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Switching-induced Turing instability
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We propose a mechanism for inducing a Turing instability in systems whose only stable state is pattern-free
and homogeneous. Global alternation between two dynaeachof which hasthe saménomogeneous stable
state, may induce a Turing instability that leads to pattern formation. We determine what kind of alternation can
drive the system to a Turing instability, and show that the appearance of the induced spatiotemporal structure
depends on the ratio of two characteristic times, one determined by the external forcing and the other by the
instability that drives the system at short times. The mechanism is illustrated by means of theoretical calcula-
tions and numerical simulations on two well-known biological models that are relevant in morphogenesis.
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[. INTRODUCTION state, i.e., one that ithe sameand pattern-free, for both of
the alternating dynamics. Relaxation processes play no role
Nonequilibrium patterns are ubiquitous in nat{itg. The in this mechanism. We will show that in this case collective
discovery and understanding of new mechanisms for genegffects and short time instabilities are responsible for devel-
ating spatiotemporal structures is, therefore, a subject of inoping heterogeneous structures. The mechanism, in that
terest and research in many fields of science. One such posense, resembles that of some noise-induced phase transi-
sible mechanism involves the forced alternation between twéions[7,8], with the significant difference that in the latter the
dynamics. The idea that dynamical switching might lead torandom perturbations must be local whereas in our case the
interesting structures arose from a number of examples iaystem is driven globally.
which such alternation provokes unexpected results. The pro- The paper is organized as follows. In Sec. Il we present a
totypical example is the Brownian flashing ratcf#l where  short introduction to reaction-diffusion systems and the so-
either periodic or random switching between two local po-called Turing instability 9], which plays an important role in
tentials generates a current of particles in a system, wheriological models for morphogenesis, chemical reactions,
neither of the potentials alone produces a current. Anothe&nd many others physicochemical syst¢6isin that section
example occurs in the so-called Parrondo’s paradox, wher@e also show that an initial instability that drives the system
alternately playing two losing games produces a winning reat short times can be consistent with a stable homogeneous
sult (“paradoxical gamesJ [3]. An extension of this phe- state at long times. This combination is essential for our
nomenology to spatially distributed systems has recentlyT]eChanism. Section Ill details how it is that global alterna-
been shown to lead to pattern formatipf]. In particular, tion of two reaction-diffusion dynamics that share a common
working with models based on Swift-HohenbeigH)-type  equilibrium may lead to pattern formation. The internal time
equationg5] we have shown that either periodic or randomscale that determines whether or not patterns are produced is
global switching between two dynamics may lead to station-estimated in Sec. IV. Two reaction-diffusion systems fre-
ary or oscillatory spatial patterns. That mechanism requires guently invoked in biological contexts are presented in Sec.
key ingredient, the alternation between dynamics with twoV, and parameter ranges that lead to morphogenesis by dy-
differentstable homogeneous states. The resulting states dgamic alternation in these two systems are determined. Nu-
pend on the relation between two competing characteristinerical simulations confirming these conditions are pre-
time scales: One is the characteristiwitching time t, sented for one of the two modelshe activator-substrate
which determines the length of time that the system spend&ode) in Sec. VI, where we show examples of the formation
evolving in each dynamic; the other is the time that the sysof stationary patterns and of oscillatory patterns. Finally, in
tem takes to accommodate to a new dynamic upon switchSec. VII we summarize our main conclusions and indicate
ing, that is, therelaxation time t. When switching is slow some possible future directions.
(tex>t,), the system alternates between homogeneous

states. If switching is sufficiently rapidd<t,), a new un- II. REACTION-DIEEUSION SYSTEMS

stable equilibrium point arises, and stationary patterns de- . i ) o

velop. If the times are comparable.{~t,) and the switch- Cgmsujer a simple reactlon—dlf_fusmn system, Where_ two
ing is periodic, oscillatory patterns develop. species interact. The concentrations of the two species at

Herein we propose an entirely different mechanism forSpace pointr and timet areu=u(r,t) andv=uv(r,t), and
pattern formation in reaction-diffusion systefigd, again in-  their evolution equations are
duced by global alternation of dynamics but otherwise in-

volving very different requirements and time scales than du="f(u,v)+D,V?u,
those described above. This mechanism applies even to sys-
tems where there is agingle uniquestable homogeneous dw=9g(u,v)+D,V?. D
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A steady state occurs at concentratiofisandv® such that fu+9,<0, (12)
S .S\ — S .S\ —
f(u ,U )_g(u U )_0 (2) fugv_fvgu>0! (12)
Its stability can be established by means of a linear pertur-
bation analysis of small perturbations about the steady state, Dyg,+D,f,<0. (13

u=us+déu, v=v°+ v, 3 On the other hand a steady state will be unstable with respect
to someinhomogeneouperturbationgbut stable against ho-

and linearization of andg around the equilibrium pOint. We mogeneous perturbatiohg condition (13) is rep|aced by
find the following evolution equation for the perturbations

Su and dv:

su f,+D, V2 f, su
o, = N )
Sv du g,+D,V?/ \ 6v

where

sz‘?zf(urU”(us,vS) ) ngazg(u:UH(us,vs) , 5

andz stands formu or v. The solution is a linear combination

of plane waves,

5u(r,t)=2 dug(t)cogq-r),
q

Su(r,t)=2, dvg(t)cosq r), (6)

q

where the amplitudes of the waves with wave vecimsat-
isfy the following equation:

hZq=oZq. (7)

duy fu—09°Dy, f,
Zq: ’ '-]]q:

, ) (8)
vy %u 9,~a°D,

The formal solution of Eq(7) is

Here

Zy(t)y=Z4(0)exp(Jqt). 9

We have replaced the vectorial subscrigtsy the magnitude
g because the evolution operatdrretains g-spherically-

symmetric initial conditions, to which we restrict ourselves.

The real parts of the eigenvaluegq) of the operator],
determine whether a perturbation diver§&e(s(q))>0] or

decays to zerd Re(s(q))<0]. The eigenvalues obey the

equation

s%(q) —s(q) Tr(J) + Det(J,) =0. (10

The fixed point (1°,0°) is stable with respect thomoge-
neousperturbations if Tr{y) <0 and Det(,)>0. Moreover,
an inhomogeneousperturbation with wave vectog#0 de-

Dugu+vau>2[DuDu(fugv_fvgu)]l/z- (14
The latter case is known as tharing instabilityand leads to
the development of a pattef@]. The wave vectog* of the
spatial structure is that which maximizedq).

If a homogeneous state is stable, Ed4) and(13) forbid
bothf, and g, to be simultaneously positive. However, none
of the stability conditions reject the possibility théig,
<0. Moreover, iff,g,<0 then, by Eq.(12), f,g,<0. We
also point out that at short times the evolution is dictated by
the signs of the individual termé and g. Therefore, it is
possible that even when a homogeneous state is stable, one
field (or both may present an instability at short temporal
scales independently of the initial condition. That instability
will drive the system up to time scales of order
O(1/maxf,,f,,94,9,}) and is crucial in the proposed mecha-
nism of pattern formation, as shown below. Note that in the
case of single-field dynamics, as in the SH model, if a ho-
mogeneous state is stable it is not possible for the system to
present such a short time instability. As a consequence, the
mechanism of pattern formation by the alternation of dynam-
ics proposed below applies only toultifield systems, and is
completely different from that recently proposed for single-
field systems based on relaxation proce$dés

Ill. ALTERNATION OF DYNAMICS

Suppose that we globally alternate two reaction-diffusion
dynamics in time. By “globally” we mean that at any given
time all space points are driven by the same dynamic, that is,
the reaction function$ and g and the diffusion coefficients
D, andD, are not allowed to change from point to point.
Moreover, let us consider two dynamics each of which by
itself evolves tothe samestable homogeneous equilibrium
state. The question we wish to explore is whether it is pos-
sible to induce a Turing instability by global alternation of
two such dynamics. Two points are clear even before further
exploration:(i) For an instability to develop, it is necessary
that the alternation process change the stability properties of
the equilibrium state andi) Relaxation processes between
equilibrium states play no role here since the two separate
dynamics have the same equilibrium point.

Even though relaxation processes play no role in this dis-
cussion, there are nevertheless two temporal scales involved
in the problem. One is the switching timg, that character-

cays if Tr(J;) <0 and Det(,)>0. These conditions can be izes the externally imposed alternation of dynamics, and the
translated to the following sufficient, but not necessary, conether is an internal time;,, determined by the system dy-
ditions for the stability of the fixed point with respect to namics. Clearly, the external time is the average time the

homogeneous and inhomogenepesturbations:

system spends in each dynamic. In the case of pure periodic
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switchingte,=T/2, whereT is the period of the alternation be the start of the alternation process. The evolution operator
process. If the switching process is random and switchin@xp(qt) in Eq. (9) is a product of successive evolution op-
between dynamics occurs with equal probability, its correla€rators appropriate to each of the alternating dynamics. For
tion function might be10] instance, if we begin with dynamic 1 then at the endnof
periods of alternation we have
n

T T
where 7 is the correlation time of the switching process. In Zq(NT)= exp( Jég) ex;{ JEE) Z4(0)=[G4(T)]"Z4(0),
this casetq,=27. (17)
Pattern formation requires an early-time instability that is

“captured” by the alternation process. The internal time ofwhere the meaning of the notatidh is obvious. Thus, the
interest turns out to by~ O(1/maxf,.f,,gu,9,1), that is,  real parts of the eigenvalues 6f(T) determine the stability
the time scale over which this early instability drives theof the alternation process. Note that the eigenvalues are the
evolution of the system. As mentioned earlier, such a timesagme whether one starts with either dynamic 1 or dynamic 2.
scale is also responsible for some noise-induced phase tragroreover, the eigenvalues are of course independent of the

sition phenomena. However, contrary to the case here, in thgitjal condition. The characteristic polynomial for the eigen-
noise-induced phenomena the noise émtally. We will es- valuesA (T) of the operatoi,(T) is given by

timate the internal time in more detail in the following sec-

C(t,t")y=exp —[t—t'|/7), (15

tion. AXT)=Ag(TTIG4(T)]+DefGg(T)]=0.  (18)
The control parametar=t.,/t;,; separates slow and fast
dynamics. When the alternation is slow>1, no destabili-  If Re(A4(T))>1 (<1) the alternation process leads to de-

zation of the equilibrium point can be achieved since bothstabilization (stabilization of the initial instability. There-
dynamics drive the system to thamesteady state, and, fore, the condition Re\ 4(T))=1 determines the critical sta-
once there, the switching process can not move the systepility curve.

away from that state. Pattern formation can occur if the When the alternation of dynamics does produce a Turing
switching mechanism is sufficiently rapidi<1. Moreover, jystapility, there exists a critical value of the peridd, such

¥ve W”!”Sf][OW thatttifr ~1la reso_natr;fe pheno][nenpndthatl':eadsthat there are no instabilities for dynamic alternations slower
0 oscilatory patlerns occurs in the case of periodic alleMay, - this critical period. Thus for all periods longer than

tion. ! !
It is possible to establish rather general conditions unde'fhe maxima of Re\4(T)) as a function ofq take values

which pattern formation will or will not occur. Let the two Smaller than unity. The valug=q associated with this in-
dynamics be denoted by subscripts1,2, so thaD;,, D;,,  Stability is found from the conditions

fi(u,v), andg;(u,v) denote the constants and functions un-
der dynamid. Each dynamic separately must satisfy the sta-
bility conditions (11)—(13). On the other hand, when dy-
namic alternation is very rapid 1), adiabatic elimination
immediately leads to the conclusion that the evolution of theVe define the internal timg,; as half the value of the critical
system is driven by theveragevaluesA,=3(A;+A,), periodT:

whereA stands foD,, D,, f(u,v), andg(u,v). An insta-

bility then occurs if the conditio13) is replaced by(14) for

this average dynamic. A number of alternation schemes can tine=
easily be ascertainedbt to satisfy the necessary criteria. In
particular, the diffusion and the reaction functions must both

be alternated. A particularly simple alternation scheme tha‘tA‘ Turing instability develops for any <T at the wave vec-

: ; : tor g* that maximizes R@\4(T)). In the limit T—0, the

induces spatiotemporal patterns is most unstable mode coincides with the one obtained by

fi(u,v)=af(u,v), gi(uv)=g(u,v), maximi_zing the eigenvalus(q) using theeffectiveaverage
dynamic.

JReA (T)

ReAy(T)=1, 7 lg=3

—0. (19

N =

(20

Diyy=Dy, Di,=bD,, (16)
V. MORPHOGENESIS
where thea; and b; are positive constants. Note that the _ S o .
coefficients in this alternation scheme can in principle be Because of their broad applicability to spatial differentia-
related to the presence or absence of an immobile complefion [1,11], we select two specific reaction-diffusion models
ing agent6]. to illustrate the mechanism. In its most elementary variants,

and in convenient dimensionless units, the activator-substrate
IV ESTIMATION OF THE INTERNAL TIME [12] and activator-inhibitof13] models read, respectively,

In the remainder of this paper we focus on the case of du=a(u?v—u)+Vau,
periodic alternation. In this section we provide a more de-
tailed estimation of the timg,,. We define the timé=0 to dw=(1—u?v)+DV?, (21)
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and

u2

du=al—-u +V?2u,

dw=(u>—v)+DV?. (22

The activator-substrate mod@1) has been used to describe 0.35T
pigmentation patterns in sea shellk2,14], as well as the
ontogeny of ribbing on ammonoid shellE5]. The variabley t }
in this model can be interpreted as a substrate being con- ’
sumed by an activatan. On the other hand, the activator-
inhibitor model (22) plays an important role in the under-  Fig. 1. For the two models described in the text, an alternation
standing of the regeneration and transplantation of the h_ydrerocess withT<T leads to pattern formation due to the destabili-
[13]. Hereu andv represent, respectively, the concentration aiion of all the Fourier modes inside the solid curve. All points
of an activator and of its antagonist, an inhibitor. In bothingjge the solid curve represent unstable modes. The dashed line
modelsa denotes dpositive) cross-reaction coefficient, and marks the most unstable mode of the patterns that develop for each

both share the unique fixed poiat=v°=1. This stationary 1 The tip of the curve is at the critical peridt=0.34 that defines
state is independent of the valuesaofind D, although the

values of these parameters determine its stability.

We setD;,=1 and defineD;=b;D, . Global alternation
between two sets of constarts ,D;} obeying the following Re(A4(T))=1 (solid curve, and the most unstable Fourier
conditions leads to a Turing instability in each of the twomode as a function of the alternation perigd,(T) (dotted
models: line). An alternation process witi<T leads to a Turing
instability due to the destabilization of all the Fourier modes

\

the internal timet;,,=1/2 and the associated wave vecfqr
=0.393. AtT=0 the most unstable mode occursgét=0.399.

a<1, (23 inside the solid curve. The resulting pattern will present a
D.<1 04 wavelength N(T)=2#/q*(T). The tip of the loci
abi=L (24) Re(A4(T))=1 determines the internal timg,=T/2=0.17.
. ; .
(ay+a,)(D1+Dy)>2, (25) Note thatg* is almost independent af. Recall that Fig. 1

applies to both the activator-substrate model and the
activator-inhibitor model.

We carry out numerical simulations of the activator-
substrate modd21) on a 64x 64 square lattice using a sec-
ond order Runge-Kutta scheme with periodic boundary con-
ditions [results for the model22) are very similaf. The
initial conditions for the concentrations of the speaieand

; ; ' ; v are random. The space and time integration intervals are
}{/r\]/: ?it)zz(sjs again tbat f_or either of the Sﬁs’P'} by itself, ., settoAt=10 3 andAx=Ay=1. Sincex=0.4, we expect
pointusg=vs=1 is stable. If the “greater than L/N—~4 patt lenaths. We f th iodic alter-
condition is chosen in E(26), the inequality(25) is auto- pattern waveiengins. We focus on the periodic alter

matically fulfilled. One possible family of solutions of Egs. nation for different values of the ratio
(23-(26) is T T

r= == (31)
a;<1, (27 2tne T

(a3+a,)(D1+Dy) <4(3-242),
or

(a;+a,)(D;+Dy)>4(3+22). (26)

8y2-11

that controls the appearance of the Turing instability. When
=

(29) r>1 we obtain a homogeneous state with concentrations
u=1, v°=1, as expected. Asdecreases a Turing instabil-
ity develops. In the limir—0 a stationary pattern appears,
as shown in Fig. 2. The stationary values of the concentration
D1<a_l’ (29 fields ofu andv are shown by means of gray-scale density

plots. Note the hexagonal structure of the Turing patterns, as
8\2+12 1 well as thenegativeaspect of the concentrations, that is, in

—————— —D;<D,<—. (30)  the regions where the activataris highly concentrated, the

a2 substratev has a low concentration. This behavior is ex-
pected since the activator grows by depleting the substrate. A
VI. NUMERICAL SIMULATIONS spatial Fourier analysis of Fig. 2, shown in Fig. 3, reveals the
. . - . most unstable mode of the pattern. The figure shows the
Two particular pairs of constants fulfilling the conditions spatial power spectrum of the concentration fields averaged

(27)—(30) are (a;,D1)=(3,1) and @,,D,)=(35.30). We  over angles. This angle-averaged spectrum is appropriate be-

use these values in Fig. 1, where we depict the loccause of the rotational symmetry of the concentration fields

a,<a,

a;+a,
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FIG. 2. Gray-scale density plot of the stationary concentrations +
of the chemical species (activatoy and v (substratg for r -

=0.03.

u(r) and v(r). The most unstable mode §*=0.4, in

agreement with the theoretical estimate. FIG. 4. Oscillatory pattern for the activator-substrate model with

A striking phenomenon occurs when the control param+ —g 9. snapshots of the concentration of the substraiering a
eter reaches values of order-1. A resonance between the period of the alternation process. Note the localized oscillations
two characteristic times leads to oscillatory patterns. Figure 4rranged in a hexagonal structure.
shows the oscillatory pattern obtained for the concentration
for r=0.9. The spatial arrangement of the oscillatory pattemmorphogenv and the so-callescillonsfound in vibrated
as well as the most unstable mode, coincide with those ob-
tained in the stationary case. We point out the analogy begranular layer$ 16].
tween these localized oscillations in the concentration of the

VII. DISCUSSION AND CONCLUSIONS

We have shown how a nonequilibrium procesgytafbal
alternation of dynamics may lead to pattern formation in
reaction-diffusion systems, and we have used two particular
¢ u models of biological interest to illustrate the necessary con-
21 P v 1 ditions for pattern formation and the actual patterns that may

occur. To our knowledge, the mechanism is different from
any other known pattern formation mechanism associated
with dynamic alternation, becaugg the alternation is global
¢ (rather than spatially randogmand (i) the alternation can
Ly 1 occur between two dynamics that sharecommonunique
| stable homogeneous equilibrium point when either acts
alone. Nevertheless, a Turing instability develops when
switching between these dynamics is sufficiently rapid.
L . 7 Clearly, since the two dynamics may even share an equi-
00_'2 04 06 08 1 12 14 librium point, the mechanism leading to pattern formation
g does not involve relaxation processes from one equilibrium
state to anothdr]. Instead, the triggering mechanism in this

FIG. 3. Power spectrum of the concentration fields shown incase is the instability that may drive multifield systems at
Fig. 2 averaged over angles. The most unstable Fourier mode ghort times. We also noted that the occurrence of a Turing
g*=0.4, in agreement with the theoretical estimate of Fig. 1. instability requires the alternation of both the reaction and
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the diffusion terms in the field equations. tionary pattern formation occurs with fast alternation
We presented a general class of reaction-diffusion systemshether the switching is periodic or randddi.
where a Turing instability can be induced, and established The work presented here concerns the dynamics
sufficient conditions within this class for the occurrence ofalternation-induced destabilization of a unique stable equilib-
patterns. To illustrate the mechanism we chose two modelsum point, turning it into an unstable focus or an unstable
well-known in a biological context, namely, the activator- node. One can of course envision destabilization processes
substrate moddl13] and the activator-inhibitor modé¢lL4]. that generate other equally interesting outcomes such as a
While it may be difficult to implement in practice the global Hopf bifurcation. As for the switching mechanism discussed
variations in these particular models, they serve as a feasherein, we note that the essential ingredient for pattern for-
bility study of the idea. Reaction-diffusion models in which mation is an initial instability, and that the pattern formation
natural periodic variations in the reaction and diffusion termsprocess is more robust against changes in the alternation pe-
may occur arise in the context of epidemics studies in sysriod the longer is the temporal window during which this
tems subject to seasonal variations, see, e.g., [R&f. To instability drives the system. Clearly, dichotomous switching
support our theoretical description, we performed numericals not a fundamental component of the process. Other modu-
simulations on the activator-inhibitor model and found excel-lations should lead to the same phenomenology. Work on
lent agreement with our predictions concerning relevant timehese questions is in progress.
scales. The control parameter for the mechanism is the ratio
r of the alternation period and the time scale over which the
early instability drives the evolution of the system. We
showed that there are three different regimes of behavior This work was supported by the Engineering Research
depending on the value of the control parametéWhenr Program of the Office of Basic Energy Sciences at the U. S.
>1 (slow alternation, the system relaxes to the unique Department of Energy under Grant No. DE-FGO03-
stable equilibrium point of each of the two dynamics. When86ER13606. Support was also provided by a grant from the
r<l1 (fast switching, an effective average dynamic drives University of California Institute for Mexico and the United
the system and produces a Turing instability that leads t&tateUC MEXUS) and the Consejo Nacional de Ciencia y
stationary pattern formation. Finally, if~1, a resonance Tecnologa de Meico (CONACYT), by MECD-Spain Grant
phenomenon leads to oscillatory patterns. The oscillatory beNo. EX2001-02880680, and by MCYT-Spain Grant No.
havior is only observed for periodic alternation, whereas staBFM 2001-0291.
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