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Quasistationary distributions for the Domany-Kinzel stochastic cellular automaton
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We construct thequasistationary(QS) probability distribution for the Domany-Kinzel stochastic cellular
automaton(DKCA), a discrete-time Markov process with an absorbing state. QS distributions are derived at
both the one-and two-site levels. We characterize the distributions by their mean, and various moment ratios,
and analyze the lifetime of the QS state, and the relaxation time to attain this state. Of particular interest are the
scaling properties of the QS state along the critical line separating the active and absorbing phases. These
exhibit a high degree of similarity to the contact process and the Malthus-Verhulst pridlesslosest
continuous-time analogs of the DKGAwhich extends to the scaling form of the QS distribution.
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[. INTRODUCTION The remainder of this paper is structured as follows. In
Sec. Il we review the one-and two-site MF approximations
The Domany-Kinzel stochastic cellular automatonfor the DKCA. In Sec. lll, we construct the quasistationary
(DKCA) [1] is a Markov process that exhibits a phase tran{QS probability distribution at the site level. The QS distri-
sition from an active state to an absorbing one. Stochastigution at the pair level is discussed in Sec. IV, while Sec. V
processes with an absorbing state arise frequently in statisthrésents our conclusions.
cal physicq 2], and are currently of great interest in connec-
tion with self-organized criticalityf3] and nonequilibrium [l. SITE AND PAIR MF APPROXIMATIONS
critical phenomend4,5]. Many studies of the DKCA and
related probabilistic cellular automat@CA) have been pub-
lished, using deterministic mean-field equatiofG—8g,

In this section we review the definition of the DKCA and
its mean-field description at the one-and two-site le{@/8].
Monte Carlo simulation§9—13] and renormalization group The DKCA is a discrete-time Markqv prqce@l sites are
(RG) analysed14—16. updated S|mult_aneogslywhose configuration is given _by a

While the mean-fieldMF) description of the DKCA ad- Set of stochastic variablgsr} (0;=0 or 1), defined at sites
mits (for appropriate parameter valyean active stationary | @nd timest=0,1,2 ..., such that+i is even. Leto rep-
state, for finite system sizes the model always ends up in thieSent the configuration at timeandP(c) the probability
absorbing state, due to fluctuations. MF theories ignore sucfiStribution in configuration space. The evolution of the lat-
fluctuations, and so are incapable of treating finite systemd®' IS governed by2?2]

But, since simulations and other numerical methods typically

study fi_nite systems, it is of interest to deyglop approxi.mate le(g):Z w(a|a")Pya"), )
theoretical descriptions that account for finite system size. A o’

natural way to study finite systems with an absorbing state is " .

via the quasistationary distributionwhich, when it exists, Wherew(c|o") denotes the probability of the transitiarf
describes the asymptotic properties conditioned on survivai>@: and enjoys the propertieso(o|o’)=0 and
[17-19. Recently, mean-field-like methods were developed®s@(c|co’)=1. The transition probability for the DKCA is
for studying the quasistationary state of finite systems wittt Product of factors associated with each site:

an absorbing statg20]. The quasistationary properties con-
verge to the true stationary properties in the infinite-size
limit. (Indeed, this provides the rationale for studying the
“stationary” behavior of absorbing-state models in simula-
tions, which of necessity treat finite systejnin Ref.[20],  wherew;(o;|o’) is the conditional probability for siteto be
quasistationary distributions for various continuous-timein states; at timet+ 1, given configuratiow’ at timet. The
Markov processes are constructed, in particular, for the conprobabilitiesw;(a;|c’) are translation-invariant and in fact
tact procesgCP) and the closely related Malthus-Verhulst depend only on the variableg_; and o/, ; at the previous
procesgMVP). In the case of the CP, both one-and two-sitetime step:

approximations are derived. In this work, we extend the

analysis todiscrete-timeprocesses, using the DKCA as an wi(aila")=wpk(ailo{_1,0{,1). (3
interesting example, closely related to the CP.

L
w(ala'>=£[1wi<cri|a'>, )

The above relations, with the transition probabilities given in

Table |, define the DKCA. Noting that the transition (00)
*Email address: atman@fisica.ufmg.br —(1) is prohibited, we see that the configuratien=0, Vi
TEmail address: dickman@fisica.ufmg.br is absorbing
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TABLE |. DKCA transition probabilities.
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ailol_1, 0l 1,1 1,0 0,1 0,0
08 | .
1 P2 P1 P1 0
0 1-p; 1-p; 1-pg 1

Of interest are the-site marginal probabilities. The evo-

0.6 |

o
. NS ; a
lution of the one-site dlStI’IbUtIOlﬁ’t(a'i)EEUJ_ j#iPi(0), is o
given by )
_ ’ ’ ’ ’ o—o Simulational
Piia(oy)= 2 2 WDK(O'ila-ifl10'i+1)Pt(0'i71'0-i+1)! 02 | —-- S:teuap;roximation 1
‘Ti,—l ‘Ti,+1 —— Pair approximation
4
. . — . . 0.0 ; ;
whereP,(o{_,,0{,,) is the marginal distribution for a pair 0.0 02 0.4 10

of nearest-neighbor sites. The evolution of the latter is

coupled to the three-site probability, so

Piya(oi—1,0741)

=Z > Z Wpk(oi—1|o{_5,07)Wpk

r
Ti—2 9 YTit2

X(ojs1|of ,0{ ) Plol_y,00 0. 5).

©)

FIG. 1. DKCA phase diagram—simulation results from Ref.
[21].

1 P1ki
Kiy1=—(P2z:+ P1Ko) (22 +q1Kp) + 1_—(Q1kt+vt)'
Pt Pt (10

whereq;=1—p;, while for v;=P,(0,0) we have

Evidently we have an infinite hierarchy of equations. In the 1 1
n-site approximation the hierarchy is truncated by estimating Vit1=—[ 0oz + QK2+ —— [ ke F o2 (1)
the (n+ 1)-site probabilities on the basis of those fosites. Pt 1-p

The simplest case is the one-site approximafi®8], in
which P(o{_,,0{,,) is factored into a product of one-site

In the active stationary state, these relations imply

probabilities. This yields the recurrence relation 1-2p,
z=———F— p, (12
prr1=pd 2p1— (2p1—P2)pil, 6) P2~ 2P
wherep,=P,(1) is the density of active sitgghe order pa- Which leads to the stationary active-site density,
rameter for the DKCA Equation(6) admits two stationary (Py—1)%+ py(3p1—2)
solutions, corresponding to the possible DKCA phasés: _ PalPs P1(oPs (13)
sorbing (p=0), andactive in which, forp;>1/2, (2p1—1)(2p1—p2)
2p;—1 In this approximation, the critical line in the(,p,) plane is
P 2p;—p2’ @
~ P1(2—3py) (14
Thus the critical line at the site level jg.=1/2. > (1- P2

In the pair approximatiof6] the three-site probability is
written in terms of the two-site quantity, using the condi- The phase diagram for the DKCA in the one-and two-site

tional probability:

Pi(oi_2,00)Pioioii2)
Pt(Ui)

Pi(oi_2,0i,0i12)=

approximations is compared with simulation resiyiR4] in
Fig. 1.

8

IIl. QUASISTATIONARY PROBABILITY DISTRIBUTIONS

[The one-site probabilites are given byP(o;) A. Method
=3,,,,Pioi,0i12).] Letting z=P(1,1), and noting that  sjnce the approximations discussed in the previous sec-

P(1,0)=k,= p;—z;, we have the relations

2
t

1-p¢

1 2, .2
Zt+1za[p22t+ p1ki]“+p1

and

tion effectively consider th& — < limit, the densities g, z,
etc), are in factdeterministicvariables. Our goal in this pa-
per is to construct reducestochasticdescriptions of a finite

©) system, in a manner analogous to that employed in deriving

n-site approximations, and to determine the associated quasi-
stationary properties. In this section we study the problem at
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the one-site level. Consider the DKCA on a ringloBites.  which implies thatS;, ;= aS;, where
At the one-site level, the state of the system is specified by
N;, the number of active sites at time Let p;(N) _
(N=0,...L) be the probability to have exactiyN a=1- Z W(OIN)p(N). (21
active sites at timet. The probability vector p, Nt

=[p«(0),ps(1), ..., ,p:(L)], satisfies

L

Restricted to the states 1. . N, Eis an eigenvector of ma-
trix W with eigenvaluex. The lifetime 7 of the QS state is

PN) =2 W(NIN")p;_5(N"), (15
NI
1
. . L . T=— . (22
whereW is the transition matrix, withW(N|N') representing Ina
the probability to haveN active sites at timé, given N’ at
timet—1. One method for generating the QS distribution is via it-

At the one-site level, the state each site is treated as a@ration of the evolution equation, E@.5), until the distribu-
independent event. GiveN' active sites at time, our best  tion q(N)=p(N)/S; (for N=1,2,...]), attains a time-
estimate for the probabilit of a given site to be active at independent form. We refer to this as ttieect method. An
the next time step ifsee Eq.(6)] alternative methodi23] is based on writing the evolution in

the form

X=Yy[2p;—(2p1—p2)Y], (16)
Apy(N)=p¢11(N) = p(N)==wW(N)p(N) +r{(N),
wherey=N'/L. Thus the transition probabilities in the one- (23
site approximation are
where  r(N)=3\.n\W(N|N)p(N’) and  w(N)
=3 =nW(N’|N). Inserting the normalized QS distribution

|
"N — : N(1—y\L—N _
W(N[N')= (L—N)IN! XHL=07 % (17 p(N) in the right-hand sidéRHS) of the above relation, we
have
(Here we suppose that all configurations with the same num-
ber of active sites are equally probable, since there is no (a—1)p(N)=—w(N)p(N)+r(N), (24)

reason to prefer one such configuration over another at this

level of analygis).The olne-si.te dis_triputiqpt(N) i; therefore  \,hare r_(N)=EN,W(N|N’)H(N’). Noting that -«

a superposition of binomial distributions with meams

=0,1,... L, the weight of a given distribution depending

only on the mean population at the previous step. —
Since(for L finite) the probability distribution will always DIN) = riN)_ _ (25

evolve to the absorbing state(N) = 6y o, it is of interest to w(N)—r(0)’ '

study the quasistationary distributige{N), defined as fol-

lows. We suppose that @s-o, the probability distribution, This relation suggests the following iterative scheme:

conditioned on survivalattains a time-independent form.

This means for long times o B r(N)
p'(N)=ap(N)+(1 a)w—(N)—r(O)’

=r_(0), this may be written in the form

(26)

P(N)=Ady ot SP(N), (18)
wherea is a parameter and(N) is evaluated using the dis-
where the only time dependence liesApandsS;. Since the  tribution p(N). At each iteration the new distributiop’
QS distributionp(N) is conditioned on survivalp(0)=0. must be normalized. In this way, we can construct the qua-
Adopting the normalization sistationary state from any initial distributign(N) that is
non-negative and normalized. We call this tierative

L scheme. As discussed in RE23], good convergence is ob-
2 p(N)=1, (19 tained fora=0.

S in Eq. (18) represents the survival probability afg=1 B. Results

— S the probability to have fallen into the absorbing state. e have constructed the QS distribution for the DKCA at

The QS hypothesis is verified numerically below. Evolvingthe one-site level, using both the direct and iterative

the distribution in Eq(18) to the next time step, we have  schemes. In Fig. 2 we show the time evolution of the prob-

L ability distribution(conditioned on survivalat a point on the
T critical line. It is evident that the distribution reaches a qua-

Peea(N)=Ardn ot S‘Nzo W(NIN")P(N") sistationary form after about 100 time steps. Figure 3 sﬂows

o the evolution of the mean populatigiN), the moment ratio

=A¢s10n00F Sti1P(N), (200  m=(N2)/(N)?, (both conditioned on survivaland the de-
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FIG. 2. Evolution of the probability distribution, conditioned on
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that appears to depend only on the paramegie@ndp, and
on the system sizke.

The distribution may be further characterized by its skew-
ness,S and kurtosisK, defined through the relations

5= 2 27
KS/Z
and
K
K==, (28)
Ky

wherek,, is thenth cumulant of the distributiofi2]. For the

Gaussian distribution, both skewness and kurtosis are null
(S=K=0). The evolution of the skewness and kurtosis is
also shown in Fig. 3. Figure 4 shows the quasistationary

survival, in the one-site approximation. The initial distribution is distribution at several points in parameter space. We observe

Po(N)= 6y 50. System sized =100/p;=p,=0.5.

cay ratey=r(0)/S;, to their quasistationary values, for the
same parameters as in Fig. (Rlote thaty is the transition
rate into the absorbing state.

that in the frozen phase the distribution collapsedNte 1
while in the active phase it is concentrated niar(N).

Of particular interest are the QS scaling properties at the
critical point. We have verified thgN)~LY? in the critical
QS state. The QS lifetime scales in the same manner. These

Relaxation to the QS state appears to consist of tweystem-size dependences were encountered previously for
stages: an initial transient, which depends strongly on th¢he CP and MVP in the one-site approximatif20]. The
initial condition, and a long-time, exponential approach torelaxation timerg also grows~ L2 at the critical point; we
the final values. The mean population, for example, followsfind 74s/ 7r~2.67 forp,;=p,=1/2.

[(N)—(N)qod~e~"r. (For the data in Fig. 3rg~9, while
the lifetime of the QS state is about 18Ve find thatm and
v relax at the same ratas(N), and that this relaxation time
is independent of the initial distributiomhus the asymptotic
relaxation to the QS state is governed by a relaxation ttge

50

In the active phase, howevergs grows ~exgconst.
X (p1—P1c)L], while 75 varies only slightly withp,, p,,
andL. This leads to a clear separation of time scalegs(
>rg) for large systems(For L=100, p;=0.6, andp,
=0.5, for examplesgs=2000 while7g=38.)

0.08 ,
40 p,=0.5 J
0.06 |- =
p,=0.5
30 .
A
> o004} 12
v
20 .
0.02 | . 0
FIG. 3. Evolution toward the
. ‘ ‘ ‘ QS state in the one-site approxi-
000 50 100 % 50 100 mation; parameters as in Fig. 2.
1.60 , ‘ 1.2 ‘ Upper left, decay ratey; right,
_____________ mean number of active sites.
Lower left, moment ration; right,
skewness and kurtosis.
1.40 | . .
S
1.20 | ] skewness |
— - - Kurtosis
100 L L L L
0 50 100 50 100
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FIG. 4. QS distribution at several different points in the DKCA

FIG. 6. Moment ratiom vs L Y2 at the critical pointJ

, one-

phase diagram, fo =100. site approximation,p;=p,=1/2; O, pair approximation, p;

- . . . =0.6306,p,=0.5.
In Fig. 5 we show the QS density versps in the site

approximation, for several system sizes, showing conver-

gence to the deterministic mean-field prediction. Also shown

is the moment ration versusp, for the same system sizes.

Data forL=1000- 10° (see Fig. indicate that af — at h . ling f . Fi 7
the critical point, the moment ratio approaches the valudvnere” is a scaling function. Figure 7 comparésr p,

1.660, found for the CP in the one-site approximation, and=P.=0.5), (N) p(N) as a function ofN/(N), for system
for the Malthus-Verhulst proce$g0]. sizesL=10°, 10%, and 16, as well as the exact scaling

The moment ration appears to approach the same limit- function for the CP and MVP found in Ref20]. It is inter-
ing value all a|ong the critical line, fqn2<1 This suggests esting to note that the QS distribution for the DKCA has the
that the critical QS distribution has a scaling limit for laige ~ Same scaling form as for the CP and the MVP, despite the
of the form fact that in the critical DKCA,p(N) takes its maximum

— 1
p(N)= WP(NKN)), (29

0.8 T T T

0.6

FIG. 5. Quasistationary den-
sity for the DKCA, in the site ap-
proximation, for several system
sizes. The inset shows moment ra-
tio m vs p; for the same system
sizes.

0.2

—-meee Site approx.

0.7 0.2

0.0 ==
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08— 17— TABLE Il. Allowed values forZ on a ring.
N z
0.1 0
2,...L/2 0,...N-1
L/2,...L-1 2N—-L,...N—-1
o L L
A
=
7

time step required to maintain numerical stability, in the
usual direct integration schemes. In the present case, the di-
rect method has an effective time step of unity.

IV. PAIR APPROXIMATION

A. Method

In this section we construct the quasistationary probability
N/<N> distribution for the DKCA at the pair level. The system is
FIG. 7. Scaling plot of the QS probability distribution in the d?SC“Ped by two stochastic variables, the number of occu-

one-site approximation at the critical poinpy=p,=1/2), for L Pied sitesN, and the number of doubly occupied nearest-
—10%, 10", and 16 (curves with maxima approaching thexis as ~ N€ighbor(NN) pairs, Z. We consider a ring of sites.[For
L increases and the asymptotic scaling function for the contact cOnvenience we introduce a different notation for the site
process found in Ref20] (with maximum atx=0). Inset: scaling  Vvariables, definingp;=o;,, for event and ¢;= o ;1) for
plot of the QS distribution as in Fig. 7, far=2000, p;=1/2, and 0dd t. In this way the site index always takes the values
p,=0.25, 0.5, 0.75, 0.9, and 0.999. The first four curves collapsel, ... L at all times, and NN sites have state variablgs
while the last has a broader distribution. and ;. .]

To begin, we establish the allowed range of valuesZor

value for N>1. The position of this maximum, however, Using “1” and “0" to represent occupied and vacant sites,
grows very slowly withL (roughly, ~InL), so that it does respectively, we denote ki the number of10) NN pairs.
not alter the infinite-size limit. A possible explanation for a [BY symmetry, the number d01) pairs is alsaK.] K is not
maximum away fromN=1 is that, in the DKCA, there are an independent variable, since each 1 is followgdakd or
transitions to the absorbing stat€0), from various val- another 1, yieldingN\=Z+K. Similarly, the number of00)
ues ofN, not only forN=1, as is the case in the CP. pairs, V, is given byV=L—2N+Z. The conditionsK=0
The inset of Fig. 7 show¢N) b(N) versusN/(N) for andV=0 imply certain limits forZ on a ring ofL sites, listed

_ - ! in Table II.
r;l_sggorl;f;rig(t)ge 222lixarfusoﬁe“;iess gxféeThe dzitaTcho; Next we construct the transition probabilities
PS > g hyp o Ppios - W(N,Z|N’,Z"). Note that the presence & (00) pairs at
distinct behavior in the latter case is expected, sipge 1 . S : .
) : . time t implies that there are at least this many vacstgsat
corresponds t@ompactdirected percolation, which haso time t+1° thus W=0 for N>2N'—7’. We proceed b
absorbing state@ll 0 or all 7). (The situation is analogous to ' N ' P y

that found in thevoter modela continuous-time process with analpgy with the one-S|lte apprqmmaﬂon: givan and; ’
two absorbing state0].) we first determine theair densities z=Z/L, k, andv using

! AT Egs. (99—(11). (Here z, k, andv represent the densities at
We find that any initial distribution not concentrated on timet+1, while the variables appearing on the RHS of each

N=0 evolves to the QS distribution, which is independent of i luated using=N'/L andz—7'/L.) W
the initial condition.(Uniqueness of the QS distribution is to equation areé evalualed usipg= and z,= ) We
éreat all configurations having the sarNeand Z as equally

be expected in the case of the DKCA, which has only on bab| d estimate th bability of h
absorbing and one active state. A nonunique QS distributioff0°av'e, and estimate the probabriity of any one such con-

can be envisioned for a process in which the active statg,lgl"r""t'On as

exhibits symmetry breaking. 22V 11 L ss
The direct and iterative methods discussed above y#sdd Q(N,Z:p,2)= v - 12+t (30)
they mus}, the same QS distribution. Usireyin the range pN1-p)-NIL =1 Py

—0.4 to 0, we find that the iterative method converges to the

QS distribution slightly faster than the direct approdih wherek=p+z. The first factor(in square bracketss the
typically requires about 30% fewer stgp#n contrast with  product of all pair probabilities, divided by the product of all
the continuous-time case, in which the iterative method casite probabilities. The second factor represents a correction,
be orders of magnitude faster than integration of the mastemeeded for normalization @, which arises as follows. Sup-
equation[20,23, here the gain in efficiency is quite modest. pose we construct the probabiliy starting at sitg, so that
This is not surprising, since the enormous gain in efficiencythe first factor in the product ip;, i.e., the pair probability

for continuous-time processes is associated with the sma#lssociated with sitgsandj+ 1. The next factor will then be
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0.8 T T T
0.6
FIG. 8. Quasistationary active-
Z 04 site density versusp; for the
a DKCA in the pair approximation,
for several system sizes. The inset
P shows the moment ratim for the
P same system sizes.
pair approx.
02 y ——-L=10 i
- ----L=20
T o L =50
- —-—L=100
I ——-L=160
[ — - —— L=200
0.0 BEeee———F=—=—r0u —_— L
0.1 0.3 0.5 0.7 0.9

P,

Pj+1/8j+1, which represents the conditional probability of I'(N,Z;L) is derived in the Appendix(Note thatl'=0 for
the variable at sit¢+ 2, given the state of site+ 1, and so  values ofN andZ outside the permitted range given in Table
on. When we close the ring, adding the link between sitedl.) The evolution of the probability distribution follows:
j—1 andj, the final factor isP(¢j_1,¢j|¢j-1.¢;)=1, not

P(¢j-1,9))/[P(¢j-1)P(¢;)]. So the first factor in EQ30) o, o,
has one pair factor, and two site factors, too many, and Pe+1(N,2)= L, 2 . W(N,Z[N",Z")p(N",Z").
should be multiplied bys; ;s;/p;_;. Since the position of N.Z[2N"=Z"=N (34)

the starting link is arbitrary, we take the mean of this correc-
tion over the ring.

Note that the correction factor may be written as B. Results
We constructed the QS distribution at the pair level for the
L 2 2 : .
1 SiSj+1 _ E ZP_+2KP(1_P) +V(l_P) DKCA, for systems of up to 200 sites, focusing on the be-
L= p Ll z k v ' havior in the vicinity of the critical line(The computation is

(31)  considerably more demanding of memory and cpu time than
is the one-site approximation; the chief limitation is the
In case the pair numbers take theixpected valuegZ evaluation of the coefficientE.)
=Lz, etc), the correction factor is unity. . Figure 8 shows the QS order parameter verspin the
The transition probability is the product of a configura- pair approximation, for several system sizes. We also plot the
tional probabilityQ(N,Z;p,z) and the number of configura- moment ratiom, showing a series of crossings whose loca-
tions,I'(N,Z;L), having exactiyN active sites and active  tion approaches the critical point &s-%. The behavior of
pairs on a ring ot sites: m versusL, at criticality, is shown in Fig. 6. In Fig. 9 we
W(N,Z|N",2")=T(N,Z;L)Q(N,Z;p,2), (32) show the QS distribution,p(N,Z), at _critica_lity_ (p_2
=0.5,p;=0.6306), forL=100. The marginal distribution

for (N,Z)#(N’,Z') and N<2N'—-Z'; for N>2N'—~Z’,  p(N) is similar to that found in the site approximation. The

W=0; if (N,Z)=(N',Z"), behavior of the mean population, moment ratio, decay rate,
skewness and kurtosis, as functions of time, is again qualita-
W(N’,Z' [N’ Z’)=1—2 * T(N,Z;L)Q(N,Z:p,2) tively similar to that observed in the site approximation.
N,Z
(33 V. DISCUSSION
where (*) denotes the exclusion of the single teNwN’, We studied the quasistationary properties of the DKCA in

Z=7'. An expression for the combinatorial factor the one- and two-site approximations. Our study represents
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APPENDIX

To evaluatd™(N,Z;L), the number of configurations on a
ring of L sites with exactlyN active sites andZ nearest-
neighbor pairs of active sites, we observe that the associated
generating functiorf(x,y;L) =2y (N, Z;L)x*yN, can be
written as the partition function for a one-dimensional lattice
gas:

1 1
(xyi=3 o0 B w2y, (AL
o= oL =

with oy, 1=04. (We note in passing thax=e?’ andy
=eP* for the lattice gas with nearest-neighbor interactipn
chemical potentiaj, and inverse temperatug) The par-
tition function is evaluated using the transfer matrix

T(O’,O”) :Xoa"y(0'+ 0'/)/2:
(x,y;L)=TrTt (A2)
=M+, (A3)

where\ ; , are the eigenvalues df.

FIG. 9. QS pair density probability distribution, conditioned on Nio= V2A1+xy=N(1=-xy)*+4y). (A4)

survival, at criticality p,=0.5, p;=0.6306). For L even. we have

an extension of QS analysis, applied to continuous-time L2
models exhibiting an absorbing-state phase transition in Ref. (a+b)L+(a—b)L=2nZO <2n a’t=2,  (AS5)
[20], to discrete-time processes.

Compared with continuous-time processes, the numericalo that
analysis of a discrete-time system is simpler, since it in-
volves iteration rather than integration of a set of differential oL L2 L 1+xy\ 2" (1—xy)?+4y
equations. While this is evident at the one-site level, at )‘1+)‘2:2n§0 on 2 ( 4
higher levels of approximation the advantage is tempered by (AB)
the fact that starting from a given configuration, transitions
to many(or all) other configurations are possible. The result-leading to
ing neehd for clombinatorial factofe.g.,I'(N,Z;L)] compli- L2 20 L2-n 20 ||\ [9n
cates the analysis. LiyL_oy L2

An interesting result of our study is that the scaling be- M+Az=2y nZO mE:O pzo qzo (2n)( m)
havior along the critical line is the same for the continuous-
time contact procesgand the closely related Malthus- E—n <2p)(— 1)9(xy)™*a

L/2—n

Verhulst process as for the discrete-time DKCA. In x| 2
particular, the QS order parameter decreasés/L in both p
cases, while the QS lifetime grows /L. While the univer-

sality of global scaling could have been anticipated on thelhe coefficient ofi“y" is
basis of the central limit theorem, the similarity extends fur- _

ther, to include the detailed form of the scaling function gov- I'(N.Z:L)
erning the QS probability distribution and its associated mo- L
ments. Thus the situation is analogous to that found > L2 20 |\ fon E_n
numerically in studies of absorbing-state phase transitions: R — ( )( )

not only critical exponents, but moment ratios of the order 42+ 2N 1= m=o

parameter take universal values at the critical pp4. 2

L+2(Z—N-—n)
Z—m

(A7)

4 (4y)"*P

X

(—1)& ™ (A8)
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