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Quasistationary distributions for the Domany-Kinzel stochastic cellular automaton
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We construct thequasistationary~QS! probability distribution for the Domany-Kinzel stochastic cellular
automaton~DKCA!, a discrete-time Markov process with an absorbing state. QS distributions are derived at
both the one-and two-site levels. We characterize the distributions by their mean, and various moment ratios,
and analyze the lifetime of the QS state, and the relaxation time to attain this state. Of particular interest are the
scaling properties of the QS state along the critical line separating the active and absorbing phases. These
exhibit a high degree of similarity to the contact process and the Malthus-Verhulst process~the closest
continuous-time analogs of the DKCA!, which extends to the scaling form of the QS distribution.
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I. INTRODUCTION

The Domany-Kinzel stochastic cellular automat
~DKCA! @1# is a Markov process that exhibits a phase tra
sition from an active state to an absorbing one. Stocha
processes with an absorbing state arise frequently in sta
cal physics@2#, and are currently of great interest in conne
tion with self-organized criticality@3# and nonequilibrium
critical phenomena@4,5#. Many studies of the DKCA and
related probabilistic cellular automata~PCA! have been pub-
lished, using deterministic mean-field equations@6–8#,
Monte Carlo simulations@9–13# and renormalization group
~RG! analyses@14–16#.

While the mean-field~MF! description of the DKCA ad-
mits ~for appropriate parameter values! an active stationary
state, for finite system sizes the model always ends up in
absorbing state, due to fluctuations. MF theories ignore s
fluctuations, and so are incapable of treating finite syste
But, since simulations and other numerical methods typic
study finite systems, it is of interest to develop approxim
theoretical descriptions that account for finite system size
natural way to study finite systems with an absorbing stat
via the quasistationary distribution, which, when it exists,
describes the asymptotic properties conditioned on surv
@17–19#. Recently, mean-field-like methods were develop
for studying the quasistationary state of finite systems w
an absorbing state@20#. The quasistationary properties co
verge to the true stationary properties in the infinite-s
limit. ~Indeed, this provides the rationale for studying t
‘‘stationary’’ behavior of absorbing-state models in simu
tions, which of necessity treat finite systems.! In Ref. @20#,
quasistationary distributions for various continuous-tim
Markov processes are constructed, in particular, for the c
tact process~CP! and the closely related Malthus-Verhul
process~MVP!. In the case of the CP, both one-and two-s
approximations are derived. In this work, we extend
analysis todiscrete-timeprocesses, using the DKCA as a
interesting example, closely related to the CP.
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The remainder of this paper is structured as follows.
Sec. II we review the one-and two-site MF approximatio
for the DKCA. In Sec. III, we construct the quasistationa
~QS! probability distribution at the site level. The QS distr
bution at the pair level is discussed in Sec. IV, while Sec
presents our conclusions.

II. SITE AND PAIR MF APPROXIMATIONS

In this section we review the definition of the DKCA an
its mean-field description at the one-and two-site levels@6,8#.
The DKCA is a discrete-time Markov process~all sites are
updated simultaneously!, whose configuration is given by
set of stochastic variables$s i% (s i50 or 1!, defined at sites
i and timest50,1,2, . . . , such thatt1 i is even. Lets rep-
resent the configuration at timet, andPt(s) the probability
distribution in configuration space. The evolution of the la
ter is governed by@22#

Pt11~s!5(
s8

v~sus8!Pt~s8!, ~1!

wherev(sus8) denotes the probability of the transitions8
→s, and enjoys the propertiesv(sus8)>0 and
(sv(sus8)51. The transition probability for the DKCA is
a product of factors associated with each site:

v~sus8!5)
i 51

L

wi~s i us8!, ~2!

wherewi(s i us8) is the conditional probability for sitei to be
in states i at timet11, given configurations8 at timet. The
probabilitieswi(s i us8) are translation-invariant and in fac
depend only on the variabless i 218 ands i 118 at the previous
time step:

wi~s i us8!5wDK~s i us i 218 ,s i 118 !. ~3!

The above relations, with the transition probabilities given
Table I, define the DKCA. Noting that the transition (00
→(1) is prohibited, we see that the configurations i50, ; i
is absorbing.
©2002 The American Physical Society35-1
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Of interest are then-site marginal probabilities. The evo
lution of the one-site distributionPt(s i)[(s j , j Þ i Pt(s), is
given by

Pt11~s i !5 (
s i 218

(
s i 118

wDK~s i us i 218 ,s i 118 !Pt~s i 218 ,s i 118 !,

~4!

wherePt(s i 218 ,s i 118 ) is the marginal distribution for a pai
of nearest-neighbor sites. The evolution of the latter
coupled to the three-site probability, so

Pt11~s i 21 ,s i 11!

5 (
s i 228

(
s i8

(
s i 128

wDK~s i 21us i 228 ,s i8!wDK

3~s i 11us i8 ,s i 128 !Pt~s i 228 ,s i8 ,s i 128 !. ~5!

Evidently we have an infinite hierarchy of equations. In t
n-site approximation the hierarchy is truncated by estimat
the (n11)-site probabilities on the basis of those forn sites.

The simplest case is the one-site approximation@6,8#, in
which Pt(s i 218 ,s i 118 ) is factored into a product of one-sit
probabilities. This yields the recurrence relation

r t115r t@2p12~2p12p2!r t#, ~6!

wherer t[Pt(1) is the density of active sites~the order pa-
rameter for the DKCA!. Equation~6! admits two stationary
solutions, corresponding to the possible DKCA phases:ab-
sorbing (r50), andactive, in which, for p1.1/2,

r5
2p121

2p12p2
. ~7!

Thus the critical line at the site level isp1c51/2.
In the pair approximation@6# the three-site probability is

written in terms of the two-site quantity, using the cond
tional probability:

Pt~s i 22 ,s i ,s i 12!.
Pt~s i 22 ,s i !Pt~s is i 12!

Pt~s i !
. ~8!

@The one-site probabilities are given byPt(s i)
5(s i 12

Pt(s i ,s i 12).# Letting zt[Pt(1,1), and noting that

Pt(1,0)[kt5r t2zt , we have the relations

zt115
1

r t
@p2zt1p1kt#

21p1
2

kt
2

12r t
~9!

and

TABLE I. DKCA transition probabilities.

s i us i 218 ,s i 118 1,1 1,0 0,1 0,0

1 p2 p1 p1 0
0 12p2 12p1 12p1 1
04613
s

g

kt115
1

r t
~p2zt1p1kt!~q2zt1q1kt!1

p1kt

12r t
~q1kt1v t!,

~10!

whereqi[12pi , while for v t[Pt(0,0) we have

v t115
1

r t
@q2zt1q1kt#

21
1

12r t
@q1kt1v t#

2. ~11!

In the active stationary state, these relations imply

z5
122p1

p222p1
r, ~12!

which leads to the stationary active-site density,

r5
p2~p121!21p1~3p122!

~2p121!~2p12p2!
. ~13!

In this approximation, the critical line in the (p1 ,p2) plane is

p25
p1~223p1!

~12p1!2
. ~14!

The phase diagram for the DKCA in the one-and two-s
approximations is compared with simulation results@21# in
Fig. 1.

III. QUASISTATIONARY PROBABILITY DISTRIBUTIONS

A. Method

Since the approximations discussed in the previous s
tion effectively consider theL→` limit, the densities (r, z,
etc.!, are in factdeterministicvariables. Our goal in this pa
per is to construct reducedstochasticdescriptions of a finite
system, in a manner analogous to that employed in deriv
n-site approximations, and to determine the associated qu
stationary properties. In this section we study the problem

FIG. 1. DKCA phase diagram—simulation results from Re
@21#.
5-2
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QUASISTATIONARY DISTRIBUTIONS FOR THE . . . PHYSICAL REVIEW E 66, 046135 ~2002!
the one-site level. Consider the DKCA on a ring ofL sites.
At the one-site level, the state of the system is specified
Nt , the number of active sites at timet. Let pt(N)
(N50, . . . ,L) be the probability to have exactlyN
active sites at time t. The probability vector pt
5@pt(0),pt(1), . . . ,pt(L)#, satisfies

pt~N!5(
N8

W~NuN8!pt21~N8!, ~15!

whereW is the transition matrix, withW(NuN8) representing
the probability to haveN active sites at timet, given N8 at
time t21.

At the one-site level, the state each site is treated as
independent event. GivenN8 active sites at timet, our best
estimate for the probabilityx of a given site to be active a
the next time step is@see Eq.~6!#

x5y@2p12~2p12p2!y#, ~16!

wherey5N8/L. Thus the transition probabilities in the on
site approximation are

W~NuN8!5
L!

~L2N!!N!
xN~12x!L2N. ~17!

~Here we suppose that all configurations with the same n
ber of active sites are equally probable, since there is
reason to prefer one such configuration over another at
level of analysis.! The one-site distributionpt(N) is therefore
a superposition of binomial distributions with meansx
50,1, . . . ,L, the weight of a given distribution dependin
only on the mean population at the previous step.

Since~for L finite! the probability distribution will always
evolve to the absorbing state,p(N)5dN,0 , it is of interest to
study the quasistationary distributionp̄(N), defined as fol-
lows. We suppose that ast→`, the probability distribution,
conditioned on survival, attains a time-independent form
This means for long times

pt~N!5AtdN,01Stp̄~N!, ~18!

where the only time dependence lies inAt andSt . Since the
QS distributionp̄(N) is conditioned on survival,p̄(0)[0.
Adopting the normalization

(
N51

L

p̄~N!51, ~19!

St in Eq. ~18! represents the survival probability andAt51
2St the probability to have fallen into the absorbing sta
The QS hypothesis is verified numerically below. Evolvi
the distribution in Eq.~18! to the next time step, we have

pt11~N!5AtdN,01St (
N850

L

W~NuN8! p̄~N8!

5At11dN,01St11p̄~N!, ~20!
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which implies thatSt115aSt , where

a512 (
N51

L

W~0uN! p̄~N!. ~21!

Restricted to the states 1, . . . ,N, p̄ is an eigenvector of ma
trix W with eigenvaluea. The lifetimet of the QS state is

t52
1

ln a
. ~22!

One method for generating the QS distribution is via
eration of the evolution equation, Eq.~15!, until the distribu-
tion qt(N)[pt(N)/St ~for N51,2, . . . ,L), attains a time-
independent form. We refer to this as thedirect method. An
alternative method@23# is based on writing the evolution in
the form

Dpt~N![pt11~N!2pt~N!52w~N!pt~N!1r t~N!,
~23!

where r t(N)5(N8ÞNW(NuN8)pt(N8) and w(N)
5(N8ÞNW(N8uN). Inserting the normalized QS distributio
p̄(N) in the right-hand side~RHS! of the above relation, we
have

~a21! p̄~N!52w~N! p̄~N!1 r̄ ~N!, ~24!

where r̄ (N)5(N8W(NuN8) p̄(N8). Noting that 12a

5 r̄ (0), this may be written in the form

p̄~N!5
r̄ ~N!

w~N!2 r̄ ~0!
, N>1. ~25!

This relation suggests the following iterative scheme:

p8~N!5ap~N!1~12a!
r ~N!

w~N!2r ~0!
, ~26!

wherea is a parameter andr (N) is evaluated using the dis
tribution p(N). At each iteration the new distributionp8
must be normalized. In this way, we can construct the q
sistationary state from any initial distributionp(N) that is
non-negative and normalized. We call this theiterative
scheme. As discussed in Ref.@23#, good convergence is ob
tained fora.0.

B. Results

We have constructed the QS distribution for the DKCA
the one-site level, using both the direct and iterat
schemes. In Fig. 2 we show the time evolution of the pro
ability distribution~conditioned on survival! at a point on the
critical line. It is evident that the distribution reaches a qu
sistationary form after about 100 time steps. Figure 3 sho
the evolution of the mean population^N&, the moment ratio
m5^N2&/^N&2, ~both conditioned on survival!, and the de-
5-3



e

tw
th
to
w

w-

null
is

ary
erve

the

hese
for

n
is

A. P. F. ATMAN AND R. DICKMAN PHYSICAL REVIEW E 66, 046135 ~2002!
cay rateg5r t(0)/St , to their quasistationary values, for th
same parameters as in Fig. 2.~Note thatg is the transition
rate into the absorbing state.!

Relaxation to the QS state appears to consist of
stages: an initial transient, which depends strongly on
initial condition, and a long-time, exponential approach
the final values. The mean population, for example, follo
u^N&2^N&QSu;e2t/tR. ~For the data in Fig. 3,tR;9, while
the lifetime of the QS state is about 16.! We find thatm and
g relax at the same rateas^N&, and that this relaxation time
is independent of the initial distribution. Thus the asymptotic
relaxation to the QS state is governed by a relaxation timetR

FIG. 2. Evolution of the probability distribution, conditioned o
survival, in the one-site approximation. The initial distribution
p0(N)5dN,50. System sizeL5100/ p15p250.5.
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that appears to depend only on the parametersp1 andp2 and
on the system sizeL.

The distribution may be further characterized by its ske
ness,S, and kurtosis,K, defined through the relations

S5
k3

k2
3/2

~27!

and

K5
k4

k2
2

, ~28!

wherekn is thenth cumulant of the distribution@2#. For the
Gaussian distribution, both skewness and kurtosis are
(S5K50). The evolution of the skewness and kurtosis
also shown in Fig. 3. Figure 4 shows the quasistation
distribution at several points in parameter space. We obs
that in the frozen phase the distribution collapses toN51
while in the active phase it is concentrated nearN5^N&.

Of particular interest are the QS scaling properties at
critical point. We have verified that^N&;L1/2 in the critical
QS state. The QS lifetime scales in the same manner. T
system-size dependences were encountered previously
the CP and MVP in the one-site approximation@20#. The
relaxation timetR also grows;L1/2 at the critical point; we
find tQS/tR;2.67 for p15p251/2.

In the active phase, however,tQS grows ;exp@const.
3(p12p1c)L#, while tR varies only slightly withp1 , p2,
and L. This leads to a clear separation of time scales (tQS
@tR) for large systems.~For L5100, p150.6, and p2
50.5, for example,tQS.2000 whiletR.8.!
i-
.

.

FIG. 3. Evolution toward the
QS state in the one-site approx
mation; parameters as in Fig. 2
Upper left, decay rateg; right,
mean number of active sites
Lower left, moment ratiom; right,
skewness and kurtosis.
5-4
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In Fig. 5 we show the QS density versusp1 in the site
approximation, for several system sizes, showing conv
gence to the deterministic mean-field prediction. Also sho
is the moment ratiom versusp1 for the same system size
Data forL510002105 ~see Fig. 6! indicate that asL→` at
the critical point, the moment ratio approaches the va
1.660, found for the CP in the one-site approximation, a
for the Malthus-Verhulst process@20#.

The moment ratiom appears to approach the same lim
ing value all along the critical line, forp2,1. This suggests
that the critical QS distribution has a scaling limit for largeL,
of the form

FIG. 4. QS distribution at several different points in the DKC
phase diagram, forL5100.
04613
r-
n
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p̄~N!.
1

^N&
P~N/^N&!, ~29!

where P is a scaling function. Figure 7 compares~for p1

5p250.5), ^N& p̄(N) as a function ofN/^N&, for system
sizes L5103, 104, and 105, as well as the exact scalin
function for the CP and MVP found in Ref.@20#. It is inter-
esting to note that the QS distribution for the DKCA has t
same scaling form as for the CP and the MVP, despite
fact that in the critical DKCA,p̄(N) takes its maximum

FIG. 6. Moment ratiom vs L21/2 at the critical point.h, one-
site approximation,p15p251/2; s, pair approximation, p1

50.6306,p250.5.
-

a-
FIG. 5. Quasistationary den
sity for the DKCA, in the site ap-
proximation, for several system
sizes. The inset shows moment r
tio m vs p1 for the same system
sizes.
5-5
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A. P. F. ATMAN AND R. DICKMAN PHYSICAL REVIEW E 66, 046135 ~2002!
value for N.1. The position of this maximum, howeve
grows very slowly withL ~roughly, ; ln L), so that it does
not alter the infinite-size limit. A possible explanation for
maximum away fromN51 is that, in the DKCA, there are
transitions to the absorbing state (N50), from various val-
ues ofN, not only forN51, as is the case in the CP.

The inset of Fig. 7 showŝN& p̄(N) versusN/^N& for
p150.5, L52000, and various values ofp2. The data col-
lapse confirms the scaling hypothesis, except forp2.1. The
distinct behavior in the latter case is expected, sincep251
corresponds tocompactdirected percolation, which hastwo
absorbing states~all 0 or all 1!. ~The situation is analogous t
that found in thevoter model, a continuous-time process wit
two absorbing states@20#.!

We find that any initial distribution not concentrated o
N50 evolves to the QS distribution, which is independent
the initial condition.~Uniqueness of the QS distribution is t
be expected in the case of the DKCA, which has only o
absorbing and one active state. A nonunique QS distribu
can be envisioned for a process in which the active s
exhibits symmetry breaking.!

The direct and iterative methods discussed above yield~as
they must!, the same QS distribution. Usinga in the range
20.4 to 0, we find that the iterative method converges to
QS distribution slightly faster than the direct approach~it
typically requires about 30% fewer steps!. In contrast with
the continuous-time case, in which the iterative method
be orders of magnitude faster than integration of the ma
equation@20,23#, here the gain in efficiency is quite modes
This is not surprising, since the enormous gain in efficien
for continuous-time processes is associated with the s

FIG. 7. Scaling plot of the QS probability distribution in th
one-site approximation at the critical point (p15p251/2), for L
5103, 104, and 105 ~curves with maxima approaching they axis as
L increases!, and the asymptotic scaling function for the conta
process found in Ref.@20# ~with maximum atx50). Inset: scaling
plot of the QS distribution as in Fig. 7, forL52000, p151/2, and
p250.25, 0.5, 0.75, 0.9, and 0.999. The first four curves collap
while the last has a broader distribution.
04613
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time step required to maintain numerical stability, in t
usual direct integration schemes. In the present case, th
rect method has an effective time step of unity.

IV. PAIR APPROXIMATION

A. Method

In this section we construct the quasistationary probabi
distribution for the DKCA at the pair level. The system
described by two stochastic variables, the number of oc
pied sitesN, and the number of doubly occupied neare
neighbor~NN! pairs,Z. We consider a ring ofL sites.@For
convenience we introduce a different notation for the s
variables, definingw i5s i /2 for even t and w i5s ( i 11)/2 for
odd t. In this way the site index always takes the valu
1, . . . ,L at all times, and NN sites have state variablesw i
andw i 11.#

To begin, we establish the allowed range of values forZ.
Using ‘‘1’’ and ‘‘0’’ to represent occupied and vacant site
respectively, we denote byK the number of~10! NN pairs.
@By symmetry, the number of~01! pairs is alsoK.# K is not
an independent variable, since each 1 is followed by a 0 or
another 1, yieldingN5Z1K. Similarly, the number of~00!
pairs, V, is given byV5L22N1Z. The conditionsK>0
andV>0 imply certain limits forZ on a ring ofL sites, listed
in Table II.

Next we construct the transition probabilitie
W(N,ZuN8,Z8). Note that the presence ofV8 ~00! pairs at
time t implies that there are at least this many vacantsitesat
time t11; thus W50 for N.2N82Z8. We proceed by
analogy with the one-site approximation: givenN8 and Z8,
we first determine thepair densities z5Z/L, k, andv using
Eqs. ~9!–~11!. ~Here z, k, and v represent the densities a
time t11, while the variables appearing on the RHS of ea
equation are evaluated usingr t5N8/L and zt5Z8/L.! We
treat all configurations having the sameN and Z as equally
probable, and estimate the probability of any one such c
figuration as

Q~N,Z;r,z![F zZk2KvV

rN~12r!L2NG1

L (
j 51

L
sjsj 11

pj
, ~30!

wherek5r1z. The first factor~in square brackets! is the
product of all pair probabilities, divided by the product of a
site probabilities. The second factor represents a correc
needed for normalization ofQ, which arises as follows. Sup
pose we construct the probabilityQ starting at sitej, so that
the first factor in the product ispj , i.e., the pair probability
associated with sitesj and j 11. The next factor will then be

t

e,

TABLE II. Allowed values forZ on a ring.

N Z

0,1 0
2, . . . ,L/2 0, . . . ,N21
L/2, . . .L21 2N2L, . . . ,N21
L L
5-6
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FIG. 8. Quasistationary active
site density versusp1 for the
DKCA in the pair approximation,
for several system sizes. The ins
shows the moment ratiom for the
same system sizes.
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pj 11 /sj 11, which represents the conditional probability
the variable at sitej 12, given the state of sitej 11, and so
on. When we close the ring, adding the link between s
j 21 and j, the final factor isP(w j 21 ,w j uw j 21 ,w j )51, not
P(w j 21 ,w j )/@P(w j 21)P(w j )#. So the first factor in Eq.~30!
has one pair factor, and two site factors, too many, a
should be multiplied bysj 21sj /pj 21. Since the position of
the starting link is arbitrary, we take the mean of this corr
tion over the ring.

Note that the correction factor may be written as

1

L (
j 51

L
sjsj 11

pj
5

1

L FZ
r2

z
12K

r~12r!

k
1V

~12r!2

v G .
~31!

In case the pair numbers take theirexpected values(Z
5Lz, etc.!, the correction factor is unity.

The transition probability is the product of a configur
tional probabilityQ(N,Z;r,z) and the number of configura
tions, G(N,Z;L), having exactlyN active sites andZ active
pairs on a ring ofL sites:

W~N,ZuN8,Z8!5G~N,Z;L !Q~N,Z;r,z!, ~32!

for (N,Z)Þ(N8,Z8) and N<2N82Z8; for N.2N82Z8,
W50; if (N,Z)5(N8,Z8),

W~N8,Z8uN8,Z8!512(
N,Z

* G~N,Z;L !Q~N,Z;r,z!,

~33!

where (* ) denotes the exclusion of the single termN5N8,
Z5Z8. An expression for the combinatorial facto
04613
s
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G(N,Z;L) is derived in the Appendix.~Note thatG50 for
values ofN andZ outside the permitted range given in Tab
II.! The evolution of the probability distribution follows:

pt11~N,Z!5 (
N8,Z8u2N82Z8>N

W~N,ZuN8,Z8!pt~N8,Z8!.

~34!

B. Results

We constructed the QS distribution at the pair level for t
DKCA, for systems of up to 200 sites, focusing on the b
havior in the vicinity of the critical line.~The computation is
considerably more demanding of memory and cpu time t
is the one-site approximation; the chief limitation is th
evaluation of the coefficientsG.!

Figure 8 shows the QS order parameter versusp1 in the
pair approximation, for several system sizes. We also plot
moment ratiom, showing a series of crossings whose loc
tion approaches the critical point asL→`. The behavior of
m versusL, at criticality, is shown in Fig. 6. In Fig. 9 we
show the QS distribution,p̄(N,Z), at criticality (p2
50.5, p150.6306), forL5100. The marginal distribution
p̄(N) is similar to that found in the site approximation. Th
behavior of the mean population, moment ratio, decay r
skewness and kurtosis, as functions of time, is again qua
tively similar to that observed in the site approximation.

V. DISCUSSION

We studied the quasistationary properties of the DKCA
the one- and two-site approximations. Our study represe
5-7
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an extension of QS analysis, applied to continuous-ti
models exhibiting an absorbing-state phase transition in R
@20#, to discrete-time processes.

Compared with continuous-time processes, the numer
analysis of a discrete-time system is simpler, since it
volves iteration rather than integration of a set of differen
equations. While this is evident at the one-site level,
higher levels of approximation the advantage is tempered
the fact that starting from a given configuration, transitio
to many~or all! other configurations are possible. The resu
ing need for combinatorial factors@e.g.,G(N,Z;L)] compli-
cates the analysis.

An interesting result of our study is that the scaling b
havior along the critical line is the same for the continuo
time contact process~and the closely related Malthus
Verhulst process! as for the discrete-time DKCA. In
particular, the QS order parameter decreases;1/AL in both
cases, while the QS lifetime grows;AL. While the univer-
sality of global scaling could have been anticipated on
basis of the central limit theorem, the similarity extends f
ther, to include the detailed form of the scaling function go
erning the QS probability distribution and its associated m
ments. Thus the situation is analogous to that fou
numerically in studies of absorbing-state phase transitio
not only critical exponents, but moment ratios of the ord
parameter take universal values at the critical point@24#.

ACKNOWLEDGMENT

This work was financially supported by CNPq, Brazil.

FIG. 9. QS pair density probability distribution, conditioned o
survival, at criticality (p250.5, p150.6306).
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APPENDIX

To evaluateG(N,Z;L), the number of configurations on
ring of L sites with exactlyN active sites andZ nearest-
neighbor pairs of active sites, we observe that the associ
generating functionz(x,y;L)5(N,ZG(N,Z;L)xZyN, can be
written as the partition function for a one-dimensional latti
gas:

z~x,y;L !5 (
s150

1

••• (
sL50

1

x(
i

s is i 11 y(
i

s i, ~A1!

with sN11[s1. ~We note in passing thatx5ebJ and y
5ebm for the lattice gas with nearest-neighbor interactionJ,
chemical potentialm, and inverse temperatureb.! The par-
tition function is evaluated using the transfer matr
T(s,s8)5xss8y(s1s8)/2:

z~x,y;L !5TrTL ~A2!

5l1
L1l2

L , ~A3!

wherel1,2 are the eigenvalues ofT:

l1,251/2~11xy6A~12xy!214y!. ~A4!

For L even, we have

~a1b!L1~a2b!L52(
n50

L/2 S L

2nD a2nbL22n, ~A5!

so that

l1
L1l2

L52(
n50

L/2 S L

2nD S 11xy

2 D 2nS ~12xy!214y

4 D L/22n

,

~A6!

leading to

l1
L1l2

L52yL/2(
n50

L/2

(
m50

2n

(
p50

L/22n

(
q50

2p S L

2nD S 2n

m D
3S L

2
2n

p
D S 2p

q D ~21!q~xy!m1q

~4y!n1p
. ~A7!

The coefficient ofxZyN is

G~N,Z;L !

5
2

4L/21Z2N (
n50

L/2

(
m50

2n S L

2nD S 2n

m D S L

2
2n

L

2
2n1Z2N

D
3S L12~Z2N2n!

Z2m D ~21!Z2m. ~A8!

The above expression is evaluated numerically.
5-8
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