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Time-optimal chaos control by center manifold targeting

John Starrett
Department of Mathematics, University of Colorado, 3500 Clay Street, Denver, Colorado 80211

~Received 22 May 2002; published 10 October 2002!

Ott-Grebogi-Yorke control and its map-based variants work by targeting the~linear! stable subspace of the
target orbit so that after one application of the control the system will be in this subspace. I propose ann-step
variation, wheren is the dimension of the system, that sends any initial condition in a controllable region
directly to the target orbit instead of its stable subspace. This method is time optimal, in that, up to modeling
and measurement error, the system is completely controlled aftern iterations of the control procedure. I
demonstrate the procedure using a piecewise linear and a nonlinear two-dimensional map, and indicate how the
technique may be extended to maps and flows of higher dimension.
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I. INTRODUCTION

Since the paper of Ott, Grebogi, and Yorke~OGY! @1# on
controlling chaotic dynamical systems appeared in 19
there have been many methods designed explicitly to con
chaotic dynamics by stabilizing the saddle orbits alrea
present in an attractor. Questions immediately arose a
the relation of OGY control to the traditional control theor
including the question of optimality. Romeiraset al. @2#
pointed out that OGY control was equivalent to making
particular choice of regulator poles, and thus was a spec
ized implementation of the pole placement problem of
classical control theory. Chen@3# has suggested an energ
optimal approach using the classical theory of optimal c
trol to control the saddle orbits in an attractor.

II. OGY AND CLASSICAL LINEAR CONTROL THEORY

To implement OGY control, we locate a target orbitx̄ in
the attractor and assume the local dynamics are well mod
by a linear mapxi 112 x̄5A(xi2 x̄)1g(r i2r0) whereA is
ann3n matrix,g5] x̄/]r andr0 is the nominal value of the
scalar control parameterr i . The aim is to chooser i so that
the system state is steered to the stable manifold, represe
in the linear approximation by the stable eigenvectores , af-
ter a timeT, the period of the target orbitx̄. To approach the
problem as one of the classical linear control by the p
placement, we assumedr i5r i2r0 is of the form dr i5

2cT(xi2 x̄) where c is a constant vector. Settingdxi5xi

2 x̄, we obtaindxi 115(A2gcT)dxi . If the eigenvalues of
the regulator matrix (A2gcT) all have modulus less tha
one, thendxi→0 as i→`. Choosing the gain vectorc so
that eigenvalues of the regulator matrix, called theregulator
poles, are less than one in modulus is thepole placement
problem. There are many ways to choose the regulator po
and OGY control amounts to settingns of these poles to the
eigenvalues of the stable eigenvectors ofA and the rest to
zero @2#.

Optimal control

A control method is optimal when some property of
sequence of control perturbationsr0 ,r1 , . . . ,r i 21 is mini-
1063-651X/2002/66~4!/046206~6!/$20.00 66 0462
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mized. An optimal control is usually either energy optim
where the total energy(krk

2w, (w is a weighting function!,
is minimal, or time optimal, where the time to control
minimal. The energy-optimal solution in the context of cla
sical linear control theory is well known@3#. I aim to address
the time optimality of OGY control, and introduce a time
optimal variation on map-based OGY.

1. Time optimality of OGY

OGY control, although ‘‘merely’’ a specialization of th
classical control theory is elegant because of the goal be
iors it chooses to stabilize, the infinite set of unstable pe
odic orbits that form the skeleton of an attractor. By
clever choice of regulator poles, OGY control is alread
very loosely, time optimal in the sense that only one pert
bation is required before the orbit is essentia
controlled—if the system is truly linear, once the perturb
tion is applied, there is nothing more to be done. The sys
will be on the stable manifold of the target orbit and t
natural dynamics of the system will thereafter, evolve t
system state to the goal state. However, this is not strict t
optimality, in that the system is not completely controlle
although it is approaching a controlled state exponentiall

2. Energy optimality of OGY

A chaotic system is ergodic; a chaotic orbit will event
ally visit every neighborhood of the attractor, no matter ho
small, given enough time. OGY control can be made ene
optimal by waiting long enough so that the ergodicity of t
map brings the system state close enough to the stable m
fold of a fixed point so that the perturbationdr that places
the system state on the stable manifold of the periodic o
is as small as one desires. This is a bit of a cheat, thoug
chaotic system without control is also energy optimal in t
same sense, any chaotic orbit will eventually approach
target saddle orbit in the attractor as closely as we like
stay there as long as we like. What really counts is attain
the target orbit as quickly or as cheaply as possible, once
decide to control the system.

III. GLOBAL TARGETING

We seldom have the luxury of being able to wait as lo
as it takes just to save energy, or to expend as much en
©2002 The American Physical Society06-1
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as it takes to save time. Shinbrotet al. @4# addressed the
problem of steering a system state at a distant point in
attractor to the target neighborhood using the sensitivity
the system to perturbations. A controllable region around
target orbit was iterated backwards until it covered the en
attractor. Then, a sequence of small perturbations could s
any point in the attractor to the controllable region where
could be stabilized by OGY or some other local metho
Bollt and Kostelich@5# used a graph theoretic approach
determine the optimum path through an attractor to
neighborhood of a target orbit, using roughly the same st
ing strategy. Bradley@6# proposed a method whereby a lar
database stored orbits for many different parameter setti
and an optimal path from the current system state to
desired system state was patched together from these o
The methods of Shinbrotet al., Bradley, and Bolltet al.
greatly reduce the time to navigate through an attracto
reach the neighborhood of a target orbit, but do not sp
directly to the point of efficiently stabilizing that orbit onc
the system state attains that neighborhood.

IV. LOCAL TARGETING

There are many options besides the original method
Ott, Grebogi, and Yorke once the neighborhood of the tar
orbit is attained. Variations on the OGY method fall in
roughly four categories:

~1! simplifications,
~2! necessary modifications,
~3! continuous time methods, and
~4! optimal methods.
Among the necessary modifications, I include those

Dressler and Nitsche@7# who modified the OGY strategy to
take into account the use of time delay coordinates, and
modifications needed for controlling higher-dimensional s
tems@8–10# and spatiotemporal chaos@11–14#. Among the
continuous time methods are those of Pyragas@15# and So-
colaret al. @16#, which control by synchronizing with a time
delayed version of the current system state, and Carr
Schwartz@17# who used parameter perturbation, its duratio
and the delay before application as three separate param
to control high-dimensional continuous systems. Of th
categories, the optimal methods are of the greatest relev
to the present work, while some aspects of certain simp
cations are germane.

A. Simplifications

The first variations on the OGY method were simplific
tions that could be made if the system was well character
by a one-dimensional map. Penget al. @18# and Hunt@19#
demonstrated that chemical and electronic systems, res
tively, could be controlled by applying a perturbation simp
proportional to the deviation of the current system state fr
the target orbit when the system was highly dissipative. T
type of control came to be known as occasional proportio
feedback~OPF!, and its formulation assumed that perturb
tions moved the target orbit along the unstable direction.
a one-dimensional linear map whose perturbation moved
target orbit along the unstable direction, the OGY rule res
04620
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in a time-optimal control for system states inside the contr
lable region; a single perturbation over one iterate of the m
is sufficient to place the system state on the fixed point
the next iterate. Generically, however, a perturbation d
not move the target orbit solely along the unstable directi
and maps are only nearly linear in a small region near
target orbit. Rollins and co-workers@20# improved on the
results of Penget al. and Hunt by constructing a recursiv
control rule ~recursive proportional feedback or RPF! that
corrected the OPF rule for when the perturbation moved
target orbit off the attractor.

B. Optimal methods

Reyl et al. @21# demonstrated the control of a nucle
magnetic resonance laser using a control rule designe
that a perturbation at stepm would minimize the deviation of
the system state at stepm11 from the target orbit. This is a
kind of energy-optimal control, in that each perturbati
aims, roughly, to minimize the energy needed for the n
perturbation. Epureanu and Dowell@22,23# proposed a time-
optimal method for continuous chaotic systems using a tim
varying parameter perturbation to steer a system state
rectly to a target orbit, once the system state entere
controllable region. Their method requires a continuo
model of the system dynamics, either in the form of an eq
tion of motion, or a local continuous model of the dynami
between the surfaces of section, which can be built fr
data.

V. CONTROL BY CENTER MANIFOLD TARGETING
„CMT …

While the proportional feedback methods can be close
time optimal for nearly linear, almost one-dimensional sy
tems, they fail to be time optimal if the control perturbatio
moves the system state off the attractor. The method dem
strated by Epureanu and Dowell, while time optimal, r
quires a continuous model of the system and will not wo
for true maps or strict map-based models from surfaces
section.

I propose and demonstrate ann-step method, wheren is
the dimension of the system, that requires only knowledge
the dynamics of the surface of section map, and steers
system state directly to the target orbit, under the same
earity assumptions of OGY. There is no need for the attrac
to be nearly one dimensional. The method works for ma
as well as continuous systems by targeting a sequenc
lower- and lower-dimensional slabs, terminating at the ze
dimensional fixed point.

Let ẋ5F(x,t,r) be a continuous time dissipative chaot
system with one accessible scalar parameterr and target
orbit x̄(t,r) of saddle type. Designate byx̆(t,r) some orbit
near x̄(t,r), and setx(t,r)5 x̆(t,r)2 x̄(t,r). If we take a
surface of section transverse tox̄, then nearx̄ the system can
be modeled as a linear mapxi 115Axi whereA is an n3n
matrix assumed to have nor dependency fordr small. If we
perturb the system bydr, the attractor, and hence the pe
6-2
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TIME-OPTIMAL CHAOS CONTROL BY CENTER . . . PHYSICAL REVIEW E 66, 046206 ~2002!
odic point x̄ will shift so that x̄ moves tox̄1drg, whereg
5] x̄/]r. The stable and unstable eigenvectorses ,eu of A are
local linear models for the stable and unstable manifolds n
x̄, and to control by OGY, we perturb the system so thax
lies in es after one iterate of the map.

Form the pair of vectors (fu ,fs) with the properties

fs•es51, fs•eu50,

fu•es50, fu•eu51. ~1!

The system state is in the~linear! stable subspacees when
xi 11•fu50. To determine the appropriate perturbation,
solve fu•(xi 112drg)5fu•A(xi2drg)50 for dr. SinceA
may be decomposed asA5@lsesfs

T1lueufu
T#, we solve

fu•$@lsesfs
T1lueufu

T#~xi2drg!1drg%50

to get the standard OGY control rule

dr5
lu

lu21

fu•x

fu•g
. ~2!

Notice that if the perturbationdr shifts the target orbit
along the unstable manifold, theng is parallel toeu , and any
point in the unstable manifold and close enough tox̄ can be
brought to thetarget orbit itself in one iteration of the con-
trol. By the same geometric reasoning, if the target orbi
shifted along the stable manifold as a result of the con
perturbation, any system state lying initially in the stab
manifold and close enough tox̄ can be brought to the targe
orbit in one iterate of the control procedure~see Fig. 1!. In
fact, for anyg there exists a linear segment that maps direc
to the target orbit. To see this, note that the condition tha
control perturbation has placed the system state on the ta
orbit is A(x2drg)1drg50. Therefore, the preimages o

FIG. 1. This figure shows the perturbed and unperturbed m
folds during the control. The unperturbed manifolds are dashed,
the perturbed manifolds are solid. On the left, a system state on
stable manifold is brought directly to the center manifold under
perturbed dynamics. This is the special case where the perturb
moves the target orbit along the stable manifold. On the righ
system state on the unstable manifold is brought directly to
center manifold under the perturbed dynamics. This is the spe
case where the perturbation moved the target orbit along the
stable manifold.
04620
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the target orbit aredr(I 2A21)g5x, a line of points along
the vector (I 2A21)g parametrized bydr.

Recall that Eq.~2! gives the necessary perturbationdr to
place the system state in the stable manifoldes . Now sup-
pose we want to ensure thatxi 11 is also in the~linear! un-
stable manifoldeu after an application of the map, that is, w
wish to ensure that the system state is mapped directly to
target orbitx̄. Then we must have

fs•$@lsesfs
T1lueufu

T#~xn2drg!1drg%50.

The necessary perturbation in this case is

dr5
ls

ls21

fs•x

fs•g
. ~3!

The requirement thatxi 11 be in both the stable and unstab
manifolds of the target orbit at timen11 is

dr5
ls

ls21

fs•x

fs•g
5

lu

lu21

fu•x

fu•g
,

ls~lu21!

lu~ls21!

fu•g

fs•g
fs•x5Cfs•x5fu•x.

The set of initial conditionsp at timen that map to the fixed
point at time i 11 are such that ifx̃r is a vector collinear
with p, the projections ofx̃i on the stable and unstable le
eigenvectors are proportional, and therefore lie in a stra
line. Thus, a linear segment of system states extending f
x̄ to a point determined by the maximum allowable pert
bation drmax can be mapped to the target orbit after o
application of OGY control. This is the final step in the co
trol procedure.

We can targetx̃r in the same way we targeted the stab
manifold es for standard OGY control. Letzr be such that
zr• x̃r50. Then the condition

zr•$@lsesfs
T1lueufu

T#~xi2drg!1drg%50

ensures that the system state is in the setp, and leads to a
control rule

dr5
lszr•esfs•x1luzr•eufu•x

lszr•esfs•g1luzr•eufu•g2zr•g
. ~4!

The control strategy for center manifold targeting~CMT!

is to send the system statexi to x̃r with control rule ~4! at
iterate i 11, then tox̄ at time i 12 using control rule~2!.
Thus, for a two-dimensional linear map, we can place a
initial condition in some control box about a target orb
directly into the target orbit after two iterates of the m
using Eqs.~4! and ~2! successively. For a nonlinear map
surface of section map of a continuous system, the met
will be more or less effective depending on the linearity
the map in the controllable region. The controllable regio
i.e., the preimages of allx̃r is a parallelogram centered on th
target orbit. To see this, note that the preimage ofx̄ is
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JOHN STARRETT PHYSICAL REVIEW E66, 046206 ~2002!
xi~r!5r~g2A21g!. ~5!

This is a vector of variable length parametrized byr ~see
Fig. 2!.

For any particular point

xi~dkr!5dkr~g2A21g! ~6!

on xi(r), we consider its preimages under perturbations
rametrized byr. Since xi(dkr)2rg5dkr(g2A21g)2rg
5A(xi 212rg), we have

xi 21~r!5A21@dkr~g2A21g!2rg#1rg, ~7!

so the preimage ofxi(r) is

xi 21~r!5d1r@A212~A21!2#g1r~ I 2A21!g. ~8!

Since A has a complete set of eigenvectors,A212(A21)2

and I 2A21 will differ, and Eq. ~8! is the sum of a fixed
vector parametrized byi and another parametrized byr. Let
us replacedkr with r2 andr by r1, so that we have

xi 21~r!5r2@A212~A21!2#g1r1~ I 2A21!g. ~9!

This is a planar region parametrized byr2 andr1 ~see Fig.
2!.

Now r2 is just a reparametrization ofr1, so the extent of
the planar region is defined by the limits ofr, the control
parameter.

A similar calculation for the third preimage give
x i 2 2 ( r 3 , r 2 , r 1 ) 5 r3 @ ( A21 ) 2 2 ( A21 )3 # g1 r2 @ A21

2(A21)2#g1r1(I 2A21)g. This is three vector that spans
slab centered on the target orbit.

In general, the mth preimage that will be an
m-dimensional slab

x~rm ,rm21 , . . . ,r1!5 (
k51

m

rm2k21@~A21!k212~A21!k#g,

where ther j are all parameters linearly dependent onr
5r1, and indication of the iterate number of the variable h
been dropped.

It is important to note here that the size of the controlla
region depends on the direction of the perturbation vectog

FIG. 2. The figure shows the perturbation vectorg and its in-
verse images which span the first and second preimages o
target orbit.
04620
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relative to the direction of the eigenvectors, for ifg lies along
an eigenvector that is used to increase the dimension of
slab, then the preimage of the (m21)-dimensional ‘‘sub-
space’’ is that subspace itself, and there may be no rout
the center manifold. Also, if the perturbation vectorg lies in
a subspace spanned by a set of eigenvectors all of wh
eigenvalues are expanding, then there may be no route to
center manifold. So although CMT is capable of controlli
systems with more than one unstable direction, it is essen
that the perturbation vector not lie entirely in a subspa
spanned by eigenvectors all of whose eigenvalues are
panding.

The significance of this construction is this: given a pe
odic orbit of any stability type, we can direct any orbit in th
m slab into them21 slab in one iteration of the map via
perturbation of the control parameterr5r i . The system
therefore, can be controlled by a succession of param
perturbations equal in number to the dimension of the s
tem, ending in a completely controlled state. At each step
dimension of the controllable region is reduced by one, u
the final step reduces it to a zero-dimensional region,
target orbit.

VI. CONTROL OF THE LOZI MAP BY CMT

As a concrete example, let us consider the Lozi@24# map.
The Lozi map is a two-dimensional piecewise linear m
whose dynamics are similar to those of the better kno
Hénon @25# map. The advantage of the Lozi map in th
example is that we can compute every relevant param
exactly, due to the linearity of the map, and the succes
control can be demonstrated rigorously. We use a Lozi m
of the form

xi 115~11r!1ayi2buxi u,

yi 1152xi .

For a51/2 andb57/4 the Lozi map has a fixed point atx̄
5(4/13,24/13), so near this point the dynamics are go
erned by

xi 115F 2
7

4

1

2

21 0
G xi .

The fixed point varies withr as $@4(11r)/13#,@24(1
1r)/13#% so (]/]r) x̄5g5(4/13,24/13) is the change in
the fixed point with parameterr. For a particular perturba
tion dr the change in fixed point isdrg5dr(4/13,
24/13). The eigenvalues and~right and left! eigenvectors of

@21 0
2

7
4

1
2 # are

lu5
272A17

8
, ls5

271A17
8

,

eu5S 71A17

A130114A17
,4A 2

6517A17
D ,

he
6-4
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fu5SA6517A17

34
,
271A17

8
A6517A17

34
D ,

es5S 72A17

A130214A17
,4A 2

6527A17
D ,

fs5S 2A6527A17

34
,
71A17

8
A6527A17

34
D .

The equation for the Lozi map can be solved to findzr

5(1,0). For an arbitrary fixed points̄5(s,t) nearx̄ and an
arbitrary initial conditionxi5(q,r ),

xi 115F 2
7

4

1

2

21 0
G ~xi2 s̄2drg!1 s̄1drg5~s,t1s2q!.

Thus, when the formula fordr is substituted in the above
the initial condition (q,r ) is mapped to (s,t1s2q), and the
xi 11 coordinate is that of the fixed point, while theyi 11
coordinate varies about its nominal value oft, as expected
This line segment of initial conditions can then be mapped
the fixed point by the application of OGY control. Figure
shows a control session in which OGY and CMT cont
were applied alternately to a period one orbit of the Lo
map. The improvement in the control is striking. After o
application of CMT, the orbit is in the preimage of the targ
orbit, and after the second application, the system state
exactly in the target orbit, while OGY control takes ma
iterates to settle down.

FIG. 3. This figure shows alternating control of the Lozi map
OGY and CMT, with thex coordinate on the vertical axis and tim
~in iterates! on the horizontal axis. Note the difference in the time
control. The lower graph shows a 35 times magnification of
controlled orbit. The first two iterates of each controlled orbit a
not shown. The scale on thex axis just contains the attractor, an
the units are nondimensional.
04620
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VII. CONTROL OF THE HE´ NON MAP BY CMT

The improvement of CMT over OGY is not as dramat
when it is applied a nonlinear map like the He´non map, as it
is with the piecewise linear Lozi map, but it is still impre
sive. The He´non map of the form

xi 115~a1r!2xi
21by,

yi 115xi

is chaotic fora56/5,b53/10 with control parameterr50,
and at these values has a fixed pointx̄5(4/5,4/5). Near the
fixed point, the He´non map is governed approximately by th
linear map

xi 115Axi5F 2
8

5

3

10

1 0
G xi .

We compared the OGY method to the CMT method
running 1000 trials on each of ten different control box siz
and plotting the average cumulative perturbation and de
tion from the target orbit. For each trial a random initi
condition inside the control box was given and both the OG
and CMT methods were allowed to stabilize it for ten iter
tions. Figure 4 shows the plot of the accumulated pertur
tion over ten iterates plotted against the size of the con
box, and Fig. 5 shows the accumulated deviation from
target orbit. The CMT control offers approximately a 30
improvement in control cost over OGY, and about the sa
improvement in rate of convergence to the target orbit
this periodic orbit of the He´non map.

VIII. HIGHER-DIMENSIONAL CONTROL BY CMT

The two-step procedure for a two-dimensional map can
extended to ann-step procedure for ann-dimensional map or
surface of section map. Suppose a systemF(x,t,r) with sur-
face of section mapf (x,i ,r) is stabilized in a periodic orbit

e

FIG. 4. This figure shows the average accumulated control
turbation over ten iterates for OGY and CMT control. The He´non
attractor for these parameters just fits in a box 3.5 by 3.5 nondim
sional units, so the control box width ranges from'1/350 to 1/35
the total attractor width.
6-5
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JOHN STARRETT PHYSICAL REVIEW E66, 046206 ~2002!
x̄ at timem. Then at timem21 the system state wasxm21

5Ar
21xm . The set of statesxm21 parametrized byr lies in a

straight linep because of the linearity of the map.
This line can be targeted by using a control rule deriv

from z1•xm5z1•A(xm212drg) wherez1 is chosen orthogo-
nal to the vector collinear withp, and A is now n3n and
decomposed as

A5@e1 ••• en#F l1

�

ln

G @ f1
T

••• fn
T#

~10!

FIG. 5. The average accumulated deviation from the target o
over ten iterates for OGY and CMT control. The He´non attractor for
these parameters just fits in a box 3.5 by 3.5 nondimensional u
so the control box width ranges from'1/350 to 1/35 the total
attractor width.
s

ev

s

et

04620
d

5@l1e1f1
T1•••1lnenfn

T# ~11!

yielding the control rule

dr5
l1z1•e1f1•x1•••1lnz1•enfn•x

l1z1•e1f1•g1•••1lnz1•enfn•g2z1•g
. ~12!

Similarly, the preimage ofp underA21 is generically a
planar regionp2 centered onx̄ which can be targeted by
requiring that z2•(xm212drg)5z2•A(xm222drg)50
where z2 is orthogonal top2. Likewise, the preimage o
pn21 underA21 is ann-dimensional slab that can be target
by thenth control rule

drn5
l1zn•e1f1•x1 . . . 1lnzn•enfn•x

l1zn•e1f1•g1 . . . 1lnzn•enfn•g2zn•g
. ~13!

IX. SUMMARY

In summary, I have proposed a control procedure that
gets a succession of lower- and lower-dimensional sla
each of which maps to the next lower-dimensional slab vi
succession of control perturbations culminating in the m
ping of a linear segment of system states directly to the ta
orbit by the standard OGY control rule. This procedure is n
only applicable to the maps, but to the surface of sect
maps of continuous time systems. I have demonstrated
control procedure explicitly and in computer simulation
the piecewise linear Lozi map, and in a computer simulat
of the Hénon map. The procedure is robust, and is superio
the OGY method in terms of time to achieve control. T
CMT method is time optimal in that it achieves control in th
least possible time for a linear map-based model.
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