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Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies:
A basis for g-exponential distributions
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The g-exponential distributions, which are generalizations of the Zipf-Mandelbrot power-law distribution,
are frequently encountered in complex systems at their stationary states. From the viewpoint of the principle of
maximum entropy, they can apparently be derived from three different generalized entropieSnyherRe
tropy, the Tsallis entropy, and the normalized Tsallis entropy. Accordingly, mere fittings of observed data by the
g-exponential distributions do not lead to identification of the correct physical entropy. Here, stabilities of these
entropies, i.e., their behaviors under arbitrary small deformation of a distribution, are examined. It is shown
that, among the three, the Tsallis entropy is stable and can provide an entropic basis dexghenential
distributions, whereas the others are unstable and cannot represent any experimentally observable quantities.
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[. INTRODUCTION the g-exponential distribution to the Boltzmann-Gibbs-
Jaynes exponential distribution.

It is known [1-3] that there are a number of complex  Following Gibbs’ procedure, one may also wish to derive
systems whose statistical properties at the stationary statéise g-exponential distribution from the stationarity condition
are well described by thg-exponential distributions, which on a certain generalized entropy. Such an entropy is found to
are generalizations of the Zipf-Mandelbrot power-law distri-be not unique, however. There exist three known different
bution [4]. The g-exponential distributions are anomalous entropies that are maximized by tlygexponential distribu-
distributions from the viewpoint of conventional statistical tion under the constraint on the normalizgeexpectation
mechanics characterized by Boltzmann’s exponential factonalue of Q. This can be seen as follows.

Since it is so frequently observed in nature, it is important to  Consider the functional
develop bases for such distributions. In this context, we wish
. . . w
to mention that quite recently thg-exponential factor has . <)
been obtained for the logistic map at the edge of chaos by th® ~LP: . 8]1=S5"[p]—a ;1 pi—1
renormalization-group method as well as by the Pesin equal-
ity for the generalized Kolmogorov-Sinai entropy and the W
generalized Lyapunov exponeli]. There, the value of the —B( > PiQi_Qq> J=RT,NT). (4
entropic index has been calculated analytically. =1

The explicit form of theg-exponential distribution is the and B are the Lagrange multipliers associated with the

following: normalization condition on the basic distribution,
1 {piti=12,.w, and the normalized-expectation value o,
pi= e(—AQ)  (1=1,2,..W), (1) =W, PiQi=Qq, WhereP; is the escort distributiofi6] de-
Zy(\) fined by
- w b (p)? .
24N =2, eq(=AQy), P) W ®
gl (pp)e

whereW is the number of accessible microscopic states of a

system under consideratio; is theith value of a physical The three generalized entropies are listed as follows:
quantity Q, \ is a factor related to the Lagrange multiplier,

andey(t) is theg-exponential function defined by 1 W
SIpl= 14N 2, (P)* ()

(1— q p 1— p (pl ’

[1+(1-qt]"* 9 [1+(1-q)t>0] 9 i=
t =
&(t) 0 [1+(1—q)t=0].

1
(Nrp1= ——
Sq [p] 1_q_i

M =

A
g is a positive real number termed tleatropic index This (P)*=11, @)

distribution has the cutoff a@Q; n=11(1—q)\] if 0<q
<1, whereas it is equivalent to the Zipf-Mandelbrot-type 1T 1
asymptotic power-law distribution with the exponentdl/( sy VIp]= 1-w

21 (pi)*

1

- , ()
—1) if g>1. In the limit q— 1, the g-exponential function 1-q
converges to the ordinary exponential function and so does
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which are the Reyi entropy[7], the Tsallis entropy8], and

the normalized Tsallis entrod®,10], respectively. These are
connected to each other in the obvious ways, and all con-
verge to the Boltzmann-Gibbs-Shannon entropy in the limi

q—1:
lim SP[p]=limS{"[p]= lim SN[ p]=9S[p]
g1 0 g1 0 g1 0
w
= —21 piInp;.

For a statistically independent bipartite systdi,B), these
entropies satisfy

9)

Sy(A.B)=8(A)+5(B)+ V() S (A)S)(B),

(10)
where
7R(q)=0, (12)
7(g)=1-q, (12)
7ND(g)=q-1. (13
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w
cg'=2, (P (19
"Also, in the above expressions afs, Q%Y stands for the
normalizedg-expectation value of with respect top{” in
Eq. (14). Here, it is worth mentioning that, as long as the
g-exponential distribution is concerned, the expectation
value has to be defined in terms of the escort distribution as
in EqQ. (4), since only in this case can the principle of maxi-
mum generalized entropy be consistent with the principle of
equala priori probability [11]. In the limit g—1, Eq. (14)
tends to the Boltzmann-Gibbs-Jaynes exponential distribu-
tion and the power-law distributions &f cannot be obtained
as long as they are based on the principle of maximum en-
tropy with the constraint linear iQ.

Thus, in fact, the Reyi, Tsallis, and normalized Tsallis
entropies all lead to thg-exponential distributions of the
same type. In other wordsyere fittings of observed data by
the g-exponential distributions do not tell us anything about
which type the underlying physical entropylis this respect,
it should be noted that, in Reff12], Lesche has presented a
counterexample showing instability of the & entropy.

In this paper, we show that the”Rg and normalized
Tsallis entropies are unstable under small deformation of a
distribution and therefore cannot represent experimentally
observable quantities, whereas the Tsallis entropy is stable
and can provide an entropic basis for tipexponential dis-

Thus, the Reyi entropy is additive, whereas the Tsallis and yripytions. The discussion is general andirigependent of

normalized Tsallis entropies are nonadditive.

The Rawyi entropy is conventionally used for the defini-

tion of the generalized dimension in multifractfdd, and the

any stationary properties
The paper is organized as follows. In Sec. Il, the rigorous
definition of stability of a statistical quantity is given. In Sec.

Tsallis entropy plays a central role in nonextensive statistica)| instability of the normalized Tsallis entropy as well as the

mechanic§1-3].
Variation of ® with respect top; gives rise to the fol-
lowing stationary distribution:

(J) = A0,
| 'Z(J)()\(J)) q A QI)1 (14)
W
230\ = 2, eg(-AVQy), (15)
whereN’s are given by
B
R = =
STy (19
B
(T = ) 1
¢y +(1-a)BQy” 7
AN = o (18)

e+ (1-q)BQy "

respectively, provided that, in Eq4.7) and(18), we have set

Renyi entropy is shown. In Sec. IV, a general proof is estab-
lished for stability of the Tsallis entropy. Section V is de-
voted to a conclusion.

Il. OBSERVABILITY AND STABILITY

Consider a statistical quantit¢ =C[p], which has its
maximum valueC,,,,,- C[p] is said to be stable if the amount
of its change under an arbitrary small deformation of the
distribution remains small. Any observable quantities have to
be stable, since otherwise their values cannot be experimen-
tally reproducible. Let us measure the size of deformation

from {pi}i—12,_wto {p/}i—12, w by thel® norm:

w

|||o—|0’||1=§1 lpi—pil. (20)

Note that this quantity should be independent\dfThen, an
observable quantityC[p], has to possess the following

property[12]:

Clpl-C[p’]

<e
Cmax

(21)

(V €>0) ( 36>0) ||IO—IO’||1$5=>‘

for arbitrary values of\V.
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IIl. INSTABILITIES OF RE NYI AND NORMALIZED

1 1) o
TSALLIS ENTROPIES IN THE THERMODYNAMIC LIMIT o] =m(l— 81, Pi= ( 1- >

pi+§5i1- (27)

In this section, we discuss instabilities of théngeand
normalized Tsallis entropies by using a counterexamplélearly this preserves the normalization condition. In both
which violates the condition in Eq21). the cases of &€q<1 andqg>1, thel! norm is seen to be
First of all, we recall that Reyi, Tsallis, and normalized
Tsallis entropies take their maximum values for the

equiprobabilityp;= 1/W (i=1,2,...W): lp—p'[1=0. (28)
Also, from Eqgs.(26) and (27), it is immediate to obtain the
Sfmax: InW, (22)  following. For 0<q<1,
w W
(T)  — S\a4 [s\d
Sq.ma= Mg\, @ 3 =1 3 (p{)‘*:(l‘ 2l * 5) (W-1)t-a,
=1 =1
_ 29
S — INgW %, (24) (29
Here, Inx stands for theg-logarithmic function defined by Forg>1,
1 w
Ingx=7=5 (¢~9=1) (x>0), (25 2, (p)I=(W-1)'71,

which is the inverse function of thg-exponential function

and converges to the ordinary logarithmic function in the W

limit q— 1. > (p))9=
The deformation of a distribution to be examined is given =1

as follows[12]. For 0<q<1,

)

2

q S\d
+ ( 1- 5) (W—1)1"9, (30)

A. Reényi entropy

, 6 1 The following discussion about instability of the iRe
Pi=di1, Pi=|1-5w=1/Pit3w=1 @9 entropy can be found in Ref12], but we present it here in
order to make the discussion self-contained.

Forg>1, Using Eqgs(29) and(30) in Eq. (6), we find the following.
For 0<qg<1,
1 s\4 [6)9
(R)r 11— (R)[ /7 — __ Z —1)1-4
15 g w-w
, —In[{1-%] +| 5| (W=1)"¢
SPpl-SPIp' ]| | 1= 2| Tz WV ) -
Simex | Inw '
Forg>1,
(R) (R) 1 ‘ 5\ 1
= — M= —_ —_ = _— -a
Sy [a]=In(W=1), S;7[p'] 1_qln 5 +(1 2) (W-1) } (33

1 q s\ 9
In(W—l)—mln > + 1—§> (W_l)l—q}
‘: —1 (W—ox), (39

S¢IP1-SIp']
SR

g, max

InW

Therefore, the condition in Eq21) is violated.
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B. Tsallis entropy
Using Eqgs.(29) and (30) in Eq. (7), we find the following.

For 0<qg<1,
1 s\ (s\9
(T) — (/1= __ _ —_1\1-a_
Sy '[p]=0, S;’[p'] 1_q“1 5 * 2) (W-1) 1}, (35
5\9 [48\9 .
_ _ — —q_
sy pl-sy"lp']| (1 3) *lz) W=D ( )q W -
Cha— W 2 |
Forg>1,
StV[pl=IngW—-1), SV[p']=+—||= q+ 1—‘—s q(w—1)1—f4—1 (37)
q LP a ! q LP 1-q|\2 2 !

S [p1-S{"[p']
ST |

g, max

(W— 1)1-Q—(§)q—<1— é)q(W— 1)t
2 2 (5

q

Therefore, ifd is taken to bes<2&9, the condition in Eq(21) is satisfied.

C. Normalized Tsallis entropy
Using Eqgs.(29) and (30) in Eqg. (8), we find the following.

For 0<qg<1,
(NT) NT)[ 1 1
Sq [p]:O, Sg [p ]: 1_q 1- q S\ , (39)
( —5| t E) (W—1)-d
1
1_( ) q+ 5)Q(W 1y
Sy LP1—Sqp] 21_1\2 1 (W) (40
= — — — ),
Stmbx | 1-wat
Forg>1,
S pl=—Ingw—-1)"%, sNV[p']= Ll ! (41)
q [p] q ) q [p ] 1_q 5 q 5 q L 1
_ __ —1)i-a
2) +11 2) (W-1)
—(W—1)%"1+ !
SN Tp]— SN T[] 5] tl1-35] (W=1)
S(NT) ’: 1-Wa I —1 (W—x). (42

', max

Therefore, as in the case of therReentropy, the condition overall probability is so small that they are irrelevant

in Eq. (21) is violated. and those with g>1 overestimate a high peak of
The results in Eq932), (34), (40), and(42) mean that the probability.
Renyi and normalized Tsallis entropies with<@q<<1 over- Thus, among the three, there is a possibility only for the

estimate a large number of occupied states even if theifsallis entropy to be observable.
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IV. STABILITY OF TSALLIS ENTROPY

Stability of the Boltzmann-Gibbs-Shannon entropy has
been shown in Ref[12]. Here, we prove stability of the

Tsallis entropy by generalizing the discussion in R&g].
Let us define the following quantity:

w

Adpit =2, (p. eqtt)) (43)
wheret is a positive parameter and the symbg) ( means
(X) 4 =maxx,0}. (44)

The following will be useful later:
(X) 4 =X0(x), (45)
1)+ = (¥)+|<[x=yl, (46)

where 0(x) is the Heaviside unit step function defined by
0(x)=0 for x<<0 andé(x)=1 for x>0. The quantity in Eq.

(43) has several interesting properties.
From Eq.(46), it immediately follows that

|AqLP:t) —Aglp":t)|<[p—p'llz. (47)
Using the relation
% - <§( - ) <1, (49
=k et =1 Pi eq(t)),
we have
1- w <A, p; 1 49
eq(t) = q[pyt)< . ( )
In particular, ift=InqW, then Eq.(49) becomes
W
1- —=<A/p;H)<1l. (50

eq(t)

is,

—1<—Aqp ;t)s—1+m. (51
Adding Egs.(50) and(51), we find
AP —Ag[p’;0)| < (V¥ t=IngW). (52

&q(t)

In the limit t—t,,, With t,,=* (0<q<1), 1/(g—1)
(g>1) [see Eq.(3)], eq(t) diverges and thereford [ p;t)
tends to unity. So, the mtegrﬁtma’ﬁt(l Aql p;t)) may con-
verge. This is in fact the case. Using E45), this integral is
written as

PHYSICAL REVIEW E66, 046134 (2002

tmax
[ aa-agen

2 Jslo gl o o]

+Wf max 53
eq(t) (53

The second term on the right-hand side gives
W f =—. 54
eq(t) q (59

On the other hand, noting<0in,(1/p;) <t the integral in
the first term is calculated as follows:

R B

ng(1/p;) ( B
Z f P eq(®
1 W
:1_|:2 pl)q_ :|
1Y W
_ q__
tg Py (55
Therefore, we obtain
f (1~ AL pit )—Esm i (56)
o q[p,)—q q LP] 3’
or, conversely,
tmax
Spl=-1+a [ "da-Adpr). (67

Now, using the representation in EG7) and takinga
satisfying — Iny W<0<a<t,,, we have

tmax
IS Ip1=S{"Ip'1I=da| | "~ dtAp;it)—A{[p'it)
0
tmax
sqfo dt|Ag[pst) —Ag[p';t)]
a+|an
:CIJ'O dt|Aq[p;t)_Aq[p,;t)|

tmax
+f dt|Aq[p;t) —Aq[p’;)].
a+Ing W

q
(58)

From Eq.(47), the first integral is found to satisfy
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a+Ing W W
Jo dt|/Ag[p;t) —Agp’;t)[<[p—p'[li(a+InW). a+|an=Inqm, (62
(59

Likewise, from Eq.(52), the second integral is evaluated as Eq. (57) is reexpressed as follows:

tmax
J dt|Ag[p;t) —Ag[p’;1)]

W
atingW ISgT)[p]—SgT)[p’]qullp—p’lllInqm
tmax W W
< dt——== —[g,(a+IngW)]7% (60 +WE9(|[p—p’ll.)q.
J ot glesaringwi-e. (6 Wealp-plot (69
Therefore, we have Using the equality Ig(y/x)zxqfl(lnqy—lnqx), we further
184" Lp1=S;"Ip" JI=<dllp—p’[l(a+IngW) obtain
w
(61) 1S7IP]=S4 [P 1=(lp—p'll) ¥ Ing W+ ([p—p'[l)°

" TegatingW)Td’
X(A=qlnglp—p'llL), 64
This inequality holds for any values @f satisfying —Iny W (1-1 qu P'll) (64
<0O<a<tys. Evaluating the minimum of the right-hand
side, which is realized when from which we find

T ’
Sy [pl1-S"[p’]
S(T)

q, max

<l(lp—p'l )q+(Ilp—p’lll)q(l—qlnqllp—p’\ll)\ﬁ (lp=p'll0* (0<q<1)
| ' Ing W el (@>1) (W),

(65)

Therefore, taking|p—p’[;<6<eY? (0<q<1) or |p stable and can give rise to experimentally observable
—-p’lli=86<el/q (g>1), we see that the condition in Eq. quantities. Therefore, it is the Tsallis entropy on which
(21) is satisfied by the Tsallis entropy. the ubiquitousg-exponential distributions have their basis.
The above discussion holds fafg>0, and so, as a A remaining important(and hargl question is whether
simple byproduct, stability of the Boltzmann-Gibbs-Shannoror not the Tsallis entropy is the unique generalized
entropy [12] corresponding to the limig—1 (also of the  entropy. Regarding this point, we wish to mention that

Renyi and normalized Tsallis entropieis reestablished. there are some affirmative points: there exists a set of
axioms and the uniqueness theorem for the Tsallis entropy
V. CONCLUSION [13], and the structure of nonadditivity in Eq10) is

We have shown that among the'm Tsa”iS, and essential from the VieWpOint of the zeroth law of thermo-
normalized Tsallis entropies, only the Tsallis entropy isdynamics[14,15|.
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