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Continuum percolation threshold for interpenetrating squares and cubes
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Monte Carlo simulations are performed to determine the critical percolation threshold for interpenetrating
square objects in two dimensions and cubic objects in three dimensions. Simulations are performed for two
cases:(i) objects whose edges are aligned parallel to one anotherignd&ndomly oriented objects. For
squares whose edges are aligned, the critical area fraction at the percolation thggsh6l6666+ 0.0004,
while for randomly oriented squarefs.= 0.6254+ 0.0002, 6% smaller. For cubes whose edges are aligned, the
critical volume fraction at the percolation threshabd=0.2773+0.0002, while for randomly oriented cubes
¢.=0.2168-0.0002, 22% smaller.
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I. INTRODUCTION Leath method9] and the methods Lorenz and Zjff0] used
in their study of the continuum percolation of spheres.
Lattice percolation is often used for the statistical model- We perform 2D simulations with squares whose edges are
ing of transport in porous med[d—4]. The requirement that of unit length. In 3D we perform simulations with cubes of
sites, and the bonds between them, be constrained to a fixg&ree different edge Iengths:\zﬁ, 0.75, and 1.0; the length
lattice may not, however, be an appropriate model for naturahf each axis of the simulation box in the 2D simulations is
porous medig1-4]. The characteristics of site and bond 301, and in 3D is 101 in simulations using cubes with edge
percolation potentially limit their applicability to modeling | ngths of 143 and 0.75, and is 161 in simulations with the
of natural phenomena such as oil and groundwater flow anflii’ o\ ;pe[11]. We subdivide the system into either a 2D or
extraction of melt from super-solidus regions deep inside ) grid of unit area squares or unit volume cubes; an illus-

planetary body. . : . I
Continuum percolation offers two advantages for descrip!rative 12<12 2D version Of our system Is shown in Fig. 1.
The cluster begins in the center grid volume and objects

ing porous media. . . SR
g(i[)) The objects that form clusters are not restricted tofre added to it based upon a Poisson distribution centered

points on a fixed lattice; they can be placed anywhere withirf"bogt the average number of objects per unit area or volume,
the volume studied and either be barred from interpenetra/L", chosen for the simulation of dimensiah[10]. The
tion or allowed to interpenetrate, i.e., they can have eitheProduct of this value and the individual object’s area or vol-
“hard” or “soft” cores [4]. Because of the freedom of place- Ume,v, is the reduced number density
ment inside the system, the connections between soft core
objects can range from very small to very large, depending
upon the extent of interpenetration. 11

(i) The objects can be of any shape. In two dimensions 10 (
the continuum percolation of discs is often investigdiad].
In most studies of continuum percolation in three dimen-
sions, spheres are used as the objects, leading to the “Swiss
cheese” nomenclature for continuum percolatigm]. Other 7 !
frequently used shapes are rods and ellipsoids of revolution 6
[5]. In a few cases, the continuum percolation of cubes has

been considerefb]. > S
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Here we determine the threshold for continuum percola- 4
tion of soft core squares in two dimensidi2P) and cubes in 3
three dimension&D) whose edges are aligned parallel to, or
oriented at random angles to, the axes of the system. Con-
tinuum percolation is believed to belong to the same univer-
sality class as site and bond percolatj@;8]; once we have O T2 3 4 5 s 7 & 9 10 1 12
determined the continuum threshold for an object of a spe-
cific shape, we can apply many of the characteristics of site FIG. 1. Two-dimensional, 2 12 example of a percolation clus-

and bond percolation, e.g., critical exponents, to describe th&" of unit-length square objectthick lines for the case of ran-
continuum percolation cluster. domly oriented squares. The system is divided by a series of grid

lines (thin lineg that create unit areas in this 2D system. Note that
Il. METHODS the upper two objects of the cluster in the center of the system
intersect each other even though their centers are placed in next-
We construct 2D and 3D Monte Carlo simulations for thenearest-neighbor areas of the grid. The real 2D and 3D systems of
determination of the percolation threshold based upon theur study are much larger than this system.
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oN to yield the probability of achieving a cluster of siz
=— (1)  P(s|#n), for a given value ofy. Power law behavior of the
L probability as a function of the bin size is interpreted to
indicate the critical percolation thresholg= 7. [2,4]. To

If the number of objects generated from the Poisson distri- accurately determine the threshold, we follow the techniques
bution is nonzero, then theseobjects are placed at random ©Of Ref. [10]. The probability of generating a cluster size
locations inside the grid volume. To fix the orientation of greater thars at a specifiedy is [2,4]
each individual object, random numbers are generated to de- . -
termine the one angle of rotation in the 2D simulations and P(s| ) ~As* "T[(7= 10)s”], @
the three Euler angles of rotation in the 3D simulations. Tth
one angle in 2D and two of the angles in 3D vary from 0 to
27 and are drawn from a uniform distribution. The third

angle in 3D varies between 0 andand is drawn from a ") %5 189 06 0.000 06 and 0.45220.0008, respectively

cosine distribution in order to yield an isotropic distribution ; .
of orientations. The locations of the(2D) or 8 (3D) corners [14]. Near the perc.olat|on threshqld Fhe scaling functiox)
gan be expanded in a Taylor series:

and the center of each object are stored in a data structuré,
along with a flag indicating that the grid aré&zD) or volume f(x)=1+Bx+O(x?). 3)
(3D) was visited and populated during the realization. The

nearest neighbors and next-nearest neighbors of this grid ar&mbining Egs(2) and (3),

or volume are then populated in a similar manner and the

intersection between squares or cubes is tested. P(s| 7)™ 2~A+AB(7— 7"+ - -, (4)

To determine whether or not two squares intersect, we s
choose one square in the cluster as the reference square aifgich demonstrates tha(s|7)s™ * becomes constant at

another square in the simulation as the test square. We use ¥ Percolation threshold asbecomes asymptotically large.

algorithm for the intersection of two lind42] to test if any

of the four edges of the reference square interesect the four . RESULTS
edges of the test square. To determine if two cubes intersect, . .
we choose one cube in the cluster as the reference cube andThe percolation threshold can be expressed as either the

another in the simulation as the test cube. We use an alg(\gl—glthcriler?rilé;ﬁ?] num\?viriciegrselt?eclétz:jttr:)eegrtl:ﬂcgtlhzrre[:ig]r
rithm for the intersection of a line and a fadaB] to test if Pe

any of the edges of the reference cube intersect the faces of b=1—e . (5)
the test cube. In this algorithm, the location of each of the 12
edges of the reference cube are compared to the location of
the 12 triangular facets that describe the locations of all faces
on the test cube using the corners and diagonal of each face. For square objects aligned parallel to each other in the 2D
If the test object intersects the reference object, it is added tgystem we find

the growing cluster. This process is repeated for each new

square or cube added to the system until the cluster can no 7.=1.098+0.001 (63
longer grow. Intersections between squares or cubes in grid

areas or volumes up to two units away can occur for edg®": from(5),
lengths 0.75 and 1, as exemplified in 2D for squares of unit

edge(Fig. 1), but cubes of edge {8 can only interesect if

they are in the same or neighboring volumes of the grid see Fig. 23)]. Our value of, is within the error bars of

which reduces the numbe_r Of grid .volum(_as that must b WO previous determinations by Monte Carlo techniques,
checked for cube overlap in simulations with cubes of this, o e .=0.668+0.003 [16] and ¢.=0.65+0.02 [17]
) =0. . -=0. : )
smaﬂest S|ze|. e distributi £ el . . lcul OIHowever, our determination ap,. is slightly lower than that
The cumu at|ve_ Istribution o c_ust_er SIzes 1S calcu ate calulated in[6], whose Monte Carlo simulations produced
from the cluster size of each realizatios, by binning the $.=0.6753+0.0008, and whose application of the direct-

; e i s+1
c_Iulster SIzes SUCht tgaé aIIl b:ns ":jthet rangt_e 81;th_2 teosi connectedness expansion method yieldgd=0.6912. In
o ?re flr:rc]:remenlet. y b ntor er % els |rtna € 'T eis'dzfcontrast, our value o, is significantly higher than the ex-
eiects of the simulation, objects in each cluster are leste ?erimental one of18] whose average for nine trials i,
determine whether they touch the edge of the simulation. IT_
. ._* =0.613+0.013.
s0, the cluster size is compared to the smallest cluster size in

previous realizations that touch the edge and the smaller

here bothr and o are universal exponents ardis a non-
universal constant. In 2D the values of these exponents are
187/91 and 36/94], respectively. In 3D the values afand

A. Two dimensions

$.=0.6666+0.0004 (6b)

We find that for randomly oriented square objects in 2D,

value is stored. Bins of sizes greater than the smallest cluster 7.=0.9819+0.0006 (78
that touched the edge of the system are not used in the de-
termination of the percolation threshold. or
At the end of the simulation, the value of each bin is
divided by the number of realizations, from 10 000 to 50 000, ¢.=0.6254+ 0.0002 (7b)
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FIG. 2. Power-law scaled plots for determination of percolation ~ FIG. 3. Power-law scaled plots for determination of percolation
threshold for squares of unit size in a 30301 system based upon threshold for cubes of unit size in a 18161x161 3D system
50 000 realizations at each area fraction. At the threshgidy,, based upon 50000 realizations for each volume fraction. At the
P(s|5)s™ 2 is independent 0§?, which allows for accurate deter- thresholdy= 7., P(s|7)s™ 2 is independent 067, which allows
mination of 7., which is related to¢, by Eq. (5). (8) Squares for accurate determination of;, which is related tap. by Eq.(5).
whose edges are aligned parallel to each other, for which case w@ Cubes whose faces are aligned parallel to each other, for which
estimatern,=1.098+0.001, sop.=0.6666+0.0004 by Eq(5). (b) case we estimatey.=0.3248-0.0003, so by(5) ¢.=0.2773
Squares that are randomly oriented as shown in Fig. 1, for which we0.0002.(b) Cubes that are randomly oriented, for which we esti-
estimater,=0.9819+ 0.0006, sop.=0.6254+0.0002. mate 7. = 0.2444+0.0003, sop.=0.2168=0.0002.

[see Fig. Ph)].

These values for the continuum percolation threshold for
aligned and randomly oriented squares are lower than fog,
discs, ¢.=0.676 339-0.000004[19], by a maximum of
~1% for aligned squares and7% for randomly oriented ¢.=0.2773:0.0002 (8b)
squares. We attribute the significant differencebjnbetween
discs and randomly oriented squares to the possibility of ranksee Fig. 8a)]. The precision of this result is greater than the
domly oriented squares intersecting other squares whose cemost precise previous determinatigip =0.280+ 0.005[6].
ters are located at distances up to the diagonal length of thEhe critical volume fraction is significantly less when cubic

square(see Fig. 1, whereas two discs can only intersect if objects are allowed to have random orientations,
their centers are no further than one diameter away from

each other. The similarity ab, for aligned squares and discs 7.=0.2444+0.0003 (93
may occur because both objects only have the potential to
intersect other objects whose centers are separated by at m&&t
either the edge length of the square or the diameter of the
disc.

.= 0.3248-0.0003 (8a)

$.=0.2168-0.0002 (9b)

[see Fig. 8)]. The result for randomly oriented cubes is the

same for cubes of edge lengths/3/ 0.75, and 1. Thus, as
For cubic objects aligned parallel to each other in the 3Dexpected, the percolation threshold is independent of the

system, cube and system size used. Our valuedgffor the con-

B. Three dimensions
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TABLE |. Percolation threshold, excluded areas and volumes, and average bond numbers.

Object V¢, for unit object be N, B, (calculated B, (literature
Discs 4 0.676 33919] 1.128059 4,51 450.1[24]
4.7[6]
Aligned squares 4 0.66660.0004 1.0980.001 4.3%0.01 45-0.1[24]
4.7(6]
Random squares 4.547 0.625@.0002 0.98190.0006 4.46:0.01
Spheres 8 0.289 5730] 0.341889 2.74 2.796]
Aligned cubes 8 0.27780.0002 0.32480.0003  2.5%0.01 2.60(6]
Random cubes 11 0.2168.0002 0.24440.0003  2.6%0.01

tinuum percolation of randomly oriented cubes is signifi-[24], and to the values for discs and squares calculated from
cantly more precise than the previous one of &P201[20].  Monte Carlo simulationsB,=4.51[19] and B,=4.5+0.1
Comparision of the critical volume at the percolation [6], respectively. On the other hand, our value 8y is
threshold for aligned cubes with that determined for spheressomewhat lower than that calculated by a series expansion
¢.=0.289573:-0.000 004 10], demonstrates that the differ- technique,B.=4.7 [6]. Thus we confirm thaB. has the
ence in shape between spheres and cubes aftectby  same value, within error, for discs and for aligned and ran-
~4% [6]. Allowing cubes to randomly orient lowergy,  domly oriented squares in 2D.
~22%. The difference between the randomly oriented cubes Our Monte Carlo simulations yield®.=2.59+0.01 for
and spheres is due to the same process as discussed abovediigned cubes, as is expected because of the agreement be-
discs and squares, but in this case it is the greater length dfveen our estimate of the percolation threshold and previous
the body diagonals of cubes compared to the diameter aéstimates. For randomly oriented cubiBs=2.69+0.01 is
spheres or the edge length of aligned cubes that enhances ttleser to the value oB,. for the continum percolation of
probability of connectedness for randomly oriented cubes aspheregRef.[6]) than is the value 0B, for aligned cubes.

any given volume fraction. However, theB, value for randomly oriented cubes does not
exceed the limiting value predicted by the excluded volume
IV. DISCUSSION theory of the continuum percolation threshold R&fl]. The

) . _ increases inB. and decreases iy, observed for both

_The continuum percolation threshold can be approxmategquares and cubes when they are randomly oriented com-

with excluded volume theor}6,21,22: pared to when they are aligned is consistent with the idea
N.V.=B (10) that increasing connectivity results in decreasing percolation
crex Tor thresholds for these objects.
whereN, is the critical density of objectf23], V,, is their Our results confirm previous research demonstrating the
excluded area or volume, ari}, is the average number of €ffect of object shape on the threshold for continuum perco-
bonds per objedi24]. Originally, B, was thought to be one lation. We find, furthermore, that the incorporation of ran-
constant for all parallefi.e., not randomly orientgcconvex ~ dom orientations of objects in continuum percolation simu-
objects in 2D and another constant in §24], but laterB, lations significantly aﬁepts the percolat|0n_ thrgshold. Most of
was determined to be different for spheres and for cubes if1€se effects are predicted by the application of excluded
3D [6]. The excluded area for discs and aligned squares ofolume theor_y to the calculation of the percolation thre_shold.
unit area is 4 and for randomly oriented unit squares 4.547R@ndomly oriented squares and cubes tyealues similar
[21]. For both spheres and aligned cubés is equal to 8 to those determmed by other researchers for discs and
times their volume in 3D. For randomly oriented cubggis ~ SPheres, respectively.
11 times their volumg25]. Calculated values oB. in 2D
and 3D are presented in Table I.
In 2D we determine thaB.=4.39+0.01 for aligned ACKNOWLEDGMENTS
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