparametrization @f;, so the extent of

Xi+1=(1+p)+ay,—blx,

Yi+1= —X.

the planar region is defined by the limits pf the control _ Z E
parameter. Xi1=| 4 2|x
A similar calculation for the third preimage gives -1 0

Xi—Z(P%!pZ!l)l) = Ps[(A_ll)?_ (A™1)3]1g+ po[ A1
—(A™YH?]g+ps(1 =A™ Y)g. This is three vector that spans a The fixed point varies withp as {[4(1+p)/13],[—4(1

slab centered on the target orbit _ +p)/13]} so (9/dp)x=g=(4/13,—4/13) is the change in
In general, the mth preimage that will be an ihe'fixed point with parametes. For a particular perturba-
m-dimensional slab tion Sp the change in fixed point isSpg=Sp(4/13,

m —4/13). The eigenvalues aridght and lef} eigenvectors of
_ —1yk-1 ~1yk -1
X(pmspm-1 - p)= 2 P al (AT (AT g, [ 757 ] are
—7-N17
where thep; are all parameters linearly dependent pn u 8
=p4, and indication of the iterate number of the variable has

been dropped. 7+17 2
It is important to note here that the size of the controllable = A4 ,
130+ 1417 Y 65+ 717

region depends on the direction of the perturbation vegtor

_—T7+N17

8 ’

y)\s

046206-4



TIME-OPTIMAL CHAOS CONTROL BY CENTER.. .. PHYSICAL REVIEW E 66, 046206 (2002

= 0.400
& 0350
~ 0.300
0.250
® 0200

o
—
w
=]

0.100
0.050

OGY (solid) and CMT (da:

. . 0.00 0.02 0.04 0.06 0.08 0.10
—_— e— — = e e e — e — Control box size

0.000

35x closeup |,

FIG. 4. This figure shows the average accumulated control per-
0GY CMT OGY CMT OGY CMT OGY CMT OGY CMT turbation over ten iterates for _OGY_ ar_ld CMT control. Thenble_
attractor for these parameters just fits in a box 3.5 by 3.5 nondimen-

0 iterate 4000 sional units, so the control box width ranges frenl/350 to 1/35
the total attractor width.

FIG. 3. This figure shows alternating control of the Lozi map by
OGY and CMT, with thex coordinate on the vertical axis and time
(in iterates on the horizontal axis. Note the difference in the time to
control. The lower graph shows a 35 times magnification of the The improvement of CMT over OGY is not as dramatic,
controlled orbit. The first two |t_ergtes of ea(_:h controlled orbit are\ynen it is applied a nonlinear map like thé b map, as it
not shown. The scale on theaxis just contains the attractor, and is with the piecewise linear Lozi map, but it is still impres-

VIl. CONTROL OF THE HE NON MAP BY CMT

the units are nondimensional. sive. The Heon map of the form
o 65+ 717 — 7+ 17 [65+ 717 Xi ;1= (a+p) —x7+Dy,
v 34 ' 8 34 )
Yit1=X
7—-17 [ 2 is chaotic fora=6/5b=3/10 with control parametes=0,

&= J130- 14\/1—7'4 65— 717 and at these values has a fixed poirt(4/5,4/5). Near the
fixed point, the Haon map is governed approximately by the
linear map

B 65— 717 7+17 [65—74/17
st 34 ' 8 34 8 3
= Ax = 5 10|x
The equation for the Lozi map can be solved to find Xiv1=AX 1 o X
=(1,0). For an arbitrary fixed poirg=(s,t) nearx and an
arbitrary initial conditionx;=(q,r), We compared the OGY method to the CMT method by
running 1000 trials on each of ten different control box sizes
71 and plotting the average cumulative perturbation and devia-

tion from the target orbit. For each trial a random initial

condition inside the control box was given and both the OGY
-10 and CMT methods were allowed to stabilize it for ten itera-

tions. Figure 4 shows the plot of the accumulated perturba-

Thus, when the formula fofp is substituted in the above, tion over ten iterates plotted against the size of the control

the initial condition €,r) is mapped tog,t+s—q), and the  pox, and Fig. 5 shows the accumulated deviation from the

Xi+1 coordinate is that of the fixed point, while the.;  target orbit. The CMT control offers approximately a 30%

coordinate varies about its nominal valuetpfis expected. improvement in control cost over OGY, and about the same

This line segment of initial conditions can then be mapped tmprovement in rate of convergence to the target orbit for

the fixed point by the application of OGY control. Figure 3 this periodic orbit of the Fieon map.

shows a control session in which OGY and CMT control

were applied alternately to a period one orbit of the Lozi HIGHER-DIMENSIONAL CONTROL BY CMT

map. The improvement in the control is striking. After one

application of CMT, the orbit is in the preimage of the target The two-step procedure for a two-dimensional map can be

orbit, and after the second application, the system state liesxtended to am-step procedure for am-dimensional map or

exactly in the target orbit, while OGY control takes many surface of section map. Suppose a syskx,t,p) with sur-

iterates to settle down. face of section map(x,i,p) is stabilized in a periodic orbit

X.1=| 4 2|(x;—s—dpg)+s+dpg=(s,t+s—q).
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gossor =[Nefl+ -+ Aef] (11
# 0300 ..
3 yielding the control rule
= 0250 [
E 5 N1z efp x4+ + N z1-ef - X 12
o - p= :
-E 0200 Nizy-efy gt Az ety 9-24-9
= 0150 [ Similarly, the preimage op underA~?! is generically a
o) Yy p g g y
'Tg' 0.100 [~ planar regionp? centered orx which can be targeted by
;0_050 L requiring . that 22'(xm,1—5pg)=z_2~A(xm,2—§pg)=0
@ where z, is orthogonal top?. Likewise, the preimage of
(=) | | | | |

0.000 - — Io " o 04' ' '0 ” — '0 o8 — '0 10 p"~ ! underA~!is ann-dimensional slab that can be targeted

' ' Control box size ' ' by thenth control rule

FIG. 5. The average accumulated deviation from the target orbit o Mazpeegfy Xt o Nz X 13
over ten iterates for OGY and CMT control. Thérdm attractor for Pn= NzZy-efi g+ ...+ Nz ef-0—2,-0 (13
these parameters just fits in a box 3.5 by 3.5 nondimensional units,
so the control box width ranges from¥1/350 to 1/35 the total IX. SUMMARY

attractor width.

In summary, | have proposed a control procedure that tar-
X at timem. Then at timem—1 the system state was, ; gets a succession of lower- and lower-dimensional slabs,
:Aglxm. The set of states,,_; parametrized by lies in a each of yvh|ch maps to the next_Iower-dlmens_longl slab V|a:i1

straight linep because of the linearity of the map succession of control perturbations culminating in the map
This line can be targeted by using a control rule derived®'"Y of a linear segment of system states c_hrectly to the_target
from z,-X,=2,- A(Xe_ 1 — 8pG) wherez, is chosen orthogo- orbit by the standard OGY control rule. This procedure is not
nal tolthénveétor cgll_irl1earpwitrp) and,lA is now nxn and only applicab_le to thg maps, but to the surface of section
decomposed as ' maps of continuous time systems. | have demonstrated the

P control procedure explicitly and in computer simulation on

A the piecewise linear Lozi map, and in a computer simulation
T T of the Henon map. The procedure is robust, and is superior to
A=[e -+ & [fl fn] the OGY method in terms of time to achieve control. The
An CMT method is time optimal in that it achieves control in the
(10 least possible time for a linear map-based model.
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