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Manipulation of dynamical systems by symmetry breaking
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We propose an approach to manipulate and control transport in Hamiltonian systems which are characterized
by a mixed phase space. The approach is based on symmetry breaking of the phase space structure by applying
azero-mearmeriodic force for a finite duration of time. This induces time and space reversal asymmetry, which
modifies the internal dynamics of the system and leads to directed transport. It is shown that our strategy allows
to perform manipulations both with individual particles and with statistical ensembles of particles.
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The origin of transport in dynamical systems has been aswitching on a second source of kicks which are shifted, in
active research area for a long tifrig. Recent investigations time and space domains, with respect to the first one,
in this field have been motivated by the revival of th&chet

idea that leads to directed transport in the absence of ®jas H(p,x,t) =Hs(p,X,t) + D(t,ton,tor1) Ex COIX+ @)
Most studies have focused on noisy dissipative systems in w

the overdamped limit, which appear suitable for microbio- « S(t—nT+ 2
ligical examples[3]. The opposite limit, in which inertia |=§;w ( ™. @

plays a essential role, has attracted less attention, although it
offers some new directions in current rectificatiah. where ¢ and 7 are spatial and temporal shift constants,
Fundamental to questions of transport in general, and recP (t,ton,torr) = O (t—t,,) O (tor¢—1t) is a square pulse func-
tification in particular, are Hamiltonian systems which ex-tion, andt,, andt,; are the switching on and switching off
hibit rich and varied behavior, ranging from regular totimes. The duration time for the SB force is, therefdrg
anomalous motion which can be related to a mixed struc=t,;;—1t,,. Notice that this SB method is different from the
tured phase spadé®]. Kinetics in Hamiltonian systems has usually used “two-harmonics” ratchet approaleh7,9.
been shown to provide a foundation for problems of impor- Let us start from the case of a constant SB),(
tance such as the link between stochastic processes and the-, ty;=0o0). For nonequidistant kicksg#mT/2, and
nature of dynamical systenj§]. It has been demonstrated ¢+# sz (m,s=---—1,0,1...), allrelevant symmetries are
[7] that the necessary conditions for current rectification inbroken and we fulfill the necessary conditions for the appear-
Hamiltonian systems is time reversal asymmetry. Namely, irance of a currenf7]. The evolution of the Hamiltonian sys-
order to obtain a current, symmetry breakif8B) needs to tem (2) can be described by a pair of consecutive maps in

be imposed on the syste}i,8]. positionx and momentunp,
In this paper, we show how understanding the SB mecha-
nism for directed motiof9] naturally leads to a new tool to Xn+1=Xn T PnT
manipulate classical Hamiltonian systems. The approach we
propose aims at cases for which imposing global gradients is Pri1=Pnt U (Xn1 1), ©)]
impossible. One can easily imagine a situation where remote
control is required, or when a global bias is not desirable. Xn+1=Xns1 T Pher(T—17),
Here we demonstrate how the SB approach helps to manipu-
late both single particles and statistical ensembles of par- P 1= Phi1t P (tton tor) U (Xns1+ &), (4)

ticles. In the case of a statistical ensemble, SB opens new

possibilities for handling some fraction of the particles, awhere Eqs(g) Correspond to kicks from the main source,
process which cannot be performed using standard bias tecgnd Eqgs.(4) correspond to kicks from the SB source.
niques. The Hamiltonian system in Eq$l)—(4) has a compli-

Let us consider the example of a particle which moves incated phase space with coexisting and interwoven sets of
the periodic nonlinear potenti&l (x) = cos(x) under the in-  jnvariant manifolds with different drift velocity values and
fluence of a periodic train o kicks with an amplitudeE;  directions. It is characterized by the presence of chaotic lay-
and periodT [1,5], ers, which originate from nonlinear resonance separatrixes,
and regular regions, consisting of KAM-tori with complex
sticky barriers between the chaotic and regular regi@is
Due to these barriers a trajectory can be trapped near regular
islands for a long time. This leads to the appearance of flights

The Hamiltonian(1) is symmetric with respect to time in the case of nonzero winding numbers or localized ro-
and space reversal transformati¢ti——t,x——x}, so a tating modes withv =0. For some hierarchy of ballistic is-
particle, whose dynamics obey Ed), performs a diffusive lands this trapping time can be anomalously long, resulting
motion with zero drift. The symmetry can be broken byin Lévy flights [10]. In Refs.[9,11], it has been shown that

) -
Hs(p,x,t)=%+E1cos(x)2_ st—nT). (1)
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the potentialU(x), are a result of the flights. Directed par-
ticle drift stems from asymmetry in the structure of the bal-
listic islands with positive and negative winding numbers.
Moreover, most of the contribution to the particle’s transport
in the positive direction comes directly from the main ballis-
tic islands withv =1 (see inset in Fig. 2
Based on the above, we expect that controlling the mani-
fold overlap in phase space, one can control the directed
transport by tuning the value of the velocity. We now de-
scribe a possible way to manipulate a particle through SB
0 1 . 2 3 during a finite time intervatgg. In order to do this we use
107t two features of the systenti) the possibility to temporarily
FIG. 1. Dependence ok(t) versust for (a) the symmetric remove .the barriers, in phqse s.pa(cferme_d by in\(_ariant
Hamiltonian, Eq.(1) (E,=0.24, T=0.6) and(b) the Hamiltonian KAM-tori) between different invariant manifolds, afit the
with the additional SB sourc€), Eq. (2) (E,=0.24, T=0.6, E,  Sticky nature of the regular islands. Namely, one can remove
=0.11, ¢=0.8, 7=0.4). Insets show the corresponding Poincarethe barriers from the phase space during a time interyl
sections. and then restore them. This can be viewed as an act of a
demon5,13]. Here the demon removes the barif@pens a
the generation of directed currents in Hgmiltonian systems igoor”) at time t,, and restores the barrigfcloses the
determined by breaking the symmetry ofiyeflights due to  door”) at timet, ;. Due to the stickness property, the infor-
asymmetry in the structure of the hierarchy of regular islandsyation required for the control the particle is its velocity

in phase space. _ L _only. This means that the “door” closes when the velocity of
hHe're lwe are |ntta=_restedh!nhdynam|cs inside tk;}e main Stome particle is close to a desired winding number. The most
chastic layer neap=0, which corresponds to the ground gfiient manipulation can be achieved using the “stickiest”

state. Switching on the second kick?ng source W.ith amp”tUdE'l‘slands, which are present in both Hamiltonians, the symmet-
E, and phase shiftgy and 7 results in asymmetric overlap- fic one,Hy, in Eq. (1), and the SB oneH, in Eq. (2). In this

ing of the main chaotic layer with the layer of ballistic X . . .
iF;Ia?lds (see Fig. 1 This oveyrlapping produ)ées a current, V& the time duratiorisg needed for the manipulation de-
Current inversior(mirroring the layers overlapcan be ob- creases, and the accuracy of the procedure increases. Below
we outline an example of the SB strategy of our demon.

tained by a simple shift inversiop— — ¢ or 7—T—17. o ; S
; . Let us start from the situation in which a particle is lo-
For the analysis of the dynamics we use the propagato(gated inside the main stochastic layer. If the demon wants to
P(x,t), i.e., the probability density of a particle to bexaat yer.

time t [12]. In Fig. 2 we show the propagator for tinte move the particle in the positive direction then the particle

—1000T obtained by averaging over 1@ajectories, starting must be shifted into the upper ballistic layer. In this case, the

in a chaotic area of the main layer. The peaks in the pro demon must switch on the second sourcesokicks, that
Yer. P ProPFE 4ds to overlapping of the main layer with the upper one.

gator correspond to flights that a particle performs when i he demon has to follow the velocity of the particle. When.

sticks to ballistic islands. The locations of the peaks are defor duration of aboutt —10T. the velocity is close
termined by the corresponding winding numbers. From the contr ' Y

structure of the propagator it is clearly seen that the larg enough to the winding number of stickiest island, it indicates

. i A9%hat the particle is trapped in the upper layer with a high
scale particle displacements, when compared to the period C}:)?robability. At this stage the demon switches off the second

0® source. Now the particle remains locked inside this layer and
moves approximately with a constant velocity in the positive
direction. After some time, when the particle reaches a re-
quired region in space and the demon would like to stop it,
he should again switch on the second source and follow the
velocity. If the particle velocity is close enough to zero then
it means that the particle sticks to a localized resonance and
has returned to the main chaotic layer. The demon now
switches off the second source and the particle is locked back
inside the main layer. The mean energy returns to its value
0.00 Nt T G before the SB action.

-500 0 500 1000 1500 In Fig. 3, we show the realization of the SB procedure for

X the system according to E(R). We check the displacement

FIG. 2. The propagator for a fixed time=t1000T) for (a) the of the particle after each time stepTLOIf this displacement
symmetric Hamiltonian, Eq(1) (dotted line and (b) the Hamil- IS close enough to.,, (about 10%), we take it as a sign
tonian with constant SB, Ed2) (solid line). Inset displays sticky ~that the particle is near the corresponding island. The direc-
islands correspond to the main peaks in the propagator shape. P@n of the motion is defined by the value of the time shift
rameters same as in Fig. 1. of the second source.

v=1
0.02

P(x,t=1000T)
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FIG. 4. The spatial distribution of an ensemble of partisle
=10* (see text for the Hamiltonian in Eq.(6) (E;=0.5, E,
=0.1, T=2m, ¢=1.2, 7=0.8) (a) just before andb) after the
action of the SB forcet(,=200T, t,¢=220T). The inset is an
enlargement of the additional peak that corresponds to the chipped
fraction of the directed particles.

FIG. 3. Arealization of the control approadi@ Trajectory for Following steps analogous to those applied above, we can

the Hamiltonian in Eq(2). The SB source acts for time windows brake all relevant symmetries by switching on a second
marked by the bars. The widths of the bars equal the duration of thgtanding wave, shifted with respect to the main one
SB action. The arrows point to the resonance involved in the over- ' '

lap (upper and lower ones correspondinglyhe time phase shift is H(pb.x.t)=H YO+ Pt te)EncOL X+
7=0.4 for the two first pulses and=0.2 for the last ones. Inset (PXD=Hs(p.X, 1)+ (L, on, tor1) B2 COIXF )
shows the Poincarsection for the manipulation periodo) The X coS(wt+7), (6)

Poincaresection(white circleg of the system in Eq(2) after every
time stept= 10T (see text for detailsduring the first SB pulse. The where ¢ and 7 are spatial and temporal shift constants and
parameters as in Fig. 1. E, is the amplitude of the second standing wave.

We consider the dynamics of an ensemble of particles

The mean time needed for the demon’s SB action can bgjith an initial Maxwellian distribution inp, and homoge-
evaluated using the distribution of times between consectheous inx, inside one spatial period of the potential

tive sticking events in the case of a permanent SB action, Eq.
(2) [10]. The time needed to moves particle to the flying 1 B )
mode can be estimated as the first moment of the probability p(P.X,0)=5—7 Eef(’m)p 0(x)0(2m—x)  (7)
distribution function(PDPF for the ballistic island. For the
same parameters as in Fig. 3, this procedure give%ith B=10.
=3Bteontr- The time needed for return the particle back to "\ qor the
the nondrift diffusive mode can be estimated as first momen
of the PDF for the central localized island. This gives
=48t contr-

The SB strategy can be also used in the case of a statis
cal ensemble of particles. In this case, the SB can chang

populations of particles on the different manifolds througha small fraction(compared to the initial ensemblef par-

i the. KAM-tori barner_s. Let us_con_3|der the ticles can be locked into the manifold with a nonzero drift.
exam_ple of a continuous system ‘.N'th a Har_mltonlan, W.h'ChAfter switching off the pulse of the second standing wave the
descrlbgs the mqtlon OT particles in a standing wave with aparticles move in the prescribed direction with a velocity of
modulating amplitudg1]: the corresponding manifold. This is a kind of tweezers,
o2 which chip off a some fraction of particles. In Fig. 4 we
_v show an example of the realization of this strategy. SB in-
Hs(pxt)= 2 +Ey cogx)cos (wt). © duces an overlap of the main chaotic layer with the thin
upper ballistic layer. The number of chipped particles can be
Such a Hamiltonian system has been realized in atomicontrolled by variation otsg. For example, fotgg= 10T,
optics experiments probing motion in a wave produced by dhe chipped fraction is about 3% and figg= 20T is about
laser field[14]. Here we investigate the classical limit. 7%. It should be mentioned that this manipulation cannot be

influence of the main standing wave,
Itilcoséocoé(wt), the ensemble performs diffusive spreading
with no drift. Now we show that using SB for a finite dura-
tiontgg, i.e., a pulse of a second force, Ef), it is possible

o0 chip off a small fraction of the particles from the an initial
loud” and transport it in a preasiggned direction. Namely,
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achieved by standard technique using an external bias, sinters always appear as pairs and have e(jnatolume ba-

this will lead to the total displacement of the ensemble onlysins of attraction. The SB can lead to a situation where one
The SB approach, proposed here, provides, therefore, a neg¥ these cycles loses stability and disappears from the phase
possibility to perform a nontrivial manipulation with statisti- space[7]. Namely, as in the Hamiltonian case discussed
cal ensembles using zero-mean external fields. above, it is possible to redirect particles from one cycle to

In summary, we have shown that SB provides a new toohnother using SB and thereby change the cycle populations
for manipulating and directing dynamical systems. This apin the ensemble case.

proach can be also realized for systems with an additive driv-

ing force[9,11]. In dissipative systems, the roles of mani- S.D. thanks S. FlaciMPIPKYS) for helpful discussions.
folds with different currents are expected to be played byFinancial support from the Israel Science Foundation, the
limit cycles with different winding numbergl]. Symmetry  USA Israeli BSF, DIP, and SISITOMAS grants are gratefully
implies here that ballistic cycles with opposite winding num-acknowledged.
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