PHYSICAL REVIEW E 66, 046133 (2002
Thermodynamics and collapse of self-gravitating Brownian particles inD dimensions
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We address the thermodynamics and the collapse of a self-gravitating gas of Brownian partles in
dimensions, in both canonical and microcanonical ensembles. We study the equilibrium density profile and
phase diagram of isothermal spheres and, ferD2<10, determine the onset of instability in the series of
equilibria. We also study the dynamics of self-gravitating Brownian particles in a high friction limit leading to
the Smoluchowski-Poisson system. Self-similar solutions describing the collapse are investigated analytically
and numerically. In the canonical ensemkfized temperature we derive the analytic form of the density
scaling profile which decays &¢x)~x"*, with a=2. In the microcanonical ensemb(éixed energy, we
show thatf decays ag(x) ~x~ “max wherea .4 IS @ nontrivial exponent. We derive exact expansionsgx,
andf in the limit of largeD. Finally, we solve the problem iB =2, which displays rather rich and peculiar
features with, in particular, the formation of a Dirac peak in the density profile.
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[. INTRODUCTION always =2 and the profile can be calculated exactly for
any dimension(Sec. Il . We show that, already up to or-

In an earlier papef1], we studied a model of self- derO(D?), the results of the larg® expansion agree re-
gravitating Brownian particles confined within a three- markably well with those found numerically fob=3.
dimensional spherical box. We considered a high frictionMoreover, we show that the nature of the problem changes at
limit in which the equations of the problem reduce to thetwo particular dimension® =2 andD=10. In Sec. I, we
Smoluchowski-Poisson system with appropriate constraintsompute the equilibrium phase diagram as a function of the
ensuring the conservation of energy the microcanonical dimension. For 2 D <10, theT-E curve has a spiral shape
ensemblg or temperaturgin the canonical ensemblg2]. as in three dimension8D). ForD>10 andD <2, theT-E
The equilibrium stateémaximum entropy statg¢gorrespond curve is monotonic. The dimensidh=2 is critical and re-
to isothermal configurations which are known to exist onlyquires particular attention that is given in Sec. IV. We show
above a critical energy or above a critical temperafse, that forD=2 the system generates a Dirac péetntaining
e.g., Ref.[3]). When no hydrostatic equilibrium exists, we a finite fraction of magsfor T<T.=GM/4 in the canonical
found that the system generates a finite time singuléirty,  ensemble while fob>2, the central singularity contains no
the central density becomes infinite in a finite tine@d we  mass at the collapse tinfbut a Dirac peak is always formed
derived self-similar solutions describing the collapse. Thisin the post-collapse regimeThe caseD =2 has interest in
study was performed both in the microcanonical and canonitheoretical physics regarding 2D gravi§] and string theory
cal ensembles, with emphasize on the inequivalence of ern9] (in connection with the Liouville field theojylt has also
sembles for such a nonextensive system. In the canonicabplications in the physics of random surfaf&g] and ran-
ensemble, we showed that the scaling exponent for the degtom potential§11], 2D turbulencd12] and chemotaxif13]

sity is «=2 and we determined the invariant profiléx),  (for bacterial populations Finally, the dynamical equations
satisfyingf(x) ~x~“ for x— + o0, analytically. In the micro- considered in this paper and in RE2] are receiving a grow-
canonical ensemble, the scaling exponert2.21... and ing interest from mathematicians who established rigorous

the corresponding invariant profif¢x) were determined nu- results concerning the existence and unicity of solutions for
merically. These values of are close to those found by an arbitrary domain shape without specific symmetry. We
other authord4—7], using different kinetic equations. This refer to the papers of Rosi¢i4] and Biler and Nadzieja
agreement may be coincidental but it may also suggest fL5], and references therein, for the connection of our study
kind of universality in the collapse regime. with mathematical results.
In this paper, we propose to extend our previous analysis
to a space of arbitrary dimensidd. The interest of this
extension is twofold. First, we shall consider an infinite di-  |I. EQUILIBRIUM STRUCTURE OF ISOTHERMAL
mension limitD— + o0 in which the problem can be solved SPHERES IN DIMENSION D
analytically. In particular, it is possible to determine the scal-
ing exponente(D) and the profilef(x,D) in the microca-
nonical ensemble by a systematic expansion procedure in Consider a system of particles with masénteracting via
powers of D! (Sec. 1ll D), while the canonical value is Newtonian gravity in a space of dimensi@n The particles
are enclosed within a box of radiisso as to prevent evapo-
ration and make a statistical approach rigorous.fi(etv,t)
*Email address: Clement.Sire@irsamc.ups-tlse.fr denote the distribution function of the system, i.e.,
"Email address: Chavanis@irsamc.ups-tise.fr f(r,v,t)d°rd®v gives the mass of particles whose position

A. The maximum entropy principle
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and velocity are in the cellr(v;r +d°r,v+dPv) at timet. where we have omitted unimportant constant terms in the
The integral off over the velocity determines the spatial entropy(9). The entropy and the free energy are now func-
density tionals of p(r) and we consider their maximization at fixed
energy or fixed temperature. Introducing Lagrange multipli-
B D ers to satisfy the constraints, the critical pointsSgft fixed
p_f fdv. @ E andM) or J (at fixed T and M) are given by the Boltz-

mann distribution(see, e.g., Ref§16,17] for more detaily
The total mass of the configuration is

p=Ae P®, (10)

M :f pd°r. (2)  Then, the equilibrium state is obtained by solving the
Boltzmann-Poisson equation
In the mean-field approximation, the total energy of the sys- P
tem can be expressed as AP=S,GAe "7, 1D

1 1 and relating the Lagrange multipliers to the appropriate con-
E= —f fo? dDrde+—f p® dPr=K+W, (3)  straints. Note that a similar variational problem occurs in the
2 2 context of two-dimensional turbulenc® & 2) to character-
ize large-scale vortices considered as maximum entropy
structure§2,18—21. The analogy between the statistical me-
chanics of two-dimensional vortices and stellar systems is

discussed in Ref.22].
AD=S,Gp, (4) It is easy to show that there is no global maximum of
entropy at fixed mass and energy for>2 (see Appendix
whereS; is the surface of a unit sphere inDadimensional  A). We can make the entropy diverge-toc by approaching
space ands is the constant of gravity. Finally, we introduce an arbitrarily small fraction of particles in the corél{y,e

whereK is the kinetic energy and/ the potential energy. The
gravitational potential® is related to the density by the
Newton-Poisson equation

the Boltzmann entropy <M) so that the potential energy goes to~. Since the
total energy is conserved, the temperature must rise 4o
S= _J fInf d®rdPv (5) and this leads to a divergence of the entropy+te. Note

' that if we collapsell particles in the core, the entropy would

diverge to—«. Therefore, the formation of a Dirac peak is

not thermodynamically favorable in the microcanonical en-

J=S-BE ©6) semble. For[_)=2, there exists a global entropy maximum_
' for all energies. On the other hand, there is no global maxi-

where 8= 1/T is the inverse temperature. If the system isMuUm of free energy at fixed mass and temperatureDior
isolated, the equilibrium state maximizes the entrggpt 2 and if T<Tc=GM/4 for D=2 (see Appendix B We
fixed energyE and massM (microcanonical description ~ ¢an make the free energdydiverge to+ by collapsing all
Alternatively, if the system is in contact with a heat bath thatParticles atr=0. Therefore, a canonical system is expected
maintains its temperature fixed, the equilibrium state maxif0 form a Dirac peak. Fob=2 andT>T,, there exists a
mizes the free energy at fixed masM and temperaturg ~ 9lobal maximum of free energy. Fd <2, there exists a
(canonical description It can be shown that for systems in- 9lobal maximum of entropy and free energy for all acces-
teracting via a long-range potential such as gravity, thisible values pf energy and temperature. We refer to Refs.
mean-field description iexactin a suitable thermodynamic [23.24 for a rigorous proof of these results. When no global
limit (see Sec. Il D maxima of entropy or fr_ee energy exist, we can nevertheless
To solve this variational problem, we shall proceed in two!00k for local maxima since they correspond to metastable
steps. We first maximiz& (J) at fixed M, E, (T) and p(r).  States that can be relevant for the considered time scales. Of
This yields the Maxwell distribution course, the critical points of entropy at fixecandM are the
same as the critical points of free energy at fixednd M.
. Only the onset of instabilityregarding the second-order
= —=p(rye 2T, (7)  variations ofS or J with appropriate constraintswill differ
(27T) from one ensemble to the other. FBr=3, this stability
roblem was considered by Antonf®5] and Padmanabhan
16] in the microcanonical ensemble and by Chavah# in
the canonical ensemble, by solving an eigenvalue equation
D 1 connected to the second-order variations of the thermody-
E=—MT+ _f p®dPr, (8) namical potential. It was also studied by Lynden-Bell and
2 2 Wood[26] and Katz[27] by using an extension of Poincare
theory of linear series of equilibria. We shall give the gener-
S= EMI T_f InodP 9 alization of these results in Sec. Il F to the case of a system
M PN, @ o arbitrary dimensiorD.

and the free energgmore precisely the Massieu functjon

It is now possible to express the energy and the entropy i
terms ofp(r) andT as
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B. The D-dimensional Emden equation d2z' dz'
To determine the structure of isothermal spheres, we in- 9 +(D=2)4 2(D-2)2'=0. (19)
troduce the functiony= B(® — ®,), whered, is the gravi-
tational potential at =0. Then, the density field can be writ- Tha discriminant associated with this equationAis= (D

ten as —2)(D—10). It exhibits two critical dimension®=2 and

p:poe_l//, (12) D=10. For <D<10, we have

where p, is the central density. Introducing the notatign . 2(D-2) 1+ A o /(D—2)(10-D)
=(SpGBpo)Ya and restricting ourselves to spherically &2 gb-2)2 2

symmetric configuration&vhich maximize the entropy for a

nonrotating systepmthe Boltzmann-Poisson E(L1) reduces
to the form XIng+o| (§—+x). (20
1 i( Dld_w) —e ¥ (13) The density profilg20) intersects the singular solutidd4)
-1 dé d¢ ' infinitely often at points that asymptotically increase geo-

metrically in the ratio 1e2™(P=2)10-D) (see, e.g., Fig. 1 of
which is the D-dimensional generalization of the Emden Ref.[17] for D=3). ForD=10, we have
equation[28]. For D>2, Eq.(13) has a simple explicit so-

lution, the singular sphere e V= 2(b-2) 1+ ! (Ag =200/
=z £D-2)12
., 2(D-2)
+B§\m/2)] (é—+x). (21

The regular solution of Eq13) satisfying the boundary con-

ditions For D=2, Eq.(17) can be solved explicitly and we get
Yy=y¢'=0 at ¢&=0, (15
v —zl (22)
e V= .
must be computed numerically. F§r—0, we can expand 1 1,
the solution in Taylor series and we find that + 55
1, 1 4, 1 D+1 6 This result has been found by various authors in different

Y=25¢ spiDr2)¢ T4 D4(D+2)(D+4) &+ fields (see, e.g., Refd8,29). Note thate ¥~ ¢4 at large

(16) distances instead of the usugal? behavior obtained fob
>2. This implies that the mass of an unbounded isothermal

To obtain the asymptotic behavior of the solutions for  SPhere is finite irD=2, although it is infinite foD>2.

+oo, we note that the transformatidr=In¢, y=2Iné—z ForD<2, we can neglec” on the right-hand siderhs)
changes Eq(13) in of Eq. (17) at large distances and we get
% dz e Ve Mt (gt m), (23
—5+(D-2) = —e+2(D-2). (17)
dt whereAp is a constant depending on the dimensianFor

i o D=1, Eq. (13 can be solved exactly, yielding the result
For D>2, this corresponds to the damped oscillations of Asee, e.g., Ref30])

fictitious particle in a potentia¥(z) =e*—2(D — 2)z, where

z plays the role of position antthe role of time. Foit— 1
+ o, the particle will come at rest at the bottom of the well e V=— (24)
at positionzy=In[2(D—2)]. Returning to original variables, cosi(&/4/2)
we find that
establishingA; = /2.
., 2Db-2)
N _’T_e s for §— e, (18) C. The Milne variables

As is well known[28], isothermal spheres satisfy a ho-
Therefore, the regular solution of the Emden equatib®  mology theorem: ifys(&) is a solution of the Emden equa-
behaves like the singular solution fé# +. To determine tion, theny¥(A&)—2InAis also a solution, withA an arbi-
the next-order correction, we set=2zy+2z' with z'<1. trary constant. This means that the profile of isothermal
Keeping only terms that are linear i, Eq. (17) becomes  configurations is always the sart@haracterized intrinsically
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FIG. 1. The solutions of the Emden equation in thev() plane FIG. 2. The solutions of the Emden equation in thev( plane
for systems with dimension<2D < 10. for systems with dimensioD=1 andD=2.

by the functiony), provided that the central density and the where we have definedp=1[Ap(2—D)?>~P)]. For D
typical radius are rescaled appropriately. Because of this ho=1 w;=112.
mology theorem, the second-order differential equafits)
can be reduced to first-order differential equation for the ,
Milne variables D. The thermodynamical parameters
For bounded isothermal systems, the solution of #&8)
_ te ? L is terminated by the box at a normalized radius giveroby

u= v and v=¢y'. (29— (5,GBpy)2R. We shall now relate the parameteto the

temperature and energy. According to the Poisson equation

Taking the logarithmic derivative af andv with respect to  (4), we have for a spherically symmetric distribution of

¢ and using Eq(13), we get matter,
ldu 1 b o8 d®  GM(r) 30
Gd_g_E( v—u), (26) dr = o1
1 dU 1 r 'D— , s Ly
——=—(2-D+u). (277 whereM(r)=[ypSpr dr’ is the mass within the sphere
vdé & of radiusr (the gravitational field created by a single particle

at the origin isF=—V®=—-Gm/r°1u,). Equation(30) is

Taking th io of the fi i i i . ; . .
aking the ratio of the foregoing equations, we obtain the D-dimensional version of the Gauss theorem. Applying

udp 2-D+u this theorem at the box radius, we have
vdu D-u-—o 8
— Dfldq) 31
The solution curve in theu,v) plane is plotted in Fig. 1 for GM=|r dr r (3D

different values ofD. The curve is parametrized bg. It R

starts from the point,v)=(D,0) with a slope ¢v/du),
=—(D+2)/D corresponding t&¢=0. The points of hori-
zontal tangent are determined by D —2 and the points of
vertical tangent byu+v=D. These two lines intersect at
(us,ve)=(D—2,2), which corresponds to the singular solu- _BGM
tion (14). For 2<D<10, the solution curve spirals indefi- 7= o2 =ay'(a).
nitely around the point s,vs). For D=10, the curve
reaches the pointug,vs) without spiraling. ForD=2, we
have the explicit solutiow =2(2—u) so that (1,v)—(0,4)
for é&—+w. ForD<2, (u,v)—(0,+) for é&—+x (see
Fig. 2. More precisely,

Introducing the dimensionless variables defined previously
(usingr/R= ¢l a), we get

(32

We note that, foD =2, the parametey, is independent on
R. This is a consequence of the logarithmic form of the New-
tonian potential in two dimensions.

The computation of the energy is a little more intricate.
First, extending the potential tensor theory developed by
wp (£—+), (29 Chandrasgkhar folD=_3 (s_ee, e.g., Ref.31]), we find that
the potential energy ilD dimensions can be written as

ue1)/(2—D)
,DI(2-D)
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FIG. 4. Evolution of the energyx along the series of equilibria
FIG. 3. Evolution of the inverse temperatugealong the series  (parametrized byr) for 2<D<10.

of equilibria (parametrized byr) for 2<D<10. The curves corre-
spond toD =4, 3, 2.5, 2.2 from bottom to top. The curvesy(a) and A(«) are plotted in Figs. 3 and 4.
For 2<D <10, they exhibit damped oscillations toward the
1 valuesn,=2 andA¢=1/(D—2)—D/4, corresponding to the
W= — —f pr-VadPr, (33 singular solution14). For D=10 the curves are monotonic.
D=2 For D=2, we have explicitly

for D#2. Now, the Boltzmann-Poisson equatighl) is a2
equivalent to the condition of hydrostatic equilibrium n= 1 ,
2( 1+ —aZ)
Vp=—pVo, (34) 8
with an equation of statp= pT. Substituting this relation in 2 a?\| 8 a? a?
Eq. (33) and integrating by parts, we obtain A= ; 1+ ) ; 1+ ) In| 1+ ) —2¢. (40
2K+(D-2)W=DVpR°p(R), (85  The expression of the energy has been obtained directly from

Eg. (8) with the boundary conditio®(R)=0. The inverse
whereVp=Sp /D is the volume of a hypersphere with unit temperature increases monotonically with up to the
radius. Equatior{35) is the form of the Virial theorem iD asymptotic valuep.=4. Using Eq.(22) and returning to the
dimensions. The total enerdy=K+W can thus be written original variables, we can write the density profile in the

form
E- 2 s 2 VRPp(R 36
p_ 7] r2 2 ( )
Expressing the pressure in terms of the Emden function, us- mR%*(4— 77)( 1+ yp—
ing p=pT and Eq.(12), and using Eq(32) to eliminate the 7R

temperature, we finally obtain This density profile is represented in Fig. 5 for different tem-

peratures. At the critical inverse temperatufe=4, all the

A=— ER°? _ D(4-D) 1 _ 1 e particles are concentrated at the center of the domain. The
GM2  2(D-2) gy'(a) D=2 y'(a)? density profile approaches the Dirac distribution
(37) p(r)—Mds(r) for n— n.=4, (42

It turns out that the normalized temperature and the norghich has an infiniténegative energy.
malized energy can be expressed very simply in terms of the g, D<2, the curvesy(a) andA () are monotonic and
values of the Milne variables at the normalized box radiusiend to+ and 0, respectively, as— +«. ForD=1, we
Indeed, writingup=u(«a) andvo=v(a) and using Eqs(32)  pave explicitly
and(37), we get

1
n=0o, (38) n=12atant(al\2), A:_zﬁ atanh al\2)
1[D(4-D) 1
S _ — 43
vol2(D—2) D-2] (39 +25inh’-(a/\/§) “3
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FIG. 5. Equilibrium density profile of a two-dimensional self- FIG. 7. Equilibrium phase diagram for two-dimensional self-
gravitating system as a function of the inverse temperaturBor  gravitating systems. For infinitely negative energies, the inverse
7=0, the density is uniform. Fon— n.=4, the density tends to & temperature tends to the valye=4. We have also represented the

Dirac peak. Forp> 7., there is no equilibrium state. caloric curve forD=1.
Note that according to Eq33), the potential energy is nec- 174 4
essarily positive foD <2, so the region\ =0 is forbidden. A=— —In(r) —2}, (45
Returning to original variables, the density profile is given mn K
by and is represented in Fig. 7, together with the dasel.
We stress that the preceding results, obtained in the mean-
M a 1 field approximation, are exact in the thermodynamic limit
p= 2\2R tanh(a/\2) ar | (44) _N—>_+oo su_ch_ that_n andA are kept fixeg. If the qu rad_ius
costt| — is given, this implies thal ~N andE~ N<. Alternatively, if
\/ER the temperature and the energy per particle are given, the

_ thermodynamic limit is such thall— +o with N/RP~?2
where we recall tha; =2. Fora— +, the profile tends to  constant(for D> 2).

a Dirac peakM 5(r).

In Figs. 6 and 7, we have plotted the equilibrium phase
diagram A-7, giving the temperature as a function of the
energy, for different dimensior3. For 2<D< 10, the curve For 2<D<10, the curvey(«) presents an extremum at
spirals around the limit pointA, »s) corresponding to the POints a, such thatdz/da(a,)=0. Using Egs.(38) and
singular solution. FoD=10, the curve is monotonic until (27), we find that this condition is equivalent to
the limit point. ForD =2, the curve is explicitly given by Up=D —2=u,. (46)

E. The minimum temperature and minimum energy

4 o Since the curvei=ug passes through the center of the spiral

in the (u,v) plane, this determines an infinity of solutions
(see Fig. 8 one at each extremum of (since p=v,). As-

] ymptotically, thea,, follow a geometric progressiaisee Ref.
[17] for more detailx

a,~e2™(0=2)A0-D)  (n_+w, intege). (47)
In Fig. 3, we see that an equilibrium state exists only for

] BGM
n= RD’ZSn(al)’ (2<D<10). (48)

0 oy This determines a maximum mager given T andR) or a
% -2 -1 0 1 2 3 4 5 6 7 8§ minimum temperaturéor givenM andR) beyond which no
A=—ER®Z/GM I . : ;
equilibrium state is possible. In that case, the system is ex-
FIG. 6. Equilibrium phase diagram giving the inverse tempera-pected to undergo aisothermal collapsgsee Sec. Il ¢
ture 7 as a function of the negative of the energyfor systems For D=2 and forD=10, then(«) curve is monotonic. An
with dimension 2<D < 10. equilibrium state exists provided that
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<2, there exists an equilibrium state for all accessible values
of energy (A<0) and temperatures(>0) (see also Ref.
[32] for D=1).

F. The thermodynamical stability

We now study the thermodynamical stability of self-
gravitating systems in various dimensions. We start by the
canonical ensemble which is simpler in a first approach. A
critical point of free energy at fixed mass and temperature is
a localmaximumif, and only if, the second-order variations

(p)? 1
29— — Dy _ D
52 f 5, 47 =57 | GpoRd®r

(54)

are negative for any perturbatiofp that conserves mass,
ie.,

FIG. 8. Location of the turning points of energy and temperature

in the (u,v) plane for systems with dimension< <10. The con-
struction is made explicitly foD =3, which corresponds to the
case extensively studied in Refd6,17. The dashed line=2

f 5pdPr=0. (55)

determines the location of the nodes of the density profiles that This is the condition of thermodynamical stability in the

trigger the instabilities in the canonical ensemfdee Sec. Il |

n=BGM=n.=4 (D=2), (49)
BGM
We get comparable results for the energy. For2
<10, the curveA(«) presents an extremum at poinis,
such thatdA/da(a,)=0. Using Eqs.(39), (26), and (27),

we find that this condition is equivalent to

4u3+2uguo+ (D?>—8D+4)ug+D(D—2)(4—D)=0.
(51)

We can check that the limit point¢,v) is a solution of this
equation. Therefore, the intersection of the paral§Blade-
fined by Eq.(51) with the spiral in the ¢,v) plane deter-
mines an infinity of pointsy, at which the energy is extre-

mum (see Fig. 8 In Fig. 4, we see that an equilibrium state

exists only for

—ERP™2
A= ———<A(a})

= VE (2<D<10).

(52

This determines a minimum ener¢fpr givenM andR) or a
maximum radiugfor givenM andE) beyond which no equi-

canonical ensemble. Introducing the functiqfr) by the
relation

1 dqg

:Wa' (56)

op

and following a procedure similar to the one adopted in Ref.
[17], we can put the second order variations of free energy in
the quadratic form

G d

o1 dr q. (57

1 d
SDperla

The second-order variations of free energy can be positive
(implying instability) only if the differential operator that
occurs in the integral has positive eigenvalues. We need,
therefore, to consider the eigenvalue problem

52J 1JRd
== r
2/, 2"

ax(r)=\ay(r), (59

d 1 d .
dr\syprP-tdr/ T¢b-1
with g, (0)=q,(R) =0 in order to satisfy the conservation of
mass. If all the eigenvalues are negative, then the critical
point is a maximum of free energy. If at least one eigenvalue
is positive, the critical point is an unstable saddle point. The
point of marginal stability, i.e., the value efin the series of

librium state exists. In that case, the system is expected tequilibria 7(a) at which the solutions pass from local

collapse and overheat; this is callgdavothermal catastro-
phe (see Sec. Il D. For D=10, the curveA(«) is mono-
tonic. An equilibrium state exist only for

—ERP? 1
= —gAS:——

(53

maxima of free energy to unstable saddle points, is deter-
mined by the condition that the largest eigenvalue is equal to
zero (\=0). We thus have to solve the differential equation

d
dr

1 dF
SDpI’Dle

GF

+W:0 (59)

For D=2, there exists an equilibrium state for each value ofwith F(0)=F(R)=0. Introducing the dimensionless vari-
energy(see Fig. T: there is no gravothermal catastrophe in ables defined previously, we can rewrite this equation in the

the microcanonical ensemble in two dimensi¢8$ For D

form
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d( e dF| F(®
with F(0)=F(a)=0. If
~d[ e d 1
L":d_g ngld_g +§Dfl (61)

denotes the differential operator that occurs in &), we
can check by using the Emden equatids) that

LE )=y, L(EPe )=(D-2)y .

Therefore, the general solution of E¢0) satisfying the
boundary conditions a§=0 is

F(§)=cy(£Pe "=(D—-2)¢° 1y').

Using Eq.(63) and introducing the Milne variablg25), the
conditionF(a)=0 can be written

(62

(63)

This relation determines the points at which a new eigen-

value becomes positive\0"). Comparing with Eq(46),
we see that a mode of stability is lost each time thais

PHYSICAL REVIEW E56, 046133 (2002

Therefore, the density perturbati@gip corresponding to the
nth mode of instability ha® zerosé,,§,, . .. {n<a,. As-
ymptotically, the zeros follow a geometric progression with
ratio e2™(P=2)I0-D) [17]. Note also that the first mode of
instability has only one node.

In the microcanonical ensemble, the condition of thermo-
dynamical stability requires that the equilibrium state is an
entropy maximum at fixed mass and energy. This condition
can be written as

(p

SpoddPr

2

f(bapdDr (67)

 DMT?

for any variationdp that conserves magthe conservation of
energy has already been taken into account in obtaining Eg.
(67)]. Now, following a procedure similar to that of R¢16]

in D=3, the second variations of entropy can be put in a
quadratic form

R R
528=j f drdr’q(r)K(r,r’)q(r’), (69)
0Jo

with

extremum in the series of equilibria, in agreement with the

turning point criterion of Katz[27] in the canonical en- 1 dbd dd

semble. In particular, the series of equilibria becomes un- K(r,r')=— —— —— q (r ) (r )

stable at the point of minimum temperatui@ maximum DMT= df

mas$ «,. This corresponds to the point of infinite specific 1 d 1 d
heatC=dE/dT—¢, just before entering the regiod<0 + = 5(r—r ){ (— H
(see Fig. & This is, of course, satisfactory on a physical dr SpprP-tdr

point of view since negative specific heats are forbidden in 69)

the canonical ensemble. Secondary modes of instability ap-

pear at valuesy,, as, . ... Weobtain the same results by The problem of stability can therefore be reduced to the

considering the dynamical stability of isothermal gaseousstudy of the eigenvalue equation

spheres with respect to the Navier-Stokes equatiises Ref.

[17] for D=23). Therefore, dynamical and thermodynamical

stability criteria coincide for isothermal gaseous spheres.
According to Eq.(56), the perturbation profile that trig-

gers a mode of instability at the critical point=0 is given

[Carkernren=-rEm, (70
0

with F,(0)=F,(R)=0. The point of marginal stability

by =0) will be determined by solving the differential equation
S 1 dF d 1 dF GF 2V
_P:_i_, (65 dr D-1 dr D-1 2 ( ), (72)
pPo  SpeP~t dé dr\s,pr-1dr/ Tr DMT dr

whereF (&) is given by Eq.(63). Introducing the Milne vari- ~ With

ables(25), we get

— Rd(I) ! ! !
@ V= fom(r YE(r’)dr’. (72

Cl<2 0).
p

(66)
Introducing the dimensionless variables defined previously,

The density perturbatiop becomes zero at poist & such  this is equivalent to

thatv (&) =2. The number of zeros is therefore given by the
number of intersections between the spiral in they{ plane i e_w d_F n F d_‘/’
and the linew =2 (see Fig. 8 For thenth mode of instability dé\ P-1dé) P2 —X d¢’
we need to follow the spiral up to theth extremum ofv
(since «, corresponds to an extremum of, hencev).

(73

with
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2 ady

= Da® (o d—g(g')F(f')df',

X (74)

andF(0)=F(a)=0. Using the identitie$62), we can check
that the general solution of E73) satisfying the boundary
conditions foré=0 andé=a is

_ X Do—t¢_ _ D-1,.r D—-1,.r
F(&)= 5y (€76~ (D=2)e 1y T+ xe® ).
(75
The point of marginal stability is then obtained by substitut-

ing the solution(75) in Eq. (74). Using the identities

J:W&Def"’d&aD*llﬁ’(a)(D—Uo), (76)

(D—Z)foa§D_l( Y')?dé=a® 1y’ (@)(2D—2up—vy),
(77

PHYSICAL REVIEW E 66, 046133 (2002
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FIG. 9. Perturbation profile corresponding to the first mode of
instability in the microcanonical ensemble for various dimensions
of space. The profile has two nodes @ 3.32 (core-halo struc-
ture) and only one node fob>3.32.

This is in agreement with the perturbation profi&s) of the

which result from simple integrations by parts and from thefirst mode of instability in the canonical ensemble which has

properties of the Emden equati@tB) (see Appendix § it is
found that the point of marginal stability is determined by the
condition (51). Therefore, the series of equilibria becomes

no core-halo profilg17].
The thermodynamical stability analysis presented in this
section also shows that the equilibrium statesDex2 and

unstable at the point of minimum energy in agreement withD=10 are always stable since the series of equilibria do not

the turning point criterion of Katf27] in the microcanonical
ensemble. Note that negative specific h&xts0 are allowed
in the microcanonical ensemble un@l=0 (i.e., the corre-
sponding isothermal spheres are stable

According to Eqs(65) and (75), the perturbation profile
that triggers a mode of instability at the critical pok= 0 is
given by

op X 1

p SyD-2-ug D VW)

(78)
where we have used the Emden equatit®) and introduced
the Milne variableg25). The number of nodes in the pertur-
bation profile can be determined with the graphical construc
tion described in Refl16] for D=3. For 2<D<3.32, it is
found that the first mode of instability has a core-halo struc
ture (i.e., two nodeksin continuity with the cas® = 3, while

for 3.32<D <10 the perturbation profile has only one node
(see Fig. 9.

present turning points of energy or temperature. Note finally
that the grand canonical, grand microcanonical, and isobaric
ensembles have been considered in &S] for D=3; these
results can be easily extended to a space of arbitrary dimen-
sion D with only minor modifications.

Ill. DYNAMICS OF SELF-GRAVITATING BROWNIAN
PARTICLES IN DIMENSION D

A. The Smoluchowski-Poisson system

We now consider the dynamics of a system of self-
gravitating Brownian particles in a space of dimendinrAs
in Ref. [1], we consider a high friction limit in order to
simplify the problem. We thus study the Smoluchowski
equation[34]

ap
ot

1

:Vf

(79

(TVp+pV<I>)},

We can note that the structure of the perturbation profiles

triggering the gravitational instability at the critical poiriis
microcanonical and canonical ensemblegqualitatively
agrees with the structure of the density profiles that we hav
constructed in Appendixes A and B to show the absence
global maximum of entropy or free energy. In the microca-
nonical ensemble, we showed that far4, the system has
to break into a “core” and a “halo” in order to increase
entropy by a large amount while this separation is not nec
essary forD>4. Analogously, the perturbation profil@8)
has a “core-halo” structure folD<3.32 and not forD

coupled to the Newton-Poisson equatidh In the microca-
nonical ensemble, the temperatdr@) evolves in time so as

lp satisfy the energy constrair8). In the canonical en-
0ﬁi.emble, the temperaturg is constant. The Smoluchowski

equation can be obtained from a variational principle called

the maximum entropy production princip[g]. This varia-
tional approach is interesting as it makes a direct link be-
tween the dynamics and the thermodynamics. In the micro-

canonical description, the rate of entropy production can be
put in the form(see Ref[2] and Appendix D

>3.32. On the other hand, in the canonical ensemble, we

indicate in Appendix B that the natural tendency of the sys-
tem is to form a Dirac peak instead of a core-halo structure.

. 1
szf— TV p+pVd)2d°r=0, 80
Tpg( ptpVd) (80)
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which follows immediately from Eq¥8), (9), and(79). For  methods[36]. Finally, the Smoluchowski-Poisson system
a stationary solutionS=0 and we obtain the Boltzmann Provides a simple model to describe the process of chemot-
distribution (10) which is a critical point of entropy. Consid- axis for bacterial populationsl 3].

ering a small perturbation around equilibrium, we can estab-

lish the identity[1] B. Self-similar solutions of the Smoluchowski-Poisson system

0 5 From now on, we seé¥l =R=G=¢=1. The equations of
6°S=2\6°S=0, 81 the problem become

where\ is the growth rate of the perturbation defined such ap

that sp~e*. This relation shows that a stationary solution 51 - V(IVp+pVd), (84)
of the Smoluchowski-Poisson system is dynamically stable

against small perturbations if and only if it is a local entropy AD=Syp, (85)
maximum. In addition, the eigenvalue problem determining

the growth ratex of the perturbation is similar to the eigen- D 1

value problem(70) associated with the second-order varia- E= §T+ Ef p®dPr, (86)
tions of entropy(they coincide for marginal stabilify{1].

This shows the equivalence between dynamical and therm

. S o . . QWith boundary conditions
dynamical stabilities for self-gravitating Brownian particles.

We get similar results in the canonical ensemble wiitim 9D 1 ap

place ofS The relation(81) has been found for other kinetic (7—r(0l) =0, ®(1)= 2D’ Ta—r(1)+p(1)=0,
equations satisfying & theorem[35]. Finally, we note that 87)
the Smoluchowski-Poisson system satisfies a Virial theorem

of the form (Appendix D for D>2. ForD=2, we takeP(1)=0 on the boundary. We

restrict ourselves to spherically symmetric solutions. Inte-
(82) grating Eqg.(85) once, we can rewrite the Smoluchowski-

1 dl
§§a=2K+(D—2)W—prV, Poisson system in the form of a single integrodifferential

equation
where
dap N Y p Jf ,
- = R - — ’ D- ’ .
sz pr2dPr (83 gt (b1 W[r Tor rb-1 op(r Sor 7

(88)

is the moment of inertia angy, is the pressure on the box The Smoluchowski-Poisson system is also equivalent to a
(assumed uniform In the following, we determine self- single differential equation

similar solutions of the Smoluchowski-Poisson system de-
scribing the collapse regime. FBe>E.. (in the microcanoni- oM
cal ensembleor T>T, (in the canonical ensemblethe i
solutions of the Smoluchowski-Poisson system can either re-
lax towards the local entropypr free energymaximum(see .
Sec. ) or collapse. The choice between these two behaviorfO" the quantity
depends on a complicated notion of basin of attraction as ;
sketched in Ref[1] in D=3. Unlike the ordinary Smolu- M(r’t):J p(r’)SDr'D*Jdr’, (90)
chowski equationwithout self-gravity the stationary solu- 0
tion of the Smoluchowski-Poisson systemhen it exist$
does not attract all dynamical solutions since it is only
local maximum of the thermodynamical potential f@r
>2. Other evolutiong(collapsg¢ are possible and lead to M(O1)=0, M(1t)=1 91)
larger values of entropy or free energy. ' ' ' '

The Smoluchowski-Poisson system can be viewed as g s also convenient to introduce the functios(r,t)
prototype of kinetic equations for self-gravitating systems:M(r't)/rD satisfying
and is much simpler than the more realistic Landau or
Fokker-Planck equations. Possible astrophysical applications 9s (azs D+1 as> (

#M D—-1 M

ﬁrz r 7

1 Malvl 60
+r(D—1> o ©9

awhich represents the mass contained within the sphere of
radiusr. The appropriate boundary conditions are

regarding planetesimal formation in the solar nebula or vio- +|r—+Ds
lent relaxation of collisionless stellar systems are evocated in
Ref. [1]. The Smoluchowski-Poisson system can also de- o ,
scribe the relaxation of a gas of point vortices in two dimen- We look for self-similar solutions of the form
sions towards a self-organized stdteacrovortex In that " T\12
context, it can be deduced from thebody Liouville equa- p(r,1)=po(t)f _) ro= <_) ) (93
tion of the point vortex gas by using projection operator ro(t) Po

S. (92

E: (9['2 r 5_r
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In terms of the mass profile, we have C. Canonical ensemble
In the canonical ensemble in which the temperafure a
M(r,t)=M (t)g( (t)> With Mo(t)=porD, (94  constant, we have

a=2, k=T. (103
and . .
In that case, the scaling equati¢t01) can be solved ana-
« lytically. Following a procedure similar to the one developed
g(x):f F(x)Sox' 0k (95 in Ref.[1], we find that
0
) 4
In terms of the functiors, we have S(X)= ———. (104
D—2+x2
r : 9(x) Then, Eqs(96) and (95) yield
s(r,t)=po(t)S o with  S(x)==5-. (96) en, Egs(96) an yie
0 X
i 4xP (0 4D-2) D+x?
_ . . X)= — X) = '
Substituting the ansat®6) into Eq. (92), we find that g D_2+tx2 S5 (D-2+x3)72
d (109

o drg D+1
TS0 o g xS 00 =pF| S'00+ =S

According to Eqs(93) and(100), the central density evolves
with time like

+XxS(x)S' (x)+DS(x)? 2D
p(0t)=po(t)f(0)= m(tcoll_t)_l- (106

97)
where we have set=r/r,. The variables of position and According to Eqs(93) and(94), the core radius and the core
time separate, provided that there existsuch that mass evolve like
pori=r, 08 "o(D=\2T(teon=0"  Mo(t)=3(2T)*(tgon—1)*2 %

(107

Note that forD>2, the core mass goes to zero at the col-
lapse time. Att=t.,, we get the singular profile

wherex is a constant. In that case, EH&7) reduces to

D+1
S'(x)+ TS'(X)

Po 1 , 2
W(S(X)_FZXS(X))_’)O B

4T(D-2) -
p(r,t:tcon):_SDrz y M(r,t:tco||):4Tr .

+xS(x)S'(x)+DS(x)?]. (108

(99 Therefore, at=t., the free energy is finite and the system
hasnot created a Dirac peak contrary to what might have
Assuming that such a scaling exists implies thatpfl/ been expected from the discussion of Appendix B and Ref.
X(dpo/dt) is a constant that we arbitrarily set equald¢o [37]. In fact, we show in Appendix E that the collapse con-
(note that this convention is different from the one adopted intinues aftert,,,, and that the Dirac peak is formed in the
Ref.[1]). This leads to post-collapseegime of our Brownian model.

po(t)= E(t ”_t)fl (100 D. Microcanonical ensemble
co L]

In the microcanonical ensemble, the exponents not
. e .. determined by simple dimensional analysis. In Ré&f, we
so that the central density becomes infinite in a finite timeo nd numerically that the scaling equatitt0l) has physi-
teon- The scaling equation now reads cal solutions only fora< a5y, With apa=2.21 forD=3.
D41 We also argued that the system will select the exponent
aS+xS =S+ S’ +S(xS +DS). (101) amay, Since it leads to a maximum increase of entropy. In
X this section, we show that in the limit of large dimens@n
we can explicitly understand the occurrence of suebh,gy.
For x— +c0, we have asymptotically

S(X)~x"% g(x)~xP7, f(x)~x"“ (102 The caselT =0 is treated in Appendix E.
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In addition, we will present the derivation of perturbative with the new improved scaling function, and so forth. Thus,

expansions foky,, and the scaling functiof, in powers of  expressing the conditions of E¢L11) and Eg.(112), and

D L. definingz=D S(0)/2 [which will be of orderO(1)], we ob-
Equation(101) can be formally integrated as a first-order tain

differential equation(writing S"=S'X[S"/S']), leading to

an expression o8(x) as a function ofx, S(x) itself, and ) 4 . 2 72
()15 (%), X3=D+—+0(D ) or Xo= D 1+-5+0(D %),
‘ N (115
DS(x) and
(03
Z‘W_l 2 2
S(0) a=2=5 7 2 +0(D?). (116
x y dy
X ex afo S'(y) - (109 Equation(116) provides a relation between the possible val-
y2(1—S(y)) -y —(D+1) ues fora and the associated value $f0)=2z/D. Note that
S'(y) the function ofz in the right-hand side of Eq.116) has a

well defined maximum. Hence, up to ord®@¢(D 1), we find

We now definex,, such thatS(xq) = a/D. SinceSshould be that &< @y, With

analytic, the foregoing relation implies far— Xq,

X ay Ama=2+ 3D 1+0O(D?), (117
j mdy~ln|x—xo|, (110

orty which is associated to the value=4+0O(D %) or S(0)
=8/D+0(D?). As «a is necessarily greater than(8s the
temperature cannot vanisha solution exists for anyw
e[2,amaxl- As already mentionedy,, is dynamically se-
lected as it leads to the maximum divergence of the entropy
and the temperaturesee Eq(127) below].

Inserting Eq.(114) into Eq. (109, we find the next-order

whereF(y) is the function that occurs in the denominator of
the integral in Eq.(109. From Eq. (110, we must have
F(y) = axo(y—Xp) for y—Xq, which impliesF(xg) =0 and
F’(xg) = aXp. These conditions can be rewritten explicitly as

2 a S”(Xo) . . f
Xo|1- 5| Xog —(D+1)=0, (11)  approximation forS
S’ (Xo)
N N 2 |@Da-or e jasn
d S'(x —-1|= -1||--1 —+1 ,
(a=2)%0=— 5 X2S(x) +x ,( ) (112 ‘DS(X) ‘ DS(0) x5 X3
S0, (118

This preparatory work now allows the introduction of a sys-wherex, is given by Eq.(115, andx, and ¢ are defined by
tematic expansion in large dimensibnfor the scaling func-

tion S, the scaling exponent, andxg. In this limit, let us D 2(z-2)
neglect the contribution of the terms that are not of ofder Xi:ﬁ + 21 +
in the right-hand side of E101). This actually amounts to

taking F(y)=y?—D in Eq. (109. Within this approxima-
tion, we find 2

o(D™ 1),

D

z

2
5 +0(D?). (119

al2
: (113

le
D

o
DS(0)

which is an analytic function only iv=2. This leads to
Xo=+/D, and to the more explicit form fa®,

2 1
DS(x)

Again, the analyticity condition imposes that/2(1— ¢)
=1, which exactly leads to Eq116), and to the following
explicit form for S

" 5 al2-17-1
- S(0) S(X)= —| 1+ 1—ﬁ) ol E
SX="550)  x2" (119 D 2z) (2 ")\ %2
+( 2 D (120

S(0) remains undetermined, and will be fixed by the next-This improved scaling function can be inserted again into the
order approximation. Indeed, we can iteratively solve the fullconditions expressed by Eq4.11) and Eq.(112), leading to
scaling equation, Eq102), by reinserting the zeroth-order the next-order term in the expansion ®f After elementary,
solution into Eq.(109), and eventually continue this process but cumbersome calculations, we end up with

046133-12



THERMODYNAMICS AND COLLAPSE OF SELF. ..

1 2

z 22

8
b2

5 26 31 6

+
z 722 7
1 7 14 8|
— ___+___
z 2 £ 7 ne

This function has again a well defined maximum for

3 Z4

+0(D3). (121

D 41
= ES(O)=4+(7—6 In 2) D '+0O(D"?), (122

associated to the value

=2+ 3D 1+ ED2+0(D 9. (123

This expansion giveg,,,=2.24 ... inD=3, in fair agree-
ment with the exact valuey,5,=2.20% ... obtained nu-
merically in Ref.[1]. In addition, the exponent=2 is as-
sociated toz=2+4D '+0O(D ?). In principle, these

PHYSICAL REVIEW E 66, 046133 (2002

just a binary leading to an infinite density but a weak mass
M <M. This structure is in agreement with the discussion
of Appendix A and Ref[37].

IV. THE TWO-DIMENSIONAL CASE
A. The critical temperature

In two dimensions, the dynamical equati@®) for the
mass profile reads

I*M oM
(129

after the change of variable=r? has been effected. Look-
ing for a stationary solution, and usingM”=(uM")’
—M’, Eq. (128 is readily integrated leading to
4T u
4T7-1 u
1+ 4T-1

M(u)= (129

expansions can be systematically pursued to the prize of in-

creasingly complicated calculations.
Finally note that Eqs(93) and(100) lead to the following
exact asymptotic for the central densjiy0,t):

1 2z( @)
P00 ~Ko(@)(teon~1) %, Kola)=" . (124

where we have usef{0)=DS(0)/Sp and the definition of
z The functionz(«) is determined implicitly by Eq(121),
up to orderO(D~?). For the special cases=2 and «
= amax, We, respectively, find

Kp(2)=2S,[1+2D *+0O(D?)], (125
. 39 3 - .
Kp(@ma) =4S 1+(§—§In2)D l+o(D7?),
(126

which shows thatKp(an,) IS substantially greater than
Kp(2) (twice bigger in the infiniteD limit, the ratio being
even bigger for finiteD, as% —2In2~3.8% ...>2). This
substantial difference was noted in REf], in the caseD

Note thatM(1)=1, which ensures that the whole mass is
included in this solution. Using=M "/, we find that the
density profile is given by

(=P 2 (130
N=—-——"-—-,
O 14 (i) 212
with
ro=v4T—1 and pora=T. (131

This solution exists provided that>T.= 1/4, which defines

the collapse temperature. We have thus recovered the result
(41) by a slightly different method. Note that the valueTof

and the dependence of andp, on the temperature coincide
with the exact results obtained within the conformal field
theory [38]. In the following, T is set constanfcanonical
description as we have already seen that the gravothermal
catastrophe does not exist in the microcanonical ensemble in
two dimensions.

B. Scaling collapse forT=T,

=3. Finally, as expected in the microcanonical ensemble, We now address the dynamics at the critical temperature

the temperature diverges during the collaps& @3~ (tco
—1) 7T with at=1-2/a; see Eqs.(93), (98), and (100).
The strongest divergence is obtained for «,,,. Accord-
ing to Eqg.(123, we have

a =2—L=ED‘1+ gD—2+0(D—3).
T Omax 4 32

(127
If we plug D=3 in Eq. (127), we find the estimatert
~0.11...
numerically in[1], a7~0.1. Att=t., the entropy is infi-
nite and the system has a “core-halo” structgice., it is not

a Dirac peakwith a vanishing mass in the core. This corre-

sponds to asmall number of particles packed togeth@nr

infair agreement with the exponent measure

T=T.=1/4. We note that contrary to what happens in other
dimensions, the central density divergeJ at Thus, in anal-
ogy with critical phenomena, we anticipate a scaling solution
for M(u,t), of the form

(a(t)+21)u

MUY= Famu

(132

which preserves the scaling form obtained abdye and

dwhich satisfies the boundary conditidm(1t)=1. The cor-

responding density profile is

Cam+l 1
T (1tatrd)?

p(r.t) (133
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The central density are important foo ~a (u~1), and which generate terms of
order O(a/In%a) in the expansion foda/dt. This explains
the form of the error term in Eq139).

Integrating Eq.(139 for large time, we get the exact
asymptotic expansion for large time

a(t)y+1
POt =———, (134)

is expected to diverge far— + o0, so thata(t) is also ex-
pected to diverge. 5 1

Inserting the ansatz Eq4132 into Eq. (128 shows that a(t)=expg 5+ Vat|[1+0(t" ¥Ant)]. (140
the left-hand term is indeed negligible compared to both
terms of the right-hand side, to leading ordenirso far, this  For t— +, the central density diverges lik&(t) and the
prevents us from determining a dynamical equationafdn  core radius goes to zero likt) ~ Y. In addition, the scaling
order to achieve that, we must solve E#28) to the next solution(133 at T=T,. goes to a Dirac peak containing the
order ina™ 1. We thus look for a solution of the form whole masssee Eq.(42)], as the decay exponent of the

scaling function is 4, which is strictly greater than 2.

MU0 = T a6 h(u,t (135
u,t)= a u,t),
1+a(t)u C. Collapse forT<T,
whereh(u,t) is expected to be of ordéd(1), andshould For D=2, the scaling equation associated to E8Q)

satisfy h(0t)=0 andh(1t)=1 (the total integrated mass does not display any physical solution when solved numeri-

should be 0 and 1, respectively, far=0 andu=1), and cally. In this section, we thus present a special treatment
adapted to this case. The principal difference with other di-

dh

E(OI)=0, which ensures that E¢134) is exactly obeyed, mensions is the divergence of the central density gtand

the occurrence of a scaling solution at this temperature.
Strictly belowT., we expect a finite time collapse. Close

to the center, the solution takes the form

defining a(t) without any ambiguity. The contribution of
dM/ét in the left-hand side of Eq128) is dominated by the
time derivative of Eq(132):

d
ot

(1+a(t))u
1+a(t)u

_u(l-u) da M(u,t)~4T a(tu (141

“Qragzdt 19 L+a(tu’

_ ) ) ~where again the left-hand side of E(L28) is negligible
tion, nonlinear terms irh in the right-hand side are also for a solution of the type

negligible. Thereforeh satisfies

M(u,t)=4 a(tu

(137) Tm-ﬁ-h(u,t), (142)

au(l-u)yda *h 9

—_——=u—+
(1+auy? dt " 5y2  du

1+au
whereh is of orderO(1) as it contains a finite fraction of the

Actually, for a given time, this equation becomes an ordinarytotal mass, since the first term contains a mass of order 4

differential equation involving only one variable asaand  <1. Inserting this ansatz in the dynamical equati®@8),

da/dt appear as parameters. EquatidB7) can be inte- Wwe obtain

grated leading to a first-order equation hin which can be

solved easily. Defining =au, we finally get i@Jr da u —u(yz—h+ a3 h
4T ot dt (1+au)?2  gu? du\l+au au’
2\ da
h(u,t)=a* 1+ a(1+u)—2 (v2=1)In(1+v)+ov(1 (143

One can look for a scaling solution of the type
vIn(1+2) 202+03

—20)+20f0 - dz— 2(a+2)

which depends on time only through the variabkesnd
da/dt. Now, da/dt is determined by imposing the boundary
conditionh(1,t)=1, which leads to

: (138 h(u,t)=a” H(au) with H(v)~cvl~” when v— +,
(144

so that the mass included in this scaling profilglt)=c
=0(1). With this definition, the density profile decays for
large distance ap~r~ ¢, with a=2v. Inserting this ansatz

da a in Eq. (143), we obtain

- = -2

T In61_5/2[1+O(Ina )]. (139 . da

i . : 7 (0H +(y=1DH)+al"? —a’

One can solve iteratively Eq128), by adding the time de- 4T (1+0v)?] dt
rivative of the above solution to the left-hand side, in order ,
to compute an improvel. To leading order, the form of Eq. — v P TRIRY,
(138 is preserved. However, new terms are generated which vH"+2 1+v H| +2a” "HH', (145
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where derivatives are with respect to the variabléNVe are . wv\ (= o wW
free to choosea(t)=mp(01t)/(4T), so thatH’(0)=H(0) H(v)=v” "exp ;= J wYexp — o= | F(w) dw,
=0. For smallv, Eq. (145 leads to v (150

da " whereF is defined as the opposite of the right-hand side of
g =H"(0a” L (146) Eq. (149,
i ; ; C wal™”

Equation(145 has a global scaling solution only far=1. Fv)=-—=vl 7+ v

However, we know that in this case the scaling equation aT 2—y

obtained by settinggy=1 does not display any physical so- o

lution. Thus, we conclude that there is no scaling solution —(2—’y)(3—‘y)vl_yf w?3H(w) dw.

obtained by imposing that all terms in EGL45 scale the v

same way. However, as we will see in the section devoted to (151)

numerical simulations, the direct simulation of E{.28
seems to display a scaling solution wifh=0.6-0.7 for nu-  Equation (147) implies thatH(v)~Inv, when v—0 [of
merically accessible densities. Strictly speaking, this is tocourse, this apparent divergence does not occur in the full
tally excluded by the above equation, except if one allgws dynamical equatior{145)]. Considering the prefactar?3
to depend very slowly on the density arFor a givena, we  in Eq. (150, this behavior can be obtained if and only if
thus want to solve Eq145), where the boundary conditions
will ultimately select the effective value of, and that of f
da/dt. More precisely, once we impodé¢’'(0)=H(0)=0,
and the condition of Eq(146), we end up with a shooting
problem forH”(0) andvy. For largea, andv<a, itis clear As w is expected to go to zero for largeas y<1 [see Eq.
that the nonlinear term of the right-hand side of Et45 (148)], the dominant contribution of the integral of the third
becomes irrelevant, and we drop it from now on. term in the definition of comes from the larges region, for

In order to understand the origin of this shooting problem,which H can be replaced by its asymptotic foifsee Eq.
and to obtain an accurate estimate yf let us solve Eq. (144)]. Hence, definingl’(x)= [, “w*exp(~w)dw and &
(145 in the limit of very largea, in the range ¥v<a. In =1-, and using Eq(148), the condition expressed in Eq.
this regime, Eq(145 simplifies to the following equation  (152) can be rewritten as

+o wW
w3 Yexpg — —=|F(w) dw=0. (152
0 AT

€

a—*’. (153

__ Tate) (H”(O)
O e(lte)2(1+2¢) 47

1
—=(H'+(y=DH)+a" " Hw=vH"+2H’,

47
(147
As cis of orderO(1), we findthate —0 asa— +. More
where precisely, in this limit,e is the solution of the following
implicit equation:

da -2 " -1
0= gra =H"(0)a” L. (148 In(K/¢)
g=1/ na (159

Let us now multiply this equation by”~? and integrate the _
resulting equation. After elementary manipulations, we obwhereK=H

"(0)/c+0O(e). Finally, we obtain

tain
Inlna
e=1—y=1\/—(1+O([Inlna]™%)). (155
3-y 2Ina
H'+ - —
v 4T In conclusion, although the solution is not, strictly speaking,
C wal™” a true scaling solution, the explicit dependenceyadn a is

=——pl77- vt so weak that an apparent scaling should be seen with an
effective y almost constant for a wide range of valuesaof
+oo Hence, the total density profile is the sum of the scaling
+(2—7)(3—7)0177J' W 3H(w) dw, profile obtained aff, with a T/T. weight (behaving as a
v Dirac peak of weighfT/T., att=t.,;) and of a pseudoscal-
(149 ing solution associated to an effective scaling exponent
slowly converging toa=2.
wherec~0O(1), which has been defined in E¢l44), ap- Let us illustrate quantitatively the time dependencexof
pears here as an integration constant. Then, one can integrate2 y. For example, taking arbitrarilli{ =1 (the dependence
this differential equation that leads to the following self- on K is weak and vanishes for large), Eq. (154 and
consistent relation foH: Eq. (155, respectively, lead toy(a=10°)=0.624... and
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1{'4 ; ; T T T
| I

p(r)
E!.

=
e

10° | 1

10° 10'"‘ 10™ 10°
r

In(a)

FIG. 10. At T=T.=1/4, and when the central density has
reached the value p(0t)~16448...=[a(t)+1])/= [a(t) FIG. 11. We plota(da/dt)~! as a function of Im, which is
~51663 .. .], we have plotted the result of the numerical calcula- Predicted to behave as(da/dt) *~Ina—5/2+O([Ina] *) [see
tion compared to our exact scaling forp(r,t)=[a(t)+ 1/ ][ 1 Eq. (139]. Even for the moderate range of accessible densities
+a(t)r2]-2 obtained in Eq.(133. The two curves are indistin- (amax—-5166), we clearly find that the numerical result evolves to-
guishable as the relative error is, as predicted, of orget ~ Ward the theoretical asymptotidashed ling
~10"%. Note finally that for this range of density, the density con-

trast is huge, of order 10 measuringy is fully compatible with the value of the effec-

tive exponenta=2y~1.3.
y(a=10°)=0.6%..., and to y(a=10°)=0.6%... and

y(a=10°)=0.674 ... [note that the error between the V. THE ONE-DIMENSIONAL CASE
asymptotic expansion of Eq155 and the implicit expres- - ) o
sion first grows before slowly decaying fas10'2]. Fi- When an equilibrium state exists, there is little hope to be

nally, for the maximum value od accessible numerically of able to solve the full Smoluchowski-Poisson system analyti-

ordera~ 104, we expect to observe an apparent Sca”ng Soca"y in order to Study the relaxation towards equi”brium.
lution with y~0.65, ora=2y~1.3. We shall consider a simpler problem in which a test particle

D. Numerical simulations 10°

In this section, we present direct numerical simulations of
the Smoluchowski-Poisson system in 2D. Indeed, the three-
dimensional case has been extensively studied in [Rgflt
has been shown that the scaling function as well as the cor-
rections to scalingwhich have been calculated for the ca-
nonical ensemble in Refl]) are perfectly described by the
theory. As the system behaves qualitatively the same for any
dimensionD>2, we have decided to focus on the numerical
study of theD =2 case only, which displays some very rich 107
behaviors, as exemplified in the present section.

We consider the system in the canonical ensemble, as the
gravitational collapse does not occur in the microcanonical 10
ensemble. In Fig. 10, we show the scaling functioi at as
given by Eq.(133), finding a perfect agreement with the
numerlca_ll simulation. In Fig. 11, we also display [ 12 AtT=T/2=1/8, we have extracted the next correc-
a(da/dt) - as a function of I, and find an asymptotic g to scalingpe=p—4Tpr_1, Wherepr_r_is defined in Eg.
behavior fully compatible with that given by EGL39). (133). We have then plottef(r,t)/peolr maxt).t) @s a function of

Below T, and in the accessible range af(up toa  y—y/r 1) wherer,(t) is defined as the location of the maxi-
~10°), we find an apparent scaling regime With=2y  mum of p.,(r.t). Consistently with the apparent scaling observed,
~1.3, as predicted in Sec. IV C. This is illustrated in Fig. 12,we found r 1 (t)~va~VpeormatD)D. For a=2""1x100 (n
for T=T./2=1/8. Note that the effectivg or o can also be =1, ... 8), wehave obtained a convincing data collapse associated
extracted from the time evolution @f(t) or the central den- to a=2y~1.3, in agreement with the theoretical estimateypin
sity [see Eq.(146)]. In Fig. 13, we show that this way of this range ofa.

_.
9

PP (1)
S

107 10™ 10° 10" 10°
X=t/r .
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o
E=TA¢—V(r)¢, (159

with a potentialM(r) = — %A(I)qur 1/4T(Vd>e(,)2. So far, this
transformation is general. If we now consider the one-
dimensional case, the Boltzmann-Poisson equatl@ can
be solved analytically and the potentid(r) can be deter-
mined explicitly. Introducing the notations= ar//2R and

= a’Tt/2R? and using Eq(24) we can rewrite Eq(158) in
the form

101 L . &_l'b—A,J/+(

cosfte 1) . (160)

FIG. 13. We plota~%(da/dt)~a” as a function of, in order to A separation of the variables can be effected by the substitu-
extract the effective value of directly from the time evolution of tion
the central density. We find that the effectiyeis slowly growing It
with time, as predicted, and is of order= /2~0.65 (the dashed P(ED)=¢(§e (A=0), (161
line has a slope equal to 0)63vhich is fully compatible with the
value extracted from Fig. 12, and the value expected from E5)
in this range ofa.

where ¢ is the solution of the ordinary differential equation

2
evolves in a medium of field particles at statistical equilib- dé&?
rium. The particles are assumed to creattadionarypoten-
tial ®44(r) that induces a drift of the test particle along the where we have set—1=2E. The solutions of this Schro
gradient ofd.,. In addition, the test particle is assumed to dinger equation are described in detail in RdD]. The spec-
experience a diffusion process gfdenotes the density prob- trum of positive energies is continuous. The spectrum of
ability of finding the test particle in at timet, we expect the negative energies is discrete and reduceBgqe — 1/2 (fun-
evolution ofp to be determined by a Smoluchowski equationdamental staje The first excited state in the continuum is
of the form E;=0. We can check that the corresponding eigenfunctions
are ¢o=1/coshé and ¢,=tanh¢. In order to obtain the
qualitative behavior of the time dependent solution of Eq.
(156), we neglect the contribution from the continuum states
with E>0, only keeping thé&&= —1/2 andE=0 eigenstates.
where®(r) is the solution of the Boltzmann-Poisson equa-  Within this approximation and for sufficiently large times,
tion (11). This means that we replace the true potential by itave obtain
equilibrium value but still allow the density to vary with
time. As we shall see, it is possible to solve the Smolu-
chowski equation(156) analytically inD=1 by using an
analogy with a problem of quantum mechanics. An equation
of the form (156) has been proposed in Refg9,36 to whereA andB are constant. Returning to original variables,
model the motion of a test vortex in a bath of field vortices atwe get
statistical equilibrium. In that context, E¢L56) can be de-
rived from theN-body Liouville equation of the point vortex _ _ ar | 2102
gas by using projection operator techniques. p(l’,t)—peq(r)[ 1+C3|n)—< _) e (TR } ’

It is well known that a Fokker-Planck equation such as (164)
Eq. (156 can be formally transformed into a Schimger
equation with imaginary time. Indeed, performing the changevherep is given by Eq(44) andC=B/A is a constant. We

cosﬁg) ¢=0. (162

J
&—fZV(TVp—i—pVCDeq), (156

Y€, 7)= +Btanhé €7 (7—+x), (163

coshé¢

of variable find that the relaxation time is given ly,,,=2R?/ a?T.
_ —(1/zT)®
p=ye (HZPeq (157 VI. CONCLUSION
we find that the evolution of is determined by an equation In this paper, we have studied the Boltzmann-Poisson
of the form equation and the Smoluchowski-Poisson system in various

dimensions of space. Our study shows in particular how the

Iy 1 1 2 nature of the problem changes as we pass fibm3 to D
E‘TA‘/’JF EAq)eq_ E(Vq)eq) ¥. (158 =2. We showed that the dimensi@=2 is critical in the
sense that the results obtained fr-2 diverge if they are
This can be written as a Schinger-type equation naively extrapolated t®=2. On a physical point of view,
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the two-dimensional problem differs from tfz>2 case in D
two respects: in the 2D case, the central density of the equi- S=5MInT=MInp. (A3)
librium state is infinite at the critical temperatufg while it

is finite atT¢ in higher dimensions. On the other hand, in ysing Eq.(33) and the Gauss theore(30), the potential
D=2, the self-similar collapse results in a Dirac peak thatenergy of a spherically symmetric distribution of matter can
contains a finite fraction of mass, while for>2, the mass pe written as

contained in the core tends to zero at the collapse (bmea
Dirac peak is always formed in the canonical ensemble after 1 (RGM(r) dM
teon @s discussed in Appendix)EWe have also evidenced W=— ﬁf 52 ar
another characteristic dimensi@= 10 at which the nature o r
of the problem changes. F&=10 the classical spiral be- . . .

havior of the caloric curve is lost. However, since the points‘cor D%Z' From this expression, we can easily compute the
on the spiral correspond to unstable states, which are ther@otential energy of the core and the halo. Assumitg
fore unphysical, this transition &= 10 is not so critical and > Re (Se€ below, we find that

indeed the nature of the self-similar collapse does not show )

any transition at that dimension. It is interesting to note that __ D % W= — D GMcMj;

the dependence of the phase diagram in 8] and (u,v) ¢ D%—4 RCD—Z’ h 2(D-2) RE_Z
planes with the dimension of spafe shows some resem-

blance to the dependence of the phase diagram of confined D GMﬁ

polytropic spheres with the indexof the polytropg41]. An T DZ_aRD-2°

extension of our study would be to relax the high friction h
limit and consider solutions of the Kramers-Poisson syste
and other relaxation equations described in R2f. These

dr, (A4)

(A5)

rq‘he total energy of the systeE=E .+ E,, is therefore given

equations are expected to display qualitatively similar behavt-:)y

iors than those described hetee., gravitational collapse, 2

finite time singularity, self-similar solutions, etcbut their E= E _ D GMc _ D GMMy,

study appears to be of considerable difficulty since we now 2 D?-4RP"2 2(D-2) RP°?

need to consider the evolution of the full distribution func-

tion in phase space instead of its lowest moments. We hope D GMﬁ

to come to that problem in future publications. “ba @- (A6)

APPENDIX A: ABSENCE OF GLOBAL ENTROPY Let us first show the absence of global entropy maximum

MAXIMUM IN THE MICROCANONICAL ENSEMBLE in an unbounded domain. In that case, B&6) determines

] ] the relation between the radius of the core and the radius of
In this appendix, we show the absence of global entropyne halo(for fixed E, T, M, and M,). We have thus con-
maximum for a self-gravitating system in dimensibn>2.  girycted a particular family of distribution functions param-
To that purpose, we shall construct a particular family ofayrized pyR, that conserves the total mass and the total
distribution functions which conserves mass and energy a”Qnergy. We now take the limiR,— +c that amounts to
which increases entropy indefinitely. As we shall see, it iSoxpanding the halo to infinity. Since the potential energy of
necessary in the microcanonical ensemble to separate thee halo decreases, the potential energy of the core must
system between a core and a _halo. We describe the core aptrease so as to conserve energy. From(E8), we see that
the halo by a distribution function of the form the radius of the core shrinks to a minimum radRE"
given by (we fix the temperature such th&— (D/2)MT

1 <0 by construction

2
f: - e*v /ZT, Al
(27TT) D/2p ( ) 2 1/(D-2)
_ -D GM;
R{"=| — 5 (A7)
where the density is assumed to be uniform in the core and D7—4 E- EMT

the halo. We denote by., M., R, and p,,, M}, Ry, the
density, mass, and radius of the core and the halo, respe
tively. We assume, by construction, that the temperatuge
uniform throughout the system. With the distribution func-
tion (A1), we easily find that the kinetic energy and the en-
tropy defined by Eqs(3) and (5) can be written in each Sy~ —Myln
domain as

fr_herefore, the entropy of the core remains bounded whereas
the entropy of the halo behaves like

M,

~DMInRyy— + . (A8)

Therefore, forD>2, an unbounded self-gravitating system
K= EMT (A2) can always increase entropy by taking a “core-halo” struc-
' ture and by expanding the halo to infinity. To show heuristi-
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cally that the separation between a core and a halo is nece-D <4, the entropy goes te-~ asa—0. Therefore, the
sary, let us consider the expansion of a uniform sphere witfiormation of a Dirac peak, which would lead talacreasef

radiusa. The equation entropy, is not favorable in the microcanonical ensemble.
This is the case in particular for the usual dimension
D D GM? =3. Equation(Al1l) shows that the divergence of entropy
E=-MT—-—— (A9)

requires that the mass contained in the halo is larger than the
mass contained in the core. More precisely, the increase of

determines the relation between the temperature and the r§Dtropy is maximum when only two particles binary are
dius of the configuration for a given mass and energy. Whefghtly bound in the core while the rest of the particles are
a— +o, the relation(A9) becomesE=(D/2)MT and can widespread in th_e haltso thatMc<Mh~M)._These resu_lts
only be satisfied iE>0. In that case, the entrop3) di- show that the ultimate fate of a self-gravitating system in the
verges likeS~DM Ina—-+%. However, for relevant situa- mlcrocanonlcallensemble is to form a tight .b|nary sur-
tions in whichE<0, this argument cannot be used to proverounded by a diffuse halo. In this sense, there is no equilib-
the absence of global entropy maximum. rium state for a self-gravitating system, even in theory. How-
Let us now show the absence of global entropy maximunfVe": as discussed in Re{87,42, this process can take a
for a self-gravitating system confined within a box of radiusVe"Y 10ng time so that the system may be found in practice in
R We use the same distribution function as before igh @ Metastablestate corresponding to a local entropy maxi-
—R. Equation(A6) now determines the relation between the MUMm (see Sec. )l For D>4, the formation of a Dirac peak
temperature and the radius of the céia fixed E, M, M,,, leads to a divergence of entropy tox S0 that the core-halo
andR). We take the limiR,— 0 which amounts to shrinking S'UCtUre is not necessary for entropy increase.
the core. Since the potential energy of the core goes to

2 D2-4aP~2’

—oo, the temperature must increase-oe in order to con- APPENDIX B: ABSENCE OF GLOBAL MAXIMUM

serve the total energy. More precisely, using E&6), we OF FREE ENERGY IN THE CANONICAL ENSEMBLE

have In this appendix, we show the absence of global maxi-

2 GM? mum of free energy for a self-gravitating system in dimen-
== = ° i (A10) sionD>2 and forT<T,=GM/4 in D=2. Contrary to the
D?—-4 MRE’Z microcanonical ensemble, we dwt have to separate the
system between a core and a halo. According to Eg)s(9),
The entropy behaves like and (A9), the free energy of a uniform sphere of mags

radiusa and temperatur@ (fixed) is

S DMI T M|(M°)
2 Ve M) D GM2

J=—Mln(— + .
D?—4 TaP~?

v (B1)

INR.. (All)

D
~_E(D_2)(Mh_mMc

within an unimportant additional constant. R+ + o0, the
If Mp>(4-D)/(D—2)M,, which can always be assumed free energy behaves lik§~DMIna and diverges. This
by construction, the entropy diverges as the core shrinksproves the absence of global maximum of free energy for an
proving the absence of global entropy maximum. Thisunbounded self-gravitating system. If the system is now con-
simple argument shows the natural tendetioya thermody-  fined within a box of radiug, we consider the limit of Eq.
namical senseof a self-gravitating system to develop a (B1) for a—0 and find again thal— + % due to the diver-
dense and hot “core” surrounded by a low-density “halo.” It gence of the potential energy. This simple argument shows
has to be noted that the natural evolution in the microcanonithe natural tendenc@n a thermodynamica] Senbef a self-
cal ensemble igot to create a Dirac peak with all the mass gravitating System to deve|op a Dirac peak in the canonical
concentrated at=0. Indeed, let us consider the collapse of ensemble for any dimensioh>2. This contrasts with the
a homogeneous sphere of mdgsand radiusa. If we fix the  mjicrocanonical ensemble. The difference of behavior be-
energy and lea—0, Eq.(A9) shows that the temperature tween microcanonical and canonical ensembles regarding the
behaves like formation of a core-halo structure or a Dirac peak is another
, e manifestation of ensemble inequivalence for self-gravitating
3 systems.
T= D2—4 F_’+m' (A12) In two dimensions, we consider a homogeneous disk of
massM and radiusa at temperaturd. It is easy to show that
On the other hand, according to E@3), the entropy be- the total energys8) of this disk is
haves like

E=MT+3iGM?%Ina—14), (B2)
D | | M D |
S~ MInT=Min| 7 |~=7(D-4MIna. with the convention®~GMInr at large distances. Accord-
(A13) ing to Egs.(6), (9) and (B2), its free energy reads
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Using the Emden equatioil3), we find that

J=MInT—-MI M GM* I L B3
=MInT=Min|{ =] =M= —Z{Ina-7). B3 ; )
(D—2)f §D‘1(¢’)2d§=—a[’¢’(a)2+2f EPy'e”de.
: 0 0
Fora—0, the free energy behaves like )
J~2M ( 1— M Ina. (B4)  Using Eq.(76) and introducing the Milne variable&5), we
AT obtain the identity(77).

Therefore, if T<T.=GM/4 the free energy goes te o
when we contract the system to a point. This is sufficient to
prove the absence of global maximum of free energy below To prove theH theorem for the Smoluchowski-Poisson
T, : if sufficiently cold, the system has the tendency to createystem, we first take the time derivative 8fgiven by Eq.

a Dirac peak. Note that fof >T,, a true equilibrium state (9), substitute explicitly for Eq(79) and integrate by parts.

APPENDIX D: H-THEOREM AND VIRIAL THEOREM

(global maximum ofJ) exists. This yields
APPENDIX C: SOME USEFUL IDENTITIES . D T 1
S=—M=+ f —(TVp+pVD)Vpd®r.  (D1)
In this appendix, we establish the identiti@6) and (77) 2T &p

that are needed in the stability analysis of Sec. Il F. The firs

integral can be written after an integration by parts, tI'he conservation of energ8) in the microcanonical en-

semble implies

Jaw’éDewd&—jafDi(e‘”)dé - D 4 1
0 o~ dé E=0=§MT—Jg(TVp+pV<D)V(I)dDr, (D2)

=—aPe )+ Djo P temVdé. (C1)  where we have used E9) and integrated by parts. Elimi-
nating T between these two expressions, we obtain khe
Using the Emden equatiof13), we obtain theorem(80). In the canonical situation in whicfi is con-

stant, we take the time derivative 8= S— (1/T)E, substi-

fazp’gf’ " PeHe) + DaP 1y (). (C2) tute explicitly for Eq.(79), and integrate by parts. This yields
e =—a"e "¢ a” Y (a).
0

. 1
) . . ) ) J=f—(TVp+pV®)2dDr20, (D3)
Introducing the Milne variable$25), we get the identity Tpé
(76). To establish the identit§77), we start from the relation o ) )
which is the form of theH-theorem in the canonical en-
ag1¥D)2yr g (1iDy2 s 5o semble. S and J are the Lyapunov functionals of the
fo e d—§(§ yHdé=a”y' (@) Smoluchowski-Poisson system.
To establish the form of the virial theorem for the
ag(1¥D)2yr g Smoluchowski-Poisson system, we first take the time deriva-
(1+D)/2,,1 : .2 i .
T d—g(E Y')dé tive of the moment of inertia defined by Eq(83), substitute
0 explicitly for Eq. (79) and integrate by parts. We get
+ [ &1y y2de, c3 d| 1
fo & y)de €3 5= ZrE(TVp+pVCI>)dDr. (D4)

which results from a simple integration by parts. Therefore, . . ) i i
Using the identity (33) and introducing the pressurp

=pT, we obtain

|- aou (ar?

1 di

. q Ega:—f r-VpdPr+(D—2)W, (D5)
+2f g(D*l)/Zd_(g(lJrD)/er//r)l///dgy
0 ¢ or equivalently
(C4
1 dl b b
or, equivalently, > a=—f V(pr)d r+f pV-r d°r+(D—-2)W.

(D6)

D “ D-1 ’ 2d — Do 2_2fa D,n "dé.
fo & WdE=aty (@) 0 AR The first term in the rhs can be converted into a surface
(C5 integral. Using furthermor® -r=D, we find that
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4 )D/(D+2)
(D+2)[S"(0)]

2
¥D?/(D+2)

1dl 2
Séqi=- jgpr~dSD+Dj pd°r+(D—-2)W. (D7) g(X)~D+2(

: . . E
Assuming that the pressure is constant on the suifabieh &7
is the case at least for a spherically symmetric distribution oMoreover, usingf(0)=DS(0)/Sy and Eq.(100) and (E4),

matter in a spherical boxwe can simplify the foregoing we get the exact universal asymptotic behavior of the central
expression as density
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Finally, we note that the implicit equatidiie6) can be writ-

where K=(D/2)MT is the kinetic energy. Converting the fen as a parametric set of equations

first integral into a volume integral, using the divergence
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theorem, we finally establish E¢82). aly)= DraY x(y)=
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APPENDIX E: THE CASE OF COLD SYSTEMS (T=0)

These results can be obtained by a different, more physi-
For T=0, Eq.(92) reduces to

cal, method. We have indicated in REf] that, forT=0, the

P particles have a deterministic motion with equation

r—+D
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Looking for a self-similar solution of the forrt®6) and im-
posing the condition&98) and(100), we find that the scaling For a spherically symmetric system, this can be rewritten as
profile satisfies
dr M(r,t)
xS +aS=(xS +DS)S. (E2) dt o1 (E1D

Of course, forT=0, the exponentr cannot be determined \yhere M (r,t) is the mass withirr. If a denotes the initial

on dimensional grounds, as the definitiog= yT/po is not  position of the particle located atat timet, we have
relevant anymore. As we will see;, will be determined by

imposing that the scaling solution is analytic. Equati&i) M(r,t)=M(a,0), (E12
can be readily solved leading to the following implicit equa- ) S
tion for S so Eq.(E11) can be integrated explicitly in
o 1-alD r°=a—~DM(a,0t. (E13
— —S(x =KXx*S(x), E3 )
(D S )) (X) E3 If M(a,0) behaves like
whereK is an integration constant. Now, from the definition M(a,00=A(a®-BaP*?)+ ..., (E14
of S we expect a smalk expansion of the formS(x) . o _
=5(0)+ £S"(0)x2+ O(x%), which first implies that close to the originwhich is a regular expansigrthen
N M(r,t)=Aa°(1-Ba?) with rP=(1-DAt)a"
S(0)=75 (E4) +DABaP* 2. (E15
and that §2)1~*°~x, which finally leads to Introducing the collapse timé.,;=1/DA and considering
’ the limit t—t,,,, we obtain
2D D/(D+2) b
— — e 1
a=piz Ad K== (2 S'(0) B M= with  rP=——(t,o—t)a°+BaP*2
Dtcoll tcoII 5
In terms of the scaling functiog(x) associated to the mass (E19
profile, Eq.(E3) can be rewritten as Introducing the scaling variables
2XD |SH(0)| D+2 (D+2)/D r 1 a D
g(x)= - g(x) ., (EB X=——— 0, Y= —|
D+2 2 2 (tcou_t)(mz)/zo teon (tw”_t)llz
: : : (E17)
whereS’(0)<<0 is arbitrary. This leads to the exact large
asymptotic behavior we can put the solution in a parametric form
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1 |
M0 = 5 (teon =02y with  x=(y+Cy(®*2/0)P,

(E18
whereC is a constant. At the collapse tine-t.,
1 D2/(D+2)
M(f,t:tcou)ZW v p(rt=teon)
D
— —2D/(D+2). E19
(D+2)SpCP/(P+2) (E19

These results are of course equivalent to those obtained pr

viously.

We can now use this method to study the evolution of the

system for t>t.,; (post-collapse solution For t=t.
+ 6t, according to Eq9E13 and(E19), the mass contained
inside the sphere of radiug., =C Y26t(P*2/D at t
=t., has collapsed at=0, resulting in a Dirac peak of
weight

1
M(0t)= Soon t—teon) 2 (E20

CD/Z(

Note that in a bounded domain the final collapse to a centr T e

Dirac peak containing the whole mass occurs in a finite tim
teng afterteq . Forr>0 (associated t@a>a.,;), one has

M, =M(01) + = (aD*/(D+2)_ aDH(P+2))

CD/(D+2)

(E21)
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a
Introducing the scaling variables

r a D2/(D+2)

X= , = -1 (E23
Acoll Acoll
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we obtain the self-similar solution

M(r,H)=M(0)(1+y) with x=(1+y)P7C+2[1—-(1
+y) 20)P, (E24)

Subtracting the Dirac peak at=0, and consideringx<<1,
for which y~ (D/2)xP, we find that the leading contribution
to the mass profile for smatlis

rD

M(r,t)>~25t. (E25

Fience the density profile does not divergeratO™ for t
>t.o - INStead, the density approaches the constant value

p(0+,t)= (E26)

25,0t

which decreases with time. The density profile is thus de-
pleted on a scale~a.q,~ 6t(°*2'® which increases with
time. Forr>a.,, the density profile remains essentially
unaffected.

In principle, the same phenomenon arises for aryTO
the density profile obtained 4t ultimately col-
apses into a central Dirac peak at a timgs>tso - This
solves the apparent paradox that the solutioi=t,,,, has a
vanishing central mass and a finite free energy. In fact, if we
allow singular profiles to develop, the evolution continues
for t>t.) and the Dirac peak with infinite free energyre-
dicted by statistical mechanid®3]) is formed during the
post collapse regime of our Brownian moddh practice,
degeneracy effect®f quantum or dynamical origjriead to
a finite small core of finite density, controlled by the maxi-
mum allowed degeneradB7].

2As discussed in Sec. I A, the results should be different in the
microcanonical ensemble. We shall reserve the full description of
the post-collapse regime for a future communication.

[1] P.H. Chavanis, C. Rosier, and C. Sire, Phys. Re&6036105
(2002.
[2] P.H. Chavanis, J. Sommeria, and R. Robert, Astrophy&71].
385 (1996.
[3] T. Padmanabhan, Phys. R€@®8 285(1990.
[4] M.V. Penston, Mon. Not. R. Astron. Sot44, 425 (1969.
[5] R.B. Larson, Mon. Not. R. Astron. Sot47, 323(1970.
[6] H. Cohn, Astrophys. 242, 765 (1980.
[7] D. Lynden-Bell and P.P. Eggleton, Mon. Not. R. Astron. Soc.
191, 483(1980.
[8] J. Katz and D. Lynden-Bell, Mon. Not. R. Astron. Sd®4,
709 (1978.
[9] A.M. Polyakov, Phys. Lett103B, 207 (1981).
[10] M.E. Cates, Phys. Lett. B51, 553(1990.
[11] D. Carpentier and P. Le Doussal, Phys. Rev6E 026110

(2002.

[12] L. Onsager, Nuovo Cimento, Supg, 279 (1949.

[13] J.D. Murray,Mathematical Biology(Springer, Berlin, 1991

[14] C. Rosier, C. R. Acad. Sci., Ser. I: MatB832 903 (2001).

[15] P. Biler and T. Nadziejgaunpublishegl

[16] T. Padmanabhan, Astrophys. J., Suppl. 3&r.651(1989.

[17] P.H. Chavanis, Astron. Astrophy381, 340(2002.

[18] G. Joyce and D. Montgomery, J. Plasma PHy3.107 (1973.

[29] J. Miller, Phys. Rev. Lett65, 2137(1990.

[20] R. Robert and J. Sommeria, J. Fluid Me@29, 291 (1991).

[21] P.H. Chavanis and J. Sommeria, J. Fluid Me8i4, 267
(1996.

[22] P.H. Chavanis, irDynamics and Thermodynamics of Systems
with Long Range Interactiond_ecture Notes in Physics Vol.
602 edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens,

046133-22



THERMODYNAMICS AND COLLAPSE OF SELF. ..

(Springer, Berlin, 200R

[23] M. Kiessling, J. Stat. Phy&5, 203(1989.

[24] J.J. Aly, Phys. Rev. B9, 3771(1994.

[25] V.A. Antonov, Vestn. Leningr. Gos. Univ, 135(1962.

[26] D. Lynden-Bell and R. Wood, Mon. Not. R. Astron. SA&8
495 (1968.

[27] J. Katz, Mon. Not. R. Astron. Sod.83 765 (1978.

[28] S. Chandrasekha/n Introduction to the Theory of Stellar

Structure(Dover, New York, 1939

PHYSICAL REVIEW E 66, 046133 (2002

[32] J. Katz and M. Lecar, Astrophys. Space %8, 495 (1980.

[33] P.H. Chavanis, Astron. Astrophy#to be publishel e-print
astro-ph/0207080.

[34] H. Risken, The Fokker-Planck EquatioriSpringer, Berlin,
1989.

[35] P.H. Chavanis, e-print cond-mat/0209096.

[36] P.H. Chavanis, Phys. Rev. @&, 026309(2001).

[37] P.H. Chavanis, Phys. Rev. &, 056123(2002.

[38] E. Abdalla and M.R. R Tabar, Phys. Lett.Z80, 339(1998.

[29] E. Caglioti, P.L. Lions, C. Marchioro, and M. Pulvirenti, Com- [39] P.H. Chavanis, Phys. Rev. 88, R1199(1998.

mun. Math. Phys174, 229(1995.
[30] G.L. Camm, Mon. Not. R. Astron. So¢10, 305 (1950.
[31] J. Binney and S. Tremain&alactic DynamicsPrinceton Se-

[40] L. Landau and E. LifschitzMeécanique QuantiquéEditions
MIR, Moscow, 1967.
[41] P.H. Chavanis, Astron. Astrophy386, 732 (2002.

ries in Astrophysics(Princeton Univ. Press, Princeton, NJ, [42] P.H. Chavanis and |. Ispolatov, Phys. Rev.6B 036109

1987).

(2002.

046133-23



